WO2019155747A1 - フッ化ビニリデン単独重合体の発泡成形体および発泡成形体の製造方法 - Google Patents

フッ化ビニリデン単独重合体の発泡成形体および発泡成形体の製造方法 Download PDF

Info

Publication number
WO2019155747A1
WO2019155747A1 PCT/JP2018/044846 JP2018044846W WO2019155747A1 WO 2019155747 A1 WO2019155747 A1 WO 2019155747A1 JP 2018044846 W JP2018044846 W JP 2018044846W WO 2019155747 A1 WO2019155747 A1 WO 2019155747A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin composition
foamed molded
vinylidene fluoride
molded article
fluoride homopolymer
Prior art date
Application number
PCT/JP2018/044846
Other languages
English (en)
French (fr)
Inventor
慧 山口
良 加藤
昌隆 杉本
サティシュ クマル スクマラン
佑紀 川原
重拓 渡邉
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2019155747A1 publication Critical patent/WO2019155747A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent

Definitions

  • the present invention relates to a foamed molded article of vinylidene fluoride homopolymer and a method for producing the foamed molded article.
  • Expanded molded products obtained by foaming a polymer containing vinylidene fluoride are expected to be used in various applications because of the favorable physical properties.
  • Patent Documents 1 to 3 disclose various techniques for foaming a vinylidene fluoride copolymer.
  • Patent Document 1 discloses a foamed body obtained by crosslinking a polyvinylidene fluoride copolymer by electron irradiation.
  • Patent Document 2 discloses a vinylidene fluoride / hexafluoropropylene foam using hexafluoroethane as a physical foaming agent.
  • Patent Document 3 discloses a method of foaming a mixture containing two types of thermoplastic polymers having different crystallinity degrees.
  • Patent Documents 1 to 3 describe foaming a mixture of polyvinylidene fluoride, which is a homopolymer of vinylidene fluoride and polymethyl methacrylate, but does not mention the form of bubbles in the resulting molded article. Absent.
  • the present invention has been made in view of the above-described problems, and has as its main object to provide a foamed molded article using a vinylidene fluoride homopolymer with a small variation in cell diameter and a method for producing the same.
  • one embodiment of the present invention is a foamed molded article of a fluororesin composition, wherein the fluororesin composition includes a vinylidene fluoride homopolymer as a main component and the fluororesin composition.
  • the bubble diameter in the said foaming molding contains the polymer different from a vinylidene chloride homopolymer, and satisfy
  • the method for producing a foamed molded product according to one aspect of the present invention is a method for producing the above-mentioned foamed molded product, wherein the fluororesin composition is impregnated with a supercritical liquid under a supercritical state.
  • An impregnation step, and a foaming step of foaming the fluororesin composition impregnated with the supercritical liquid by releasing the supercritical state after the impregnation step, the fluororesin composition comprising:
  • the apparent relaxation time measured at 230 ° C. is in the range of 0.03 seconds to 4.00 seconds, the temperature in the impregnation step is higher than the melting point of the fluororesin composition, and the decomposition temperature of the fluororesin composition The lower range.
  • the foamed molded product in the present embodiment is a foamed molded product of a fluororesin composition.
  • the fluororesin composition contains a vinylidene fluoride homopolymer as a main component, and further contains a polymer different from the vinylidene fluoride homopolymer as an additive.
  • the main component is intended to occupy 50% by weight or more of the entire polymer contained in the fluororesin composition.
  • a foamed molded article using a vinylidene fluoride homopolymer and a fluororesin composition containing a polymer different from the vinylidene fluoride homopolymer is simply described as a foam molded article. To do. Further, a polymer different from the vinylidene fluoride homopolymer contained as an additive in the fluororesin composition is referred to as an additive polymer.
  • the content of the vinylidene fluoride homopolymer in the fluororesin composition is not limited as long as it is 50% by weight or more, but is preferably 50% by weight or more and 99.9% by weight or less, and more preferably 70% by weight or more and 99% by weight. % Or less, more preferably 80% by weight or more and 97% by weight or less.
  • the vinylidene fluoride homopolymer in the present embodiment preferably has an inherent viscosity of 0.8 dl / g to 3.1 dl / g, more preferably 0.85 dl / g to 2.5 dl / g. Preferably, it is 0.85 dl / g or more and 2.0 dl / g or less, but not particularly limited thereto.
  • the inherent viscosity of a vinylidene fluoride homopolymer is calculated as a logarithmic viscosity at 30 ° C. of a solution obtained by dissolving 4 g of vinylidene fluoride homopolymer in 1 liter of N, N-dimethylformamide. Has been.
  • the additive polymer is included as an additive in the fluororesin composition.
  • the content of the additive polymer in the fluororesin composition is preferably 0.1% by weight or more and less than 50% by weight, more preferably 1.0% by weight or more and 30% by weight or less, and 3.0% by weight. % To 20% by weight is more preferable.
  • addition polymer suitable for the foamed molded article examples include acrylic polymers, styrene polymers, polycarbonates, and polyvinyl chloride. Among them, acrylic polymers are preferable.
  • acrylic polymer examples include a homopolymer of (meth) acrylic acid alkyl ester or a copolymer of a vinyl monomer copolymerizable with (meth) acrylic acid alkyl ester.
  • examples of the (meth) acrylic acid alkyl ester include those having 1 to 18 carbon atoms in the alkyl group.
  • examples of such (meth) acrylic acid alkyl esters include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate. .
  • a homopolymer of (meth) acrylic acid alkyl ester is a polymer obtained by polymerizing one kind of (meth) acrylic acid alkyl ester or a polymer obtained by polymerizing two or more kinds of (meth) acrylic acid alkyl esters. Can be coalesced.
  • Examples of other vinyl monomers copolymerizable with (meth) acrylic acid alkyl ester include styrene, ⁇ -methylstyrene, acrylonitrile and vinyl acetate.
  • the weight average molecular weight is preferably in the range of 100,000 to 5,000,000, more preferably 500,000 to 4,000,000, more preferably 800,000 to 3.5 million. More preferably, it is as follows.
  • the foaming ratio can be increased by adding an additive polymer to the fluororesin composition.
  • the amount of the added polymer is large, the improvement in the expansion ratio becomes more remarkable by using the additive polymer having a large average molecular weight as compared with the case where the amount of the added polymer is small.
  • the addition amount of an addition polymer increases, the apparent relaxation time of the fluororesin composition mentioned later becomes long and a foaming ratio also becomes high. This is presumed that the relaxation time becomes longer, so that the melt tension of the fluororesin composition becomes higher, thereby increasing the expansion ratio.
  • the foamed molded product may contain other components as long as the properties of the foamed molded product are not affected.
  • other components include an inorganic filler, an organic filler, and a heat stabilizer.
  • the fluororesin composition used for the production of the foamed molded product has an apparent relaxation time measured at 230 ° C. in the range of 0.03 seconds to 4.00 seconds.
  • the fluororesin composition having an apparent relaxation time within this range the foamed molded article according to this embodiment can be suitably produced.
  • the apparent relaxation time in this specification is a value calculated based on the storage elastic modulus G ′ and the loss elastic modulus G ′′ obtained by melt viscoelasticity measurement using a rheometer.
  • the reciprocal of the angular frequency ⁇ when the modulus G ′ and the loss elastic modulus G ′′ are equal is defined as the relaxation time.
  • the apparent relaxation time measured at 230 ° C. of the fluororesin composition is not particularly limited as long as it is in the range of 0.03 seconds to 4.00 seconds, but may be 0.05 seconds to 4.00 seconds. More preferably, it is 0.30 second or more and 4.00 second or less.
  • the apparent relaxation time can be adjusted by the molecular weight of the added polymer, the added amount, or the molecular weight of the vinylidene fluoride homopolymer.
  • the apparent relaxation time can be lengthened by increasing the amount of the added polymer.
  • the apparent relaxation time can be extended by increasing the molecular weight of the vinylidene fluoride homopolymer or increasing the molecular weight of the added polymer.
