WO2019155978A1 - 基板処理装置および基板処理方法 - Google Patents

基板処理装置および基板処理方法 Download PDF

Info

Publication number
WO2019155978A1
WO2019155978A1 PCT/JP2019/003362 JP2019003362W WO2019155978A1 WO 2019155978 A1 WO2019155978 A1 WO 2019155978A1 JP 2019003362 W JP2019003362 W JP 2019003362W WO 2019155978 A1 WO2019155978 A1 WO 2019155978A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
particle source
processing apparatus
transport
substrate processing
Prior art date
Application number
PCT/JP2019/003362
Other languages
English (en)
French (fr)
Inventor
勇二 高波
健人 野呂田
岡本 直之
恭央 加藤
保志 安松
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to CN201980011687.XA priority Critical patent/CN111684101B/zh
Priority to KR1020207022494A priority patent/KR102415073B1/ko
Priority to DE112019000682.7T priority patent/DE112019000682B4/de
Priority to JP2019570715A priority patent/JP6738976B2/ja
Publication of WO2019155978A1 publication Critical patent/WO2019155978A1/ja
Priority to US16/928,086 priority patent/US11270873B2/en
Priority to US17/580,813 priority patent/US11694882B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/3442Applying energy to the substrate during sputtering using an ion beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3435Target holders (includes backing plates and endblocks)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method.
  • the particle source can be, for example, a target held by a cathode or an ion beam source.
  • the substrate processing apparatus can be used as a sputtering apparatus (film forming apparatus).
  • the particle source is an ion beam source
  • the substrate processing apparatus can be used as an etching apparatus or an ion implantation apparatus.
  • Patent Document 1 describes a film forming apparatus for forming a thin film on a substrate having an uneven shape.
  • a film forming apparatus described in Patent Document 1 includes a cathode unit that is rotatable around an axis in the Y direction, a rotating shaft that rotates a substrate holder, a drive system that drives the rotating shaft in the axial direction, and a rotating shaft. And a drive system that swings in the XZ plane.
  • An object of the present invention is to provide an advantageous technique for adjusting the distance between the particle source and the substrate and the relative attitude between the particle source and the substrate.
  • a first aspect of the present invention relates to a substrate processing apparatus that processes a substrate using particles, the substrate processing apparatus including a transport mechanism that transports the substrate along a transport surface, a particle source that emits particles, A rotation mechanism that rotates the particle source around a rotation axis; and a movement mechanism that moves the particle source so that a distance between the particle source and the transport surface is changed.
  • a second aspect of the present invention relates to a substrate processing method for processing a substrate, wherein the substrate processing method transports the substrate along a transport surface while controlling the posture and position of a particle source that emits particles.
  • an advantageous technique is provided for adjusting the distance between the particle source and the substrate and the relative posture between the particle source and the substrate.
  • the present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate using particles emitted from a particle source.
  • the particle source is, for example, a target held by a cathode
  • the substrate processing apparatus can be configured as a sputtering apparatus that forms a film on a substrate using particles emitted by sputtering of the cathode.
  • the particle source is an ion beam source
  • the substrate processing apparatus is an etching apparatus that etches the substrate using particles emitted from the ion beam source, or injects particles emitted from the ion beam source into the substrate. It can be configured as an ion implantation apparatus.
  • the substrate processing apparatus By replacing the particle source in the following description with an ion beam source, the substrate processing apparatus described below is a substrate. It can function as an etching apparatus that etches or an ion implantation apparatus that implants ions into the substrate.
  • FIG. 1 schematically shows the configuration of the sputtering apparatus 1 according to the first embodiment of the present invention.
  • the sputtering apparatus 1 includes a sputtering chamber CA, a transport mechanism CMA that transports the substrate S along the transport surface CS in the sputtering chamber CA, and a cathode C that holds a target T (particle source) in the sputtering chamber CA.
  • the sputtering apparatus 1 can include a rotation mechanism RTM that rotates the cathode C around the rotation axis, and a movement mechanism RVM that moves the cathode C so that the distance between the cathode C and the transport surface CS is changed.
  • the distance between the cathode C and the transport surface CS can be adjusted or controlled by the moving mechanism RVM so that the distance between the target T and the film forming portion of the substrate S is constant.
  • the substrate S has, for example, a concave surface, and a film can be formed on the surface by sputtering.
  • the surface may be, for example, a surface constituting a part of a cylindrical surface, a surface constituting a part of a spherical surface, or a paraboloid, but may have other shapes.
  • the present invention is advantageous for forming a film on the surface of a substrate having a concave surface, but may be applied to form a film on the surface of a substrate having a convex surface. .
  • the substrate S can be transported along the transport surface CS by the transport mechanism CMA while being held by the substrate holder SH, for example.
  • the substrate S can be, for example, a base material or base for an optical element such as a mirror.
  • the transport mechanism CMA can be, for example, a roller conveyor, but may be another type of transport mechanism.
