WO2019155280A1 - 太陽電池モジュール及び太陽光発電システム - Google Patents

太陽電池モジュール及び太陽光発電システム Download PDF

Info

Publication number
WO2019155280A1
WO2019155280A1 PCT/IB2019/000123 IB2019000123W WO2019155280A1 WO 2019155280 A1 WO2019155280 A1 WO 2019155280A1 IB 2019000123 W IB2019000123 W IB 2019000123W WO 2019155280 A1 WO2019155280 A1 WO 2019155280A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
solar
cell module
cell string
power generation
Prior art date
Application number
PCT/IB2019/000123
Other languages
English (en)
French (fr)
Inventor
雄太 大下
昌大 高橋
守孝 中村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201980009909.4A priority Critical patent/CN111868936A/zh
Publication of WO2019155280A1 publication Critical patent/WO2019155280A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module and a solar power generation system.
  • a tile-integrated solar cell module that has the function of a roof tile, which is one of roofing materials, and is arranged in a mixture with ordinary roof tiles.
  • a roof tile-integrated solar cell module is installed on the roof base plate so that one side of the eave side is lower than one side of the opposite ridge side among the four sides of the rectangular solar cell module body.
  • a plurality of solar cell modules are installed adjacent to each other from the building side to the eaves side.
  • the solar cell module located closer to the ridge side (in other words, located on the upper stage with respect to the ridge side) and the solar cell module located adjacent to the lower stage are at least about the thickness of one solar cell module. This will cause a step. Due to this step, the shadow of the upper solar cell module can be projected onto the lower solar cell module due to a change in season or solar radiation time.
  • a solar cell module that is a basic unit of a solar cell power generation system is known to include a solar cell group (hereinafter referred to as a solar cell string) in which a plurality of solar cells are arranged in series. Yes.
  • a solar cell string is generally configured to have a plurality of solar cell strings.
  • a bypass diode is connected between the start end and the end of each solar cell string for each solar cell string.
  • Patent Document 1 a plurality of solar cells arranged in series are folded back at the center, and bypass diodes are arranged at both ends of one solar cell string corresponding to two rows of solar cells. A similar structure is also found in Patent Document 2.
  • Bypass diodes bypass the current so that the current that can be output as a whole solar cell module is not limited to the shaded solar cells when the solar cells are shaded and the generated current becomes small.
  • the solar cell module has a function of preventing a decrease in power generation efficiency as a whole. Furthermore, when the generated power of the solar battery cell is reduced due to this shadow, the voltage of the solar battery cell is reduced compared to a normally generated solar battery cell. Work as. When a current flows from a solar cell in a power generation state, the solar cell that has become a resistance generates heat and becomes a hot spot, which may destroy the cell in the worst case. In order to prevent the destruction of the solar cell in a state where the generated power is reduced, the bypass diode is connected.
  • the solar cell string has a plurality of solar cells arranged in series at the central portion, and has an array shape for two rows of solar cells. For this reason, even if a part of the solar cells are covered with the shadow of sunlight due to changes in the season or solar radiation time, power generation is impaired in units of two rows of solar cells (one solar cell string), A decrease in power generation will occur.
  • FIG. 17 For example, consider a solar cell module 51 in which four rows of solar cells are arranged as shown in FIG.
  • the four rows of solar cells are designated 52a, 52b, 52c, and 52d.
  • the circuit configuration of the solar cell module 51 is as shown in FIG. 17, and the solar cell modules 52a and 52b are connected in series, and the bypass diode 60ab is connected.
  • the solar battery cells 52c and 52d are connected in series, and the circuit configuration is such that the bypass diode 60cd is connected.
  • the solar cell consisting of two rows of solar cells 52a, 52b constitutes one solar cell string 54AB
  • the solar cell consisting of two rows of solar cells 52c, 52d is another solar cell string 54CD.
  • the present invention has been made in consideration of such a situation, and the purpose of the present invention is to arrange a roof tile-integrated solar cell module on one side of the eaves side lower than one side on the opposite ridge side, The case where it installs is assumed. In this case, the reduction in power generation efficiency due to the shadow of sunlight generated by arranging a plurality of solar cell modules adjacent to each other from the building side to the eaves side is made smaller than in the past.
  • the present invention provides a solar cell module having a plurality of solar cells and a frame fixed to each of the eave side and the ridge side when installed on the roof. Electrically connected between a first solar cell string in which the solar cells arranged in a line along the frame body are connected in series, and a start end and a terminal end of the first solar cell string.
  • the first bypass diode, the second solar cell string in which the solar cells arranged in two rows in the direction along the frame body are connected in series, and the start end and the end of the second solar cell string A second bypass diode electrically connected to the first solar cell string and the second solar cell string, or the first solar cell string.
  • the present invention provides a third solar cell string in which the solar cells arranged in a line in the direction along the frame body are connected in series, and between the start end and the end of the third solar cell string.
  • a third bypass diode electrically connected, and the third solar cell string is disposed adjacent to the other frame opposite to the frame adjacent to the first solar cell string.
  • a solar cell module is provided.
  • the present invention is a photovoltaic power generation system in which a plurality of the solar cell modules are installed along the slope of the roof, and the first solar cell module is mounted on the frame on the ridge side of the first solar cell module.
  • the frame on the eaves side of the second solar cell module disposed above the inclination is installed, and the first solar cell string is installed adjacent to the frame on the ridge side of the first solar cell module.
  • the present invention is a solar power generation system in which a plurality of the solar cell modules are installed along the slope of the roof, and is fixed in proximity to the frame body on the eaves side of the solar cell modules, and on the eaves side
  • the solar power generation system includes a snow stop member protruding upward from the upper surface of the frame, and the first solar cell string is disposed adjacent to the eave-side frame.
  • the rate at which the generated power of the solar cell module is reduced can be reduced as compared with the conventional case.
  • FIG. 1 is an overall configuration of the solar cell module according to Embodiment 1 of the present invention, and is a perspective view seen from the light receiving surface side.
  • FIG. 2 shows a state where the solar cell module according to Embodiment 1 of the present invention is installed in three steps on an inclined roof, and is a cross-sectional view seen from the lateral direction with respect to the installation surface.
  • FIG. 3 shows a state when the solar cell module is installed as shown in FIG. 2, and is a plan view seen from above with respect to the installation surface.
  • FIG. 4 is a circuit diagram of the solar cell module according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing the relationship between the solar cell module and the solar radiation angle in the installation structure shown in FIG. FIG.
  • FIG. 6 is an enlarged view of a portion causing a shadow in FIG.
  • FIG. 7 is a diagram showing a position of a shadow generated on the solar cell module in FIG.
  • FIG. 8 is a circuit diagram showing solar cells that are affected by shadows in the first embodiment of the present invention.
  • FIG. 9 is a circuit diagram of a solar cell module with five rows of solar cells according to Embodiment 2 of the present invention.
  • FIG. 10 is a circuit diagram of a solar cell module according to Embodiment 3 of the present invention.
  • FIG. 11 is a cross-sectional view when the solar cell module and the snow stop fitting according to Embodiment 3 of the present invention are installed on the roof.
  • FIG. 12 is an enlarged view of a portion that causes a shadow in FIG. FIG.
  • FIG. 13 is a plan view showing a position of a shadow generated on the solar cell module when the installation structure shown in FIG. 11 is viewed from above the installation surface.
