WO2013065289A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2013065289A1
WO2013065289A1 PCT/JP2012/006944 JP2012006944W WO2013065289A1 WO 2013065289 A1 WO2013065289 A1 WO 2013065289A1 JP 2012006944 W JP2012006944 W JP 2012006944W WO 2013065289 A1 WO2013065289 A1 WO 2013065289A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
layer
conductive
hole
Prior art date
Application number
PCT/JP2012/006944
Other languages
English (en)
French (fr)
Inventor
篠原 亘
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201280053275.0A priority Critical patent/CN103907201A/zh
Publication of WO2013065289A1 publication Critical patent/WO2013065289A1/ja
Priority to US14/254,469 priority patent/US20140224320A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • Solar cells are often modularized and have an output terminal for outputting generated electricity to the outside.
  • Such an output terminal is usually provided in a state of protruding to the back surface side opposite to the sunlight receiving surface.
  • the solar cell module in which the accommodating part for accommodating such an output terminal is provided in the back surface center of the solar cell panel is devised (for example, refer patent document 1).
  • the storage section in the above-described solar cell module stores a solder joint for electrically connecting the terminal-side internal lead wire sealed in the solar cell panel and the waterproof-coated external lead wire, a diode for preventing backflow, and the like. These objects are sealed with a filling adhesive such as silicone resin.
  • a solar cell panel that cannot obtain a desired output due to deterioration over time in such a terminal box or the like must be replaced even if the power generation part such as a photovoltaic device is normal. Absent. Therefore, parts such as a terminal box that are difficult to attach and detach can contribute to a reduction in the lifetime of the solar cell panel.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for extending the life of the solar cell module.
  • a solar cell module includes a translucent member disposed on the light receiving side, a back member provided to face the translucent member, and a translucent member A photovoltaic device provided between the member and the back member, a current collecting wiring provided between the translucent member and the back member, and connected to the photovoltaic device, and a back member A conductive member provided to be electrically connected to the current collector wiring, and a sealing material filled in a region where the conductive member and the back surface member face each other.
  • the back member is formed with a through hole, and the conductive member is fixed to the back member with a sealing material so as to cover the entire through hole.
  • the lifetime of the solar cell module can be extended.
  • FIG. 2 is an exploded view taken along line AA in the vicinity of the terminal box shown in FIG. 1.
  • FIG. 2 is an exploded view taken along the line BB in the vicinity of the terminal box shown in FIG.
  • FIG. 3 is a top view of the current extraction member shown in FIG.
  • It is a schematic diagram which shows the cross section of an example of a photovoltaic device. It is a partial cross section figure near the electric current extraction member of the solar cell module which concerns on 2nd Embodiment. It is a partial cross section figure near the electric current extraction member of the solar cell module which concerns on 3rd Embodiment.
  • FIG. 1 is a plan view of the solar cell module according to the first embodiment viewed from the back side opposite to the light receiving surface.
  • FIG. 2 is an exploded view taken along line AA in the vicinity of the terminal box shown in FIG.
  • FIG. 3 is an exploded view taken along the line BB in the vicinity of the terminal box shown in FIG.
  • FIG. 4 is a top view of the current extraction member shown in FIG.
  • the filler 22 and the back surface member 14 are not shown.
  • the dimensions of each part may be shown different from the actual ones in order to clearly show the configuration.
  • the solar cell module 10 includes a translucent member 12, a back member 14 as a protective material, a photovoltaic device 16, an electrode 18 that functions as a current collector wiring, a current extraction member 20 that is a conductive member, a filler 22, a sealing material.
  • the stop material 24 is provided.
  • the translucent member 12 is disposed on the light receiving side, and for example, glass is used.
  • the back member 14 is provided so as to face the translucent member 12, and for example, a cover glass or a back sheet is used.
  • the photovoltaic device 16 is provided between the translucent member 12 and the back member 14. Details of the photovoltaic device 16 will be described later.
  • the electrode 18 is provided between the translucent member 12 and the back member 14 and is connected to the photovoltaic device 16. Further, the electrodes 18 are arranged in the vicinity of the outer edge portion of the solar cell module 10 and in parallel with the two opposite sides of the four sides of the solar cell module 10.
  • the current extraction member 20 is provided on the outer surface of the back member 14 and is provided so as to be electrically connected to the electrode 18.
  • the current extraction member 20 is a member made of a highly conductive metal block such as aluminum (Al) or copper (Cu).
  • the filler 22 is filled in a region where the translucent member 12 and the back member 14 are opposed to each other. Moreover, the sealing material 24 is arrange
  • the back member 14 has two through holes 26 formed therein.
  • the two through holes 26 are formed at positions that overlap with a part of the respective electrodes 18 when viewed from the vertical direction with respect to the surface of the back member 14.
  • the solar cell module 10 further includes a sealing material 28 filled in a region where the current extraction member 20 and the back surface member 14 face each other. As shown in FIGS. 2 and 3, the current extraction member 20 is fixed to the back surface member 14 with a sealing material 28 so as to cover the entire through hole 26.
  • a sealing material 28 for example, a material used for coking such as silicone may be used in addition to butyl rubber and ethylene vinyl acetate (EVA).
  • a conductive spring 29 as an elastic member is accommodated in the through hole 26 between the current extraction member 20 and the electrode 18 in a biased state. Thereby, conduction between the current extraction member 20 and the electrode 18 is realized.
  • the through-hole 26 formed in the back surface member 14 serving as a path for taking out the electrical energy generated by the photovoltaic device 16 is entirely covered by the current extraction member 20. ing. Further, a region around the through hole 26 where the current extraction member 20 and the back surface member 14 face each other is filled with a sealing material 28. Therefore, it is difficult for moisture or the like to enter from the outside into the internal space of the solar cell module 10 surrounded by the translucent member 12 and the back member 14. As a result, the performance degradation of the photovoltaic device 16 is suppressed, and the lifetime of the solar cell module 10 is extended.
  • the current extraction member 20 is fixed so as to cover the entire through hole 26, the periphery of the through hole 26 is reinforced. Therefore, the solar cell module 10 is hardly bent at least in the vicinity of the through hole 26. Even if the entire solar cell module 10 bends or vibrates, since the periphery of the through hole 26 is reinforced, cracks caused by the through hole 26 are less likely to occur.
  • the solar cell module 10 includes a cable 30 connected to the current extraction member 20 to output the electric energy generated by the photovoltaic device 16 to the outside, and a connection for detachably connecting the cable 30 to the current extraction member 20.
  • the device further includes a member 32, a terminal box 34 that covers the current extraction member 20 and the connection member 32, is detachably fixed to the current extraction member 20, and is a casing made of an insulating material.
  • connection member 32 includes a crimp terminal 36 that is crimped to one end of the cable 30 and a screw 38 that fixes the crimp terminal 36 to the current extraction member 20.
  • the connection member 32 is detachably connected to the current extraction member 20 and the cable 30. is doing.