  • the sputtering apparatus 1 may further include a vacuum pump (for example, a turbo molecular pump, a dry pump, a cryopump, etc.) for decompressing the internal space of the sputtering chamber CA.
  • a vacuum pump for example, a turbo molecular pump, a dry pump, a cryopump, etc.
  • the sputtering apparatus 1 can include a gas supply unit that supplies gas (for example, argon gas) to the internal space of the sputtering chamber CA.
  • the sputtering apparatus 1 can include a high frequency supply source that supplies a high frequency between the cathode C and the substrate S and / or the sputtering chamber CA.
  • the sputtering apparatus 1 may further include a load lock chamber CB.
  • the load lock chamber CB can be connected to the sputtering chamber CA via the gate valve V1.
  • the load lock chamber CB may be provided with a vacuum pump that depressurizes the internal space of the load lock chamber CB.
  • the load lock chamber CB may be provided with a transport mechanism CMB for transporting the substrate S in the load lock chamber CB.
  • a heater HT for heating the substrate S may be provided in the load lock chamber CB.
  • the sputtering apparatus 1 may include a port CC that provides a relay place for loading the substrate S into the load lock chamber CB and unloading the substrate S from the load lock chamber CB.
  • the port CC can be connected to the load lock chamber CB via the gate valve V2.
  • the port CC may be provided with a transport mechanism CMC for transporting the substrate S in the port CC.
  • the port CC may be provided with a measuring instrument MEAS for measuring the shape of the surface of the substrate S.
  • the measuring instrument MEAS can be, for example, a three-dimensional shape measuring instrument.
  • the measuring instrument MEAS can measure the shape of the surface of the substrate S in a state where the substrate S is scanned by the transport mechanism CMC, for example, and can generate surface shape information.
  • the sputtering apparatus 1 can include a control unit CNT that controls the transport mechanisms CMA, CMB, CMC, the rotation mechanism RTM, the movement mechanism RVM, the heater HT, and the measuring instrument MEAS.
  • the control unit CNT is, for example, PLD (abbreviation of Programmable Logic Device) such as FPGA (abbreviation of Field Programmable Gate Array), or ASIC (Abbreviation of Application Specific Integrated, or an abbreviation of an integrated program of Circulatory Circuit). It can be constituted by a computer or a combination of all or part of them.
  • the substrate S can be loaded into the port CC and transferred to the load lock chamber CB through the gate valve V2 by the transfer mechanisms CMC and CMB.
  • the shape of the surface of the substrate S can be measured by the measuring instrument MEAS.
  • the control unit CNT outputs the surface shape information (information indicating the shape of the surface of the substrate S), which is a result measured by the measuring instrument MEAS, or the surface shape information of the substrate S provided via an input device (not shown). Based on this, control information for controlling the rotation mechanism RTM and the movement mechanism RVM can be generated.
  • the internal space of the load lock chamber CB can be decompressed. Further, the substrate S can be heated by the heater HT as necessary. Thereafter, the substrate S can be transferred to the internal space of the sputtering chamber CA by the transfer mechanisms CMB and CMA through the gate valve V1.
  • a film is formed on the substrate S by sputtering while transporting the substrate S along the transport surface CS in the first transport direction and controlling the posture and position of the cathode C holding the target T.
  • a process may be performed.
  • the film formation location which is the location where the film is formed (location where the film grows), of the entire surface of the substrate S can change as the substrate S is transported by the transport mechanism CMA.
  • the film forming portion is a portion to be processed, that is, a portion to be processed.
  • the cathode C is rotated around the rotation axis in accordance with the change in the film forming position of the substrate S, and the cathode C is moved so that the distance between the cathode C and the transport surface CS is changed.
  • a driving process may be included. In the driving process, the distance between the cathode C and the transport surface CS can be adjusted or controlled by the driving mechanism RVM so that the distance between the target T and the film forming portion of the substrate S is constant.
  • the substrate S is further moved by the transport mechanism CMA in the second transport direction opposite to the first transport direction. Transported by the transport mechanisms CMA and CMB to the internal space of the load lock chamber CB through the gate valve V1. Thereafter, the pressure in the load lock chamber CB is returned to the atmospheric pressure and can be transported to the port CC by the transport mechanisms CMB and CMC.
  • FIG. 2 schematically shows a configuration example of the rotation mechanism RTM and the movement mechanism RVM.
  • FIG. 3 schematically shows the adjustment or control of the attitude and position of the target T (cathode C) by the rotation mechanism RTM and the movement mechanism RVM that can be performed under the control of the control unit CNT.
  • the moving mechanism RVM is, for example, a revolving mechanism that moves the cathode C so that the distance between the cathode C and the transport surface CS (film formation location DP) is changed by rotating the cathode C along the revolving track OB. It can be embodied.
  • the moving mechanism RVM includes, for example, a motor 12, a rotating shaft 16 connected to the rotation mechanism RTM, a bearing 18 that supports the rotating shaft 16, and a gear mechanism that transmits the output (rotation) of the motor 12 to the rotating shaft 16. 14 may be included.
  • the rotation mechanism RTM can include, for example, a motor 32, a rotating shaft 38 that supports the cathode C, and a gear mechanism 36 that transmits an output (rotation) of the motor 32 to the rotating shaft 38.
