WO2019153822A1 - Séparateur de batterie au lithium-ion revêtu de polymère adhésif, et son procédé de fabrication - Google Patents

Séparateur de batterie au lithium-ion revêtu de polymère adhésif, et son procédé de fabrication Download PDF

Info

Publication number
WO2019153822A1
WO2019153822A1 PCT/CN2018/115521 CN2018115521W WO2019153822A1 WO 2019153822 A1 WO2019153822 A1 WO 2019153822A1 CN 2018115521 W CN2018115521 W CN 2018115521W WO 2019153822 A1 WO2019153822 A1 WO 2019153822A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer powder
particles
adhesive polymer
coating
adhesive
Prior art date
Application number
PCT/CN2018/115521
Other languages
English (en)
Chinese (zh)
Inventor
王庆通
赵中雷
徐长城
李昆良
于中彬
顾林楠
张明
李笑笑
Original Assignee
沧州明珠塑料股份有限公司
沧州明珠锂电隔膜有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沧州明珠塑料股份有限公司, 沧州明珠锂电隔膜有限公司 filed Critical 沧州明珠塑料股份有限公司
Publication of WO2019153822A1 publication Critical patent/WO2019153822A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium ion battery separators, and more particularly to an adhesive polymer coated lithium ion battery separator, and a method of preparing such a battery separator.
  • Lithium-ion batteries are widely used as power sources for various mobile devices because of their high energy density, high operating voltage, no memory effect, and long cycle life.
  • Lithium-ion batteries usually include a positive electrode, a negative electrode, a separator, and an electrolyte.
  • the separator acts as a barrier between the positive and negative electrodes and plays a vital role in the performance of the lithium-ion battery. Therefore, the safety of the lithium ion battery is improved by improving the performance of the separator.
  • Research on sex, usability and craftsmanship has received more and more attention.
  • the national demand for lithium-ion battery energy density is constantly increasing. In order to improve the energy density of the battery, it is inevitable to use ternary high-nickel cathode material.
  • the high-energy cathode material must match the corresponding high-energy anode material.
  • the battery core is easy to Deformation occurs during charging and discharging, and the negative pole piece rebounds greatly and gradually increases with the number of cycles.
  • the technical field of the industry proposes the concept of viscous diaphragm, which passes certain conditions. Bonded together, the purpose is to effectively control the deformation of the battery core and suppress the rebound of the negative pole piece, and play the function of bonding the positive and negative electrodes without affecting the performance of the battery.
  • the primary object of the present invention is to provide a cemented polymer coated lithium ion battery separator, which has good adhesion and ion permeability, and effectively improves the safety performance of the lithium ion battery. And use properties; a secondary object of the present invention is to provide a method of preparing a cemented polymer coated lithium ion battery separator.
  • an adhesive polymer coated lithium ion battery separator comprising: a substrate coated with a cohesive polymer coating on one or both sides of the substrate,
  • the coating consists of an aqueous binder and a binder polymer powder, the particles of the binder polymer powder being randomly dispersed in a single form, or randomly distributed in the form of multiparticulate aggregates or Neatly arranged.
  • the substrate is a microporous film of polyolefin, aramid or nonwoven fabric and a coated modified product thereof.
  • the water-based adhesive is: styrene-butadiene latex, styrene-acrylic latex, pure benzene latex, polymethyl methacrylate, polybutyl methacrylate, polyethyl acrylate, polyvinyl alcohol, ethylene-vinyl acetate copolymerization a mixture of one or more of polyvinyl alcohol, polyvinyl acetate, and polyurethane.
  • the adhesive polymer powder is one or more of polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyacrylonitrile, and polymethyl methacrylate powder; -20 ⁇ m range.
  • the particle diameter of the polymer powder is in the range of 0.1 to 10 ⁇ m, and the particles having a particle diameter of more than 2 ⁇ m are in total. More than 60% of the number of particles.
  • the aggregates are in the shape of a crater with a central depression and are distributed in the crater.
  • the amount of the binder polymer powder in the depressed portion of the body center is less than the convex portion around the crater-like aggregate, and there is a gap between the particles;
  • the particle diameter of the coating polymer powder is in the range of 0.1-20 ⁇ m, and Particles having a particle diameter of more than 5 ⁇ m account for more than 60% of the total number of particles.