  • the terminal box 34 has a plurality of through holes 34a formed on the upper surface thereof, and a plurality of screw holes 20a formed at positions corresponding to the through holes 34a on the upper surface of the current extraction member 20.
  • the terminal box 34 is detachably fixed to the current extraction member 20 by inserting the screw 40 into the through hole 34a and screwing the tip of the screw 40 into the screw hole 20a.
  • the spring 29 is a conductive elastic member, and is sandwiched between the electrode 18 and the current extraction member 20. Further, the current extraction member 20 is formed with a convex portion 20 b having an outer diameter slightly smaller than the inner diameter of the through hole 26 so that the spring 29 is biased in the through hole 26. Therefore, the convex portion 20 b can protrude into the through hole 26. Since the height of the convex portion 20b is set to be smaller than the depth of the through hole 26, the spring 29 is biased. In other words, the spring 29 is sandwiched between the convex portion 20 b and the electrode 18. Thereby, even if the relative positions of the electrode 18 and the current extraction member 20 are shifted due to the bending or vibration of the solar cell module 10, conduction can be ensured. In addition, the risk of disconnection is low as in normal wiring. As a result, connection reliability is improved.
  • the surface of the spring 29 is covered with a material having higher conductivity than the core material of the spring 29.
  • the material having high conductivity include gold (Au), silver (Ag), and copper (Cu).
  • Au gold
  • Ag silver
  • Cu copper
  • the entire spring 29 may be made of a highly conductive material such as gold (Au), silver (Ag), or copper (Cu).
  • FIG. 5 is a schematic view showing a cross section of an example of the photovoltaic element.
  • the photovoltaic element 42 includes a first electrode layer 44, a semiconductor layer 46, a transparent conductive film 48, and a second electrode layer 50.
  • the first electrode layer 44, the semiconductor layer 46, the transparent conductive film 48, and the second electrode layer 50 are sequentially stacked on the translucent member 12 while performing known laser patterning. Further, the filler 22 and the back member 14 are laminated on the second electrode layer 50.
  • the first electrode layer 44 is formed on the surface of the translucent member 12 and has conductivity and translucency.
  • a transparent conductive oxide (TCO) is used, and in particular, zinc oxide (ZnO) having high light transmittance, low resistance, and low cost is used.
  • the semiconductor layer 46 generates charges (electrons and holes) by incident light from the first electrode layer 44 side.
  • the semiconductor layer 46 for example, an amorphous (amorphous) silicon semiconductor layer having a pin junction or a pn junction as a basic structure, or a single layer or a stacked body of a microcrystalline silicon semiconductor layer can be used.
  • the semiconductor layer 46 is configured by laminating an amorphous silicon semiconductor and a microcrystalline silicon semiconductor from the first electrode layer 44 side, respectively. Note that in this specification, the term “microcrystal” means not only a complete crystal state but also a state partially including an amorphous state.
  • the transparent conductive film 48 is formed on the semiconductor layer 46.
  • the transparent conductive film 48 prevents the semiconductor layer 46 and the second electrode layer 50 from being alloyed, and the connection resistance between the semiconductor layer 46 and the second electrode layer 50 can be reduced.
  • the second electrode layer 50 is formed on the transparent conductive film 48.
  • a reflective metal such as silver (Ag) is used for the second electrode layer 50.
  • the transparent conductive film 48 and the second electrode layer 50 of one photovoltaic element 42 are in contact with the first electrode layer 44 of another adjacent photovoltaic element 42. Thereby, one photovoltaic element 42 and the other photovoltaic element 42 are electrically connected in series. In this way, the photovoltaic device 16 is configured by the plurality of photovoltaic elements 42.
  • FIG. 6 is a partial cross-sectional view of the vicinity of the current extraction member of the solar cell module according to the second embodiment.
  • the solar cell module 110 according to the second embodiment shown in FIG. 6 is largely characterized in that the shape of the current extraction member 120 is different from that of the current extraction member 20 according to the first embodiment.
  • the current extraction member 120 is fixed to the back member 14 with a sealing material 28 so as to cover the entire through hole 26. Further, the current extraction member 120 is provided at the edge of the back member 14 so that the region D to which the connection member 32 composed of the crimp terminal 36 and the screw 38 is connected is directed from the edge toward the outside of the solar cell module. It is arranged. This facilitates replacement of the cable 30. Further, moisture hardly stays and corrosion of cables and wirings is suppressed.
  • FIG. 7 is a partial cross-sectional view of the vicinity of the current extraction member of the solar cell module according to the third embodiment.
  • the solar cell module 210 according to the third embodiment shown in FIG. 7 is greatly characterized in that the shape of the current extraction member 220 is different from that of the current extraction member 20 according to the first embodiment.
  • the current extraction member 220 is fixed to the back member 14 with a sealing material 28 so as to cover the entire through hole 26.
  • the current extraction member 220 has a shape in which a region E to which the connection member 32 including the crimp terminal 36 and the screw 38 is connected is recessed from the surrounding region F.
  • the recessed area E is located below the back surface member 14 and the current extraction member 220 with the solar cell module 210 installed, and is covered with the back surface member 14 and the current extraction member 220. This makes it difficult for water droplets or the like to stay in the connection portion between the cable 30 and the current extraction member 220, suppresses corrosion of the cable and wiring, and improves environmental resistance.
  • the mount on which the solar cell module is mounted is not shown, but the solar cells according to the second embodiment and the third embodiment are not shown.
  • the module is installed on the gantry obliquely with the horizontal direction in FIGS. 6 and 7 as the horizontal direction.
  • FIG. 8 is a cross-sectional view of the vicinity of the current extraction member of the solar cell module according to the fourth embodiment.
  • the solar cell module 310 according to the fourth embodiment shown in FIG. 8 is greatly characterized in that the shape of the current extraction member 320 is different from that of the current extraction member 20 according to the first embodiment.
  • the convex portion 20b is formed on the surface facing the back surface member 14, but the current extraction member 320 according to the fourth embodiment is the same as the back surface member 14.
  • a recess 320a is formed on the opposing surface.
  • the conductive spring 129 is accommodated in a cylindrical space formed by the recess 320a and the through hole 29 in a biased state. Thereby, conduction between the current extraction member 320 and the electrode 18 is realized.
  • FIG. 9 is a cross-sectional view showing the structure of the solar cell module according to the fifth embodiment.
  • FIG. 10 is a plan view showing a light receiving surface of the solar cell module according to the fifth embodiment.
  • the solar cell module 500 includes a support substrate 49, a passivation layer 51, a base layer 52, a first conductivity type diffusion layer 53, The i-type layer 54, the second conductivity type layer 55, the transparent electrode layer 56, the metal layer 57, the filler 58, the back surface member 59, the conductive tab 60, the terminal box 61, the crimp terminal 62 and the cable 63 are configured. .