  • the film formation location DP (see FIG. 3) of the substrate S may change as the substrate S is transported by the transport mechanism CMA.
  • the rotation mechanism RTM and the movement mechanism RVM have a constant angle between the normal NS of the film formation portion DP of the substrate C and the normal NT (particle normal) of the surface of the target T.
  • the attitude and position of the cathode C (target T) can be adjusted or controlled.
  • the rotation mechanism RTM and the movement mechanism RVM have the cathode C so that the normal line NS of the film formation site DP of the substrate C and the normal line NT of the surface of the target T are parallel to each other.
  • the posture and position of (target T) can be adjusted or controlled.
  • the rotation mechanism RTM and the movement mechanism RVM have a constant angle between the normal line NS of the film formation location DP of the substrate S and the normal line NT of the surface of the target T, and
  • the posture and position of the cathode C (target T) can be adjusted or controlled so that the distance between the film formation location DP and the target T is constant.
  • the rotation mechanism RTM and the movement mechanism RVM are such that the normal line NS of the film formation location DP of the substrate S and the normal line NT of the surface of the target T are parallel to each other, and the film
  • the posture and position of the cathode C (target T) can be adjusted or controlled so that the distance between the formation location DP and the target T is constant.
  • the rotation axis RTA is parallel to the second direction (direction parallel to the X axis) perpendicular to the first direction parallel to the transport direction (direction parallel to the Y axis) of the substrate S by the transport mechanism CMA.
  • the revolution axis RVA of the orbit OB can be parallel to the second direction.
  • the process proceeds in the order of states S11, S12, S13, S14, S15, S16, S17, S18, and S19.
  • the substrate S has one end E1 in the transport direction by the transport mechanism CMA and the other end E2 in the transport direction by the transport mechanism CMA, and a film can be formed in a region from the one end E1 to the other end E2.
  • the surface of the substrate S has a concave shape in a cross section (XZ cross section) along the transport direction.
  • the substrate S is moved while the film is formed in the region from one end E1 of the substrate S to the other end E2 of the substrate S while being transported in the transport direction by the transport mechanism CMA.
  • the mechanism RVM rotates the cathode C (target T) along the revolution orbit OB in the first revolution direction and then rotates along the revolution orbit OB in the second revolution direction opposite to the first revolution direction. .
  • the rotation mechanism RTM rotates the cathode C (target T) only in one rotation direction around the rotation axis RTA.
  • the cathode C is disposed above the transport surface CS, and the lowest point of the revolution orbit OB is the highest point allowed on the substrate S (the highest point on the substrate S that can be processed in the sputtering apparatus 1). Lower than.
  • the cathode C is disposed above the transport surface CS, and the lowest point of the revolution orbit OB is the highest point allowed on the substrate S (the highest point on the substrate S that can be processed in the sputtering apparatus 1). Higher than.
  • the substrate S Before starting the film formation on the substrate S, the substrate S can be transported to the position indicated as the state S11 by the transport mechanism CMA in a state where the target T and the cathode C are retracted to a position where they do not collide with the substrate S. Thereafter, under the control of the control unit CNT, the rotation mechanism RTM and the movement mechanism RVM are configured such that the normal line NS of the film formation portion DP of the substrate S and the normal line NT of the surface of the target T are parallel to each other.
  • the posture and position of the cathode C (target T) can be controlled so that the distance between the location DP and the target T becomes the target distance. Thereby, the relative position and attitude
  • the state S19 is reached through the states S12, S13, S14, S15, S16, S17, and S18, and the film formation for the region from the one end E1 to the other end E2 is completed.
  • the substrate S is transported from the sputtering chamber CA to the load lock chamber CB by the transport mechanisms CMA and CMB, and further, by the transport mechanisms CMB and CMC. Carried to port CC.
  • the rotation mechanism RTM that rotates the cathode C around the rotation axis and the movement mechanism RVM that moves the cathode C so that the distance between the cathode C and the conveyance surface CS is changed are provided.
  • the rotation mechanism RTM that rotates the cathode C around the rotation axis and the movement mechanism RVM that moves the cathode C so that the distance between the cathode C and the conveyance surface CS is changed are provided.
  • the rotation mechanism RVM that moves the cathode C so that the distance between the cathode C and the conveyance surface CS is changed are provided.
  • Such a configuration is more advantageous for reducing the size of the sputtering apparatus than a configuration in which the relative position and posture between the target and the substrate are adjusted or controlled by revolving or rotating the substrate S.
  • FIG. 7 shows a second embodiment of the sputtering apparatus 1 or the sputtering chamber CA. Matters not described as the second embodiment can follow the first embodiment described with reference to FIGS.
  • the moving mechanism RVM of the first embodiment is changed to a moving mechanism RVM ′.
  • the moving mechanism RVM ′ is embodied as an elevating mechanism that moves the cathode C so that the distance between the cathode C and the transport surface CS (film formation location) is changed by elevating the cathode C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