  • a method for preparing a cohesive polymer coated lithium ion battery separator comprising the steps of:
  • Step 1 After the water-based adhesive and the deionized water are uniformly stirred, the adhesive polymer powder is added, and the dispersion is uniformly obtained to obtain a dispersion;
  • Step 2 the dispersion is ground for 10-30min to obtain a cementitious polymer slurry, the viscosity of the slurry is 5-300mpa.s;
  • Step 3 Applying the slurry to one side or both sides of the substrate, and drying, the adhesive polymer coated lithium ion battery separator is prepared, and the drying temperature is 40-70 ° C.
  • the adhesive polymer slurry contains 1-15% of the aqueous adhesive, 1-40% of the adhesive polymer powder by mass percentage, and the balance For deionized water.
  • the particles of the adhesive polymer powder are randomly dispersed in a single form by gravure coating, slit coating or dip coating.
  • the adhesive polymer powder is randomly distributed or arranged in an aggregate form by roll printing or sputter coating.
  • the present invention abandons the conventional process for preparing an oily PVDF coating by using a strong polar solvent such as acetone or N-methylpyrrolidone or N'N-dimethylacetamide, and the production process
  • a strong polar solvent such as acetone or N-methylpyrrolidone or N'N-dimethylacetamide
  • the invention is environmentally friendly, high in safety and low in production cost; on the other hand, the present invention uses micron-sized adhesive polymer powder instead of the nano-sized cemented polymer powder used in the prior art, and the conventional nano-scale is reduced.
  • the invention improves the force between the adhesive material and the positive and negative materials during the hot pressing process by using the micron-sized adhesive polymer powder, so that the adhesive material is more easily embedded in the pores of the surface of the positive and negative materials. , forming a stronger bite cooperation, thereby improving the bonding effect between the diaphragm and the pole piece, effectively improving the hardness of the battery core, reducing the deformation of the battery core, and thus having high safety performance;
  • the adhesive polymer material used in the invention has good liquid absorption and liquid retention ability, can improve the cycle performance of the battery core, and at the same time, the invention can improve the effective viscosity by adjusting the particle size of the adhesive polymer powder and the shape of the aggregate.
  • the proportion of the junction can reduce the amount of adhesive polymer material used and reduce the tightness between the particles. It can provide more channels for the conduction of lithium ions, especially after hot pressing. Less than the conventional viscous membrane product, the membrane impedance is reduced, the permeability of lithium ions is improved, and the battery has good rate performance.
  • Figure 1 is an electron scanning imaging diagram (SEM image) of the apparent morphology of the separator when the adhesive polymer powder of the present invention is randomly dispersed in a single form;
  • Figure 3 is a second electron scanning image (SEM image) of the apparent morphology of the separator when the adhesive polymer powder of the present invention is randomly dispersed in the form of crater-like aggregates;
  • Figure 4 is an electron scanning imaging (SEM image) of the apparent morphology of a single crater-like aggregate of the cemented polymer powder of the present invention
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • Step 1 After 1 kg of aqueous styrene-butadiene latex adhesive and 98 kg of deionized water are uniformly stirred, 1 kg of polymethyl methacrylate powder is added, and the dispersion is uniformly obtained to obtain a dispersion;
  • Step 2 the above dispersion was ground for 30 min to obtain a cementitious polymer slurry having a slurry viscosity of 5.1 mPa.s;
  • Step 3 selecting a ceramic coated modified polyethylene microporous membrane having a total thickness of 12 ⁇ m as a substrate, wherein the polyethylene microporous membrane has a thickness of 9 ⁇ m, a porosity of 38%, and a ceramic layer thickness of 3 ⁇ m, and the above method is adopted by gravure coating.
  • the slurry was coated on both sides of the substrate at a coating rate of 55 m/min, and dried using a three-stage oven. The oven temperatures were 50 ° C, 60 ° C, and 55 ° C, respectively, and the adhesive polymer was obtained after drying.
  • the coating, the double-sided coating surface density increase value was 0.6 g/m 2 .