  • the passivation layer 51, the base layer 52, the first conductivity type diffusion layer 53, the i-type layer 54, the second conductivity type layer 55, the transparent electrode layer 56, and the metal layer 57 constitute a photoelectric conversion element.
  • the photovoltaic device 510 includes a plurality of photoelectric conversion elements.
  • the photovoltaic device 510 is a back junction type photovoltaic device, and an electrode for taking out the electric power generated by the photovoltaic device to the outside is a main surface opposite to the light receiving surface (hereinafter referred to as a back surface). Only provided.
  • the application range of the present invention is not limited to this, and any photovoltaic device in which a plurality of photoelectric conversion elements are arranged on the support substrate 49 may be used.
  • the light receiving surface means a main surface on which light is mainly incident in the photovoltaic element, and specifically, is a surface on which most of the light incident on the photovoltaic element is incident.
  • the back surface means a surface opposite to the light receiving surface of the photovoltaic element.
  • the support substrate 49 mechanically supports the photovoltaic element and protects the semiconductor layer included in the photovoltaic element from the external environment.
  • the photovoltaic element since the support substrate 49 is disposed on the light receiving surface side of the photovoltaic element, the photovoltaic element transmits light in a wavelength band used for power generation and mechanically supports each layer such as the base layer 52. It is considered as a material that can be used.
  • the passivation layer 51 is provided between the support substrate 49 and the base layer 52.
  • the passivation layer 51 plays a role of terminating dangling bonds (dangling bonds) on the surface of the base layer 52 and suppresses carrier recombination on the surface of the base layer 52.
  • dangling bonds dangling bonds
  • the passivation layer 51 may include, for example, a silicon nitride layer (SiN), and more preferably has a stacked structure of a silicon oxide layer (SiOx) and silicon nitride.
  • SiN silicon nitride layer
  • SiOx silicon oxide layer
  • silicon nitride a structure in which a silicon oxide layer and a silicon nitride layer are sequentially stacked with a thickness of 30 nm and 40 nm, respectively, may be used.
  • the support substrate 49 and the photoelectric conversion element are bonded to each other through the passivation layer 51.
  • the base layer 52 is a crystalline semiconductor layer. Note that the crystalline includes not only a single crystal but also a polycrystal in which a large number of crystal grains are aggregated.
  • the base layer 52 becomes a power generation layer of the photovoltaic element.
  • the base layer 52 is an n-type crystalline silicon layer to which an n-type dopant is added.
  • the doping concentration of the base layer 52 may be about 10 16 / cm 3 .
  • the film thickness of the base layer 52 is a film thickness that can sufficiently generate carriers as a power generation layer, and is desirably 0.5 ⁇ m or less.
  • the base layer 52 and the first conductivity type diffusion layer 53 form a first conductivity type contact region in which the crystalline materials are homo-joined.
  • the first conductivity type diffusion layer 53 is an n-type crystalline silicon layer to which an n-type dopant is added.
  • the first conductivity type diffusion layer 53 is a layer bonded to the metal layer 57 (first electrode 57n), and has a higher doping concentration than the base layer 52.
  • the doping concentration of the first conductivity type diffusion layer 53 may be about 10 19 / cm 3 .
  • the film thickness of the first conductivity type diffusion layer 53 is preferably as thin as possible within a range where the contact resistance with the metal can be sufficiently lowered, and may be, for example, 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the i-type layer 54 and the second conductivity type layer 55 are amorphous semiconductor layers. Note that the amorphous system includes an amorphous phase or a microcrystalline phase in which minute crystal grains are precipitated in the amorphous phase.
  • the i-type layer 54 and the second conductivity type layer 55 are amorphous silicon containing hydrogen.
  • the i-type layer 54 is a substantially intrinsic amorphous silicon layer.
  • the second conductivity type layer 55 is an amorphous silicon layer to which a p-type dopant is added.
  • the second conductivity type layer 55 is a semiconductor layer having a higher doping concentration than the i-type layer 54.
  • the i-type layer 54 is not intentionally doped, and the doping concentration of the second conductivity type layer 55 may be about 10 18 / cm 3 .
  • the thickness of the i-type layer 54 is made thin so that light absorption can be suppressed as much as possible, while it is made thick enough that the surface of the base layer 52 is sufficiently passivated. Specifically, the thickness may be 1 nm or more and 50 nm or less, for example, 10 nm.
  • the film thickness of the second conductivity type layer 55 is made thin so that light absorption can be suppressed as much as possible, while it is made so thick that the open circuit voltage of the photovoltaic element becomes sufficiently high. For example, the thickness may be 1 nm or more and 50 nm or less, for example, 10 nm.
  • the transparent electrode layer 56 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) has advantages such as high translucency and low resistivity.
  • the film thickness of the transparent electrode layer 56 may be 10 nm or more and 500 nm or less, for example, 100 nm.
  • the base layer 52, the i-type layer 54, and the second conductivity type layer 55 form a second conductivity type contact region in which crystalline and amorphous are heterojunctioned.
  • the metal layer 57 is a layer serving as an electrode provided on the back side of the photovoltaic element.
  • the metal layer 57 is made of a conductive material such as metal, and is made of, for example, a material containing copper (Cu) or aluminum (Al).
  • the metal layer 57 includes a first electrode 57 n connected to the first conductivity type diffusion layer 53 and a second electrode 57 p connected to the second conductivity type layer 55.
  • the metal layer 57 may further include an electrolytic plating layer such as copper (Cu) or tin (Sn). However, it is not limited to this, It is good also as other metals, such as gold
  • the first electrode 57n and the second electrode 57p of the plurality of photovoltaic elements arranged in parallel are connected by the conductive tab 60, and the plurality of photovoltaic elements are connected in series or in parallel.
  • a filler 58 is disposed on the back side of the photovoltaic element and sealed with a back member 59.
  • the filler 58 can be a resin material such as EVA or polyimide.
  • the back member 59 can be made of glass or a resin material such as PET, which can prevent moisture from entering the power generation layer of the photovoltaic device 510 in the solar cell module 500.
  • a through hole 26 is formed in the back surface member 59, which serves as a path for extracting the electric energy generated by the photovoltaic element to the outside, and the current extraction member 20 (FIGS. 2 to 4). (See below).
  • the solar cell module 500 includes a cable 63 connected to the current extraction member 20 for outputting the electric energy generated by the photovoltaic device 510 to the outside, and a crimping connection for detachably connecting the cable 63 to the current extraction member 20.
  • the terminal 62 covers the current extraction member 20 and the connection member 32, and is detachably fixed to the current extraction member 20, and further includes a terminal box 61 as a casing made of an insulating material.
  • the crimp terminal 62 can be removed. The replacement becomes easy, and the lifetime of the entire solar cell module 500 can be extended.