基板処理装置としてのスパッタリング装置1は、基板Sを搬送面に沿って搬送する搬送機構CMAと、ターゲットTを保持するカソードCと、カソードCを自転軸の周りで回動させる自転機構RTMと、カソードCと搬送面CSとの距離が変更されるようにカソードCを移動させる移動機構RVMとを備える。

Description

基板処理装置および基板処理方法
 本発明は、基板処理装置および基板処理方法に関する。
 粒子源から放出される粒子を使って基板を処理する基板処理装置がある。粒子源は、例えば、カソードによって保持されたターゲットであったり、イオンビーム源であったりしうる。粒子源がターゲットである場合、基板処理装置は、スパッタリング装置(成膜装置)として使用されうる。粒子源がイオンビーム源である場合、基板処理装置は、エッチング装置またはイオン注入装置として使用されうる。
 特許文献1には、凹凸形状を有する基体に薄膜を成膜する成膜装置が記載されている。特許文献1に記載された成膜装置は、Y方向の軸のまわりで回転自在のカソードユニットと、基体ホルダーを回転させる回転軸と、回転軸をその軸方向に駆動する駆動系と、回転軸をXZ面内で搖動させる駆動系とを備えている。
特開2005-336535号公報
 特許文献1に記載された成膜装置のように基板(基体)側の姿勢(傾き)および位置を制御する構成では、凹形状を有する基板に膜を形成する場合に、ターゲットと基板との距離およびターゲットと基板との相対的な姿勢を調整可能な範囲が限定されうる。調整可能な範囲を大きくするためには、基板の姿勢および位置の調整範囲を大きくするとともにカソードユニットの回動範囲を大きくする必要があるが、成膜装置が大型化しうる。
 本発明は、粒子源と基板との距離および粒子源と基板との相対的な姿勢を調整するために有利な技術を提供することを目的とする。
 本発明の第1側面は、粒子を使って基板を処理する基板処理装置に係り、前記基板処理装置は、前記基板を搬送面に沿って搬送する搬送機構と、粒子を放出する粒子源と、前記粒子源を自転軸の周りで回動させる自転機構と、前記粒子源と前記搬送面との距離が変更されるように前記粒子源を移動させる移動機構と、を備える。
 本発明の第2側面は、基板を処理する基板処理方法に係り、前記基板処理方法は、前記基板を搬送面に沿って搬送するとともに、粒子を放出する粒子源の姿勢および位置を制御しながら、前記粒子源から放出される粒子を使って前記基板を処理する処理工程を含み、前記基板の被処理箇所は、前記基板の搬送に伴って変化し、前記処理工程は、前記基板の前記被処理箇所の変化に応じて、前記粒子源を自転軸の周りで回動させるとともに、前記粒子源と前記搬送面との距離が変更されるように前記粒子源を移動させる駆動工程を含む。
 本発明によれば、粒子源と基板との距離および粒子源と基板との相対的な姿勢を調整するために有利な技術が提供される。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
本発明の第1実施形態のスパッタリング装置の構成を模式的に示す図。 本発明の第2実施形態のスパッタリング装置の構成を模式的に示す図。 制御部による制御の下でなされうる自転機構および移動機構によるターゲット(カソード)の姿勢および位置の調整あるいは制御を模式的に示す図。 スパッタリング装置において基板にスパッタリングによって膜が形成される処理を時系列的に示す図。 スパッタリング装置において基板にスパッタリングによって膜が形成される処理を時系列的に示す図。 スパッタリング装置において基板にスパッタリングによって膜が形成される処理を時系列的に示す図。 本発明の第2実施形態のスパッタリング装置の構成を模式的に示す図。
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
 以下、添付図面を参照しながら本発明のその例示的な実施形態を通して説明する。本発明は、粒子源から放出される粒子を使って基板を処理する基板処理装置および基板処理方法に関する。粒子源は、例えば、カソードによって保持されたターゲットであり、基板処理装置は、カソードのスパッタリングによって放出される粒子を使って基板に膜を形成するスパッタリング装置として構成されうる。あるいは、粒子源は、イオンビーム源であり、基板処理装置は、イオンビーム源から放出される粒子を使って基板をエッチングするエッチング装置として、または、イオンビーム源から放出される粒子を基板に注入するイオン注入装置として構成されうる。
 以下では、本発明に係る基板処理装置がスパッタリング装置に適用された例を説明するが、以下の説明における粒子源がイオンビーム源に置き換えられることによって、以下で説明される基板処理装置は、基板をエッチングするエッチング装置として、または、基板にイオンを注入するイオン注入装置として機能しうる。
 図1には、本発明の第1実施形態のスパッタリング装置1の構成が模式的に示されている。スパッタリング装置1は、スパッタリングチャンバーCAと、スパッタリングチャンバーCAの中で基板Sを搬送面CSに沿って搬送する搬送機構CMAと、スパッタリングチャンバーCAの中でターゲットT(粒子源)を保持するカソードCとを備えうる。また、スパッタリング装置1は、カソードCを自転軸の周りで回動させる自転機構RTMと、カソードCと搬送面CSとの距離が変更されるようにカソードCを移動させる移動機構RVMとを備えうる。ここで、カソードCと搬送面CSとの距離は、ターゲットTと基板Sの膜形成箇所との距離が一定になるように移動機構RVMによって調整あるいは制御されうる。
 基板Sは、例えば、凹形状を有する表面を有し、該表面にスパッタリングによって膜が形成されうる。該表面は、例えば、円筒面の一部を構成する面、球面の一部を構成する面、または、放物面等でありうるが、他の形状を有してもよい。また、本発明は、凹形状の表面を有する基板の該表面に膜を形成するために有利であるが、凸形状の表面を有する基板の該表面に膜を形成するために適用されてもよい。