  • the polymethyl methacrylate powder in the coating layer is randomly dispersed and arranged in a single form, the particle size of the polymer powder particles is in the range of 0.1-10 ⁇ m, and the proportion of the particles having a particle diameter of more than 2 ⁇ m is more than 70%, and the reference figure 1.
  • Step 1 After stirring 15 kg of aqueous polyethyl acrylate adhesive and 45 kg of deionized water, 40 kg of vinylidene fluoride-hexafluoropropylene copolymer powder is added, and the dispersion is uniformly obtained to obtain a dispersion;
  • Step 2 the above dispersion was ground for 10 min to obtain a cementitious polymer slurry having a slurry viscosity of 296.8 mPa.s;
  • Step 3 selecting a ceramic coated modified polypropylene microporous membrane having a total thickness of 20 ⁇ m as a substrate, wherein the polypropylene microporous membrane has a thickness of 16 ⁇ m, a porosity of 50%, and a ceramic layer thickness of 4 ⁇ m, which is rotated by spraying.
  • the slurry was coated on both sides of the substrate at a coating rate of 35 m/min, a rotating speed of 10,000 r/min, and a spraying amount of 4 ml/m2. The drying was carried out using a three-stage oven at 48 ° C and 55 ° C for each oven temperature.
  • the vinylidene fluoride-hexafluoropropylene copolymer particles in the coating are randomly dispersed in the form of crater-like aggregates, the particle size of the polymer powder particles is in the range of 0.1-20 ⁇ m, and the particles having a particle diameter larger than 5 ⁇ m account for The ratio is greater than 80%, refer to Figures 2 and 3.
  • Step 1 After 11.5 kg of aqueous styrene-acrylic latex adhesive and 68.5 kg of deionized water are uniformly stirred, 20 kg of polyvinylidene fluoride and 3.5 kg of modified polyacrylonitrile powder are added, and the dispersion is uniformly obtained to obtain a dispersion;
  • Step 2 the above dispersion was ground for 20 min to obtain a cementitious polymer slurry having a slurry viscosity of 181.6 mPa.s;
  • Step 3 selecting a polyethylene microporous membrane substrate having a thickness of 12 ⁇ m and having a porosity of 38%.
  • the slurry is applied to both sides of the substrate by a roll printing method, and the coating rate is 55 m/min, and the third grade is used.
  • the oven was dried, and the oven temperatures were 60 ° C, 65 ° C, and 70 ° C, respectively. After drying, a cohesive polymer coated separator was obtained, and the double-sided coating surface density increased by 1.0 g/m 2 .
  • the adhesive polymer coating is arranged neatly in the form of crater-like aggregates, the particle size of the polymer powder particles is in the range of 0.1-20 ⁇ m, and the proportion of particles having a particle diameter of more than 5 ⁇ m is more than 60%.
  • Step 1 After 7 kg of water-based polyurethane adhesive and 88 kg of deionized water are uniformly stirred, 5 kg of polyvinylidene fluoride powder is added, and the dispersion is uniformly obtained to obtain a dispersion;
  • Step 2 the above dispersion was ground for 15 min to obtain a cementitious polymer slurry having a slurry viscosity of 92.4 mPa.s;
  • Step 3 Select a polypropylene microporous film having a thickness of 16 ⁇ m and a porosity of 50%, and apply the slurry to both sides of the substrate by a slit coating method at a coating rate of 30 m/min, using three stages.
  • the oven was dried, and the oven temperatures were 40 ° C, 50 ° C, and 60 ° C, respectively. After drying, a cohesive polymer-coated separator was obtained, and the double-sided coating surface density increased by 0.8 g/m 2 .
  • the vinylidene fluoride-hexafluoropropylene copolymer particles in the adhesive polymer coating are randomly dispersed in a single form, and the polymer powder particles have a particle diameter of 0.1 to 10 ⁇ m and particles having a particle diameter of more than 2 ⁇ m. The proportion is greater than 60%.
  • Comparative Example 1 Taking a PVDF coated separator prepared according to a conventional oil coating process as Comparative Example 1, Comparative Example 1 has a thickness of 18 ⁇ m, a double-sided coating, a coating thickness of 2 ⁇ m, a base film of a polypropylene microporous film, and a base film thickness of 16 ⁇ m.
  • the porosity is 50%.