  • the method for preparing the fluororesin composition in the present embodiment is not particularly limited as long as the vinylidene fluoride homopolymer and the additive polymer can be sufficiently mixed.
  • the vinylidene fluoride homopolymer and the additive polymer are melt-kneaded. Can be obtained.
  • the melt-kneading can be performed using, for example, a uniaxial kneading extruder or a biaxial kneading extruder.
  • the bubbles form closed cells. That is, basically, the bubbles do not communicate with each other.
  • the maximum value ( ⁇ m) of the bubble diameter is L max
  • the minimum value ( ⁇ m) of the bubble diameter is L min
  • the average bubble diameter ( ⁇ m) is L ave , (L max -L min ) / L ave satisfies the condition of 1.0 or more and 2.5 or less, preferably 1.0 or more and 2.2 or less, and more preferably 1.0 or more and 2.0 or less. More preferred.
  • the value C v for the standard deviation divided by the average cell diameter ([mu] m) of the cell diameter satisfies the 0.2 to 0.5 of the condition, preferably 0.2 to 0.45 More preferably, it is 0.2 or more and 0.4 or less.
  • the average cell diameter of the foamed molded article is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 15 ⁇ m or more. When the average cell diameter is large, the expansion ratio increases in proportion to the average cell diameter.
  • Method for producing foam molded article there are a batch method for producing a foamed molded product by performing foaming treatment for each fluororesin composition, and a continuous method for continuously performing foaming and molded product production in parallel. Both can be used.
  • a batch type is demonstrated first. Further, the batch type includes a reduced pressure foaming method and a temperature rising foaming method, both of which can be used. In the present embodiment, the reduced pressure foaming method will be described.
  • the method for producing a foamed molded article in the present embodiment includes an impregnation step of impregnating a fluororesin composition with a supercritical liquid under a supercritical state, and a fluororesin composition impregnated with the supercritical liquid by releasing the supercritical state. It includes a foaming process for foaming objects.
  • the impregnation step is a step of impregnating the fluororesin composition with a supercritical liquid under supercritical conditions.
  • the fluororesin composition is placed in a device capable of controlling high temperature and high pressure such as an autoclave at normal temperature and pressure, and the inside of the device is replaced with a component to be impregnated later, that is, a component that will form a supercritical liquid.
  • the supercritical liquid is impregnated into the fluororesin composition by setting the supercritical state by raising the temperature and pressure.
  • Carbon dioxide, nitrogen, butane, propane, acetylene, or the like can be used as a component to be impregnated, that is, a component that becomes a supercritical liquid.
  • carbon dioxide is preferred from the viewpoint of toxicity to cells when used as a biomedical material (for example, an artificial blood vessel) and flame retardancy when used as an industrial product.
  • the conditions under which the impregnated component becomes a supercritical liquid vary from component to component, but can be easily understood by those skilled in the art.
  • the temperature in the impregnation step may be higher than 140 ° C. and lower than 175 ° C., preferably 155 ° C. or higher and 170 ° C. or lower, more preferably 160 ° C. or higher and 164 ° C. or lower, and particularly 163 ° C. preferable.
  • the temperature in the impregnation step is a temperature at which a supercritical state is formed by temperature increase and pressure increase.
  • the pressure in the impregnation step may be such that the component to be impregnated is in a supercritical state under the above temperature conditions.
  • the component to be impregnated is carbon dioxide, it may be larger than 7.4 MPa.
  • the impregnation time of the fluororesin composition in the supercritical liquid is preferably 0.5 hours or more, more preferably 1 hour or more, and further preferably 3 hours or more.
  • the higher the pressure in the impregnation step the higher the impregnation rate. That is, by setting the pressure in the impregnation step high, the impregnation time can be set short.
  • the foaming step is a step of foaming the fluororesin composition impregnated with the supercritical liquid by releasing the supercritical state after the above impregnation step.
  • Examples of a method for canceling the supercritical state include a method of rapidly reducing the pressure or a method of gradually reducing the pressure.
  • the cooling method include water cooling, air cooling, and cooling by a cooling mold.
  • the time from the release of the supercritical state to the cooling is preferably short, for example, preferably within 10 minutes, more preferably within 5 minutes, and even more preferably within 1 minute.
  • the continuous type uses a molding device such as an extruder, supplies a supercritical liquid to the material being conveyed, and when the contents are injected from the device, the pressure applied during the conveyance is released. This is a method in which foaming occurs and a foamed molded product is obtained.
  • a general apparatus When using the continuous type, a general apparatus includes a cylindrical extruder capable of controlling high temperature and high pressure. On the upstream side of the cylinder of the extruder, a supply port for supplying a resin as a raw material is provided, and a nozzle for supplying a supercritical liquid is provided in the middle of the cylinder.
  • the fluororesin composition as a raw material needs to be melted, it is preferably in the form of pellets, powders or flakes.
  • the fluororesin composition is melted, and the temperature is increased in the cylinder.
  • the fluororesin composition is extruded as it is in the cylinder downstream direction by a screw, and when the supercritical liquid is supplied by the nozzle described above, the supercritical liquid is impregnated inside the fluororesin composition (impregnation step).
  • the fluororesin composition is injected from the injection hole, thereby releasing the supercritical state and foaming (foaming step).
  • the same components as in the case of using the batch method can be used.
  • the temperature in the impregnation step when the continuous type is used is in a range higher than the melting point of the fluororesin composition and lower than the decomposition temperature of the fluororesin composition.
  • the upper limit of the temperature in the impregnation step can be the melting point of the fluororesin composition + 90 ° C. This allows extrusion and injection using an extruder. It is known that the melting point of the fluororesin composition is lowered by impregnation with carbon dioxide.
  • the pressure in the impregnation step when the continuous type is used may be any pressure as long as the components to be impregnated are in a supercritical state under the above-described temperature conditions, as in the case of the batch type.
  • the impregnation time of the fluororesin composition in the supercritical liquid in the impregnation step when using a continuous type is preferably about 5 minutes.
  • the time from the release of the supercritical state to the cooling is preferably short, for example, preferably within 10 minutes, more preferably within 5 minutes, and even more preferably within 1 minute.
  • the foamed molded product of the fluororesin composition according to the present embodiment can be obtained.
  • one embodiment of the present invention is a foam molded article of a fluororesin composition, the fluororesin composition containing a vinylidene fluoride homopolymer as a main component, and a vinylidene fluoride homopolymer.
  • the bubble diameter in a foaming molding contains a different polymer, and satisfy
  • L max is the maximum bubble diameter ( ⁇ m)
  • L min is the minimum bubble diameter ( ⁇ m)
  • L ave is the average bubble diameter ( ⁇ m)
  • C v is the standard deviation of the bubble diameter.
  • the fluororesin composition may contain a polymer different from the vinylidene fluoride homopolymer in the range of 0.1 wt% or more and less than 50 wt%.
  • the polymer different from the vinylidene fluoride homopolymer may be an acrylic polymer.
  • the acrylic polymer may have a weight average molecular weight in the range of 100,000 to 5,000,000.
  • the inherent viscosity of the vinylidene fluoride homopolymer may be in the range of 0.8 dl / g to 3.1 dl / g.