 基板Sは、例えば、基板ホルダーSHによって保持された状態で搬送機構CMAによって搬送面CSに沿って搬送されうる。基板Sは、例えば、ミラー等の光学素子の母材あるいはベースとなりうる。搬送機構CMAは、例えば、ローラーコンベアでありうるが、他の形式の搬送機構であってもよい。
 スパッタリング装置1は、その他、スパッタリングチャンバーCAの内部空間を減圧するための真空ポンプ(例えば、ターボ分子ポンプ、ドライポンプ、クライオポンプ等)を備えうる。また、スパッタリング装置1は、スパッタリングチャンバーCAの内部空間にガス(例えば、アルゴンガス)を供給するガス供給部を備えうる。また、スパッタリング装置1は、カソードCと基板Sおよび/またはスパッタリングチャンバーCAとの間に高周波を供給する高周波供給源を備えうる。
 スパッタリング装置1は、ロードロックチャンバーCBを更に備えてもよい。ロードロックチャンバーCBは、ゲートバルブV1を介してスパッタリングチャンバーCAに接続されうる。ロードロックチャンバーCBには、ロードロックチャンバーCBの内部空間を減圧する真空ポンプが設けられうる。また、ロードロックチャンバーCBには、ロードロックチャンバーCBの中で基板Sを搬送するための搬送機構CMBが設けられうる。ロードロックチャンバーCBの中には、基板Sを加熱するヒータHTが設けられてもよい。
 スパッタリング装置1は、基板SをロードロックチャンバーCBに搬入したり、ロードロックチャンバーCBから基板Sを搬出したりするための中継場所を提供するポートCCを備えうる。ポートCCは、ゲートバルブV2を介してロードロックチャンバーCBに接続されうる。ポートCCには、ポートCCの中で基板Sを搬送するための搬送機構CMCが設けられうる。また、ポートCCには、基板Sの表面の形状を計測するための計測器MEASが設けられうる。計測器MEASは、例えば、3次元形状計測器でありうる。計測器MEASは、例えば、搬送機構CMCによって基板Sが走査された状態で基板Sの表面の形状を計測し、表面形状情報を生成しうる。
 スパッタリング装置1は、搬送機構CMA、CMB、CMC、自転機構RTM、移動機構RVM、ヒータHTおよび計測器MEASを制御する制御部CNTを備えうる。制御部CNTは、例えば、FPGA(Field Programmable Gate Arrayの略。)などのPLD(Programmable Logic Deviceの略。)、又は、ASIC(Application Specific Integrated Circuitの略。)、又は、プログラムが組み込まれた汎用コンピュータ、又は、これらの全部または一部の組み合わせによって構成されうる。
 図1に示された例では、基板Sは、ポートCCに搬入され、ゲートバルブV2を通してロードロックチャンバーCBに搬送機構CMC、CMBによって搬送されうる。ここで、基板Sの表面の形状が不明である場合には、計測器MEASによって基板Sの表面の形状が計測されうる。制御部CNTは、計測器MEASによって計測された結果である表面形状情報(基板Sの表面の形状を示す情報)、または、不図示の入力装置を介して提供される基板Sの表面形状情報に基づいて、自転機構RTMおよび移動機構RVMを制御するための制御情報を生成しうる。
 ロードロックチャンバーCBの中に基板Sが搬入されると、ロードロックチャンバーCBの内部空間が減圧されうる。また、必要に応じて、ヒータHTによって基板Sが加熱されうる。その後、基板Sは、ゲートバルブV1を通してスパッタリングチャンバーCAの内部空間に搬送機構CMB、CMAによって搬送されうる。
 スパッタリングチャンバーCAでは、基板Sを搬送面CSに沿って第1搬送方向に搬送するとともに、ターゲットTを保持するカソードCの姿勢および位置を制御しながら、スパッタリングによって基板Sに膜を形成する膜形成工程が実施されうる。基板Sの表面の全体のうち膜が形成される箇所(膜が成長する箇所)である膜形成箇所は、搬送機構CMAによる基板Sの搬送に伴って変化しうる。ここで、膜形成箇所は、処理される箇所、即ち被処理箇所であるとも言える。膜形成工程は、基板Sの膜形成箇所の変化に応じて、カソードCを自転軸の周りで回動させるとともに、カソードCと搬送面CSとの距離が変更されるようにカソードCを移動させる駆動工程を含みうる。駆動工程では、ターゲットTと基板Sの膜形成箇所との距離が一定になるように駆動機構RVMによってカソードCと搬送面CSとの距離が調整あるいは制御されうる。
 基板Sの表面の全域(あるいは、膜を形成すべき領域の全域)に膜が形成された後、基板Sは、第1搬送方向とは反対の第2搬送方向に搬送機構CMAによって、更に、ゲートバルブV1を通してロードロックチャンバーCBの内部空間に搬送機構CMA、CMBによって搬送される。その後、ロードロックチャンバーCBの圧力が大気圧に戻され、ポートCCに搬送機構CMB、CMCによって搬送されうる。
 図2には、自転機構RTMおよび移動機構RVMの構成例が模式的に示されている。図3には、制御部CNTによる制御の下でなされうる自転機構RTMおよび移動機構RVMによるターゲットT(カソードC)の姿勢および位置の調整あるいは制御が模式的に示されている。移動機構RVMは、例えば、カソードCを公転軌道OBに沿って回動させることによってカソードCと搬送面CS(膜形成箇所DP)との距離が変更されるようにカソードCを移動させる公転機構として具体化されうる。移動機構RVMは、例えば、モーター12と、自転機構RTMに連結された回転軸16と、回転軸16を支持するベアリング18と、モーター12の出力(回動)を回転軸16に伝達するギア機構14とを含みうる。自転機構RTMは、例えば、モーター32と、カソードCを支持する回転軸38と、モーター32の出力(回動)を回転軸38に伝達するギア機構36とを含みうる。
