JP2013033832A - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
JP2013033832A
JP2013033832A JP2011168788A JP2011168788A JP2013033832A JP 2013033832 A JP2013033832 A JP 2013033832A JP 2011168788 A JP2011168788 A JP 2011168788A JP 2011168788 A JP2011168788 A JP 2011168788A JP 2013033832 A JP2013033832 A JP 2013033832A
Authority
JP
Japan
Prior art keywords
solar cell
cell
parallel
solar
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011168788A
Other languages
English (en)
Inventor
Satoo Yanagiura
聡生 柳浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011168788A priority Critical patent/JP2013033832A/ja
Publication of JP2013033832A publication Critical patent/JP2013033832A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】ホットスポット現象による影響を低減するためのバイパスダイオードとセルとの組合せを実現する技術を提供する。
【解決手段】複数のセル群38は、ふたつ以上の太陽電池セル30をそれぞれ含む。複数のバイパスダイオード36のそれぞれは、複数のセル群38のそれぞれに対応して設けられる。複数のセル群38のそれぞれにおいて、ふたつ以上の太陽電池セル30が直列に接続されているとともに、複数のセル群38は、並列に接続されている。複数のバイパスダイオード36のそれぞれは、対応したセル群38に並列に接続される。
【選択図】図4

Description

本発明は、太陽電池モジュールに関し、特に、複数の太陽電池セルにて形成された太陽電池モジュールに関する。
従来、光エネルギーを電気エネルギーに変換する光電変換装置として、いわゆる太陽電池の開発が各方面で精力的に行われている。太陽電池は、クリーンで無尽蔵なエネルギー源である太陽からの光を直接電気に変換できることから、新しいエネルギー源として期待されている。このような光電変換装置では、例えば、複数の太陽電池セルが直列に接続されるが、ホットスポット現象による太陽電池セルの破壊を防止することが重要になる。これに対応するために、所定数の太陽電池セルに対してひとつのバイパスダイオードが並列に接続される。48個の太陽電池セルが直列に接続されている場合、16個の太陽電池セル毎に1個の割合で計3個のバイパスダイオードが設けられる(特許文献1参照)。
特開2010−245410号公報
複数の太陽電池セルを直列に接続している場合、各太陽電池セルに流れる電流が等しくなる。そのため、ホットスポット現象によって発電を行っていない太陽電池セルに流れ込む電流が大きくなる傾向にある。このような電流を低減するために、ひとつのバイパスダイオードに対して直列に接続される太陽電池セルの数が抑制されるべきである。例えば、100個の太陽電池セル毎に1個のバイパスダイオードを設けるのではなく、背景技術のように16個の太陽電池セル毎に1個のバイパスダイオードが設けられる。その結果、バイパスダイオードの数が増加するとともに、バイパスダイオードを接続するための電極の数も増加する。電極数が増加することによって、太陽電池モジュールの有効面積が小さくなり、発電量も低下する。
本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、ホットスポット現象による影響を低減するためのバイパスダイオードとセルとの組合せを実現する技術を提供することにある。
上記課題を解決するために、本発明のある態様の太陽電池モジュールは、複数のセルが直列に接続された第1のセル群と、第1のセル群に並列に接続された第1のバイパス用整流素子と、複数のセルが直列に接続された第2のセル群と、第2のセル群に並列に接続された第2のバイパス用整流素子とを備える。第1のセル群と第2のセル群とは並列に接続されている。
本発明によれば、ホットスポット現象による影響を低減するためのバイパスダイオードとセルとの組合せを実現できる。