  • One embodiment of the present invention is a manufacturing method for manufacturing a foamed molded article, wherein the supercritical liquid is impregnated with the fluororesin composition in a supercritical state, and after the impregnation step, A foaming step of foaming the fluororesin composition impregnated with the supercritical liquid by releasing the critical state, and the fluororesin composition has an apparent relaxation time of 0.03 seconds or more measured at 230 ° C. 4
  • the manufacturing method is a batch type manufacturing method, and the temperature in the impregnation step is higher than 140 ° C. and lower than 175 ° C.
  • an impregnation step of impregnating the fluororesin composition with the supercritical liquid under the supercritical state, and releasing the supercritical state after the impregnation step A foaming step of foaming the fluororesin composition impregnated with the supercritical liquid, and the fluororesin composition has an apparent relaxation time measured at 230 ° C. of 0.03 seconds to 4.00 seconds
  • the manufacturing method is a continuous manufacturing method, and the temperature in the impregnation step is higher than the melting point of the fluororesin composition and lower than the decomposition temperature of the fluororesin composition.
  • carbon dioxide can be used as the supercritical liquid.
  • Example 1 Manufacture of fluororesin composition
  • a twin-screw kneading extruder KZW-15 manufactured by Technobel
  • 97 parts by mass of a vinylidene fluoride homopolymer and 3 parts by mass of methabrene P551A manufactured by Mitsubishi Chemical Co., Ltd., molecular weight 1.45 million
  • the mixture was melt-kneaded to obtain a fluororesin composition.
  • the relaxation time (sec) of the obtained fluororesin composition was measured. First, the fluororesin composition was preheated at 230 ° C. for 3 minutes using a press molding machine. Then, the disk sheet
  • the angular frequency ⁇ when the storage elastic modulus G ′ and the loss elastic modulus G ′′ obtained from the measurement are equal to each other is obtained, and the reciprocal thereof is defined as the relaxation time. Table 1 shows the measurement results of the relaxation time.
  • the fluororesin composition was preheated at 230 ° C. for 3 minutes. Thereafter, the disk was pressed at a pressure of 15 MPa for 1 minute and cooled for 2 minutes to obtain a disk sheet having a diameter of 20 mm and a thickness of 1 mm.
  • the density (g / cm 3 ) before foaming of the obtained disk sheet was calculated using a specific gravity measuring device.
  • the autoclave After installing a disk sheet in an autoclave with a volume of 200 ml, the autoclave was replaced with carbon dioxide. After the replacement, the disk sheet was impregnated with a supercritical liquid of carbon dioxide by raising the temperature to 160 ° C. and increasing the pressure to 15 MPa and holding it for 3 hours. After impregnation, the pressure was rapidly reduced to foam the disk sheet. One minute after foaming, the foam was taken out of the autoclave and solidified with water.
  • the density (g / cm 3 ) after foaming in the foam was calculated using a specific gravity measuring device, and the foaming ratio Er was calculated using the following formula (1):
  • Example 2 The same procedure as in Example 1 was performed except that the temperature when impregnating the supercritical liquid of carbon dioxide was 162 ° C.
  • Example 3 The same procedure as in Example 1 was performed except that the temperature when impregnating the supercritical liquid of carbon dioxide was 164 ° C.
  • Example 4 The same procedure as in Example 1 was carried out except that 95 parts by mass of vinylidene fluoride homopolymer and 5 parts by mass of metabrene P551A were produced in the course of producing the fluororesin composition.
  • Example 5 Example, except that 95 parts by mass of vinylidene fluoride homopolymer and 5 parts by mass of metabrene P551A were used in the process of producing the fluororesin composition, and the temperature when impregnating the supercritical liquid of carbon dioxide was 162 ° C. 1 was performed.
  • Example 6 Example, except that 95 parts by mass of vinylidene fluoride homopolymer, 5 parts by mass of metabrene P551A in the process of producing the fluororesin composition, and the temperature when impregnating the supercritical liquid of carbon dioxide were 164 ° C. 1 was performed.
  • Example 7 The same procedure as in Example 1 was carried out except that 90 parts by mass of vinylidene fluoride homopolymer and 10 parts by mass of methabrene P551A were produced in the course of producing the fluororesin composition.
  • Example 8 In the process of producing the fluororesin composition, 90 parts by mass of vinylidene fluoride homopolymer, 10 parts by mass of metabrene P551A, and the temperature when impregnating the supercritical liquid of carbon dioxide was 162 ° C. 1 was performed.
  • Example 9 In the process of producing the fluororesin composition, 90 parts by mass of vinylidene fluoride homopolymer, 10 parts by mass of metabrene P551A, and the temperature when impregnating the supercritical liquid of carbon dioxide was 164 ° C. 1 was performed.
  • Example 10 Except for the fact that the vinylidene fluoride homopolymer is 80 parts by mass, the metabrene P551A is 20 parts by mass in the process of producing the fluororesin composition, and the temperature when impregnating the supercritical liquid of carbon dioxide is 163 ° C. 1 was performed.
  • Example 11 Except for the fact that the vinylidene fluoride homopolymer was 80 parts by mass, the metabrene P551A was 20 parts by mass in the process of producing the fluororesin composition, and the temperature when impregnating the supercritical liquid of carbon dioxide was 164 ° C. 1 was performed.
  • Example 12 The same procedure as in Example 1 was conducted except that an acrylic polymer of methabrene P550A (manufactured by Mitsubishi Chemical Corporation, molecular weight 950,000) was used instead of methabrene P551A in the process of producing the fluororesin composition.
  • an acrylic polymer of methabrene P550A manufactured by Mitsubishi Chemical Corporation, molecular weight 950,000
  • Example 13 The same operation as in Example 12 was performed except that the temperature when impregnating the supercritical liquid of carbon dioxide was 162 ° C.
  • Example 14 The same operation as in Example 12 was performed except that the temperature when impregnating the supercritical liquid of carbon dioxide was 164 ° C.
  • Example 15 The same procedure as in Example 12 was performed except that 95 parts by mass of the vinylidene fluoride homopolymer and 5 parts by mass of methabrene P550A were used in the course of producing the fluororesin composition.
  • Example 16 Example, except that 95 parts by mass of vinylidene fluoride homopolymer, 5 parts by mass of metabrene P550A, and the temperature when impregnating the supercritical liquid of carbon dioxide were 163 ° C. in the process of producing the fluororesin composition The same procedure as in No. 12 was performed.
  • Example 17 Example, except that 95 parts by mass of vinylidene fluoride homopolymer, 5 parts by mass of metabrene P550A in the process of producing the fluororesin composition, and the temperature when impregnating the supercritical liquid of carbon dioxide were 164 ° C. The same procedure as in No. 12 was performed.
  • Example 18 The same procedure as in Example 12 was performed except that 90 parts by mass of the vinylidene fluoride homopolymer and 10 parts by mass of Methbrene P550A were made in the course of producing the fluororesin composition.
  • Example 19 Example, except that in the process of producing the fluororesin composition, 90 parts by mass of vinylidene fluoride homopolymer, 10 parts by mass of methabrene P550A, and the temperature when impregnating the supercritical liquid of carbon dioxide were 162 ° C. The same procedure as in No. 12 was performed.
  • Example 20 In the process of producing the fluororesin composition, 90 parts by mass of vinylidene fluoride homopolymer, 10 parts by mass of methabrene P550A, and the temperature at which the supercritical liquid of carbon dioxide was impregnated was 164 ° C. The same procedure as in No. 12 was performed.
  • Example 21 Except for the fact that the vinylidene fluoride homopolymer is 80 parts by mass, the metabrene P550A is 20 parts by mass in the process of producing the fluororesin composition, and the temperature when impregnating the supercritical liquid of carbon dioxide is 163 ° C. The same procedure as in No. 12 was performed.
  • Example 21 Except for the fact that the vinylidene fluoride homopolymer is 80 parts by mass, the methabrene P550A is 20 parts by mass in the process of producing the fluororesin composition, and the temperature when impregnating the supercritical liquid of carbon dioxide is 164 ° C. The same procedure as in No. 12 was performed.
  • the present invention can be used for a foamed molded article of vinylidene fluoride homopolymer.