 基板Sの膜形成箇所DP(図3参照)は、搬送機構CMAによる基板Sの搬送に伴って変化しうる。制御部CNTによる制御の下で、自転機構RTMおよび移動機構RVMは、基板Cの膜形成箇所DPの法線NSとターゲットTの表面の法線NT(粒子源の法線)との角度が一定になるようにカソードC(ターゲットT)の姿勢および位置を調整あるいは制御しうる。好ましくは、制御部CNTによる制御の下で、自転機構RTMおよび移動機構RVMは、基板Cの膜形成箇所DPの法線NSとターゲットTの表面の法線NTとが平行になるようにカソードC(ターゲットT)の姿勢および位置を調整あるいは制御しうる。
 更に、制御部CNTによる制御の下で、自転機構RTMおよび移動機構RVMは、基板Sの膜形成箇所DPの法線NSとターゲットTの表面の法線NTとの角度が一定になり、かつ、膜形成箇所DPとターゲットTとの距離が一定になるように、カソードC(ターゲットT)の姿勢および位置を調整あるいは制御しうる。好ましくは、制御部CNTによる制御の下で、自転機構RTMおよび移動機構RVMは、基板Sの膜形成箇所DPの法線NSとターゲットTの表面の法線NTとが平行になり、かつ、膜形成箇所DPとターゲットTとの距離が一定になるように、カソードC(ターゲットT)の姿勢および位置を調整あるいは制御しうる。
 自転軸RTAは、搬送機構CMAによる基板Sの搬送方向(Y軸に平行な方向)に平行な第1方向に対して直交する第2方向(X軸に平行な方向)に平行であり、公転軌道OBの公転軸RVAは、該第2方向に平行でありうる。
 図4~図6には、スパッタリング装置1において基板Sにスパッタリングによって膜が形成される処理が時系列的に示されている。処理は、状態S11、S12、S13、S14、S15、S16、S17、S18、S19の順に進行する。基板Sは、搬送機構CMAによる搬送方向における一端E1、および、搬送機構CMAによる搬送方向における他端E2を有し、一端E1から他端E2までの領域に膜が形成されうる。
 図4~図6に例示される処理では、基板Sの表面は、搬送方向に沿った断面(XZ断面)において、凹形状を有する。図4~図6に示された例では、基板Sが搬送機構CMAによって搬送方向に搬送されながら基板Sの一端E1から基板Sの他端E2までの領域に膜が形成される間に、移動機構RVMは、カソードC(ターゲットT)を第1公転方向に公転軌道OBに沿って回動させた後に、第1公転方向とは反対の第2公転方向に公転軌道OBに沿って回動させる。また、図4~図6に示された例では、基板Sが搬送機構CMAによって搬送方向に搬送されながら基板Sの一端E1から基板Sの他端E2までの領域に膜が形成される間に、自転機構RTMは、カソードC(ターゲットT)を自転軸RTAの周りで1つの自転方向にのみ回動させる。
 一つの構成例において、カソードCは、搬送面CSの上方に配置され、公転軌道OBの最下点は、基板Sの許容される最上点(スパッタリング装置1において処理可能な基板Sにおける最上点)よりも低い。他の構成例において、カソードCは、搬送面CSの上方に配置され、公転軌道OBの最下点は、基板Sの許容される最上点(スパッタリング装置1において処理可能な基板Sにおける最上点)よりも高い。
 基板Sに対する膜の形成を開始する前に、基板Sは、ターゲットTおよびカソードCが基板Sに衝突しない位置に退避された状態で、搬送機構CMAによって状態S11として示される位置まで搬送されうる。その後、制御部CNTによる制御の下で、自転機構RTMおよび移動機構RVMは、基板Sの膜形成箇所DPの法線NSとターゲットTの表面の法線NTとが平行になり、かつ、膜形成箇所DPとターゲットTとの距離が目標距離になるように、カソードC(ターゲットT)の姿勢および位置を制御しうる。これにより、基板SとターゲットTとの相対的な位置および姿勢は、状態S11のようになる。この状態で、基板Sが搬送機構CMAによって搬送されながら基板Sに膜の形成する処理が開始される。
 その後、状態S12、S13、S14、S15、S16、S17、S18を経て状態S19に至り、一端E1から他端E2までの領域に対する膜の形成が完了する。その後、ターゲットTおよびカソードCが基板Sに衝突しない位置に退避された状態で、搬送機構CMA、CMBによって基板SがスパッタリングチャンバーCAからロードロックチャンバーCBに搬送され、更に、搬送機構CMB、CMCによってポートCCに搬送される。
 この実施形態によれば、カソードCを自転軸の周りで回動させる自転機構RTMと、カソードCと搬送面CSとの距離が変更されるようにカソードCを移動させる移動機構RVMとを備えることによって、凹形状を有する基板Sを搬送しながら基板Sに対する膜の形成を行うことができる。このような構成は、基板Sを公転あるいは回動させることによってターゲットと基板との相対的な位置および姿勢を調整あるいは制御する構成よりもスパッタリング装置の小型化に有利である。
 図7には、スパッタリング装置1あるいはスパッタリングチャンバーCAの第2実施形態が示されている。第2実施形態として説明しない事項は、図1~図6を参照しながら説明した第1実施形態に従いうる。第2実施形態では、第1実施形態の移動機構RVMが移動機構RVM’に変更されている。移動機構RVM’は、カソードCを昇降させることによってカソードCと搬送面CS(膜形成箇所)との距離が変更されるようにカソードCを移動させる昇降機構として具体化されている。
 本願は、2018年2月6日提出の日本国特許出願特願2018-019569を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。
 発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
1:スパッタリング装置、CA:スパッタリングチャンバー、CB:ロードロックチャンバー、CC:ポート、CMA:搬送機構、CMB:搬送機構、CMC:搬送機構、CS:搬送面、C:カソード、T:ターゲット、S:基板、RTM:自転機構、RVM:移動機構(公転機構)、RVM’:移動機構(昇降機構)、RTA:自転軸、RVA:公転軸、OB:公転軌道:DP:膜形成箇所