  • the present invention has been described with reference to each of the above-described embodiments, but the present invention is not limited to each of the above-described embodiments, and the configuration of the embodiments is appropriately combined or replaced. Are also included in the present invention. Further, it is possible to appropriately change the combination and processing order in each embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to each embodiment. Embodiments to which is added can also be included in the scope of the present invention.
  • a material used for caulking such as silicone, a filling resin material such as polyvinyl butyral (PVB), ethylene ethyl acrylate copolymer (EEA), and the like
  • PVB polyvinyl butyral
  • EOA ethylene ethyl acrylate copolymer
  • An ethylene resin, urethane, acrylic, epoxy resin, or the like may be used.
  • the first electrode layer 44 in addition to zinc oxide (ZnO), tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), titanium oxide (TiO 2 ), zinc stannate (Zn 2 SnO 4) may be configured by a metal one kind selected from oxides or plural kinds of laminates such. Note that these metal oxides may be doped with fluorine (F), tin (Sn), aluminum (Al), gallium (Ga), niobium (Nb), or the like.
  • F fluorine
  • Sn tin
  • Al aluminum
  • Ga gallium
  • Nb niobium
  • the solar cell module by the following combinations can also be included in the scope of the present invention.
  • Solar cell module A translucent member disposed on the light receiving side; A back member provided so as to face the translucent member; A photovoltaic device provided between the translucent member and the back member; Current-collecting wiring provided between the translucent member and the back member, and connected to the photovoltaic device; A conductive member provided on the outer surface of the back member, and provided to be electrically connected to the current collector wiring; A sealing material filled in a region where the conductive member and the back member are opposed to each other; The back member is formed with a through hole, The conductive member is fixed to the back surface member by the sealing material so as to cover the entire through hole.
  • the solar cell module according to (1) further comprising a housing made of an insulating material that covers the conductive member and the connection member and is detachably fixed to the conductive member. Good. As a result, even if the output cable or housing does not meet the desired performance required due to metal oxidation due to moisture, etc., or deterioration of the resin due to ultraviolet rays, moisture, etc., it can be replaced by removing the connection member. It becomes easy and the lifetime of the whole solar cell module can be extended.
  • the solar cell module according to (1) or (2) further including a conductive elastic member disposed in the through hole and sandwiched between the current collecting wiring and the conductive member. Good. Thereby, even if the relative positions of the current collector wiring and the conductive member are shifted due to the bending or vibration of the solar cell module, conduction can be ensured. In addition, the risk of disconnection is low as in normal wiring. As a result, connection reliability is improved.
  • the conductive member has a convex portion protruding into the through hole, and the elastic member is sandwiched between the convex portion and the current collector wiring (3) or (4) It may be a solar cell module described in 1. Thereby, a convex part can protrude in a through-hole.
  • the present invention can be used for solar cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュールは、受光側に配置された透光性部材12と、透光性部材12と対向するように設けられた裏面部材14と、透光性部材12と裏面部材14との間に設けられている光起電力装置16と、透光性部材12と裏面部材14との間に設けられており、光起電力装置16と接続されている電極18と、裏面部材14の外側の表面上に設けられており、電極18と導通するように設けられている電流取出部材20と、電流取出部材20と裏面部材14とが対向している領域に充填されている封止材28と、を備える。裏面部材14は、貫通孔26が形成されており、電流取出部材20は、貫通孔26全体を覆うように封止材28により裏面部材14に固定されている。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関する。