  • FIG. 14 is a circuit diagram showing a solar battery cell affected by a shadow in the third embodiment of the present invention.
  • FIG. 15 is a circuit diagram of a solar cell module according to Embodiment 4 of the present invention.
  • FIG. 16 is a perspective view showing the appearance of a conventional solar cell module.
  • FIG. 17 is a circuit diagram of a conventional solar cell module.
  • the solar cell module 1 is a tile-integrated type which has a tile function in itself and is arranged in a mixed manner with a normal tile on a roof.
  • a solar cell module body 2 having a shape and four frame bodies 3 attached to the four sides of the peripheral portion are provided.
  • the solar cell module body 2 is composed of three rows of solar cell groups each consisting of the same number of solar cells 2a, 2b, 2c.
  • the solar cell module body 2 is formed by laminating a translucent substrate on the light-receiving surface side, a solar cell, and a back sheet that insulates and protects the back surface side, and these are bonded to each other by a sealing material.
  • the type of the solar battery cell is not particularly limited.
  • a silicon solar battery such as a single crystal, a polycrystal, or a thin film
  • a compound solar battery such as GaAs, CdTe, or CdS
  • a dye sensitization or an organic thin film Organic solar cells and the like.
  • FIG. 2 shows a state in which the solar cell module 1 is installed in three steps on the roof inclined at an inclination angle ⁇ with respect to the horizontal plane so that a step is generated in the vertical direction, and is a cross-sectional view when the installation surface is observed from the lateral direction.
  • the uppermost solar cell module arranged on the ridge side is 1u
  • the lowermost solar cell module installed on the eave side is 1d
  • the middle solar cell module is 1m.
  • the solar cell which comprises each of the solar cell modules 1u, 1m, and 1d be 2a, 2b, and 2c.
  • the frames of the solar cell modules 1u, 1m, and 1d installed in three stages are assumed to be 3u, 3m, and 3d, respectively.
  • the middle frame 3m is placed with a part overlapping the upper portion of the lower frame 3d.
  • a part of the upper frame 3u is placed on top of the middle frame 3m, and the upper frame 3u is placed thereon.
  • the frame bodies 3u, 3m, and 3d each have a step with a height H1 described later.
  • the installation structure in which such a step occurs is that when the roofing material such as flat tiles and slate is mixed with the solar cell module, the surface of the roofing material and the surface of the solar cell module are substantially the same. It is because it is necessary to install so that it may become a surface.
  • FIG. 3 is a view of the solar cell modules 1u, 1m, and 1d installed as shown in FIG. 2 as viewed from above with respect to the installation surface. It is shown that the frames 3u, 3m, and 3d are arranged so as to partially overlap each other in the long side direction that is one side of the ridge side.
  • FIG. 4 shows a connection circuit of the solar cells 2a, 2b and 2c and the bypass diodes 10a and 10bc housed in the frame 3.
  • a solar cell string 4A one series circuit in which a group of solar cells 2a are connected in series
  • a solar cell string 4BC One series circuit in which a group of solar cells 2b and 2c are connected in series.
  • the positive electrode end of the solar cell string 4A and the negative electrode end of the solar cell string 4BC are electrically connected, and the electric circuit is configured so that the entire solar cell module forms one series circuit.
  • bypass diode 10a is connected to both ends of the solar cell string 4A. More specifically, the anode of the first bypass diode 10a is connected to the negative end of the solar cell string 4A, and the cathode of the bypass diode 10a is connected to the positive end of the solar cell string 4A. Similarly, the bypass diode 10bc is connected to both ends of the solar cell string 4BC. More specifically, the anode of bypass diode 10bc is connected to the negative end of solar cell string 4BC, and the cathode of bypass diode 10bc is connected to the positive end of solar cell string 4BC.
  • External terminals 20 and 21 are electrically connected to external terminals and inverters of other solar cell modules, and function as terminals for transmitting generated power to the outside. As illustrated, the external terminal 20, the bypass diode 10a, the bypass diode 10bc, and the external terminal 21 are connected in series in this order.
  • the bypass diode 10a is connected to the start and end of the solar cell string 4A in which the solar cells are arranged in one row, and the bypass diode 10bc is the solar cell string 4BC in which the solar cells are arranged in two rows. Connected to the beginning and end of the. Furthermore, the solar cell module is installed on the roof so that the solar cell string 4A is located on the ridge side and the solar cell string 4BC is located on the eave side.
  • the start end and the end mean both ends of each solar cell string connected in series. For example, if the start end is an end on the positive electrode side, the end is an end on the negative electrode side.
  • FIG. 4 the solar cells 2 a connected in series are schematically illustrated in which only three cells on the start side and three cells on the end side are described, but in the actual mounting of the solar cells 2 a, A predetermined number of cells are arranged up to the end side. For example, in FIG. 1, ten cells are arranged.
  • the description method of this schematic drawing is the same in the following circuit drawings.
  • FIG. 5 shows the relationship between the solar cell modules 1u, 1m, and 1d and the solar radiation angle when the solar cell module 1 having the circuit configuration as shown in FIG. 4 is installed as shown in FIG.
  • the sun shines on the solar cell module 1m with a relative angle ⁇ with respect to the frame bodies 3u and 3m, a shadow generated by the upper frame body 3u is projected onto the solar cell module 1m.
  • Fig. 6 is an enlarged view of this situation.
  • a shadow S1 by the frame 3u having a height H1 is projected onto the solar cell module 1m located at the lower stage of the frame 3u.
  • shadow S1 will cover a part of solar cell 2a which comprises the solar cell module 1m, more specifically a part on the ridge side of the solar cell 2a. If the solar radiation angle ⁇ becomes more acute, the area of the solar battery cell 2a covered with the shadow S1 becomes wider.
  • FIG. 7 illustrates the case where FIG. 5 and FIG. 6 are viewed from above the installation surface.
  • FIG. 7 shows that the shadow S1 generated by the frames 3u and 3m is on the solar cell module 2a in the solar cell module 1m, on the solar cell module 2d in the solar cell module 1d. A part of each photovoltaic cell 2a located will be covered. Due to the shadow S1, the power generation of the solar battery cell 2a of the solar battery module 1m and the solar battery cell 2a of the solar battery module 1d is reduced.
  • FIG. 8 shows this state as a circuit diagram.
  • the solar cell string 4A in which the generated power is reduced is represented by hatching.
  • the shadow may be affected by the altitude change of the sun according to time or season.
  • the direction is changed, and some solar cells 2a in the string may be shaded and the generated power may be reduced.
  • the solar cell which is a series connection circuit including the solar cells in which the generated power is reduced The battery cell string 4A has a lower power generation as a whole.
  • the power generation is reduced only in the solar cell string 4A in which the solar cells are composed of one row. Since the second solar cell string 4BC is not affected by the shadow, the power generation amount does not decrease. For this reason, only the bypass diode 10a acts, bypasses the solar cell string 4A in which the generated power is reduced and flows current, and the bypass diode 10bc does not act, and the solar cell string 4BC generates power normally. Can do. Therefore, the decrease in the power generation as a whole of the solar cell module 1 can be suppressed to the decrease in one row of the solar cells 2a, thereby suppressing the decrease in the power generation amount of the solar cell module 1 compared to the conventional case. can do.
  • a conventional solar cell module includes two solar cell strings in which solar cells arranged in a direction along one side of the frame body are connected in series every two rows, and at the start end and the end of the solar cell strings. Each has a structure to which a bypass diode is connected. For this reason, when a shadow is projected on the solar cells as shown in FIG. 17, the decrease in the amount of power generation reaches two rows of solar cells.