Abstract

フッ化ビニリデン単独重合体を用いた発泡成形体およびその製造方法を提供することを目的とする。フッ素樹脂組成物の発泡成形体であって、フッ素樹脂組成物は、フッ化ビニリデン単独重合体を主成分として含み、かつ該フッ化ビニリデン単独重合体とは異なる重合体を含み、発泡成形体における気泡径は、下記式(1)および(2)の条件を満たす。 1.0≦(Lmax-Lmin)/Lave≦2.5 ・・・(1) 0.2≦Cv≦0.5 ・・・(2)

Description

フッ化ビニリデン単独重合体の発泡成形体および発泡成形体の製造方法
 本発明は、フッ化ビニリデン単独重合体の発泡成形体および発泡成形体の製造方法に関する。
 フッ化ビニリデンを含む重合体を発泡させた発泡成形体は、その物性の好ましさから様々な用途への展開が期待されている。
 以下の特許文献1~3には、フッ化ビニリデン共重合体を発泡させるための様々な技術が開示されている。特許文献1では、ポリフッ化ビニリデンコポリマーを電子照射して架橋させた発泡体が開示されている。また、特許文献2では、ヘキサフルオロエタンを物理発泡剤として用いたフッ化ビニリデン/ヘキサフルオロプロピレン発泡体について開示されている。特許文献3では、結晶化度の異なる2種類の熱可塑性ポリマーを含む混合物を発泡させる方法が開示されている。
国際公開第2009/063187号公報(2009年5月22日公開) 日本国公開特許公報 特開平7-026051号公報(1995年1月27日公開) 日本国公開特許公報 特表2004-517159号公報(2004年6月10日公開)
 しかしながら、フッ化ビニリデン単独重合体の発泡成形体を得ることは、フッ化ビニリデン共重合体の発泡成形体を得ることより一層困難であり、特許文献1~3に記載された技術もフッ化ビニリデン共重合体に関するものである。また、特許文献3にはフッ化ビニリデン単独重合体であるポリフッ化ビニリデンとポリメタクリル酸メチルとの混合物を発泡させることが記載されているものの、得られる成形体における気泡の形態については言及されていない。
 本発明は、上記の課題に鑑みてなされたものであり、フッ化ビニリデン単独重合体を用いた気泡径のばらつきが小さな発泡成形体およびその製造方法を提供することを主たる目的とする。
 上記の課題を解決するために、本発明の一態様は、フッ素樹脂組成物の発泡成形体であって、上記フッ素樹脂組成物は、フッ化ビニリデン単独重合体を主成分として含み、かつ該フッ化ビニリデン単独重合体とは異なる重合体を含み、上記発泡成形体における気泡径は、下記式(1)および(2)の条件を満たすものである。
1.0≦(Lmax-Lmin)/Lave≦2.5 ・・・(1)
0.2≦C≦0.5 ・・・(2)
 (ここで、Lmaxは気泡径の最大値(μm)、Lminは気泡径の最小値(μm)、Laveは平均気泡径(μm)、Cは気泡径の標準偏差を平均気泡径で除した値である。)
 また、本発明の一態様に係る発泡成形体の製造方法は、上述の発泡成形体を製造するための製造方法であって、超臨界状態下において、上記フッ素樹脂組成物に超臨界液体を含浸させる含浸工程と、上記含浸工程の後に、上記超臨界状態を解除することにより上記超臨界液体を含浸させた上記フッ素樹脂組成物を発泡させる発泡工程と、を含み、上記フッ素樹脂組成物は、230℃で測定したみかけの緩和時間が0.03秒以上4.00秒以下の範囲であり、上記含浸工程における温度は、上記フッ素樹脂組成物の融点より高く、上記フッ素樹脂組成物の分解温度より低い範囲である。
 本発明の一態様によれば、気泡径のばらつきが小さなフッ化ビニリデン単独重合体を用いた発泡成形体およびその製造方法を提供することができる。
 以下、本発明の一実施形態について、詳細に説明する。
 〔フッ素樹脂組成物〕
 本実施形態における発泡成形体は、フッ素樹脂組成物の発泡成形体である。フッ素樹脂組成物は、フッ化ビニリデン単独重合体を主成分として含んでおり、さらに添加剤としてフッ化ビニリデン単独重合体とは異なる重合体を含んでいる。本明細書において主成分とは、フッ素樹脂組成物に含まれる重合体全体の50重量%以上を占めていることを意図している。
 これ以降、特に断りのない限り、フッ化ビニリデン単独重合体、およびフッ化ビニリデン単独重合体とは異なる重合体を含んでいるフッ素樹脂組成物を用いた発泡成形体について、単に発泡成形体と記載する。また、フッ素樹脂組成物に添加剤として含まれる、フッ化ビニリデン単独重合体とは異なる重合体については、添加重合体と記載する。
 (フッ化ビニリデン単独重合体)
 フッ素樹脂組成物におけるフッ化ビニリデン単独重合体の含有率は、50重量%以上であれば制限はないが、50重量%以上99.9重量%以下であることが好ましく、70重量%以上99重量%以下であることがより好ましく、80重量%以上97重量%以下であることがさらに好ましい。
 本実施形態におけるフッ化ビニリデン単独重合体は、インヘレント粘度が0.8dl/g以上3.1dl/g以下であることが好ましく、0.85dl/g以上2.5dl/g以下であることがより好ましく、0.85dl/g以上2.0dl/g以下であることがさらに好ましいが、特にこれに限らない。なお、本明細書中において、フッ化ビニリデン単独重合体のインヘレント粘度は、4gのフッ化ビニリデン単独重合体を1リットルのN,N-ジメチルホルムアミドに溶解させた溶液の30℃における対数粘度として算出されている。
 (添加重合体)
 添加重合体は、フッ素樹脂組成物に添加剤として含まれる。フッ素樹脂組成物における添加重合体の含有率は、0.1重量%以上50重量%未満であることが好ましく、1.0重量%以上30重量%以下であることがより好ましく、3.0重量%以上20重量%以下であることがさらに好ましい。
 発泡成形体に適した添加重合体としては、アクリル系重合体、スチレン系重合体、ポリカーボネート、およびポリビニルクロライド等が挙げられるが、中でもアクリル系重合体が好ましい。
 アクリル系重合体としては、(メタ)アクリル酸アルキルエステルの単独重合体または(メタ)アクリル酸アルキルエステルと共重合可能なビニル系単量体との共重合体が挙げられる。(メタ)アクリル酸アルキルエステルとしては、そのアルキル基の炭素数が1~18であるものが挙げられる。このような(メタ)アクリル酸アルキルエステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピルおよびアクリル酸ブチル等が挙げられる。(メタ)アクリル酸アルキルエステルの単独重合体は、1種類の(メタ)アクリル酸アルキルエステルを重合して得られる重合体または2種類以上の(メタ)アクリル酸アルキルエステルを重合して得られる重合体であり得る。また、(メタ)アクリル酸アルキルエステルと共重合可能な他のビニル系単量体としては、例えば、スチレン、α-メチルスチレン、アクリロニトリルおよび酢酸ビニル等が挙げられる。
 添加重合体としてアクリル系重合体を用いる場合、その重量平均分子量は、10万以上500万以下の範囲であることが好ましく、50万以上400万以下であることがより好ましく、80万以上350万以下であることがさらに好ましい。