本発明の実施例に係る太陽電池モジュールの構成を示す斜視図である。 図1のモジュール本体の構成を示す下面図である。 図1の接続ボックスの構成を示す図である。 図1の太陽電池モジュールの回路構成を示す図である。 図5(a)−(d)は、ホットスポット現象による影響を説明するための図である。 図6(a)−(c)は、ホットスポット現象による影響を説明するための別の図である。
本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、太陽電池として使用可能な光電変換装置に関する。ここでは、薄膜光電変換モジュールとしての太陽電池モジュールを説明の対象にする。太陽電池モジュールの耐用年数を長期化するためには、ホットスポット現象への対策が必要となる。ホットスポット現象とは、落ち葉等の物体が太陽電池の表面に付着して影となった場合、その部分が発熱してしまう現象であり、それによって太陽電池セルが破損してしまうこともある。これは、太陽電池セルが直列に接続されていれば、発電を行わない太陽電池セルにも発電した電流が流れるが、影になった太陽電池が抵抗体となるので、そこに電流が通る際に「熱」を発生させてしまうからである。
また、破損に至らなくても、非発電の太陽電池セルが抵抗体となって、他の太陽電池セルが発電した電力を消費してしまい、発電量が低下する問題もある。影になった部分が発電しない以上に発電量が低下してしまう。このような現象を回避するために、バイパスダイオードが太陽電池セルと並列に接続される。影になって発電をしない太陽電池セルが存在する場合、電流がバイパスダイオードの方向に流れるので、影となった太陽電池セルが保護される。しかしながら、発電を行わない太陽電池セルに流れる電流が完全に遮断されるわけではないので、バイパスダイオードを使用する場合であっても、発電を行わない太陽電池セルでの発熱量を低減することが望まれる。また、前述のごとく、発電量低下を抑制するために、バイパスダイオードの数の抑制が望まれる。
本実施例に係る太陽電池モジュールには、複数の太陽電池セルが配置される。各太陽電池セル群において、太陽電池セルは直列に接続され、さらに集電配線を介して接続ボックスに接続される。接続ボックス内において、各太陽電池セルからの集電配線が接続されることによって、複数の太陽電池セル群は並列に接続される。また、複数の太陽電池セル群のそれぞれに対して並列にバイパスダイオードが接続されており、これらのバイパスダイオードも接続ボックス内に収容される。このように太陽電池セル群が並列に接続されることによって、ホットスポット現象が発生した場合であっても、発電を行っていない太陽電池セルに流れる電流が小さくなるような動作点が使用される。その結果、発熱量が抑制される。また、太陽電池セル群を並列に接続するための構成とバイパスダイオードとが接続ボックスに集約されるので、太陽電池モジュールの製造が容易になる。
以下、図面を参照しながら、本発明の実施例について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下の各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。
図1は、本発明の実施例に係る太陽電池モジュール100の構成を示す斜視図である。太陽電池モジュール100は、モジュール本体10、接続ボックス20、モジュール連結ケーブル22と総称される第1モジュール連結ケーブル22a、第2モジュール連結ケーブル22b、第1種端子24、第2種端子26を含む。モジュール本体10の表面側には、図示しない複数の太陽電池セルが敷設されている。これらの太陽電池セルの接続については、後述する。モジュール本体10の裏面側には、接続ボックス20が配設されている。接続ボックス20は、太陽電池セルにおいて発電された電力を取り出す。接続ボックス20の構成についても後述する。
接続ボックス20には、集電した電力を外部に出力するための第1モジュール連結ケーブル22aと第2モジュール連結ケーブル22bが接続される。第1モジュール連結ケーブル22aの先端には、第1種端子24が接合されており、第2モジュール連結ケーブル22bの先端には、第2種端子26が接合されている。第1種端子24は、図示しない他の太陽電池モジュール100における第2モジュール連結ケーブル22bの先端に接合された第2種端子26に連結可能である。第2種端子26も、同様に、図示しない他の太陽電池モジュール100における第1種端子24に連結可能である。その結果、屋根上等に並設された複数の太陽電池モジュール100は、直列に順次連結可能な構造になっている。さらに、複数の太陽電池モジュール100は、図示しないインバータに接続され、インバータは、太陽電池モジュール100らの直流電流を交流電流に変換する。このようにして、複数の太陽電池モジュール100から電力が取り出される。