  • the start end and the end of the solar cell string 4 ⁇ / b> A that is a solar cell group in which one row of solar cells 2 a are connected in series. A bypass diode was connected between the two.
  • the solar cell string 4A having a high frequency at which the bypass diode acts is used as one row of solar cells.
  • the rate of decrease in the amount of power generation per day of the solar cell module can be reduced.
  • the bus bar wiring for electrically connecting the positive electrode side end of the solar cell string 4A and the cathode side of the bypass diode 10a is connected to the solar cell string 4A and the solar cell along the solar cell string 4A.
  • the bus bar wiring may be provided between the ridge side end of the solar cell module 1 and the solar cell string 4A.
  • the direction of the positive electrode and the negative electrode of the solar cell 2a included in the solar cell string 4A is opposite to that in FIG. 8, and the bus bar wiring is connected to the negative electrode side end of the solar cell string 4A and the anode of the bypass diode 10a. Electrically connect to the side.
  • the bus-bar wiring is arrange
  • Embodiment 2 The configuration of the solar cell module according to Embodiment 2 is shown in FIG.
  • solar cells 2d and 2e having two rows are further arranged in the eaves side direction.
  • the solar cell module of Embodiment 1 has a configuration of three rows of solar cells.
  • a solar cell module having a two-row configuration is added in the eaves side direction, and the solar cell module.
  • a plurality of solar cells are arranged in five rows in the direction along the frame.
  • the bypass diode 10a is connected to the start and end of the solar cell string 4A in which the solar cells 2a are arranged in one row, and the bypass diode 10bc is the solar cell in which the solar cells 2b and 2c are arranged in two rows. Connected to battery cell string 4BC. Further, the bypass diode 10de is connected to the solar cell string 4DE in which the solar cells 2d and 2e are arranged in two rows. Note that the solar cell string 4A is on the ridge side, and the solar cell string 4DE is on the eave side.
  • the present invention is not limited to this, and two rows of solar cells in the eaves side direction are not limited to this.
  • One unit may be added as a plurality of units.
  • FIG. 10 is a circuit diagram of the solar cell module 1 according to the third embodiment.
  • the solar battery cell 2a faces the ridge side and the solar battery cell 2c faces the eaves side.
  • the configuration of the solar cell string is different from the circuit diagram (FIG. 4) of the solar cell module shown in the first embodiment.
  • the solar cell string 4AB on the ridge side is composed of two rows of solar cells 2a and 2b
  • the solar cell string 4C on the eaves side is composed of one row of solar cells 2c.
  • bypass diode 10ab is connected to both ends of the solar cell string 4AB
  • bypass diode 10c is connected to both ends of the solar cell string 4C.
  • structure of solar cell modules other than these is according to Embodiment 1.
  • a snow stopper which is a member protruding from the roof surface, may be installed at the eaves as an example of a snow stopper.
  • the light-receiving surface cover of the solar cell module is generally made of glass, and since the surface is smooth compared to ordinary roofing materials such as tiles, the tendency of snow to slide is likely to increase, and the safety of the surroundings In order to ensure the safety, the snow stop is important.
  • the snow stopper installed on the eaves shadows the eave side of the solar cell module installed on the roof according to the solar radiation angle. It is possible to project.
  • Embodiment 3 solves the problem of the case where the power generation of the solar cell module is reduced by the shadow projected by the snow stop.
  • FIG. 11 is a cross-sectional view when three solar cell modules 1u, 1m, and 1d are arranged side by side along the slope of the roof on the roof that is inclined at the inclination angle ⁇ .
  • the solar cell modules 1u, 1m, and 1d are installed in a plane without overlapping each other.
  • the solar cell modules 1u, 1m, and 1d are composed of solar cells 2a, 2b, and 2c, respectively.
  • Such a flat installation can be realized by installing a base on a roofing material and installing a solar cell module on the base, or a roof where a solar cell module is installed on almost the entire surface of the roof. Mainly used in integrated photovoltaic systems.
  • the snow stopper 30 is installed adjacent to the tip of the lowermost solar cell module 1d corresponding to the eaves. It is assumed that sunlight is irradiated at a relative angle ⁇ with respect to the lowermost frame 3d.
  • FIG. 12 is an enlarged cross-sectional view of the periphery of the snow stop 30.
  • the snow stopper 30 projecting from the upper surface of the frame 3d by the height H2 projects a shadow S2 of the snow stopper 30 onto the solar cell module 1d due to a change in season or solar radiation time. Thereby, the solar battery cell 2c of the solar battery module 1d is covered with the shadow S2 of the snow stopper 30.
  • FIG. 13 illustrates this, and is a plan view when seen from above with respect to the installation surfaces of the solar cell modules 1u, 1m, and 1d.
  • the shadow S2 generated by the snow stopper 30 covers the lower part of the solar cell 2c of the solar cell module 1d, more specifically, a part of the eaves side of the solar cell 2c. Due to the shadow S2, the generated power of the solar battery cell 2c of the solar battery module 1d is reduced.
  • FIG. 14 shows this state as a circuit diagram.
  • the solar cell string 4C in which the generated power is reduced is represented by hatching.
  • the power generation is reduced only by the solar cell string 4C in which the solar cells are formed in one row due to the shadow of the snow stopper 30.
  • the solar cell string 4AB is not affected by the shadow due to the snow stopper 30 and the power generation is not reduced thereby. For this reason, the fall of the electric power generation as the whole solar cell module 1d can be suppressed to the fall for one row of the photovoltaic cells 2c.
  • the solar cell module in which the rate of decrease in the amount of power generation due to the shadow of the snow stopper 30 is small can be provided.
  • the fourth embodiment relates to the configuration of the solar cell string of the solar cell module for reducing the decrease in the amount of power generation due to shadows that occur around both sides of the solar cell module on the ridge side or eaves side. That is, the configuration features of the solar cell strings of the solar cell modules shown in the first and third embodiments are included.
  • FIG. 15 shows a circuit diagram of the solar cell module 11 according to the fourth embodiment.
  • the solar cell module 11 is composed of a four-row solar cell group composed of solar cells 2a, 2b, 2c, and 2d.
  • the solar cells 2a are arranged adjacent to the ridge side frame of the solar cell module, and the solar cells 2d are arranged adjacent to the eaves side frame of the solar module.
  • the solar cell string 4A is composed of a group of solar cells 2a in one row.
  • Solar cell string 4BC is composed of a group of two rows of solar cells 2b, 2c.
  • Solar cell string 4D is composed of a group of solar cells 2d.
  • bypass diode 10a is connected between the start end and the end of the solar cell string 4A.
  • the bypass diode 10bc is connected to both ends of the solar cell string 4BC.
  • the bypass diode 10d is connected to both ends of the solar cell string 4D.
  • the present invention has been described for application to a roof tile-integrated solar cell module.
  • the present invention is not limited to this, and can be widely used for solar cell modules.
  • this invention can be widely utilized for the solar power generation system comprised by installing a several solar cell module adjacently.
  • a solar power generation system in which a plurality of solar cell modules are installed along the slope of the roof, on the ridge side frame of the first solar cell module installed below the inclination
  • the eaves side frame of the second solar cell module is installed above the slope, and the first solar cell group is installed adjacent to the ridge side frame of the first solar cell module;
  • a solar power generation system is suitable.
  • a solar power generation system in which a plurality of solar cell modules are installed along a roof inclination, and is fixed in proximity to the eaves side frame of the solar cell module. And a solar power generation system comprising a snow stop member protruding upward from the upper surface of the eaves-side frame, and wherein the first solar cell group is disposed adjacent to the eaves-side frame. It is.
  • the present invention can be suitably used as a solar cell module installed on a roof and a solar power generation system using the solar cell module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Photovoltaic Devices (AREA)