 フッ素樹脂組成物に添加重合体を添加することにより、発泡倍率を高めることができる。また、添加重合体の添加量が多い場合には、添加重合体の添加量が少ない場合に比して、平均分子量の大きい添加重合体を用いることで発泡倍率の向上がより顕著になる。なお、添加重合体の添加量が増加すると、後述するフッ素樹脂組成物のみかけの緩和時間は長くなり、発泡倍率も高くなる。これは、緩和時間が長くなることで、フッ素樹脂組成物の溶融張力が高くなり、それによって発泡倍率が高くなるものと推察される。
 (その他の成分)
 発泡成形体は、上述のフッ化ビニリデン単独重合体および添加重合体以外に、発泡成形体の特性に影響が出ない範囲で他の成分を含んでいてもよい。他の成分としては、例えば、無機フィラー、有機フィラーおよび熱安定剤などを挙げることができる。
 (フッ素樹脂組成物)
 発泡成形体の製造に用いるフッ素樹脂組成物は、230℃で測定したみかけの緩和時間が0.03秒以上4.00秒以下の範囲であるものである。みかけの緩和時間がこの範囲内であるフッ素樹脂組成物を用いることにより、本実施形態に係る発泡成形体を好適に製造することができる。
 ここで、本明細書におけるみかけの緩和時間とは、レオメーターを用いた溶融粘弾性測定により得られる貯蔵弾性率G’および損失弾性率G”に基づき算出した値である。具体的には、レオメーターを使用して、温度230℃、歪み5%、および角周波数ω=0.01rad/sec~100rad/secの条件でフッ素樹脂組成物の溶融粘弾性を測定し、測定から得られる貯蔵弾性率G’と損失弾性率G”とが等しくなるときの角周波数ωの逆数を緩和時間と規定している。
 フッ素樹脂組成物の230℃で測定したみかけの緩和時間は0.03秒以上4.00秒以下の範囲であれば特に制限はないが、0.05秒以上4.00秒以下であることがより好ましく、0.30秒以上4.00秒以下であることがさらに好ましい。上述の範囲のみかけの緩和時間を有するフッ素樹脂組成物を用いることにより、本実施形態に係る発泡成形体を好適に製造することができる。
 みかけの緩和時間は、添加重合体の分子量、添加量、またはフッ化ビニリデン単独重合体の分子量によって調整することができる。例えば、添加重合体の添加量を大きくすることで、みかけの緩和時間を長くすることができる。またそれ以外にも、フッ化ビニリデン単独重合体の分子量を大きくしたり、添加重合体の分子量を大きくしたりすることで、みかけの緩和時間を長くすることができる。
 本実施形態におけるフッ素樹脂組成物の調製方法は、フッ化ビニリデン単独重合体と添加重合体が十分に混合できれば特に制限されず、例えば、フッ化ビニリデン単独重合体と添加重合体とを溶融混練することで得ることができる。また、溶融混練は、例えば、一軸混練押出機または二軸混練押出機を用いて行うことができる。
 〔発泡成形体〕
 本実施形態における発泡成形体では、気泡は独立気泡を形成している。すなわち、基本的には、各気泡は互いに連通していない。
 気泡径の最大値(μm)をLmax、気泡径の最小値(μm)をLmin、および平均気泡径(μm)をLaveとした場合、本実施形態における発泡成形体では、(Lmax-Lmin)/Laveが、1.0以上2.5以下の条件を満たしており、1.0以上2.2以下であることが好ましく、1.0以上2.0以下であることがより好ましい。
 さらに、気泡径の標準偏差を平均気泡径(μm)で除した値Cが、0.2以上0.5以下の条件を満たしており、0.2以上0.45以下であることが好ましく、0.2以上0.4以下であることがより好ましい。
 また、発泡成形体の平均気泡径は、5μm以上であることが好ましく、10μm以上であることがより好ましく、15μm以上であることがさらに好ましい。なお、平均気泡径が大きいと、発泡倍率は平均気泡径に比例して高くなる。
 本明細書において、気泡径の最大値、最小値および、平均気泡径は、次のように算出されるものである。まず、凍結破断した発泡成形体について、走査型電子顕微鏡(SEM)の画像から画像解析ソフトを用いて、N=50以上で円相当気泡径を算出する。平均気泡径は全データを合計してデータ数で割ったものであり、最大および最小気泡径はデータの中で最大および最小のものを選択することで求められる。
 〔発泡成形体の製造方法〕
 発泡成形体の製造方法としては、フッ素樹脂組成物毎に発泡処理を実施して発泡成形体を製造するバッチ式、および発泡と成形体の製造とを並行して連続的に行う連続式があり、どちらも用いることができる。以下では、まずバッチ式について説明する。また、バッチ式には減圧発泡法および昇温発泡法があり、どちらも用いることができる。本実施形態においては、減圧発泡法について説明する。
 本実施形態における発泡成形体の製造方法は、超臨界状態下においてフッ素樹脂組成物に超臨界液体を含浸させる含浸工程、および超臨界状態を解除することにより、超臨界液体が含浸したフッ素樹脂組成物を発泡させる発泡工程を含んでいる。
 以下、各工程について説明する。
 (含浸工程)
 含浸工程は、超臨界状態下においてフッ素樹脂組成物に超臨界液体を含浸させる工程である。まず、常温常圧でフッ素樹脂組成物をオートクレーブなどの高温および高圧の制御が可能な装置に入れ、後に含浸させる成分、すなわち超臨界液体を形成することになる成分で装置内を置換する。次に、昇温昇圧によって超臨界状態にすることで、フッ素樹脂組成物内部に超臨界液体を含浸させる。
 含浸させる成分、すなわち超臨界液体となる成分としては、二酸化炭素、窒素、ブタン、プロパン、またはアセチレンなどを用いることができる。なかでも、生体医療材料(例えば、人工血管)として使用した場合の細胞への毒性、および工業製品として使用した場合の難燃性の観点から、二酸化炭素が好ましい。含浸させる成分が超臨界液体となる条件は成分毎に異なるが、当業者であれば容易に理解できる。
 含浸工程における温度は、140℃より高く175℃未満であればよく、155℃以上170℃以下であることが好ましく、160℃以上164℃以下であることがより好ましく、163℃であることが特に好ましい。ここで、含浸工程における温度とは、昇温昇圧によって超臨界状態を形成しているときの温度のことである。
 含浸工程における圧力は、含浸させる成分が上述の温度条件下において超臨界状態になればよい。例えば含浸させる成分が二酸化炭素の場合では、7.4MPаより大きければよい。
 含浸工程における、フッ素樹脂組成物の超臨界液体への含浸時間は、0.5時間以上であることが好ましく、1時間以上であることがより好ましく、3時間以上であることがさらに好ましい。一般的に、含浸工程での圧力が高いほど含浸速度は高いことが知られている。すなわち、含浸工程での圧力を高く設定することにより、含浸時間を短く設定することができる。
 (発泡工程)
 発泡工程は、上述した含浸工程の後に超臨界状態を解除することにより、超臨界液体を含浸させたフッ素樹脂組成物を発泡させる工程である。超臨界状態を解除する方法としては、圧力を急減圧する方法または緩やかに減圧する方法が挙げられる。
 また、超臨界状態を解除した後に、フッ素樹脂組成物を冷却し、固化させることが好ましい。冷却方法としては、水冷、空冷および冷却金型による冷却が挙げられる。