図2は、モジュール本体10の構成を示す下面図である。モジュール本体10は、セル群38と総称される第1セル群38a、第2セル群38b、第3セル群38c、第4セル群38dを含む。第1セル群38aは、第1−1太陽電池セル30aa、第1−2太陽電池セル30ab、第1−3太陽電池セル30ac、第1−4太陽電池セル30ad、第1−5太陽電池セル30ae、第1−6太陽電池セル30af、第1−7太陽電池セル30ag、第1−8太陽電池セル30ah、第1−9太陽電池セル30ai、第1−10太陽電池セル30aj、第1−11太陽電池セル30ak、第1−12太陽電池セル30al、第1−13太陽電池セル30am、第1−14太陽電池セル30an、第1−15太陽電池セル30ao、第1−1バスバー配線32aa、第1−2バスバー配線32ab、第1−1取出し配線34aa、第1−2取出し配線34abを含む。
また、第2セル群38bも、第1セル群38a等と同様に、第2−1太陽電池セル30ba〜第2−15太陽電池セル30bo、第2−1バスバー配線32ba、第2−2バスバー配線32bb、第2−1取出し配線34ba、第2−2取出し配線34bbを含む。第3セル群38cも、第1セル群38a等と同様に、第3−1太陽電池セル30ca〜第3−15太陽電池セル30co、第3−1バスバー配線32ca、第3−2バスバー配線32cb、第3−1取出し配線34ca、第3−2取出し配線34cbを含む。第4セル群38dも、第1セル群38a等と同様に、第4−1太陽電池セル30da〜第4−15太陽電池セル30do、第4−1バスバー配線32da、第4−2バスバー配線32db、第4−1取出し配線34da、第4−2取出し配線34dbを含む。
このように、太陽電池モジュール100は、太陽電池セル30と総称される第1−1太陽電池セル30aa等、バスバー配線32と総称される第1−1バスバー配線32aa等、取出し配線34と総称される第1−1取出し配線34aa等を含む。モジュール本体10では、複数のセル群38が並列に接続されている。ここでは、4つのセル群38が配置されているが、4つに限定されない。各セル群38では、15の太陽電池セル30が直列に接続されている。なお、太陽電池セル30が並設されている方向は、セル群38が並設されている方向に対して垂直である。
太陽電池セル30では、図示しない表面ガラス板、光電変換ユニット、裏面ガラス板が断面方向に積層されている。表面ガラス板は、光が入射される面に設けられる。光電変換ユニットは、例えば、アモルファスシリコン光電変換ユニット(a−Siユニット)や微結晶シリコン光電変換ユニット(μc−Siユニット)等であり、表面ガラス板上に形成される。
光電変換ユニットは、タンデム型やトリプル型のように複数の光電変換ユニットを積層した構造としてもよい。裏面電極は、透明導電性酸化物(TCO)や反射性金属、それらの積層構造とされる。透明導電性酸化物(TCO)として、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等が使用され、反射性金属として、銀(Ag)、アルミニウム(Al)等の金属が使用される。光電変換ユニットは、表面ガラス板を介して入射された光に応じて電力を発生させる。裏面ガラス板は、光電変換ユニットに対して、表面ガラス板とは反対側に設けられる。セル群38に含まれた複数の太陽電池セル30は、図示しないインターコネクトを通じて直列に接続されている。例えば、第1セル群38aにおいて、第1−1太陽電池セル30aaから第1−15太陽電池セル30aoまでが直列に接続される。また、他のセル群38においても同様の接続がなされる。
バスバー配線32は、セル群38に含まれた複数の太陽電池セル30の出力電力を取り出すために形成される。具体的に説明すると、セル群38に含まれた複数の太陽電池セル30のうち、両端部の太陽電池セル30のそれぞれにバスバー配線32が設けられる。例えば、第1セル群38aにおいて、第1−1太陽電池セル30aaに第1−1バスバー配線32aaが設けられ、第1−15太陽電池セル30aoに第1−2バスバー配線32abが設けられる。なお、第1−1バスバー配線32aaが正電極に相当し、第1−2バスバー配線32abが負電極に相当する。他のセル群38においてもバスバー配線32は同様に形成される。バスバー配線32は、集電に十分な導電性を有する材料を含んで構成されればよい。バスバー配線32として、例えば、導電性物質が表面や内部に混入されている導電性テープ、ライン状のハンダ、スクリーン印刷法等で銀ペーストを塗布したもの等が使用される。