Claims (19)

  1.  粒子を使って基板を処理する基板処理装置であって、
     前記基板を搬送面に沿って搬送する搬送機構と、
     粒子を放出する粒子源と、
     前記粒子源を自転軸の周りで回動させる自転機構と、
     前記粒子源と前記搬送面との距離が変更されるように前記粒子源を移動させる移動機構と、
     を備えることを特徴とする基板処理装置。
  2.  前記基板の被処理箇所は、前記搬送機構による前記基板の搬送に伴って変化し、
     前記自転機構および前記移動機構は、前記基板の前記被処理箇所の法線と前記粒子源の法線との角度が一定になるように前記粒子源の姿勢および位置を制御する、
     ことを特徴とする請求項1に記載の基板処理装置。
  3.  前記基板の被処理箇所は、前記搬送機構による前記基板の搬送に伴って変化し、
     前記自転機構および前記移動機構は、前記基板の前記被処理箇所の法線と前記粒子源の法線とが平行になるように前記粒子源の姿勢および位置を制御する、
     ことを特徴とする請求項1に記載の基板処理装置。
  4.  前記自転機構および前記移動機構は、前記被処理箇所と前記粒子源との距離が一定になるように、前記粒子源の姿勢および位置を制御する、
     ことを特徴とする請求項2又は3に記載の基板処理装置。
  5.  前記移動機構は、前記粒子源を公転軌道に沿って回動させることによって前記粒子源と前記搬送面との距離が変更されるように前記粒子源を移動させる、
     ことを特徴とする請求項1乃至4のいずれか1項に記載の基板処理装置。
  6.  前記自転軸は、前記搬送機構による前記基板の搬送方向に平行な第1方向に対して直交する第2方向に平行であり、前記公転軌道の公転軸は、前記第2方向に平行である、
     ことを特徴とする請求項5に記載の基板処理装置。
  7.  前記基板が前記搬送機構によって前記搬送方向に搬送されながら前記基板の前記搬送方向における一端から前記基板の前記搬送方向における他端までの領域に膜が形成される間に、前記移動機構は、前記粒子源を第1公転方向に前記公転軌道に沿って回動させた後に、前記粒子源を前記第1公転方向とは反対の第2公転方向に前記公転軌道に沿って回動させる、
     ことを特徴とする請求項6に記載の基板処理装置。
  8.  前記基板が前記搬送機構によって前記搬送方向に搬送されながら前記基板の前記搬送方向における一端から前記基板の前記搬送方向における他端までの領域に膜が形成される間に、前記自転機構は、前記粒子源を前記自転軸の周りで1つの自転方向にのみ回動させる、
     ことを特徴とする請求項6又は7に記載の基板処理装置。
  9.  前記移動機構は、前記粒子源を昇降させることによって前記粒子源と前記搬送面との距離が変更されるように前記粒子源を移動させる、
     ことを特徴とする請求項1乃至3のいずれか1項に記載の基板処理装置。
  10.  前記基板の表面の形状を示す表面形状情報に基づいて、前記自転機構および前記移動機構を制御するための制御情報を生成する制御部を更に備える、
     ことを特徴とする請求項1乃至9のいずれか1項に記載の基板処理装置。
  11.  前記基板の形状を計測して前記表面形状情報を生成する計測器を更に備える、
     ことを特徴とする請求項10に記載の基板処理装置。
  12.  前記粒子源は、カソードによって保持されたターゲットであり、
     前記基板処理装置は、前記カソードのスパッタリングによって放出される粒子を使って前記基板に膜を形成する、
     ことを特徴とする請求項1乃至11のいずれか1項に記載の基板処理装置。
  13.  前記粒子源は、イオンビーム源である、
     ことを特徴とする請求項1乃至11のいずれか1項に記載の基板処理装置。
  14.  基板を処理する基板処理方法であって、
     前記基板を搬送面に沿って搬送するとともに、粒子を放出する粒子源の姿勢および位置を制御しながら、前記粒子源から放出される粒子を使って前記基板を処理する処理工程を含み、
     前記基板の被処理箇所は、前記基板の搬送に伴って変化し、
     前記処理工程は、前記基板の前記被処理箇所の変化に応じて、前記粒子源を自転軸の周りで回動させるとともに、前記粒子源と前記搬送面との距離が変更されるように前記粒子源を移動させる駆動工程を含む、
     ことを特徴とする基板処理方法。
  15.  前記駆動工程では、前記基板の前記被処理箇所の法線と前記粒子源の法線との角度が一定になるように前記粒子源の姿勢および位置を制御する、
     ことを特徴とする請求項14に記載の基板処理方法。
  16.  前記駆動工程では、前記基板の前記被処理箇所の法線と前記粒子源の法線とが平行になるように前記粒子源の姿勢および位置を制御する、
     ことを特徴とする請求項14に記載の基板処理方法。
  17.  前記駆動工程では、前記被処理箇所と前記粒子源との距離が一定になるように、前記粒子源の姿勢および位置を制御する、
     ことを特徴とする請求項15又は16に記載の基板処理方法。
  18.  前記粒子源は、カソードによって保持されたターゲットであり、
     前記カソードのスパッタリングによって放出される粒子を使って前記基板に膜が形成される、
     ことを特徴とする請求項14乃至17のいずれか1項に記載の基板処理方法。
  19.  前記粒子源は、イオンビーム源である、
     ことを特徴とする請求項14乃至17のいずれか1項に記載の基板処理方法。
PCT/JP2019/003362 2018-02-06 2019-01-31 基板処理装置および基板処理方法 WO2019155978A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980011687.XA CN111684101B (zh) 2018-02-06 2019-01-31 基板处理装置以及基板处理方法
KR1020207022494A KR102415073B1 (ko) 2018-02-06 2019-01-31 기판 처리 장치 및 기판 처리 방법
DE112019000682.7T DE112019000682B4 (de) 2018-02-06 2019-01-31 Substratbearbeitungsvorrichtung und Substratbearbeitungsverfahren
JP2019570715A JP6738976B2 (ja) 2018-02-06 2019-01-31 基板処理装置および基板処理方法
US16/928,086 US11270873B2 (en) 2018-02-06 2020-07-14 Substrate processing apparatus and substrate processing method
US17/580,813 US11694882B2 (en) 2018-02-06 2022-01-21 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-019569 2018-02-06
JP2018019569 2018-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/928,086 Continuation US11270873B2 (en) 2018-02-06 2020-07-14 Substrate processing apparatus and substrate processing method