 超臨界状態を解除してから冷却するまでの時間は短いことが好ましく、例えば、10分以内が好ましく、5分以内がより好ましく、1分以内がさらに好ましい。
 続いて、発泡成形体の製造方法として連続式を用いる場合について説明する。連続式とは、押出機等の成形装置を用い、搬送中の原料に超臨界液体を供給し、装置から内容物が射出される際に、搬送中にかかっていた圧力が開放されることにより発泡が生じ、発泡成形体が得られる方法である。
 連続式を用いる場合、一般的な装置としては、高温および高圧の制御が可能なシリンダー状の押出機が挙げられる。押出機のシリンダーの上流側には、原料となる樹脂が供給される供給口を備えており、シリンダーの途中段階に超臨界液体を供給するノズルが備えられている。
 原料となるフッ素樹脂組成物は融解する必要があるため、ペレット状、パウダー状またはフレーク状であることが好ましい。フッ素樹脂組成物は、まず融解され、シリンダー内で昇温昇圧される。そのままフッ素樹脂組成物はスクリューによってシリンダー下流方向に押し出されていき、上述のノズルによって超臨界液体が供給されると、フッ素樹脂組成物内部に超臨界液体が含浸する(含浸工程)。続いて、フッ素樹脂組成物は射出孔から射出され、これにより超臨界状態が解除されて発泡する(発泡工程)。
 連続式を用いる場合の含浸工程において、含浸させる成分、すなわち超臨界液体を形成している成分としては、バッチ式を用いる場合と同様の成分を用いることができる。
 連続式を用いる場合の含浸工程における温度は、フッ素樹脂組成物の融点より高く、フッ素樹脂組成物の分解温度より低い範囲である。例えば、含浸工程における温度の上限は、フッ素樹脂組成物の融点+90℃であり得る。これにより、押出機を用いた押出および射出が可能になる。なお、フッ素樹脂組成物の融点は、二酸化炭素を含浸させることで低くなることが知られている。
 連続式を用いる場合の含浸工程における圧力は、バッチ式の場合と同様に、含浸させる成分が上述の温度条件下において超臨界状態になっているものであればよい。
 連続式を用いる場合の含浸工程における、フッ素樹脂組成物の超臨界液体への含浸時間は、5分程度が好ましい。
 連続式の場合においても、超臨界状態を解除した後に、フッ素樹脂組成物を冷却し、固化させることが好ましい。冷却方法としては、バッチ式を用いる場合と同様の方法であり得る。
 超臨界状態を解除してから冷却するまでの時間は短いことが好ましく、例えば、10分以内が好ましく、5分以内がより好ましく、1分以内がさらに好ましい。
 以上の方法より、本実施形態に係るフッ素樹脂組成物の発泡成形体を得ることができる。
 〔まとめ〕
 以上の通り、本発明の一態様は、フッ素樹脂組成物の発泡成形体であって、フッ素樹脂組成物は、フッ化ビニリデン単独重合体を主成分として含み、かつフッ化ビニリデン単独重合体とは異なる重合体を含み、発泡成形体における気泡径は、下記式(1)および(2)の条件を満たすものである。
1.0≦(Lmax-Lmin)/Lave≦2.5 ・・・(1)
0.2≦C≦0.5 ・・・(2)
 (ここで、Lmaxは気泡径の最大値(μm)、Lminは気泡径の最小値(μm)、Laveは平均気泡径(μm)、Cは気泡径の標準偏差を平均気泡径で除した値である。)
 また、本発明の一態様における発泡成形体において、フッ素樹脂組成物は、フッ化ビニリデン単独重合体とは異なる重合体を0.1重量%以上50重量%未満の範囲で含むことができる。
 また、本発明の一態様における発泡成形体において、フッ化ビニリデン単独重合体とは異なる重合体は、アクリル系重合体であり得る。
 また、本発明の一態様における発泡成形体において、アクリル系重合体は、重量平均分子量が10万以上500万以下の範囲であり得る。
 また、本発明の一態様における発泡成形体において、フッ化ビニリデン単独重合体のインヘレント粘度は、0.8dl/g以上3.1dl/g以下の範囲であり得る。
 また、本発明の一態様は、発泡成形体を製造するための製造方法であって、超臨界状態下において、フッ素樹脂組成物に超臨界液体を含浸させる含浸工程と、含浸工程の後に、超臨界状態を解除することにより超臨界液体を含浸させたフッ素樹脂組成物を発泡させる発泡工程と、を含み、フッ素樹脂組成物は、230℃で測定したみかけの緩和時間が0.03秒以上4.00秒以下の範囲であり、上記製造方法はバッチ式の製造方法であって、含浸工程における温度は、140℃より高く175℃未満の範囲である。
 また、発泡成形体を製造するための製造方法の別の態様では、超臨界状態下において、フッ素樹脂組成物に超臨界液体を含浸させる含浸工程と、含浸工程の後に、超臨界状態を解除することにより超臨界液体を含浸させたフッ素樹脂組成物を発泡させる発泡工程と、を含み、フッ素樹脂組成物は、230℃で測定したみかけの緩和時間が0.03秒以上4.00秒以下の範囲であり、上記製造方法は連続式の製造方法であって、含浸工程における温度は、フッ素樹脂組成物の融点より高く、フッ素樹脂組成物の分解温度より低い範囲である。
 また、本発明の一態様における製造方法において、超臨界液体は二酸化炭素を用いることができる。
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
 〔実施例1〕
 (フッ素樹脂組成物の製造)
 二軸混練押出機KZW-15(テクノベル社製)を用い、フッ化ビニリデン単独重合体97質量部、およびメタブレンP551A(三菱ケミカル株式会社製、分子量145万)3質量部を、250℃の温度において溶融混練し、フッ素樹脂組成物を得た。
 (緩和時間の測定)
 得られたフッ素樹脂組成物の緩和時間(sec)を測定した。まず、プレス成型機を用い、フッ素樹脂組成物を230℃で3分間予熱した。その後、圧力15MPaで1分加圧し、2分冷却することで直径25mm厚み1mmのフッ素樹脂組成物のディスクシートを得た。レオメーターARES-G2(TAinstrument社製)を用い、測定温度230℃、歪み5%、および角周波数ω=0.01rad/sec~100rad/secとしてフッ素樹脂組成物の溶融粘弾性を測定した。測定から得られた貯蔵弾性率G’と損失弾性率G”とが等しくなるときの角周波数ωを求め、その逆数を緩和時間とした。緩和時間の測定結果を表1に示す。
 (発泡)
 プレス成型機を用い、フッ素樹脂組成物を温度230℃で3分予熱した。その後、圧力15MPaで1分加圧し、2分冷却することで直径20mm厚み1mmのディスクシートを得た。比重測定装置を用いて、得られたディスクシートにおける発泡前の密度(g/cm)を算出した。
 容積200mlのオートクレーブ内にディスクシートを設置したのち、オートクレーブを二酸化炭素で置換した。置換後、温度を160℃、圧力15MPaに昇温・昇圧し3時間保持することにより、ディスクシートに二酸化炭素の超臨界液体を含浸した。含浸後に圧力を急減圧しディスクシートを発泡させた。発泡から1分後にオートクレーブから発泡体を取り出して水冷固化した。
 比重測定装置を用いて発泡体における発泡後の密度(g/cm)を算出し、下記式(1)を用いて発泡倍率Eを算出した:
Figure JPOXMLDOC01-appb-M000001