取出し配線34は、各セル群38に設けられたバスバー配線32を図示しない接続ボックス20へ接続するための電極である。つまり、取出し配線34は、バスバー配線32と接続ボックス20とを電気的に接続するものであり、集電に十分な導電性を有する材料を含んで構成されればよい。取出し配線34として、例えば、導電性物質が表面や内部に混入されている導電性テープやハンダメッキされた銅泊等が使用される。取出し配線34は、バスバー配線32と接続ボックス20との間において裏面電極や光電変換層と接触しないように絶縁材を挟んで設けることが望ましい。
図3は、接続ボックス20の構成を示す。接続ボックス20は、モジュール連結ケーブル22、取出し配線34、バイパスダイオード36を含み、さらに並列用集電配線42と総称される第1並列用集電配線42a、第2並列用集電配線42bを含む。接続ボックス20は、モジュール本体10の裏面側に、接着剤により接着して装着された構造とされている。なお、この際、防水、防湿、放熱、結露防止等を目的として、以下に述べる各部材が取り付けられた接続ボックス20内部にシリコンが充填されて蓋体が接着される。
並列用集電配線42は、複数の取出し配線34を接続するとともに、モジュール連結ケーブル22も接続することによって、それらを電気的に接続する。ここでは、並列用集電配線42として、第1並列用集電配線42aと第2並列用集電配線42bとが使用されるが、第1並列用集電配線42aが正電極に相当し、第2並列用集電配線42bが負電極に相当する。第1並列用集電配線42aは、各セル群38に接続された正電極の第1−1取出し配線34aa、第2−1取出し配線34ba、第3−1取出し配線34ca、第4−1取出し配線34daを接続する。第2並列用集電配線42bは、各セル群38に接続された負電極の第1−2取出し配線34ab、第2−2取出し配線34bb、第3−2取出し配線34cb、第4−2取出し配線34dbを接続する。このような接続によって、複数のセル群38が並列に接続される。
バイパスダイオード36は、同一のセル群38に接続されたふたつの取出し配線34間に接続される。例えば、第1バイパスダイオード36aは、第1セル群38aに接続された第1−1取出し配線34aaと第1−2取出し配線34abとの間に接続される。他のバイパスダイオード36も同様に接続される。このような接続によって、バイパスダイオード36は、セル群38に並列に接続される。さらに、第1並列用集電配線42aは、第1モジュール連結ケーブル22aを接続し、第2並列用集電配線42bは、第2モジュール連結ケーブル22bを接続する。
図4は、太陽電池モジュール100の回路構成を示す。太陽電池モジュール100は、図2と同様に、セル群38、太陽電池セル30を含み、さらにバイパスダイオード36と総称される第1バイパスダイオード36a、第2バイパスダイオード36b、第3バイパスダイオード36c、第4バイパスダイオード36dを含む。これは、図2に示したモジュール本体10と図3に示した接続ボックス20を組み合わせた回路構成に相当する。
各セル群38では、図2の構成と同様に、複数の太陽電池セル30が直列に接続されている。また、図3で示したように、複数のバイパスダイオード36のそれぞれが、複数のセル群38のそれぞれと1対1で対応するように設けられている。さらに、複数のバイパスダイオード36のそれぞれは、対応したセル群38に並列に接続されている。さらに、複数のセル群38は、並列に接続されている。ここで、複数のセル群38を並列に接続するための構成、複数のバイパスダイオード36は、図3の接続ボックス20内に収容されている。
図5(a)−(d)は、ホットスポット現象による影響を説明するための図である。これらは、太陽電池モジュールによって発電される電圧と電力との関係(以下、単に「電圧と電力との関係」という)を示す。また、これらは、本実施例に係る太陽電池モジュール100の比較対象であり、複数の太陽電池セルが直列に接続されている場合である。横軸が電圧であり、縦軸が電流である。図5(a)は、ホットスポット現象が生じていない場合の電圧と電流との関係を示す。これは、発電が理想的になされている場合に相当する。また、電圧と電流の積が電力であるので、図中のP1において発電される電力が最大になる。図5(b)および図5(c)は、ホットスポット現象が生じている場合の電圧と電流との関係を示す。これらでは、一部の太陽電池セルにおいて発電が行われていない。ここで、図5(c)において発電を行わない太陽電池セルの数は、図5(b)において発電を行わない太陽電池セルの数よりも多い。
ホットスポット現象によって、図5(a)のP1のような電力のピークがなくなり、ふたつの特異点が生じる。図5(b)においては、P2あるいはP3において発電される電力が最大になる。図5(d)は、ホットスポット現象によって、図5(a)の関係が、図5(b)、図5(c)の関係になることを説明するための図である。L3は、ホットスポット現象が生じていない太陽電池セルでの関係を示す。一方、L1やL2は、ホットスポット現象が生じている太陽電池セルでの関係を示す。太陽電池モジュールでの関係は、L1あるいはL2と、L3との重ね合わせになるので、図5(b)、図5(c)のように示される。