Abstract

枠体(3)に収納された太陽電池モジュールにおいて、バイパスダイオード(10a)は太陽電池セルが1列に並んだ太陽電池セルストリング(4A)の始端と終端に接続され、バイパスダイオード(10bc)は太陽電池セルが2列に並んだ太陽電池セルストリング(4BC)に接続される。さらに太陽電池セルストリング(4A)は棟側または棟側のいずれか影の掛かりやすい方に配される。

Description

太陽電池モジュール及び太陽光発電システム
 本発明は、太陽電池モジュール及び太陽光発電システムに関する。
 従来、屋根材の1つである瓦の機能を持たせ、通常の瓦と混在させて並べるようにした瓦一体型の太陽電池モジュールが知られている。このような瓦一体型の太陽電池モジュールは四角型状の太陽電池モジュール本体の四辺の内、軒側の一辺が反対の棟側の一辺より低くなるように屋根の野地板の上に設置される。そのうえで、屋根に複数の太陽電池モジュールを設置する場合、棟側から軒側に向けて複数段の太陽電池モジュールが隣接設置される。
 このため、より棟側に近く位置する(換言すると棟側に対して上段に位置する)太陽電池モジュールと、その下段に隣接位置する太陽電池モジュールとでは、少なくとも太陽電池モジュール一枚の厚み分程度の段差が生じることとなる。この段差により季節又は日射時刻の変化により、上段の太陽電池モジュールの影が下段の太陽電池モジュールに投影されうる。
 太陽電池発電システムの基本単位となる太陽電池モジュールは、複数の太陽電池セルが直列に配置された太陽電池セル群(以下、太陽電池セルストリングと称する)を含んで構成されることが知られている。一枚の太陽電池モジュールは一般的に複数の太陽電池セルストリングを有する構成となっている。そして通常、太陽電池セルストリング毎にバイパスダイオードが各太陽電池セルストリングの始端と終端との間に接続される。
 例えば特許文献1には、直列配置した複数の太陽電池セルを中央部分で折り返す形状とし、太陽電池セル2列分に相当する1つの太陽電池セルストリングの両端部にバイパスダイオードを配置している。同様の構造が特許文献2にも見られる。
 バイパスダイオードは、太陽電池セルの一部に影が掛かり、発生する電流が小さくなった場合、太陽電池モジュール全体として出力できる電流が影の掛かった太陽電池セルに制限されないように電流をバイパスして太陽電池モジュール全体としての発電効率の低下を防止する機能を有している。さらに、この影によって太陽電池セルの発電力が低下した状態になると、正常に発電している太陽電池セルと比較して電圧が低下することで、発電力が低下した状態の太陽電池セルが抵抗として働く。発電状態の太陽電池セルから電流が流れると抵抗となった太陽電池セルが発熱してホットスポットとなり、最悪の場合セルを破壊してしまうことがある。このような発電力が低下した状態の太陽電池セルの破壊を防止するためにも、バイパスダイオードが接続されるのである。
特開2012−233315号公報 特開2012−69593号公報
 ところが、前記従来例の構造では、太陽電池セルストリングは直列配置した複数の太陽電池セルを中央部分で折り返し、太陽電池セル2列分の配列形状となっている。このため、季節又は日射時刻の変化により太陽電池セルの一部が太陽光の影に覆われたとしても、太陽電池セル2列分(1つの太陽電池セルストリング)を単位に発電が障害され、発電力の低下が生じることとなる。
 例えば、図16に示すように太陽電池セルが4列配置された太陽電池モジュール51を考える。便宜のため、4列の太陽電池セルを52a、52b、52c、52dとする。太陽電池モジュール51の回路構成は図17に示すとおりであり、太陽電池セル52a、52bの2列からなる太陽電池セルが直列接続され、バイパスダイオード60abが接続される回路構成となっている。
 同様に太陽電池セル52c、52dの2列からなる太陽電池セルが直列接続され、バイパスダイオード60cdが接続される回路構成となっている。そして、太陽電池セル52a、52bの2列から成る太陽電池セルが1つの太陽電池セルストリング54ABを構成し、太陽電池セル52c、52dの2列から成る太陽電池セルが別の太陽電池セルストリング54CDを構成する。
 このような前提で、図16において構造物等により太陽光が遮られ影55が生じ、太陽電池セル52aの一部のみが影に覆われたとする。この場合太陽電池セルストリング54ABの一部の太陽電池セルで発電量が不足することとなる。しかしバイパスダイオード60abが作用し、発電量の不足は太陽電池セル52a、52bの2列分に及ぶこととなる。
 このように、太陽電池セルストリングの一部が影に覆われたとしても、従来の太陽電池モジュールでは、太陽電池セル2列分を1つの単位として発電量が低下することとなる。このため、太陽電池モジュールの発電効率が大きく低下することが避けられない。
 本発明は、このような実情を考慮してなされたものであり、その目的は、瓦一体型の太陽電池モジュールを軒側の一辺が反対の棟側の一辺よりも低く配置し、瓦状に設置する場合を想定している。この場合において、棟側から軒側に向けて複数段の太陽電池モジュールを隣接配置することにより生じる太陽光の影による発電効率の低下を従来よりも小さくすることにある。
 前記の目的を達成するために本発明は、複数の太陽電池セルと、屋根上に設置される際に軒側および棟側となる辺にそれぞれ固定された枠体と、を有する太陽電池モジュールにおいて、前記枠体に沿う方向に1列で配置された前記太陽電池セルを直列接続した第1太陽電池セルストリングと、前記第1太陽電池セルストリングの始端と終端との間に電気的に接続された第1バイパスダイオードと、前記枠体に沿う方向に2列で配置された前記太陽電池セルを直列接続した第2太陽電池セルストリングと、前記第2太陽電池セルストリングの始端と終端との間に電気的に接続された第2バイパスダイオードと、を備え、前記第1太陽電池セルストリングの終端と前記第2太陽電池セルストリングの始端、または前記第1太陽電池セルストリングの終端と前記第2太陽電池セルストリングの始端とが電気的に接続されており、前記第1太陽電池セルストリングが前記枠体に隣接して配置されている太陽電池モジュール、としたものである。
 また、本発明は、前記枠体に沿う方向に1列で配置された前記太陽電池セルを直列接続した第3太陽電池セルストリングと、前記第3太陽電池セルストリングの始端と終端との間に電気的に接続された第3バイパスダイオードとを備え、前記第3太陽電池セルストリングが、前記第1太陽電池セルストリングが隣接する前記枠体と対向する他の前記枠体に隣接して配置されている太陽電池モジュール、としたものである。
 さらに、本発明は、前記太陽電池モジュールを屋根の傾斜に沿って複数設置した太陽光発電システムであって、第1太陽電池モジュールの棟側の前記枠体上に、前記第1太陽電池モジュールの傾斜上方に配置された第2太陽電池モジュールの軒側の前記枠体が設置され、前記第1太陽電池モジュールの棟側の前記枠体に前記第1太陽電池セルストリングが隣接するように設置された太陽光発電システム、としたものである。
 さらに、本発明は、前記太陽電池モジュールを屋根の傾斜に沿って複数設置した太陽光発電システムであって、前記太陽電池モジュールの軒側の前記枠体に近接して固定され、かつ軒側の前記枠体の上面よりも上方に突出した雪止部材を備え、前記第1太陽電池セルストリングが軒側の前記枠体に隣接して配置された太陽光発電システム、としたものである。
 本発明における、太陽電池モジュール及び太陽光発電システムによれば、太陽電池セルの一部に影が掛かったときに、太陽電池モジュールの発電力が低下する割合を従来よりも少なくすることができる。
図1は、本発明の実施形態1に係る太陽電池モジュールの全体構成であって、受光面側から見た斜視図である。 図2は、本発明の実施形態1に係る太陽電池モジュールを傾斜した屋根に3段に設置したときの様子であり、設置面に対して横方向から見た断面図である。 図3は、図2に示すように太陽電池モジュールを設置したときの様子であり、設置面に対して上方から見た平面図である。 図4は、本発明の実施形態1に係る太陽電池モジュールの回路図である。 図5は、図2に示した設置構造において太陽電池モジュールと日射角度との関係を示す図である。 図6は、図5において影を生じる部分の拡大図である。 図7は、図3において太陽電池モジュールの上に生じる影の位置を示す図である。 図8は、本発明の実施形態1において影の影響を受ける太陽電池セルを示す回路図である。 図9は、本発明の実施形態2に係る太陽電池セル5列の太陽電池モジュールの回路図である。 図10は、本発明の実施形態3に係る太陽電池モジュールの回路図である。 図11は、本発明の実施形態3に係る太陽電池モジュール及び雪止金具を屋根上に設置したときの断面図である。 図12は、図11において影を生じる部分の拡大図である。 図13は、図11に示す設置構造を設置面上方から見た、太陽電池モジュールの上に生じる影の位置を示す平面図である。 図14は、本発明の実施形態3において影の影響を受ける太陽電池セルを示す回路図である。 図15は、本発明の実施形態4に係る太陽電池モジュールの回路図である。 図16は、従来の太陽電池モジュールの外観を示す斜視図である。 図17は、従来の太陽電池モジュールの回路図である。
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
 [実施形態1]
 (構成)
 本実施形態の太陽電池モジュール1は、それ自体に瓦の機能を持たせ、屋根の上に通常の瓦と混在させて並べるようにした瓦一体型のものであり、図1に示すように四角形状の太陽電池モジュール本体2と、その周縁部四辺に取り付けられた4つの枠体3とを備えている。太陽電池モジュール本体2は各列同一個数の太陽電池セル2a、2b、2cからなる3列の太陽電池セル群から構成されている。太陽電池モジュール本体2は受光面側の透光性基板、太陽電池セル及び裏面側を絶縁保護するバックシートを積層したものであって、封止材によってそれらが互いに接着されている。そして、太陽電池モジュール本体2の受光面から入射した太陽光が太陽電池セル2a、2b、2cに当たることで発電が行われる。本実施形態では、太陽電池セルの種類は特に限定されず、例えば、単結晶、多結晶、薄膜等のシリコン系太陽電池、GaAs、CdTe、CdS等の化合物系太陽電池、色素増感、有機薄膜等の有機系太陽電池等があげられる。