Publications (1)

Publication Number Publication Date
WO2019155978A1 true WO2019155978A1 (ja) 2019-08-15

Family

ID=67547945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003362 WO2019155978A1 (ja) 2018-02-06 2019-01-31 基板処理装置および基板処理方法

Country Status (6)

Country Link
US (2) US11270873B2 (ja)
JP (1) JP6738976B2 (ja)
KR (1) KR102415073B1 (ja)
CN (1) CN111684101B (ja)
DE (1) DE112019000682B4 (ja)
WO (1) WO2019155978A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019681A (ja) * 1973-06-25 1975-03-01
JP2001526323A (ja) * 1997-12-05 2001-12-18 コリア インスティテュート オブ サイエンス アンド テクノロジー イオンビームを用いてポリマー、金属およびセラミックスの表面を改質する装置
JP2006124821A (ja) * 2004-11-01 2006-05-18 Nara Kikai Seisakusho:Kk レーザーアブレーション装置
JP2009041115A (ja) * 2008-11-25 2009-02-26 Ulvac Japan Ltd スパッタ源、スパッタリング装置、及びスパッタリング方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537973A (en) * 1967-09-15 1970-11-03 Varian Associates Sequential sputtering with movable targets
JPH0347964A (ja) 1989-07-17 1991-02-28 Nikon Corp イオンビームスパッタ装置
US5733418A (en) * 1996-05-07 1998-03-31 Pld Advanced Automation Systems, Inc. Sputtering method and apparatus
WO1998028779A1 (de) 1996-12-21 1998-07-02 Singulus Technologies Ag Vorrichtung zur kathodenzerstäubung
US6224718B1 (en) * 1999-07-14 2001-05-01 Veeco Instruments, Inc. Target assembly for ion beam sputter deposition with multiple paddles each having targets on both sides
CA2383082A1 (en) * 1999-09-01 2001-03-08 Siemens Aktiengesellschaft Method and device for the surface threatment of a component
JP2003147519A (ja) 2001-11-05 2003-05-21 Anelva Corp スパッタリング装置
JP2005336535A (ja) 2004-05-26 2005-12-08 Canon Inc 成膜装置及び成膜方法
JP2007182617A (ja) * 2006-01-10 2007-07-19 Ulvac Japan Ltd スパッタ成膜方法及び装置
WO2009028055A1 (ja) 2007-08-29 2009-03-05 Canon Anelva Corporation スパッタリングによる成膜方法とその装置
CN104409307B (zh) * 2014-11-12 2017-03-15 中国电子科技集团公司第四十八研究所 一种离子注入机扫描装置及扫描方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019681A (ja) * 1973-06-25 1975-03-01
JP2001526323A (ja) * 1997-12-05 2001-12-18 コリア インスティテュート オブ サイエンス アンド テクノロジー イオンビームを用いてポリマー、金属およびセラミックスの表面を改質する装置
JP2006124821A (ja) * 2004-11-01 2006-05-18 Nara Kikai Seisakusho:Kk レーザーアブレーション装置
JP2009041115A (ja) * 2008-11-25 2009-02-26 Ulvac Japan Ltd スパッタ源、スパッタリング装置、及びスパッタリング方法

Also Published As

Publication number Publication date
KR102415073B1 (ko) 2022-07-01
CN111684101A (zh) 2020-09-18
US20200343080A1 (en) 2020-10-29
US20220139686A1 (en) 2022-05-05
KR20200105696A (ko) 2020-09-08
CN111684101B (zh) 2023-02-17
JP6738976B2 (ja) 2020-08-12
DE112019000682B4 (de) 2023-06-29
JPWO2019155978A1 (ja) 2020-07-02
DE112019000682T5 (de) 2020-11-05
US11270873B2 (en) 2022-03-08
US11694882B2 (en) 2023-07-04

Similar Documents

Publication Publication Date Title
KR102381838B1 (ko) 정전 용량 측정용 측정기, 및 측정기를 이용하여 처리 시스템에 있어서의 반송 위치 데이터를 교정하는 방법
TWI612165B (zh) 成膜裝置以及成膜工件製造方法
JPH0224907B2 (ja)
JP6634275B2 (ja) 成膜システム
JP2004269988A (ja) スパッタ装置
US20170221748A1 (en) Substrate conveying method and substrate processing system
WO2017169495A1 (ja) 基板搬送方法及び基板処理システム
US8877019B2 (en) Sputtering apparatus, sputter deposition method, and analysis apparatus
WO2019155978A1 (ja) 基板処理装置および基板処理方法
JP2017041523A (ja) 基板処理装置、および基板処理方法
KR102297165B1 (ko) 성막 시스템 및 기판 상에 막을 형성하는 방법
JP6847049B2 (ja) 多層堆積処理装置
CN107851562B (zh) 选择性处理工件的方法及系统
CN110634781B (zh) 输送装置和输送方法
JP2000071187A (ja) ワーク搬送ロボット
US11390940B2 (en) System and method to control PVD deposition uniformity
WO2021033528A1 (ja) 真空装置
KR100982529B1 (ko) 전자빔을 이용한 대면적 패턴형성장치 및 그 제어방법
US20020078895A1 (en) Plasma treatment apparatus
KR20220121185A (ko) 스퍼터링 처리를 행하는 장치 및 방법
JP2016006223A (ja) 基板処理装置
JPH04342493A (ja) レーザアブレーション装置
JP2007211284A (ja) 成膜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751062

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019570715

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207022494

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751062

Country of ref document: EP

Kind code of ref document: A1