 従来、光エネルギーを電気エネルギーに変換する光電変換装置として、いわゆる太陽電池の開発が各方面で精力的に行われている。太陽電池は、クリーンで無尽蔵なエネルギー源である太陽からの光を直接電気に変換できることから、新しいエネルギー源として期待されている。
 太陽電池は、多くの場合モジュール化されており、発生した電気を外部へ出力するための出力端子を備えている。このような出力端子は、通常、太陽光の受光面と反対側の裏面側に突出した状態で設けられていることが多い。また、このような出力端子を収納するための収納部が太陽電池パネルの裏面中央に設けられている太陽電池モジュールが考案されている(例えば、特許文献1参照)。
 前述の太陽電池モジュールにおける収納部には、太陽電池パネル内に封止された端子側内部リード線と防水被覆された外部リード線とを電気接続するハンダ接合部や逆流防止用のダイオード等が収納されており、これらの被収納物は、シリコーン樹脂等の充填接着剤で封止されている。
特開平9-279789号公報
 ところで、従来の太陽電池パネルにおいて屋外環境に晒される部分には、基板であるガラス、端子ボックス、およびケーブル等がある。その内、樹脂材料が用いられることが多い端子ボックスやケーブルは、ガラスに対して耐久性が低く、長期の屋外使用ではガラスよりも早く劣化を生じていた。さらに、これらの部品が劣化した場合、接続箱等の固定にポッティングなどで接着剤を多用しているために、交換することは難しい。
 そのため、このような端子ボックス等における経年劣化に起因して所望の出力が得られなくなった太陽電池パネルは、光起電力装置などの発電部分が正常であっても、全体を交換せざるを得ない。したがって、着脱が困難な端子ボックス等の部品は、太陽電池パネルの寿命低下の一因となりうる。
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、太陽電池モジュールの寿命を延ばす技術を提供することにある。
 上記課題を解決するために、本発明のある態様の太陽電池モジュールは、受光側に配置された透光性部材と、透光性部材と対向するように設けられた裏面部材と、透光性部材と裏面部材との間に設けられている光起電力装置と、透光性部材と裏面部材との間に設けられており、光起電力装置と接続されている集電配線と、裏面部材の外側の表面上に設けられており、集電配線と導通するように設けられている導電性部材と、導電性部材と裏面部材とが対向している領域に充填されている封止材と、を備える。裏面部材は、貫通孔が形成されており、導電性部材は、貫通孔全体を覆うように封止材により裏面部材に固定されている。
 本発明によれば、太陽電池モジュールの寿命を延ばすことができる。
第1の実施の形態に係る太陽電池モジュールを受光面と反対側である裏面から見た平面図である。 図1に示す端子ボックス近傍のA-A断面における分解図である。 図1に示す端子ボックス近傍のB-B断面における分解図である。 図2に示す電流取出部材を矢印C方向から見た上面図である。 光起電力素子の一例の断面を示す模式図である。 第2の実施の形態に係る太陽電池モジュールの電流取出部材近傍の一部断面図である。 第3の実施の形態に係る太陽電池モジュールの電流取出部材近傍の一部断面図である。 第4の実施の形態に係る太陽電池モジュールの電流取出部材近傍の断面図である。 第5の実施の形態に係る太陽電池モジュールの構造を示す断面図である。 第5の実施の形態に係る太陽電池モジュールの受光面を示す平面図である。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 以下の各図に示す各層、各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。
 (第1の実施の形態)
 図1は、第1の実施の形態に係る太陽電池モジュールを受光面と反対側である裏面から見た平面図である。図2は、図1に示す端子ボックス近傍のA-A断面における分解図である。図3は、図1に示す端子ボックス近傍のB-B断面における分解図である。図4は、図2に示す電流取出部材を矢印C方向から見た上面図である。なお、図1では、太陽電池モジュール10の構成を明確に示すために、充填材22および裏面部材14の図示を省略している。また、図1~図4を含め以下の各図では、構成を明確に示すために各部の寸法を実際のものとは変えて示している場合がある。
 太陽電池モジュール10は、透光性部材12、保護材としての裏面部材14、光起電力装置16、集電配線として機能する電極18、導電性部材である電流取出部材20、充填材22、封止材24、を備える。
 透光性部材12は、受光側に配置されており、例えば、ガラスが用いられる。裏面部材14は、透光性部材12と対向するように設けられており、例えば、カバーガラスやバックシートが用いられる。光起電力装置16は、透光性部材12と裏面部材14との間に設けられている。光起電力装置16の詳細については後述する。
 電極18は、透光性部材12と裏面部材14との間に設けられており、光起電力装置16と接続されている。また、電極18は、太陽電池モジュール10の外縁部近傍であって、太陽電池モジュール10の4辺のうち対向する2辺と平行にそれぞれ配置されている。電流取出部材20は、裏面部材14の外側の表面上に設けられており、電極18と導通するように設けられている。電流取出部材20は、例えば、アルミニウム(Al)や銅(Cu)などの導電性の高い金属ブロックからなる部材である。
 充填材22は、透光性部材12と裏面部材14とが対向している領域に充填されている。また、封止材24は、太陽電池モジュール10の外縁に配置されており、透光性部材12と裏面部材14との隙間から太陽電池モジュール10の内部に水分が浸入することを防いでいる。
 裏面部材14は、貫通孔26が2箇所形成されている。第1の実施の形態では、2つの貫通孔26は、裏面部材14の表面に対して鉛直方向から見た場合に、それぞれの電極18の一部と重なる位置に形成されている。
 太陽電池モジュール10は、電流取出部材20と裏面部材14とが対向している領域に充填されている封止材28を更に備える。そして、電流取出部材20は、図2や図3に示すように、貫通孔26全体を覆うように封止材28により裏面部材14に固定されている。封止材28は、例えば、ブチルゴムやエチレン酢酸ビニル(EVA)の他、シリコーンなどのコーキングに用いる材料などを用いてもよい。
 なお、第1の実施の形態では、電流取出部材20と電極18との間の貫通孔26に、弾性部材としての導電性のばね29が付勢された状態で収容されている。これにより、電流取出部材20と電極18との導通が実現している。
 このように、太陽電池モジュール10においては、光起電力装置16で発生した電気エネルギーを外部へ取り出す経路となる、裏面部材14に形成された貫通孔26は、電流取出部材20により全体が覆われている。また、貫通孔26の周囲であって、電流取出部材20と裏面部材14とが対向している領域は、封止材28が充填されている。そのため、透光性部材12と裏面部材14とで囲まれた太陽電池モジュール10の内部空間へ、外部から水分などが浸入しにくくなっている。その結果、光起電力装置16の性能低下が抑制され、太陽電池モジュール10の長寿命化が図られる。
 また、貫通孔26全体を覆うように電流取出部材20が固定されているため、貫通孔26孔の周囲が補強されることになる。そのため、少なくとも貫通孔26近傍においては、太陽電池モジュール10が撓みにくくなる。また、仮に太陽電池モジュール10全体が撓んだり振動したりした場合であっても、貫通孔26の周囲は補強されているため、貫通孔26をきっかけとした割れが発生しにくくなる。
 太陽電池モジュール10は、光起電力装置16で生じた電気エネルギーを外部へ出力するために電流取出部材20と接続されているケーブル30と、ケーブル30を電流取出部材20に着脱可能に接続する接続部材32と、電流取出部材20および接続部材32を覆い、電流取出部材20に着脱可能に固定されており、絶縁材料からなる筐体としての端子ボックス34と、を更に備えている。
 接続部材32は、ケーブル30の一端に圧着されてる圧着端子36と、圧着端子36を電流取出部材20に固定するねじ38と、を有し、電流取出部材20とケーブル30とを着脱可能に接続している。
 また、端子ボックス34は、その上面に複数の貫通孔34aが形成されており、電流取出部材20の上面には貫通孔34aと対応する位置に複数のねじ穴20aが形成されている。そして、ねじ40を貫通孔34aに挿入し、その先端がねじ穴20aにねじ込まれることにより、端子ボックス34が電流取出部材20に着脱可能に固定される。