図6(a)−(c)は、ホットスポット現象による影響を説明するための別の図である。図6(a)−(c)は、図5(a)−(d)と同様に示される。また、図6(a)−(b)も、本実施例に係る太陽電池モジュール100の比較対象であり、複数の太陽電池セルが直列に接続されている場合である。図6(a)は、ホットスポット現象が生じている場合の消費電力を説明するための図である。P1において発電がなされている場合、電流は「I1」になる。その結果、発電を行わない太陽電池セルには、I1の電流が流れ、図中の斜線部分に対応した電力が消費される。図6(b)も、ホットスポット現象が生じている場合の消費電力を説明するための図である。図6(b)は、インバータによって最適動作点が検出された場合を示す。最適動作点とは、太陽電池モジュールによって発電される電力が大きくなる点に相当する。ここでは、最適動作点としてP2が検出されているので、電流は「I2」になる。
その結果、発電を行わない太陽電池セルには、I2の電流が流れ、図中の斜線部分に対応した電力が消費される。図6(b)での斜線の面積は、図6(a)での斜線の面積よりも狭いので、前者での消費電力は後者での消費電力よりも小さくなる。消費電力が小さくなると発熱量も小さくなるので、太陽電池セルの破壊が抑制される。これらを考慮すると、電圧の減少を抑制しながら、電流を減少させることが、ホットスポット現象に対して有効であるといえる。なお、ホットスポット現象における電圧と電流の関係はさまざまであり、インバータを接続する場合であっても、図6(a)のP1が最適動作点として検出されることもある。そのため、図6(b)のP2が最適動作点として検出されやすくなるような太陽電池セルの構成が望まれる。
図6(c)は、本実施例に係る太陽電池モジュール100においてホットスポット現象が生じた場合の電圧と電流との関係を示す図である。太陽電池モジュール100は、複数のセル群38が並列に接続されているので、各セル群38の電流は合成される。そのため、各セル群38での電圧と電流との関係L5を電流について加算することによって、太陽電池モジュール100での電圧と電流との関係L6が得られる。それにより、ひとつのセル群38に含まれた太陽電池セル30においてホットスポット現象が生じている場合、最適動作点の候補は、P3およびP4になる。
ここで、P3における電圧を「V3」とし、電流を「I3」とし、P4における電圧を「V4」とし、電流を「I4」とすると、図示のごとく、V3>V4、I4>I3の関係が成立する。複数のセル群38が並列に接続されている場合、並列に接続された複数のセル群38の数に応じて、I3とI4との差が小さくなる。一方、並列に接続された複数のセル群38の数にかかわらず、V3とV4との差はほぼ一定である。その結果、P4における電力(V4×I4)は、P3における電力(V3×I3)よりも大きくなるので、P4の方が最適動作点として選択されやすくなる。前述のごとく、複数のセル群38が並列に接続されているので、図中の斜線部分に対応した電力が消費される。このように斜線部分の面積が小さくなり、発熱量が抑制される。
本発明の実施例によれば、複数のセル群を並列に接続し、それぞれに並列にバイパスダイオードを接続するので、ホットスポット現象が生じた場合であっても、インバータに接続したときの最適動作点として低電流側の動作点を選択されやすくでき、その結果、発電を行ってない太陽電池セルに流れる電流を抑制できる。ひいては、発熱量を抑制できる。また、太陽電池セルの破壊を回避できるので、太陽電池モジュールの耐用年数を増加できる。また、接続ボックス内において、複数のセル群を並列に接続するとともに、バイパスダイオードも接続するので、太陽電池モジュール全体の構成を簡易にでき、その結果、メンテナンス性を向上できる。
以上、本発明を上述の実施例を参照して説明したが、本発明は上述の実施例に限定されるものではなく、実施例の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施例における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施例に対して加えることも可能であり、そのような変形が加えられた実施例も本発明の範囲に含まれうる。
10 モジュール本体、 20 接続ボックス、 22 モジュール連結ケーブル、 24 第1種端子、 26 第2種端子、 30 太陽電池セル、 32 バスバー配線、 34 取出し配線、 36 バイパスダイオード、 42 並列用集電配線、 100 太陽電池モジュール。