 発泡倍率の結果を表1に示す。なお、表中の「融落ち」とは、フッ素樹脂組成物が融解し、発泡が見られない場合である。
 (発泡性状の確認)
 得られた発泡体の一部を切削し、走査型電子顕微鏡(SEM)を用いて発泡性状を確認した。気泡が観察された発泡体に関しては画像解析ソフトMac viewを用いて気泡径L(μm、円相当)の最大値Lmax、最小値Lmin、平均値Lave、最大値と最小値との差を平均値で除した値(Lmax-Lmin)/Lave、標準偏差C、およびC(=C/Lave)を算出した。
 また、下記式(2)および(3)を用いて気泡数密度N(cells/cm)および気泡核の核密度N(cells/cm)を算出した:
Figure JPOXMLDOC01-appb-M000002
  気泡核の核密度N(cells/cm)=N×E ・・・(3)
 結果を表2に示す。なお、表中のNDは気泡がない場合である。
 〔実施例2〕
 二酸化炭素の超臨界液体を含浸させる際の温度を162℃とした以外は、実施例1と同様に行った。
 〔実施例3〕
 二酸化炭素の超臨界液体を含浸させる際の温度を164℃とした以外は、実施例1と同様に行った。
 〔実施例4〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を95質量部、メタブレンP551Aを5質量部とした以外は、実施例1と同様に行った。
 〔実施例5〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を95質量部、メタブレンP551Aを5質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を162℃とした以外は、実施例1と同様に行った。
 〔実施例6〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を95質量部、メタブレンP551Aを5質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を164℃とした以外は、実施例1と同様に行った。
 〔実施例7〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を90質量部、メタブレンP551Aを10質量部とした以外は、実施例1と同様に行った。
 〔実施例8〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を90質量部、メタブレンP551Aを10質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を162℃とした以外は、実施例1と同様に行った。
 〔実施例9〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を90質量部、メタブレンP551Aを10質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を164℃とした以外は、実施例1と同様に行った。
 〔実施例10〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を80質量部、メタブレンP551Aを20質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を163℃とした以外は、実施例1と同様に行った。
 〔実施例11〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を80質量部、メタブレンP551Aを20質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を164℃とした以外は、実施例1と同様に行った。
 〔実施例12〕
 フッ素樹脂組成物を製造する過程でメタブレンP551Aの代わりにメタブレンP550A(三菱ケミカル株式会社製、分子量95万)のアクリル系重合体を用いた以外は、実施例1と同様に行った。
 〔実施例13〕
 二酸化炭素の超臨界液体を含浸させる際の温度を162℃とした以外は、実施例12と同様に行った。
 〔実施例14〕
 二酸化炭素の超臨界液体を含浸させる際の温度を164℃とした以外は、実施例12と同様に行った。
 〔実施例15〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を95質量部、メタブレンP550Aを5質量部とした以外は、実施例12と同様に行った。
 〔実施例16〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を95質量部、メタブレンP550Aを5質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を163℃とした以外は、実施例12と同様に行った。
 〔実施例17〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を95質量部、メタブレンP550Aを5質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を164℃とした以外は、実施例12と同様に行った。
 〔実施例18〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を90質量部、メタブレンP550Aを10質量部とした以外は、実施例12と同様に行った。
 〔実施例19〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を90質量部、メタブレンP550Aを10質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を162℃とした以外は、実施例12と同様に行った。
 〔実施例20〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を90質量部、メタブレンP550Aを10質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を164℃とした以外は、実施例12と同様に行った。
 〔実施例21〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を80質量部、メタブレンP550Aを20質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を163℃とした以外は、実施例12と同様に行った。
 〔実施例21〕
 フッ素樹脂組成物を製造する過程でフッ化ビニリデン単独重合体を80質量部、メタブレンP550Aを20質量部とし、二酸化炭素の超臨界液体を含浸させる際の温度を164℃とした以外は、実施例12と同様に行った。
 〔比較例〕
 メタブレンP551Aを加えず、二酸化炭素の超臨界液体を含浸させる際の温度を162℃とした以外は、実施例1と同様に行った。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明は、フッ化ビニリデン単独重合体の発泡成形体に利用することができる。