 これにより、ケーブル30や端子ボックス34が、水分等による金属の酸化や、紫外線や水分等による樹脂の劣化などにより、要求される所望の性能を満たさなくなった場合でも、ねじ38やねじ40を外すことで交換が容易となり、太陽電池モジュール10全体の寿命を延ばすことが可能となる。
 なお、ばね29は、導電性の弾性部材であり、電極18と電流取出部材20とで挟持されている。また、電流取出部材20は、ばね29が貫通孔26において付勢されるように、貫通孔26の内径よりも僅かに小さい外径を有する凸部20bが形成されている。そのため、凸部20bは、貫通孔26内に突出することができる。凸部20bの高さは、貫通孔26の深さより小さく設定されているため、ばね29は付勢された状態となる。換言すれば、ばね29は、凸部20bと電極18との間に挟持されている。これにより、太陽電池モジュール10の撓みや振動によって電極18と電流取出部材20との相対的な位置がずれても、導通を確保することができる。また、通常の配線のように断線のおそれも低い。その結果、接続信頼性が向上する。
 また、ばね29の表面は、ばね29の芯材よりも導電率の高い材料で被覆されている。導電率の高い材料としては、例えば、金(Au)、銀(Ag)、銅(Cu)などが挙げられる。これにより、ばね29における適度な弾性と適度な導電性とを両立し得る。なお、ばね29全体を金(Au)、銀(Ag)、銅(Cu)などの導電性の高い材料で構成してもよい。
 次に、光起電力装置16を構成する光起電力素子について説明する。図5は、光起電力素子の一例の断面を示す模式図である。光起電力素子42は、第1電極層44、半導体層46、透明導電膜48および第2電極層50を有する。第1電極層44、半導体層46、透明導電膜48および第2電極層50は、周知のレーザパターニングを施されながら透光性部材12上に順次積層される。また、第2電極層50の上には、充填材22、裏面部材14が積層されている。
 第1電極層44は、透光性部材12の面上に形成されており、導電性および透光性を有する。第1電極層44としては、透明導電性酸化物(TCO)が用いられ、特に、高い光透過性、低抵抗性を有し、低価格である酸化亜鉛(ZnO)が用いられる。
 半導体層46は、第1電極層44側からの入射光により電荷(電子および正孔)を生成する。半導体層46としては、例えば、pin接合またはpn接合を基本構造として有するアモルファス(非晶質)シリコン半導体層や微結晶シリコン半導体層の単層体あるいは積層体を用いることができる。半導体層46は、第1電極層44側からそれぞれアモルファスシリコン半導体、微結晶シリコン半導体が積層されたものとして構成されている。なお、本明細書において、「微結晶」の用語は、完全な結晶状態のみならず、部分的にアモルファス状態を含む状態をも意味するものとする。
 透明導電膜48は、半導体層46上に形成されている。透明導電膜48により、半導体層46と第2電極層50が合金化することが防止され、半導体層46と第2電極層50との接続抵抗を減少させることができる。
 第2電極層50は、透明導電膜48上に形成される。第2電極層50には、銀(Ag)などの反射性金属が用いられる。一の光起電力素子42の透明導電膜48と第2電極層50は、隣接する他の光起電力素子42の第1電極層44に接触する。これにより、一の光起電力素子42と他の光起電力素子42とが電気的に直列に接続される。このように複数の光起電力素子42により光起電力装置16が構成される。
 (第2の実施の形態)
 図6は、第2の実施の形態に係る太陽電池モジュールの電流取出部材近傍の一部断面図である。図6に示す第2の実施の形態に係る太陽電池モジュール110は、電流取出部材120の形状が第1の実施の形態に係る電流取出部材20と異なる点が大きな特徴である。
 電流取出部材120は、図6に示すように、貫通孔26全体を覆うように封止材28により裏面部材14に固定されている。また、電流取出部材120は、裏面部材14の縁部に設けられており、圧着端子36およびねじ38からなる接続部材32が接続される領域Dが縁部から太陽電池モジュールの外側に向かうように配置されてる。これにより、ケーブル30の交換が容易となる。また、水分が滞留しにくく、ケーブルや配線の腐食が抑制される。
 (第3の実施の形態)
 図7は、第3の実施の形態に係る太陽電池モジュールの電流取出部材近傍の一部断面図である。図7に示す第3の実施の形態に係る太陽電池モジュール210は、電流取出部材220の形状が第1の実施の形態に係る電流取出部材20と異なる点が大きな特徴である。
 電流取出部材220は、図7に示すように、貫通孔26全体を覆うように封止材28により裏面部材14に固定されている。電流取出部材220は、圧着端子36およびねじ38からなる接続部材32が接続される領域Eが、その周囲の領域Fよりも凹んだ形状である。凹んでいる領域Eは、太陽電池モジュール210を設置した状態で、裏面部材14および電流取出部材220の下側に位置し、裏面部材14および電流取出部材220に覆われている。これにより、ケーブル30と電流取出部材220との接続部分に、水滴などが滞留しにくくなり、ケーブルや配線の腐食が抑制され、耐環境性能が向上する。
 なお、第2の実施の形態や第3の実施の形態の説明では、太陽電池モジュールを搭載する架台を図示していないが、第2の実施の形態や第3の実施の形態に係る太陽電池モジュールは、図6や図7の左右方向を水平方向として、斜めに架台に設置されることになる。
 (第4の実施の形態)
 図8は、第4の実施の形態に係る太陽電池モジュールの電流取出部材近傍の断面図である。図8に示す第4の実施の形態に係る太陽電池モジュール310は、電流取出部材320の形状が第1の実施の形態に係る電流取出部材20と異なる点が大きな特徴である。
 第1の実施の形態に係る電流取出部材20は、裏面部材14と対向する面に凸部20bが形成されているが、第4の実施の形態に係る電流取出部材320は、裏面部材14と対向する面に凹部320aが形成されている。そして、凹部320aと貫通孔29とにより形成された円柱状の空間に、導電性のばね129が付勢された状態で収容されている。これにより、電流取出部材320と電極18との導通が実現している。
 (第5の実施の形態)
 図9は、第5の実施の形態に係る太陽電池モジュールの構造を示す断面図である。図10は、第5の実施の形態に係る太陽電池モジュールの受光面を示す平面図である。
 第5の実施の形態に係る太陽電池モジュール500は、図9の断面図や図10の平面図に示すように、支持基板49、パッシベーション層51、ベース層52、第1導電型拡散層53、i型層54、第2導電型層55、透明電極層56、金属層57、充填材58、裏面部材59、導電性タブ60、端子ボックス61、圧着端子62及びケーブル63を含んで構成される。パッシベーション層51、ベース層52、第1導電型拡散層53、i型層54、第2導電型層55、透明電極層56、金属層57は、光電変換素子を構成する。
 本実施の形態では、光起電力装置510は、複数の光電変換素子を含んで構成される。また、光起電力装置510は、裏面接合型光起電力素子であり、光起電力素子で発電された電力を外部へ取り出す電極が受光面とは反対側の主面(以下、裏面という。)のみに設けられる。ただし、本発明の適用範囲は、これに限定されるものではなく、支持基板49上に光電変換素子が複数配置されている光起電力装置であればよい。
 ここで、受光面とは、光起電力素子において主に光が入射される主面を意味し、具体的には、光起電力素子に入射される光の大部分が入射される面である。また、裏面とは、光起電力素子の受光面とは反対側の面を意味する。
 支持基板49は、光起電力素子を機械的に支持すると共に、光起電力素子に含まれる半導体層を外部環境から保護する。また、支持基板49は、光起電力素子の受光面側に配置されるので、光起電力素子で発電に利用される波長帯域の光を透過し、ベース層52等の各層を機械的に支持できる材料とされる。
 パッシベーション層51は、支持基板49とベース層52との間に設けられる。パッシベーション層51は、ベース層52の表面の未結合手(ダングリングボンド)を終端させる等の役割を果たし、ベース層52の表面におけるキャリアの再結合を抑制する。パッシベーション層51を設けることによって、光起電力素子の受光面側においてベース層52の表面でのキャリアの再結合による損失を抑制することができる。
 パッシベーション層51は、例えば、窒化シリコン層(SiN)を含むようにすればよく、酸化シリコン層(SiOx)と窒化シリコンとの積層構造とすることがより好ましい。例えば、酸化シリコン層及び窒化シリコン層をそれぞれ30nm及び40nmの膜厚で順に積層した構造とすればよい。後述するように、パッシベーション層51を介して支持基板49と光電変換素子とが接合される。