 図2は水平面に対する勾配角度αをもって傾斜した屋根に太陽電池モジュール1を上下に段差が生じるように3段に設置したときの様子であり、設置面を横方向から観察したときの断面図である。ここで棟側に配置された最上段の太陽電池モジュールを1u、軒側に設置された最下段の太陽電池モジュールを1d、中段の太陽電池モジュールを1mとする。また、太陽電池モジュール1u、1m、1dのそれぞれを構成する太陽電池セルを2a、2b、2cとする。
 ここで、3段に設置した太陽電池モジュール1u、1m、1dのそれぞれの枠体を3u、3m、3dとする。図示する通り、下段枠体3dの上部に一部分が重なり中段枠体3mが載置される。同様に中段枠体3mの上部に一部分が重なり上段枠体3uが載置される。このため、図6に示されるように、設置にあたり枠体3u、3m、3dはそれぞれ後述の高さH1の段差が生じることとなる。このような段差が生じる設置構造となるのは、平板瓦やスレートなどの屋根葺き材と太陽電池モジュールとを混ぜ置きする際に、それら屋根葺き材の表面と太陽電池モジュールの表面とが略同一面となるように設置する必要があるからである。
 図3は図2のように設置した太陽電池モジュール1u、1m、1dを、設置面に対して上方から見た図である。枠体3u、3m、3dがそれぞれ棟側の一辺である長辺方向において一部重なる状態で配置されることを示している。
 図4は枠体3に収納された太陽電池セル2a、2b、2c及びバイパスダイオード10a、10bcの接続回路を示す。ここで一群の太陽電池セル2aを直列に接続した1つの直列回路を太陽電池セルストリング4Aと称する。また、一群の太陽電池セル2b及び2cを直列に接続した1つの直列回路を太陽電池セルストリング4BCとする。太陽電池セルストリング4Aの正極端と太陽電池セルストリング4BCの負極端とが電気的に接続されており、太陽電池モジュール全体で1つの直列回路となるように電気回路が構成されている。
 次に、バイパスダイオード10aが太陽電池セルストリング4Aの両端に接続される。より詳細には第1バイパスダイオード10aのアノードが太陽電池セルストリング4Aの負極端に接続され、バイパスダイオード10aのカソードが太陽電池セルストリング4Aの正極端に接続される。同様にバイパスダイオード10bcが太陽電池セルストリング4BCの両端に接続される。より詳細にはバイパスダイオード10bcのアノードが太陽電池セルストリング4BCの負極端に接続され、バイパスダイオード10bcのカソードが太陽電池セルストリング4BCの正極端に接続される。
 外部端子20、21は他の太陽電池モジュールの外部端子やインバータなどと電気的に接続され、発電した電力を外部へ伝送するための端子として機能する。図示するように外部端子20、バイパスダイオード10a、バイパスダイオード10bc及び外部端子21の順番に直列接続される。
 図4から判るようにバイパスダイオード10aは太陽電池セルが1列に並んだ太陽電池セルストリング4Aの始端と終端に接続され、バイパスダイオード10bcは太陽電池セルが2列に並んだ太陽電池セルストリング4BCの始端と終端に接続される。さらに太陽電池セルストリング4Aは棟側、太陽電池セルストリング4BCは軒側に位置するように太陽電池モジュールが屋根上に設置される。なお、始端と終端とは、各太陽電池セルストリングの直列接続の両端を意味し、例えば、始端が正極側の端部であれば終端は負極側の端部となる。
 なお、図4では直列に接続される太陽電池セル2aはその始端側の3セルと終端側の3セルのみを記載する略図面としているが、実際の太陽電池セル2aの実装においては始端側から終端側まで既定数のセルが配置されている。例えば、図1ではセルが10個並んでいる。この略図面の記載方法は以下の回路図面においても同様である。
 (動作)
 本発明に係る太陽電池モジュール1の動作を説明する。図5は、図4で示すような回路構成を有する太陽電池モジュール1を図2に示したように設置した場合の、太陽電池モジュール1u、1m、1dと日射角度の関係を示すものである。例えば枠体3u、3mに対する相対角度βをもって太陽電池モジュール1mに日が射せば、上段の枠体3uにより生じる影が太陽電池モジュール1mに投影されることとなる。
 この様子を拡大したものが図6である。枠体3u、3mに対する相対的な日射角度βをもって日が射すと、高さH1を有する枠体3uによる影S1が枠体3uの下段に位置する太陽電池モジュール1mに投影される。これにより、影S1が太陽電池モジュール1mを構成する太陽電池セル2aの一部、より詳細には太陽電池セル2aの棟側の一部を覆うこととなる。日射角度βがより鋭角となれば、影S1により覆われる太陽電池セル2aの面積はより広くなる。
 以上は日射により、枠体3uが枠体3uの下段に位置する太陽電池モジュール1mに投影する影S1について説明したものである。これは、図6では図示していないが、枠体3mが枠体3mの下段に位置する太陽電池モジュール1dに投影する影S1についても同様である。
 図7は図5や図6について設置面の上方から見た場合を説明するものである。図7は枠体3u、3mにより生じた影S1がそれぞれ太陽電池モジュール1mの太陽電池セル2aの上部、太陽電池モジュール1dの太陽電池セル2aの上部、より詳細には太陽電池モジュールにおいて棟側に位置する各太陽電池セル2aの一部を覆うこととなる。この影S1により太陽電池モジュール1mの太陽電池セル2aや太陽電池モジュール1dの太陽電池セル2aの発電力が低下することとなる。
 このように太陽電池セル2aの発電力が低下すると、複数の太陽電池セル2aからなる太陽電池セルストリング4A全体の発電力も低下することとなる。この状態を回路図として示すのが図8である。理解容易のために、発電力が低下する太陽電池セルストリング4Aを、斜線を付して表現した。
 なお、本実施形態では太陽電池セルストリング4Aを構成する太陽電池セル2aの全てに同じような影が掛かる場合を例示しているが、実際には、時刻や季節による太陽の高度変化によって影の向きは変わり、ストリング内の数枚の太陽電池セル2aに影が掛かって発電力が低下する場合もあり、その場合でも、それら発電力が低下した太陽電池セルを含んだ直列接続回路である太陽電池セルストリング4Aは全体として発電力が低下する。
 ここで、図8に記載の太陽電池モジュール1において、発電力が低下するのは太陽電池セルが1列から構成される太陽電池セルストリング4Aだけである。第2太陽電池セルストリング4BCは影の影響がないため、発電量が低下することはない。このため、バイパスダイオード10aのみが作用して、発電力が低下した太陽電池セルストリング4Aをバイパスして電流を流すと共に、バイパスダイオード10bcは作用せず、太陽電池セルストリング4BCは正常に発電させることができる。よって、太陽電池モジュール1の全体としての発電力の低下は太陽電池セル2aの1列分の低下に抑えることができ、それによって、従来と比較して太陽電池モジュール1の発電量の低下を抑制することができる。
 (効果)
 従来の太陽電池モジュールは、枠体の一辺に沿う方向に配置された太陽電池セルが2列毎に直列接続された2つの太陽電池セルストリングを備え、それら太陽電池セルストリングの始端と終端とにそれぞれバイパスダイオードが接続される構造となっている。このため、図17に示すように太陽電池セルに影が投影された場合、発電量の低下は太陽電池セル2列分におよんでいた。しかし、本発明では、枠体3について影の生じやすい棟側の一辺に隣接する位置では、太陽電池セル2aの1列を直列接続した太陽電池セル群である太陽電池セルストリング4Aの始端と終端との間にバイパスダイオードを接続するようにした。このため、棟側の枠体3によって太陽電池セルの一部が影に覆われやすく、バイパスダイオードが作用する頻度の高い太陽電池セルストリング4Aを太陽電池セル1列分とすることで、従来の太陽電池モジュールと比較して太陽電池モジュールの1日あたりの発電量の低下の割合を低減することができる。
 このため、段差を設けて瓦状に太陽電池モジュールを設置したとしても、その設置構造により棟側に影が発生しやすくなった場合であっても、影の影響を太陽電池セル1列分に抑えることができる。この点、従来の太陽電池モジュールでは太陽電池セル2列分の電力低下が想定される。このため、同様の設置構造を採用した場合に、従来の太陽電池モジュールに比較して、本発明では影による発電量の低下の割合が少ない太陽電池モジュールを提供することができる。より具体的には、太陽電池モジュールの発電力の低下を太陽電池セル2列分から1列分に抑えることができる。
 なお、図8では太陽電池セルストリング4Aの正極側端部と、バイパスダイオード10aのカソード側とを電気的に接続するバスバー配線が、太陽電池セルストリング4Aに沿って、太陽電池セルストリング4Aと太陽電池セルストリング4BCとの間に配置されているが、バスバー配線は太陽電池モジュール1の棟側端部と太陽電池セルストリング4Aとの間に設けられていてもよい。
 その場合、太陽電池セルストリング4Aに含まれる太陽電池セル2aの正極と負極の向きは図8とは逆向きとなり、バスバー配線は太陽電池セルストリング4Aの負極側端部と、バイパスダイオード10aのアノード側とを電気的に接続する。そうすることで、太陽電池モジュール1の棟側端部と太陽電池セルストリング4Aとの間の間隔を広げるとともに、広げた部分はバスバー配線が配置されているので、太陽電池モジュールのサイズを大きくすることなく、棟側に配置された太陽電池セル2aへ影が掛かるのを抑制することができる。
 [実施形態2]