  • Comparative Example 2 A PVDF coated separator prepared according to a conventional aqueous coating process was used as Comparative Example 2, Comparative Example 2 had a thickness of 18 ⁇ m, a double-sided coating, a coating thickness of 2 ⁇ m, a base film of a polypropylene microporous membrane, and a base film thickness of 16 ⁇ m.
  • the porosity was 50%
  • the PVDF resin powder used in Comparative Example 2 was spherical particles having a particle diameter of 150 to 200 nm.
  • the separator prepared in Examples 1-5 and the separator of Comparative Example 1-2 were subjected to surface density increase value and gas permeability test, and then respectively prepared with a nickel-cobalt-manganese ternary material (type 523) positive electrode tab and graphite (FSN- 1) After the negative electrode tab is wound, the hot dry pressing performance test is performed.
  • the specific test conditions are as follows: first preheating at 80 ° C for 30 min, then hot pressing at 80 ° C, 0.8 MPa for 60 s. After the hot dry pressing is completed, the bond strength test between the separator and the pole piece is tested, and the separator after peeling is tested for gas permeability.
  • the data obtained are as follows:
  • the increase in the areal density of the adhesive polymer coating in the separator of Examples 1-4 of the present invention is significantly smaller than that in Comparative Examples 1 and 2, and the peel strength between the electrode sheets and the pole pieces can be maintained. Above 10 N/m, it can be seen that the separator produced by the present invention can function as a good bonding positive and negative electrode sheet, and the battery has more excellent safety performance.
  • the gas permeability of the separator of the present invention is superior to that of Comparative Examples 1 and 2, especially after the completion of the hot dry pressing, the gas permeability increase value is significantly smaller than that of Comparative Examples 1 and 2, and it is understood that the separator produced by the present invention is advantageous for reducing the membrane impedance and improving
  • the permeability of lithium ions enables the battery to have good rate performance and cycle performance, effectively avoiding the problem of battery core scraping caused by the adhesive material completely clogging the diaphragm micropores during the hot pressing process of the pole piece and the diaphragm.
  • Example 2 The separators prepared in Example 2 and Comparative Example 2 were separately prepared from the prepared nickel-cobalt-manganese ternary material (type 523) positive electrode tab and graphite (FSN-1) negative electrode tab by a winding process to prepare a flexible package lithium ion battery. .
  • the above two batteries were subjected to the internal resistance test at 3.85 V, the capacity retention rate after 500 cycles under 0.5 C constant current constant voltage charging/1.0 C constant current discharge, and the battery was left after being left for 168 h at 4.2 V and 60 ° C.
  • the expansion rate test the results are shown in Table 2:
  • the performance of the polymer lithium ion battery prepared by using the separator of the present invention is superior to that of the comparative separator in terms of cycle performance, impedance, and prevention of cell deformation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

La présente invention concerne un séparateur de batterie au lithium-ion revêtu de polymère adhésif, comprenant : un substrat. Un côté ou les deux côtés du substrat sont revêtus d'un revêtement polymère adhésif ; le revêtement est constitué d'un liant à base d'eau et d'une poudre de polymère adhésif ; des particules de la poudre de polymère adhésif sont dispersées de manière irrégulière sous une forme unique, ou dispersées de manière irrégulière ou organisées de manière ordonnée sous la forme d'agrégats multiparticules. La présente invention est respectueuse de l'environnement dans le cadre d'un procédé de production, est d'une sécurité élevée et d'un faible coût de production ; la poudre de polymère adhésif de taille nanométrique utilisée dans l'état de la technique est remplacée par une poudre de polymère adhésif de taille micrométrique, ce qui permet de réduire l'influence d'une structure d'emballage compact multicouche formée par des particules de poudre de polymère adhésif de taille nanométrique classique sur la perméabilité à l'air, et éviter efficacement le problème de raclage de cellule provoqué par une zone morte formée par le matériau adhésif bloquant complètement les micropores du séparateur pendant le processus de pressage à chaud d'une pièce d'électrode et du séparateur. La présente invention concerne également un procédé de fabrication pour le séparateur de batterie au lithium-ion revêtu de polymère adhésif.