 ベース層52は、結晶質の半導体層である。なお、結晶質とは、単結晶のみならず、多数の結晶粒が集合した多結晶も含むものとする。ベース層52は、光起電力素子の発電層となる。ここでは、ベース層52は、n型のドーパントが添加されたn型結晶質シリコン層とする。ベース層52のドーピング濃度は1016/cm程度とすればよい。
 ベース層52の膜厚は、発電層として十分にキャリアを発生できる膜厚であって且つ0.5μm以下が望ましい。
 ベース層52と第1導電型拡散層53とは結晶質同士がホモ接合された第1導電型コンタクト領域を形成する。第1導電型拡散層53は、n型のドーパントが添加されたn型結晶質シリコン層とする。第1導電型拡散層53は、金属層57(第1電極57n)と接合される層であり、ベース層52よりも高いドーピング濃度とされる。第1導電型拡散層53のドーピング濃度は1019/cm程度とすればよい。第1導電型拡散層53の膜厚は、金属との接触抵抗を十分に低くできる範囲でできるだけ薄くすることが好ましく、例えば0.1μm以上2μm以下とすればよい。
 i型層54及び第2導電型層55は、非晶質系の半導体層とされる。なお、非晶質系とは、アモルファス相又はアモルファス相内に微少な結晶粒が析出している微結晶相を含む。本実施の形態では、i型層54及び第2導電型層55は、水素を含有するアモルファスシリコンとする。i型層54は、実質的に真性のアモルファスシリコン層とされる。第2導電型層55は、p型のドーパントが添加されたアモルファスシリコン層とされる。第2導電型層55は、i型層54よりもドーピング濃度が高い半導体層とされる。例えば、i型層54には意図的にドーピングを行わず、第2導電型層55のドーピング濃度は1018/cm程度とすればよい。i型層54の膜厚は、光の吸収をできるだけ抑えられるように薄くし、一方でベース層52の表面が十分にパッシベーションされる程度に厚くする。具体的には、1nm以上50nm以下とすればよく、例えば10nmとする。また、第2導電型層55の膜厚は、光の吸収をできるだけ抑えられるように薄くし、一方で光起電力素子の開放電圧が十分に高くなるような程度に厚くする。例えば、1nm以上50nm以下とすればよく、例えば10nmとする。
 透明電極層56は、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種を組み合わせて用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低い等の利点を有している。透明電極層56の膜厚は、10nm以上500nm以下とすればよく、例えば100nmとする。
 ベース層52とi型層54及び第2導電型層55とは結晶質と非晶質とがヘテロ接合された第2導電型コンタクト領域を形成する。
 金属層57は、光起電力素子の裏面側に設けられる電極となる層である。金属層57は、金属等の導電性の材料から構成され、例えば、銅(Cu)やアルミニウム(Al)を含む材料とする。金属層57は、第1導電型拡散層53に接続される第1電極57nと第2導電型層55に接続される第2電極57pとを含む。金属層57は、さらに銅(Cu)や錫(Sn)等の電解メッキ層を含んでもよい。ただし、これに限定されるものでなく、金、銀等の他の金属、他の導電性材料、又はそれらの組合せとしてもよい。
 光起電力素子をモジュール化する場合、並置された複数の光起電力素子の第1電極57n及び第2電極57pを導電性タブ60で接続して、複数の光起電力素子を直列又は並列に接続する。さらに、光起電力素子の裏面側に充填材58を配置し、裏面部材59で封止する。充填材58は、EVA、ポリイミド等の樹脂材料とすることができる。また、裏面部材59はガラス、或いはPET等の樹脂材料とすることができ、これによって、太陽電池モジュール500における光起電力装置510の発電層への水分の浸入等を防ぐことができる。
 太陽電池モジュール500においては、光起電力素子で発生した電気エネルギーを外部へ取り出す経路となる、裏面部材59に貫通孔26(図2参照)が形成され、電流取出部材20(図2~図4参照)により全体が覆われている。
 太陽電池モジュール500は、光起電力装置510で生じた電気エネルギーを外部へ出力するために電流取出部材20と接続されているケーブル63と、ケーブル63を電流取出部材20に着脱可能に接続する圧着端子62と、電流取出部材20および接続部材32を覆い、電流取出部材20に着脱可能に固定されており、絶縁材料からなる筐体としての端子ボックス61と、を更に備えている。
 これにより、ケーブル63や端子ボックス61が、水分等による金属の酸化や、紫外線や水分等による樹脂の劣化などにより、要求される所望の性能を満たさなくなった場合でも、圧着端子62を外すことで交換が容易となり、太陽電池モジュール500全体の寿命を延ばすことが可能となる。
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
 上述の実施の形態に係る充填材22としては、ブチルゴムやエチレン酢酸ビニル(EVA)の他、シリコーンなどのコーキングに用いる材料、ポリビニルブチラール(PVB)といった充填樹脂材料、エチレンエチルアクリレートコポリマー(EEA)等のエチレン系樹脂、ウレタン、アクリル、エポキシ樹脂などを用いてもよい。
 上述の各実施の形態に係る第1電極層44としては、酸化亜鉛(ZnO)の他、酸化スズ(SnO)、酸化インジウム(In)、酸化チタン(TiO)、スズ酸亜鉛(ZnSnO)などの金属酸化物より選択された一種類あるいは複数種類の積層体により構成されていてもよい。なお、これらの金属酸化物には、フッ素(F)、スズ(Sn)、アルミニウム(Al)、ガリウム(Ga)、ニオブ(Nb)などがドープされていてもよい。
 なお、以下の組合せによる太陽電池モジュールについても本発明の範囲に含まれうる。
 (1)太陽電池モジュールは、
 受光側に配置された透光性部材と、
 前記透光性部材と対向するように設けられた裏面部材と、
 前記透光性部材と前記裏面部材との間に設けられている光起電力装置と、
 前記透光性部材と前記裏面部材との間に設けられており、前記光起電力装置と接続されている集電配線と、
 前記裏面部材の外側の表面上に設けられており、前記集電配線と導通するように設けられている導電性部材と、
 前記導電性部材と前記裏面部材とが対向している領域に充填されている封止材と、を備え、
 前記裏面部材は、貫通孔が形成されており、
 前記導電性部材は、前記貫通孔全体を覆うように前記封止材により前記裏面部材に固定されている。
 これにより、透光性部材と裏面部材とで囲まれた太陽電池モジュールの内部空間へ、外部から水分などが浸入しにくくなっている。その結果、光起電力装置の性能低下が抑制され、太陽電池モジュールの長寿命化が図られる。
 (2)前記光起電力装置で生じた電気エネルギーを外部へ出力するために前記導電性部材と接続されている出力ケーブルと、前記出力ケーブルを前記導電性部材に着脱可能に接続する接続部材と、前記導電性部材および前記接続部材を覆い、前記導電性部材に着脱可能に固定されている絶縁材料からなる筐体と、を更に備えている(1)に記載の太陽電池モジュールであってもよい。これにより、出力ケーブルや筐体が、水分等による金属の酸化や、紫外線や水分等による樹脂の劣化などにより、要求される所望の性能を満たさなくなった場合でも、接続部材を外すことで交換が容易となり、太陽電池モジュール全体の寿命を延ばすことが可能となる。
 (3)前記貫通孔に配置され、前記集電配線と前記導電性部材とで挟持されている導電性の弾性部材を更に備える(1)または(2)に記載の太陽電池モジュールであってもよい。これにより、太陽電池モジュールの撓みや振動によって集電配線と導電性部材との相対的な位置がずれても、導通を確保することができる。また、通常の配線のように断線のおそれも低い。その結果、接続信頼性が向上する。
 (4)前記弾性部材は、ばねであり、前記ばねの表面は、ばねの芯材よりも導電率の高い材料で被覆されている(3)に記載の太陽電池モジュールであってもよい。これにより、ばねにおける適度な弾性と適度な導電性とを両立し得る。
 (5)前記導電性部材は、前記貫通孔内に突出する凸部を有し、前記弾性部材は、前記凸部と前記集電配線との間に挟持されている(3)または(4)に記載の太陽電池モジュールであってもよい。これにより、凸部は、貫通孔内に突出することができる。
 10 太陽電池モジュール、 12 透光性部材、 14 裏面部材、 16 光起電力装置、 18 電極、 20 電流取出部材、 20a ねじ穴、 20b 凸部、 22 充填材、 24 封止材、 26 貫通孔、 28 封止材、 29 ばね、 30 ケーブル、 32 接続部材、 34 端子ボックス、 36 圧着端子。
 本発明は、太陽電池に利用できる。

Claims (5)

  1.  受光側に配置された透光性部材と、
     前記透光性部材と対向するように設けられた裏面部材と、