 実施形態2に係る太陽電池モジュールの構成を図9に示す。図4で示した実施形態1に係る太陽電池モジュールに軒側方向にさらに2列からなる太陽電池セル2d、2eを配置するものである。実施形態1の太陽電池モジュールでは3列の太陽電池セルの構成であったところ、実施形態2の太陽電池モジュールでは2列構成の太陽電池セルストリングを1つ軒側方向に追加し、太陽電池モジュール全体では複数の太陽電池セルを枠体に沿う方向に5列で配置する構成としたものである。
 図9から判るようにバイパスダイオード10aは太陽電池セル2aが1列に並んだ太陽電池セルストリング4Aの始端と終端に接続され、バイパスダイオード10bcは太陽電池セル2b、2cが2列に並んだ太陽電池セルストリング4BCに接続される。さらにバイパスダイオード10deは太陽電池セル2d、2eが2列に並んだ太陽電池セルストリング4DEに接続される。なお、太陽電池セルストリング4Aは棟側であり、太陽電池セルストリング4DEは軒側に位置する。
 以上により、実施形態2であっても実施形態1の太陽電池モジュールと同一の効果を得ることができる。実施形態2では実施形態1の太陽電池モジュールに2列の太陽電池セルをさらに付加したが、これに限られるものではなく、実施形態1の太陽電池モジュールに軒側方向に2列の太陽電池セルを1つの単位として複数単位を付加するものであってもよい。
 [実施形態3]
 (構成)
 図10は実施形態3に係る太陽電池モジュール1の回路図である。ここで実施形態1と同じく太陽電池セル2aは棟側に向き、太陽電池セル2cは軒側に向いているとする。そのうえで、実施形態1で示した太陽電池モジュールの回路図(図4)と異なるのは太陽電池セルストリングの構成である。
 実施形態3では棟側の太陽電池セルストリング4ABは太陽電池セル2a、2bの2列で構成され、軒側の太陽電池セルストリング4Cは太陽電池セル2cの1列で構成される。
 これに伴い、バイパスダイオード10abは太陽電池セルストリング4ABの両端に接続され、バイパスダイオード10cは太陽電池セルストリング4Cの両端に接続される。そして、これら以外の太陽電池モジュールの構成は実施形態1に準じている。
 次に、上記太陽電池モジュール1の適用について説明する。積雪地域では、屋根に積もった雪が大きな塊となって落雪することを防止するために、雪止部材の一例として屋根面から突出する部材である雪止金具を軒先に設置する場合がある。特に太陽電池モジュールの受光面カバーは一般的にガラスが用いられており、瓦などの通常の屋根葺き材と比較して表面が滑らかであることから雪の滑り落ちる勢いが大きくなりやすく、周辺の安全を確保する為にも雪止金具は重要となる。そして、そのような雪止金具を太陽電池モジュールの軒先側に設置した場合、軒先に設置された雪止金具が太陽光の日射角度によって、屋根に設置された太陽電池モジュールの軒側に影を投影することが考えられる。
 実施形態3では、雪止金具によって投影される影によって、太陽電池モジュールの発電力が低下する場合についての課題を解決する。
 図11は、勾配角度αをもって傾斜する屋根に太陽電池モジュール1u、1m、1dを屋根の傾斜に沿って3つ並べて設置した場合の断面図である。説明容易のため実施形態1の図2とは異なり、太陽電池モジュール1u、1m、1dはそれぞれ重なることなく平面的に設置するものとする。太陽電池モジュール1u、1m、1dはそれぞれ太陽電池セル2a、2b、2cから構成される。このような平面的な設置は、屋根葺き材の上に架台を設けて架台上に太陽電池モジュールを設置する通常の住宅用太陽光発電システムや、屋根の略全面に太陽電池モジュールを設置する屋根一体型太陽光発電システムで主に採用される。
 軒先に相当する最下段の太陽電池モジュール1dの先端部に隣接するように雪止金具30を設置する。太陽光は最下段の枠体3dに対する相対角度γで照射されているとする。
 図12は雪止金具30の周辺を拡大した断面図である。枠体3dの上面から高さH2だけ突出した雪止金具30により、季節又は日射時刻の変化により、雪止金具30の影S2が太陽電池モジュール1dに投影される。これにより、太陽電池モジュール1dの太陽電池セル2cが雪止金具30の影S2により覆われることとなる。
 図13はこれを説明するものであって、太陽電池モジュール1u、1m、1dの設置面に対して上方から見たときの平面図である。図13は雪止金具30により生じた影S2が太陽電池モジュール1dの太陽電池セル2cの下部、より詳細には太陽電池セル2cの軒側の一部を覆うこととなる。この影S2により、太陽電池モジュール1dの太陽電池セル2cの発電力が低下することとなる。
 このように太陽電池セル2cの発電力が低下すると、複数の太陽電池セル2cからなる太陽電池セルストリング4C全体の発電力も低下することとなる。この状態を回路図として示すのが図14である。理解容易のために、発電力が低下する太陽電池セルストリング4Cを斜線を付して表現した。
 しかしながら、太陽電池モジュール1dにおいて、雪止金具30の影によって発電力が低下するのは太陽電池セルが1列で構成される太陽電池セルストリング4Cだけである。太陽電池セルストリング4ABは雪止金具30による影の影響がなくそれによって発電力が低下することはない。このため太陽電池モジュール1dの全体としての発電力の低下は太陽電池セル2cの1列分の低下に抑えることができる。
 太陽電池モジュール1の軒先側の先端部に隣接して雪止金具30を設置したとしても、その設置構造により生じた、雪止金具30の影による発電力の低下を太陽電池セル1列分に抑えることができる。このため従来の太陽電池モジュールに比較して、雪止金具30の影による発電量の低下の割合が少ない太陽電池モジュールを提供することができる。
 [実施形態4]
 実施形態4は、太陽電池モジュールの棟側又は軒側の両辺周辺に生じる影による発電量の低下を少なくするための太陽電池モジュールの太陽電池セルストリングの構成に関するものである。すなわち、実施形態1と実施形態3とで示された太陽電池モジュールの太陽電池セルストリングの構成の特徴を包含するものである。
 実施形態4に係る太陽電池モジュール11の回路図を図15に示す。太陽電池モジュール11は太陽電池セル2a、2b、2c、2dからなる4列の太陽電池セル群から構成される。ここで太陽電池セル2aは太陽電池モジュールの棟側の枠体に隣接して並べられており、太陽電池セル2dは太陽電池モジュールの軒側の枠体に隣接して並べられているとする。
 太陽電池セルストリング4Aは1列の太陽電池セル2aの群からなる。太陽電池セルストリング4BCは2列の太陽電池セル2b、2cの群からなる。太陽電池セルストリング4Dは太陽電池セル2dの群からなる。
 これに伴い、バイパスダイオード10aは太陽電池セルストリング4Aの始端と終端との間に接続される。バイパスダイオード10bcは太陽電池セルストリング4BCの両端に接続される。バイパスダイオード10dは太陽電池セルストリング4Dの両端に接続される。
 このような構成により、例えば、実施形態1に示したように太陽電池モジュールを段差を付けて屋根上に設置した上で、実施形態3に示したように軒先側に雪止金具を取り付けて、太陽電池モジュール11の棟側および軒側のいずれにおいても影が掛かりやすくなった配置構造となったとしても、棟側および軒側のどちらでも太陽電池セル1列分に影の影響を抑えることができ、従来の太陽電池モジュールと比較して、影による1日当たりの発電量の低下の割合を少なくすることができる。
 なお、本発明は、瓦一体型の太陽電池モジュールへの適用について説明した。しかし、本発明はこれに限定されるものではなく、広く太陽電池モジュールに利用することができる。また、本発明は、複数の太陽電池モジュールを隣接して設置することにより構成される太陽光発電システムに広く利用することができる。
 前記太陽光発電システムへの利用においては、太陽電池モジュールを屋根の傾斜に沿って複数設置した太陽光発電システムであって、傾斜下方に設置される第1太陽電池モジュールの棟側の枠体上に、傾斜上方に第2太陽電池モジュールの軒側の枠体が設置され、前記第1太陽電池モジュールの棟側の枠体に前記第1太陽電池セル群が隣接するように設置される構成とした太陽光発電システムが、好適である。
 さらに、前記太陽光発電システムへの利用においては、太陽電池モジュールを屋根の傾斜に沿って複数設置した太陽光発電システムであって、前記太陽電池モジュールの軒側の枠体に近接して固定され、かつ前記軒側の枠体の上面よりも上方に突出した雪止部材を備え、前記第1太陽電池セル群が前記軒側の枠体に隣接して配置された太陽光発電システムが、好適である。
 なお、本発明は、その精神または主要な特徴から逸脱することなく、他の様々な形で実施することができる。そのため、上述の実施形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の技術的範囲は、前記実施形態のみによって解釈されるものではなく、特許請求の範囲に基づくものとされる。本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 本発明は、屋根に設置される太陽電池モジュールおよびこれを用いた太陽光発電システムとして好適に利用可能である。
 1、1u、1m、1d      太陽電池モジュール
 2               太陽電池モジュール本体
 2a、2b、2c、2d、2e  太陽電池セル
 3、3u、3m、3d      枠体
 4A、4BC、4DE      太陽電池セルストリング
 4AB、4C          太陽電池セルストリング
 4D              太陽電池セルストリング
 10a、10bc、10de   バイパスダイオード
 10ab、10c        バイパスダイオード
 10d             バイパスダイオード
 20、21           端子
 30              雪止金具
 51              太陽電池モジュール
 52a、52b、52c、52d 太陽電池セル
 54AB、54CD       太陽電池セルストリング
 55              影
 60ab、60cd       バイパスダイオード
 S1、S2           影