Claims (8)

  1.  フッ素樹脂組成物の発泡成形体であって、
     上記フッ素樹脂組成物は、フッ化ビニリデン単独重合体を主成分として含み、かつ該フッ化ビニリデン単独重合体とは異なる重合体を含み、
     上記発泡成形体における気泡径は、下記式(1)および(2)の条件を満たすものであることを特徴とする発泡成形体。
      1.0≦(Lmax-Lmin)/Lave≦2.5 ・・・(1)
      0.2≦C≦0.5 ・・・(2)
     (ここで、Lmaxは気泡径の最大値(μm)、Lminは気泡径の最小値(μm)、Laveは平均気泡径(μm)、Cは気泡径の標準偏差を平均気泡径で除した値である。)
  2.  上記フッ素樹脂組成物は、上記異なる重合体を0.1重量%以上50重量%未満の範囲で含むことを特徴とする請求項1に記載の発泡成形体。
  3.  上記異なる重合体は、アクリル系重合体であることを特徴とする請求項1または2に記載の発泡成形体。
  4.  上記アクリル系重合体は、重量平均分子量が10万以上500万以下の範囲であることを特徴とする請求項3に記載の発泡成形体。
  5.  上記フッ化ビニリデン単独重合体のインヘレント粘度は、0.8dl/g以上3.1dl/g以下の範囲であることを特徴とする請求項1から4のいずれか1項に記載の発泡成形体。
  6.  請求項1から5のいずれか1項に記載の発泡成形体を製造するための製造方法であって、
     超臨界状態下において、上記フッ素樹脂組成物に超臨界液体を含浸させる含浸工程と、
     上記含浸工程の後に、上記超臨界状態を解除することにより上記超臨界液体を含浸させた上記フッ素樹脂組成物を発泡させる発泡工程と、を含み、
     上記フッ素樹脂組成物は、230℃で測定したみかけの緩和時間が0.03秒以上4.00秒以下の範囲であり、
     上記製造方法はバッチ式の製造方法であって、上記含浸工程における温度は、140℃より高く175℃未満の範囲であることを特徴とする発泡成形体の製造方法。
  7.  請求項1から5のいずれか1項に記載の発泡成形体を製造するための製造方法であって、
     超臨界状態下において、上記フッ素樹脂組成物に超臨界液体を含浸させる含浸工程と、
     上記含浸工程の後に、上記超臨界状態を解除することにより上記超臨界液体を含浸させた上記フッ素樹脂組成物を発泡させる発泡工程と、を含み、
     上記フッ素樹脂組成物は、230℃で測定したみかけの緩和時間が0.03秒以上4.00秒以下の範囲であり、
     上記製造方法は連続式の製造方法であって、上記含浸工程における温度は、上記フッ素樹脂組成物の融点より高く、上記フッ素樹脂組成物の分解温度より低い範囲であることを特徴とする発泡成形体の製造方法。
  8.  上記超臨界液体は二酸化炭素であることを特徴とする請求項6または7に記載の発泡成形体の製造方法。
PCT/JP2018/044846 2018-02-06 2018-12-06 フッ化ビニリデン単独重合体の発泡成形体および発泡成形体の製造方法 WO2019155747A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-019679 2018-02-06
JP2018019679A JP2019137726A (ja) 2018-02-06 2018-02-06 フッ化ビニリデン単独重合体の発泡成形体および発泡成形体の製造方法

Publications (1)

Publication Number Publication Date
WO2019155747A1 true WO2019155747A1 (ja) 2019-08-15

Family

ID=67548416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044846 WO2019155747A1 (ja) 2018-02-06 2018-12-06 フッ化ビニリデン単独重合体の発泡成形体および発泡成形体の製造方法

Country Status (2)

Country Link
JP (1) JP2019137726A (ja)
WO (1) WO2019155747A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021522400A (ja) * 2018-04-19 2021-08-30 マテリアス・ソチエタ・ア・レスポンサビリタ・リミタータMATERIAS S.r.l. 層状発泡ポリマー材料を調製するための方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6922948B2 (ja) 2019-07-26 2021-08-18 コベルコ建機株式会社 作業アタッチメント及びこれを備えた作業機械
JP2021031586A (ja) * 2019-08-23 2021-03-01 株式会社クレハ 発泡成形体およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726051A (ja) * 1993-05-11 1995-01-27 Asahi Chem Ind Co Ltd 新規なフッ素系樹脂発泡体
JP2004517159A (ja) * 2000-03-01 2004-06-10 ノース・キャロライナ・ステイト・ユニヴァーシティ 二酸化炭素を使用するブレンドされた熱可塑性ポリマーの発泡体の製造方法
JP2015034255A (ja) * 2013-08-09 2015-02-19 旭硝子株式会社 発泡体およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726051A (ja) * 1993-05-11 1995-01-27 Asahi Chem Ind Co Ltd 新規なフッ素系樹脂発泡体
JP2004517159A (ja) * 2000-03-01 2004-06-10 ノース・キャロライナ・ステイト・ユニヴァーシティ 二酸化炭素を使用するブレンドされた熱可塑性ポリマーの発泡体の製造方法
JP2015034255A (ja) * 2013-08-09 2015-02-19 旭硝子株式会社 発泡体およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021522400A (ja) * 2018-04-19 2021-08-30 マテリアス・ソチエタ・ア・レスポンサビリタ・リミタータMATERIAS S.r.l. 層状発泡ポリマー材料を調製するための方法

Also Published As

Publication number Publication date
JP2019137726A (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
JP3998374B2 (ja) 超臨界二酸化炭素の添加方法および当該添加方法を用いた熱可塑性樹脂発泡体の製造方法
JPH10230528A (ja) 熱可塑性樹脂発泡射出成形体およびその製造方法
US8779017B2 (en) Foam and production method of the same
CN109605708B (zh) 一种热塑性聚酯挤出发泡成型方法
WO2019155747A1 (ja) フッ化ビニリデン単独重合体の発泡成形体および発泡成形体の製造方法
JP7321448B2 (ja) 発泡樹脂成形品の製造方法、該方法に使用される熱可塑性樹脂組成物および発泡樹脂成形品
JP2007100025A (ja) ポリ乳酸系樹脂発泡成形体
JP4339296B2 (ja) 熱可塑性樹脂発泡射出成形体の製造方法
Zhou et al. Fabrication of super‐ductile PP/LDPE blended parts with a chemical blowing agent
JP4011512B2 (ja) 結晶性ポリ乳酸系樹脂発泡体の製造方法
JPH10175249A (ja) 熱可塑性樹脂発泡体およびその製造方法
JP5943826B2 (ja) ポリフッ化ビニリデン系樹脂発泡粒子、ポリフッ化ビニリデン系樹脂発泡粒子の製造方法、及びポリフッ化ビニリデン系樹脂発泡粒子成形体
JP2007056148A (ja) 樹脂発泡体の製造方法及び樹脂発泡体
JPH1024436A (ja) 熱可塑性樹脂発泡体およびその製造方法
Rizvi et al. Strategies for processing wood plastic composites with chemical blowing agents
EP2407504B1 (en) Polyvinylidene fluoride resin expanded beads, and molded articles of polyvinylidene fluoride resin expanded beads
JPH1076560A (ja) 熱可塑性樹脂発泡体およびその製造方法
KR20230147214A (ko) 압출된 폴리아미드 발포체의 제조 방법
JPH1024476A (ja) 熱可塑性樹脂発泡体およびその製造方法
JP2000086800A (ja) ポリアミド系樹脂発泡体及びその製造方法
Diaz et al. Continuous extrusion production of microcellular rigid PVC
JP5986410B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体
JP4357998B2 (ja) ポリ乳酸系樹脂発泡体の製造方法
JP2019183097A (ja) ポリ乳酸樹脂発泡体
WO2019155746A1 (ja) フッ化ビニリデン共重合体の発泡成形体および発泡成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905149

Country of ref document: EP

Kind code of ref document: A1