     前記透光性部材と前記裏面部材との間に設けられている光起電力装置と、
     前記透光性部材と前記裏面部材との間に設けられており、前記光起電力装置と接続されている集電配線と、
     前記裏面部材の外側の表面上に設けられており、前記集電配線と導通するように設けられている導電性部材と、
     前記導電性部材と前記裏面部材とが対向している領域に充填されている封止材と、を備え、
     前記裏面部材は、貫通孔が形成されており、
     前記導電性部材は、前記貫通孔全体を覆うように前記封止材により前記裏面部材に固定されていることを特徴とする太陽電池モジュール。
  2.  前記光起電力装置で生じた電気エネルギーを外部へ出力するために前記導電性部材と接続されている出力ケーブルと、
     前記出力ケーブルを前記導電性部材に着脱可能に接続する接続部材と、
     前記導電性部材および前記接続部材を覆い、前記導電性部材に着脱可能に固定されている絶縁材料からなる筐体と、
     を更に備えていることを特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記貫通孔に配置され、前記集電配線と前記導電性部材とで挟持されている導電性の弾性部材を更に備えることを特徴とする請求項1または2に記載の太陽電池モジュール。
  4.  前記弾性部材は、ばねであり、
     前記ばねの表面は、ばねの芯材よりも導電率の高い材料で被覆されていることを特徴とする請求項3に記載の太陽電池モジュール。
  5.  前記導電性部材は、前記貫通孔内に突出する凸部を有し、
     前記弾性部材は、前記凸部と前記集電配線との間に挟持されていることを特徴とする請求項3または4に記載の太陽電池モジュール。
PCT/JP2012/006944 2011-10-31 2012-10-30 太陽電池モジュール WO2013065289A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280053275.0A CN103907201A (zh) 2011-10-31 2012-10-30 太阳能电池模块
US14/254,469 US20140224320A1 (en) 2011-10-31 2014-04-16 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011238309 2011-10-31
JP2011-238309 2011-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/254,469 Continuation US20140224320A1 (en) 2011-10-31 2014-04-16 Solar cell module

Publications (1)

Publication Number Publication Date
WO2013065289A1 true WO2013065289A1 (ja) 2013-05-10

Family

ID=48191665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006944 WO2013065289A1 (ja) 2011-10-31 2012-10-30 太陽電池モジュール

Country Status (4)

Country Link
US (1) US20140224320A1 (ja)
JP (1) JPWO2013065289A1 (ja)
CN (1) CN103907201A (ja)
WO (1) WO2013065289A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023090679A (ja) * 2021-12-17 2023-06-29 ソーラーエッジ テクノロジーズ リミテッド 光起電力モジュールにおけるサブストリングの配列

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200919A (ja) * 1998-10-30 2000-07-18 Canon Inc 太陽電池モジュ―ル及び太陽電池アレイ
JP2000269535A (ja) * 1999-01-14 2000-09-29 Canon Inc 太陽電池モジュール、発電装置、太陽電池モジュールの分離方法及び太陽電池モジュールの再生方法
JP2000357812A (ja) * 1999-04-15 2000-12-26 Canon Inc 太陽電池モジュール及び発電装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116394A1 (ja) * 2008-03-17 2009-09-24 シャープ株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
US8267014B2 (en) * 2009-12-22 2012-09-18 The United States Of America As Represented By The Secretary Of The Navy Multiple-bay ejection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200919A (ja) * 1998-10-30 2000-07-18 Canon Inc 太陽電池モジュ―ル及び太陽電池アレイ
JP2000269535A (ja) * 1999-01-14 2000-09-29 Canon Inc 太陽電池モジュール、発電装置、太陽電池モジュールの分離方法及び太陽電池モジュールの再生方法
JP2000357812A (ja) * 1999-04-15 2000-12-26 Canon Inc 太陽電池モジュール及び発電装置

Also Published As

Publication number Publication date
JPWO2013065289A1 (ja) 2015-04-02
US20140224320A1 (en) 2014-08-14
CN103907201A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5410050B2 (ja) 太陽電池モジュール
EP1763088A1 (en) Photovoltaic module
EP2423975A2 (en) Solar photovoltaic device
JPWO2020054130A1 (ja) 太陽電池モジュール
US20140069479A1 (en) Photoelectric Device Module and Manufacturing Method Thereof
JP3157502B2 (ja) 太陽電池モジュール
JP2000114572A (ja) 太陽電池モジュ―ル
JP2011054662A (ja) 太陽電池モジュール
WO2013065289A1 (ja) 太陽電池モジュール
US20140332062A1 (en) Solar cell apparatus
US8420941B2 (en) Conductive channel of photovoltaic panel and method for manufacturing the same
WO2013031199A1 (ja) 太陽電池モジュール
KR20150049259A (ko) 정션 박스 및 이를 구비한 태양광 모듈
JP2013033832A (ja) 太陽電池モジュール
US10784384B2 (en) Solar cell module
JP2014533073A (ja) フラットリボン導体を備えたソーラーモジュール、及び、フラットリボン導体を備えたソーラーモジュールの製造方法
KR20120124570A (ko) 태양 전지 모듈 및 이에 사용되는 도전성 접착 필름
US9583659B2 (en) Solar cell module
JP2013030678A (ja) 太陽電池モジュールおよびその製造方法
JP6025123B2 (ja) 太陽電池モジュール
KR20120051972A (ko) 태양 전지 모듈
JP2010182851A (ja) 太陽電池モジュール
KR101632442B1 (ko) 태양 전지 모듈
WO2013031078A1 (ja) 太陽電池モジュール
JP2013229359A (ja) 太陽電池パネル、太陽電池モジュールおよび太陽光発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846331

Country of ref document: EP

Kind code of ref document: A1