Claims (4)

  1.  複数の太陽電池セルと、屋根上に設置される際に軒側および棟側となる辺にそれぞれ固定された枠体と、を有する太陽電池モジュールにおいて、
     前記枠体に沿う方向に1列で配置された前記太陽電池セルを直列接続した第1太陽電池セルストリングと、
     前記第1太陽電池セルストリングの始端と終端との間に電気的に接続された第1バイパスダイオードと、
     前記枠体に沿う方向に2列で配置された前記太陽電池セルを直列接続した第2太陽電池セルストリングと、
     前記第2太陽電池セルストリングの始端と終端との間に電気的に接続された第2バイパスダイオードと、を備え、
     前記第1太陽電池セルストリングの終端と前記第2太陽電池セルストリングの始端、または前記第1太陽電池セルストリングの終端と前記第2太陽電池セルストリングの始端とが電気的に接続されており、
     前記第1太陽電池セルストリングが前記枠体に隣接して配置されている太陽電池モジュール。
  2.  請求項1に記載の太陽電池モジュールにおいて、
     前記枠体に沿う方向に1列で配置された前記太陽電池セルを直列接続した第3太陽電池セルストリングと、
     前記第3太陽電池セルストリングの始端と終端との間に電気的に接続された第3バイパスダイオードとを備え、
     前記第3太陽電池セルストリングが、前記第1太陽電池セルストリングが隣接する前記枠体と対向する他の前記枠体に隣接して配置されている太陽電池モジュール。
  3.  請求項1または2に記載の太陽電池モジュールを屋根の傾斜に沿って複数設置した太陽光発電システムであって、
     第1太陽電池モジュールの棟側の前記枠体上に、前記第1太陽電池モジュールの傾斜上方に配置された第2太陽電池モジュールの軒側の前記枠体が設置され、
     前記第1太陽電池モジュールの棟側の前記枠体に前記第1太陽電池セルストリングが隣接するように設置された太陽光発電システム。
  4.  請求項1または2に記載の太陽電池モジュールを屋根の傾斜に沿って複数設置した太陽光発電システムであって、
     前記太陽電池モジュールの軒側の前記枠体に近接して固定され、かつ軒側の前記枠体の上面よりも上方に突出した雪止部材を備え、
     前記第1太陽電池セルストリングが軒側の前記枠体に隣接して配置された太陽光発電システム。
PCT/IB2019/000123 2018-02-09 2019-02-26 太陽電池モジュール及び太陽光発電システム WO2019155280A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980009909.4A CN111868936A (zh) 2018-02-09 2019-02-26 太阳能电池模块和太阳能发电系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018022342A JP7012552B2 (ja) 2018-02-09 2018-02-09 太陽電池モジュール及び太陽光発電システム
JP2018-022342 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019155280A1 true WO2019155280A1 (ja) 2019-08-15