PCT/CN2018/115521 2018-02-07 2018-11-15 Séparateur de batterie au lithium-ion revêtu de polymère adhésif, et son procédé de fabrication WO2019153822A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810121110.1 2018-02-07
CN201810121110.1A CN108305977B (zh) 2018-02-07 2018-02-07 一种粘结性聚合物涂覆锂离子电池隔膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2019153822A1 true WO2019153822A1 (fr) 2019-08-15

Family

ID=62864665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115521 WO2019153822A1 (fr) 2018-02-07 2018-11-15 Séparateur de batterie au lithium-ion revêtu de polymère adhésif, et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN108305977B (fr)
WO (1) WO2019153822A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332028A (zh) * 2020-09-28 2021-02-05 河北金力新能源科技股份有限公司 一种功能性锂电池隔膜浆料、功能性锂电池隔膜和锂电池
CN112909428A (zh) * 2021-01-26 2021-06-04 南京捷纳思新材料有限公司 一种电池隔膜及其制备方法
CN115207566A (zh) * 2022-08-24 2022-10-18 宁德卓高新材料科技有限公司 一种pmma/pvdf复合隔膜及其制备方法及应用
CN116190914A (zh) * 2023-05-04 2023-05-30 中材锂膜有限公司 具有二次团聚体的聚合物涂覆隔膜及其制备方法和电池

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108305977B (zh) * 2018-02-07 2019-12-27 沧州明珠塑料股份有限公司 一种粘结性聚合物涂覆锂离子电池隔膜及其制备方法
CN108807804B (zh) * 2018-08-23 2020-02-04 河北金力新能源科技股份有限公司 电池用隔膜及其制备方法
CN108963168B (zh) * 2018-08-23 2020-02-11 河北金力新能源科技股份有限公司 电池用隔膜及其制备方法
CN108854578B (zh) * 2018-09-14 2021-07-02 天津工业大学 一种芳香聚酰胺非织造布支撑管的管式膜的制备方法
CN109860486A (zh) * 2018-12-30 2019-06-07 湖北金泉新材料有限责任公司 一种电池用隔膜及其制备方法
CN110707266A (zh) * 2019-09-23 2020-01-17 河北金力新能源科技股份有限公司 Pvdf混涂浆料及其制备方法和隔膜
US20230207966A1 (en) * 2020-03-18 2023-06-29 Ningde Amperex Technology Limited Electrochemical device and electronic device containing same
CN111599971A (zh) * 2020-06-08 2020-08-28 德州东鸿制膜科技有限公司 一种高安全性规则矩阵涂覆粘结性锂离子电池隔膜及其制备方法和应用
CN111668427A (zh) * 2020-06-30 2020-09-15 沧州明珠锂电隔膜有限公司 一种耐温性和粘接性优良的复合电池隔膜及制备方法
CN114178159B (zh) * 2020-09-14 2023-02-21 上海恩捷新材料科技有限公司 一种电池隔膜及其涂布工艺、涂布系统和电池
CN112337189B (zh) * 2020-10-19 2021-11-19 浙江华基环保科技有限公司 一种垃圾焚烧烟气除尘滤料及其加工方法
CN113632273B (zh) * 2020-11-27 2022-12-27 东莞新能源科技有限公司 一种电化学装置和电子装置
CN118213710A (zh) * 2021-03-31 2024-06-18 宁德新能源科技有限公司 一种隔离膜及包含所述隔离膜的电化学装置和电子装置
CN113563768B (zh) * 2021-07-15 2022-10-28 欣旺达电动汽车电池有限公司 粘结涂层浆料、隔膜和锂离子电池
CN113629357A (zh) * 2021-07-23 2021-11-09 恒大新能源技术(深圳)有限公司 电池隔膜及其制备方法、二次电池
CN114094283B (zh) * 2022-01-20 2022-04-08 江苏卓高新材料科技有限公司 粘结性与透气性俱佳的隔膜及其制备方法
CN114976492B (zh) * 2022-05-05 2023-10-20 广东卓高新材料科技有限公司 一种高粘结性聚合物复合涂覆隔膜及其制备方法
CN115986322B (zh) * 2023-03-20 2023-06-16 中创新航技术研究中心(深圳)有限公司 一种电池