Claims (2)

  1. 複数のセルが直列に接続された第1のセル群と、
    前記第1のセル群に並列に接続された第1のバイパス用整流素子と、
    複数のセルが直列に接続された第2のセル群と、
    前記第2のセル群に並列に接続された第2のバイパス用整流素子とを備え、
    前記第1のセル群と前記第2のセル群とは並列に接続されていることを特徴とする太陽電池モジュール。
  2. 前記第1のバイパス用整流素子と前記第2のバイパス用整流素子を収容する端子ボックスをさらに備え、
    前記端子ボックスは、前記第1のセル群と前記第2のセル群とを並列に接続することを特徴とする請求項1に記載の太陽電池モジュール。
JP2011168788A 2011-08-01 2011-08-01 太陽電池モジュール Withdrawn JP2013033832A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011168788A JP2013033832A (ja) 2011-08-01 2011-08-01 太陽電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011168788A JP2013033832A (ja) 2011-08-01 2011-08-01 太陽電池モジュール

Publications (1)

Publication Number Publication Date
JP2013033832A true JP2013033832A (ja) 2013-02-14

Family

ID=47789472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011168788A Withdrawn JP2013033832A (ja) 2011-08-01 2011-08-01 太陽電池モジュール

Country Status (1)

Country Link
JP (1) JP2013033832A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2851963A1 (en) 2013-09-24 2015-03-25 Sanyo Electric Co., Ltd Solar cell
DE102015209291A1 (de) 2014-05-26 2015-11-26 Panasonic Intellectual Property Management Co., Ltd. Verfahren zur Herstellung einer Solarzelle und Solarzelle
CN111868936A (zh) * 2018-02-09 2020-10-30 夏普株式会社 太阳能电池模块和太阳能发电系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2851963A1 (en) 2013-09-24 2015-03-25 Sanyo Electric Co., Ltd Solar cell
US9780241B2 (en) 2013-09-24 2017-10-03 Panasonic Intellectual Property Management Co., Ltd. Solar cell
DE102015209291A1 (de) 2014-05-26 2015-11-26 Panasonic Intellectual Property Management Co., Ltd. Verfahren zur Herstellung einer Solarzelle und Solarzelle
US10546969B2 (en) 2014-05-26 2020-01-28 Panasonic Intellectual Property Management Co., Ltd. Method of manufacturing solar cell and solar cell
CN111868936A (zh) * 2018-02-09 2020-10-30 夏普株式会社 太阳能电池模块和太阳能发电系统

Similar Documents

Publication Publication Date Title
US10277165B2 (en) Photovoltaic module
CN102549762B (zh) 太阳能电池设备
US9299861B2 (en) Cell-to-grid redundandt photovoltaic system
EP2927968A1 (en) Highly efficient photovoltaic energy harvesting device
JP3219129U (ja) ソーラーモジュール
JP2014017277A (ja) 太陽電池及び太陽電池モジュール
JP2015119634A (ja) 光起電性装置及びその製造方法
CN102903770A (zh) 薄膜太阳能电池模块
JP2012060184A (ja) 太陽電池モジュール
US20220286084A1 (en) Photovoltaic system, device and method for monitoring thereof
KR20120051971A (ko) 태양 전지 모듈
JP2013033832A (ja) 太陽電池モジュール
CN114388641A (zh) 一种光伏组件及光伏组件阵列
CN102496635B (zh) 太阳能电池模块
JP5153279B2 (ja) 太陽電池モジュール
KR20180079425A (ko) 후면 전극형 태양전지 기판, 이의 제조방법 및 후면 전극형 태양전지
KR101788013B1 (ko) 태양광 모듈
CN108899373B (zh) 降低光伏组件潜在诱因衰减效应的光伏组件结构
JP2010182851A (ja) 太陽電池モジュール
US20130008481A1 (en) Electrically connecting element and photovoltaic module
US20130312821A1 (en) Solar cell
WO2013065289A1 (ja) 太陽電池モジュール
EP4210218A1 (en) Photovoltaic system, device and method for monitoring thereof
JP2014146697A (ja) 光発電装置
AU2022200175B2 (en) Photovoltaic system, device and method for monitoring thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007