Family

ID=67549324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000123 WO2019155280A1 (ja) 2018-02-09 2019-02-26 太陽電池モジュール及び太陽光発電システム

Country Status (3)

Country Link
JP (1) JP7012552B2 (ja)
CN (1) CN111868936A (ja)
WO (1) WO2019155280A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020128080A1 (de) 2020-10-26 2022-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Solarzellenmodul

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081917A (ja) * 1999-09-14 2001-03-27 Sanyo Electric Co Ltd 太陽電池モジュール及び太陽電池モジュールの設置方法
JP2001111087A (ja) * 1999-10-07 2001-04-20 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール
JP2001111082A (ja) * 1999-10-07 2001-04-20 Kubota Corp 太陽電池モジュール
JP2010161300A (ja) * 2009-01-09 2010-07-22 Sharp Corp 薄膜太陽電池モジュール及び薄膜太陽電池アレイ
US20160226438A1 (en) * 2015-01-29 2016-08-04 Solaria Corporation Solar module with diode device for shading

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195805A (ja) * 1998-01-05 1999-07-21 Canon Inc 太陽電池アレイ
JP4266854B2 (ja) * 2004-03-05 2009-05-20 三洋電機株式会社 リサイクル対応型太陽電池モジュール
JP5528277B2 (ja) * 2010-09-21 2014-06-25 三菱電機株式会社 太陽電池モジュール用端子ボックスおよび太陽電池モジュール
JP5511622B2 (ja) * 2010-10-14 2014-06-04 三菱電機株式会社 太陽電池モジュールの故障診断装置および方法
JP5554282B2 (ja) * 2011-04-28 2014-07-23 三菱電機株式会社 太陽電池モジュールの設置構造
JP2013033832A (ja) * 2011-08-01 2013-02-14 Sanyo Electric Co Ltd 太陽電池モジュール
JP5465221B2 (ja) * 2011-09-30 2014-04-09 三菱電機株式会社 太陽光発電システム及び太陽光発電管理システム
JP5958448B2 (ja) * 2013-11-06 2016-08-02 トヨタ自動車株式会社 太陽電池制御装置
JP2015223065A (ja) * 2014-05-23 2015-12-10 三菱電機株式会社 太陽電池モジュール
US10673373B2 (en) 2016-02-12 2020-06-02 Solarcity Corporation Building integrated photovoltaic roofing assemblies and associated systems and methods
JP2018107185A (ja) * 2016-12-22 2018-07-05 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP6861560B2 (ja) * 2017-03-31 2021-04-21 株式会社Lixil 太陽電池ブラインド

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081917A (ja) * 1999-09-14 2001-03-27 Sanyo Electric Co Ltd 太陽電池モジュール及び太陽電池モジュールの設置方法
JP2001111087A (ja) * 1999-10-07 2001-04-20 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール
JP2001111082A (ja) * 1999-10-07 2001-04-20 Kubota Corp 太陽電池モジュール
JP2010161300A (ja) * 2009-01-09 2010-07-22 Sharp Corp 薄膜太陽電池モジュール及び薄膜太陽電池アレイ
US20160226438A1 (en) * 2015-01-29 2016-08-04 Solaria Corporation Solar module with diode device for shading

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020128080A1 (de) 2020-10-26 2022-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Solarzellenmodul
DE102020128080B4 (de) 2020-10-26 2022-07-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Solarzellenmodul

Also Published As

Publication number Publication date
CN111868936A (zh) 2020-10-30
JP2019140248A (ja) 2019-08-22
JP7012552B2 (ja) 2022-02-14

Similar Documents

Publication Publication Date Title
US7390961B2 (en) Interconnection of solar cells in a solar cell module
US20130160823A1 (en) Integrated structural solar module and chassis
US10205421B2 (en) Photovoltaic modular system
JP2017510083A (ja) バイパスダイオードを備える光起電力モジュール
US20120085384A1 (en) Solar panels with integrated cell-level mppt devices
WO2012001815A1 (ja) 太陽電池モジュールおよびその製造方法
KR101321550B1 (ko) 태양전지 모듈 및 이를 포함하는 태양광 모듈
ITMI20071833A1 (it) Matrice di pannelli solari terrestri.
US10164138B2 (en) Photovoltaic module
US20220228564A1 (en) Column having at least one photovoltaic element, and use of a photovoltaic element on a column
KR20190120046A (ko) 광 발전 기와 및 광 발전 시스템
US9917222B2 (en) Frameless solar module with mounting holes
JP2014033240A (ja) 太陽電池モジュール
JP3106835B2 (ja) 太陽光発電住宅
KR20110018644A (ko) 발포 알루미늄을 이용한 기능성 판재
JP2005183660A (ja) 太陽電池モジュール
WO2019155280A1 (ja) 太陽電池モジュール及び太陽光発電システム
JP4208419B2 (ja) 太陽電池モジュール
KR102532309B1 (ko) 제로프레임을 이용한 발전 효율, 시공성 및 내구성이 개선된 건물일체형 태양광발전장치
JP3202587U (ja) 軽量化太陽電池モジュール
CN216145629U (zh) 一种太阳能电池组件及其安装结构
KR20210149378A (ko) 실리콘 기반 창호형 반투명 유연태양광 모듈 및 그 제조 방법
US20190371950A1 (en) Configurable solar cells
CN218039232U (zh) 太阳能电池组件及太阳能电池安装组件
JP2001111087A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751821

Country of ref document: EP

Kind code of ref document: A1