CN116454542B (zh) * 2023-06-15 2023-09-15 中材锂膜有限公司 一种电池隔膜及其制备方法以及电池
CN118712657A (zh) * 2024-08-28 2024-09-27 中材锂膜有限公司 一种陶瓷涂覆隔膜及其制备方法、二次电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282869A (zh) * 2014-09-12 2015-01-14 广东工业大学 一种涂覆型锂电池有机/无机复合隔膜的制备方法
KR20160118979A (ko) * 2015-04-02 2016-10-12 주식회사 엘지화학 리튬 이차전지용 세퍼레이터 및 그의 제조방법
CN106549128A (zh) * 2017-01-19 2017-03-29 宁德卓高新材料科技有限公司 一种非全覆盖式涂覆隔膜的制备方法
CN108305977A (zh) * 2018-02-07 2018-07-20 沧州明珠塑料股份有限公司 一种粘结性聚合物涂覆锂离子电池隔膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282869A (zh) * 2014-09-12 2015-01-14 广东工业大学 一种涂覆型锂电池有机/无机复合隔膜的制备方法
KR20160118979A (ko) * 2015-04-02 2016-10-12 주식회사 엘지화학 리튬 이차전지용 세퍼레이터 및 그의 제조방법
CN106549128A (zh) * 2017-01-19 2017-03-29 宁德卓高新材料科技有限公司 一种非全覆盖式涂覆隔膜的制备方法
CN108305977A (zh) * 2018-02-07 2018-07-20 沧州明珠塑料股份有限公司 一种粘结性聚合物涂覆锂离子电池隔膜及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332028A (zh) * 2020-09-28 2021-02-05 河北金力新能源科技股份有限公司 一种功能性锂电池隔膜浆料、功能性锂电池隔膜和锂电池
CN112909428A (zh) * 2021-01-26 2021-06-04 南京捷纳思新材料有限公司 一种电池隔膜及其制备方法
CN112909428B (zh) * 2021-01-26 2023-04-21 南京捷纳思新材料有限公司 一种电池隔膜及其制备方法
CN115207566A (zh) * 2022-08-24 2022-10-18 宁德卓高新材料科技有限公司 一种pmma/pvdf复合隔膜及其制备方法及应用
CN116190914A (zh) * 2023-05-04 2023-05-30 中材锂膜有限公司 具有二次团聚体的聚合物涂覆隔膜及其制备方法和电池
CN116190914B (zh) * 2023-05-04 2023-08-11 中材锂膜有限公司 具有二次团聚体的聚合物涂覆隔膜及其制备方法和电池

Also Published As

Publication number Publication date
CN108305977A (zh) 2018-07-20
CN108305977B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2019153822A1 (fr) Séparateur de batterie au lithium-ion revêtu de polymère adhésif, et son procédé de fabrication
KR102303725B1 (ko) 열가교형 리튬이온 전지용 슬러리 및 그 제조방법, 리튬이온 전지용 전극, 리튬이온 전지용 세퍼레이터, 리튬이온 전지용 세퍼레이터/전극적층체, 및 리튬이온 전지
JP6585906B2 (ja) リチウム二次電池用セパレータ、それを採用したリチウム二次電池及びその製造方法
JP6409782B2 (ja) リチウムイオン二次電池のバインダー用の粒子状重合体、接着層及び多孔膜組成物
JP6155967B2 (ja) リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
WO2018145666A1 (fr) Séparateur de batterie au lithium-ion résistant aux hautes températures ayant une variété de revêtements et procédé de préparation associé
JP6502523B2 (ja) 蓄電デバイス用バインダー、蓄電デバイス用バインダー組成物
JP2017525100A (ja) リチウムイオン電池用セパレータの改良に用いられる水性組成物ならびに改良されたセパレータおよび電池
WO2017185519A1 (fr) Séparateur revêtu de céramique aqueuse pour batterie lithium-ion et son procédé de fabrication
JP2019536253A (ja) リチウムイオン電池用複合機能多層セパレーター
CN110729440B (zh) 一种锂离子电池涂层隔膜、制备方法及锂离子电池
JPWO2018198940A1 (ja) 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用スラリー組成物、非水系二次電池用多孔膜、並びに非水系二次電池およびその製造方法
JP2015088253A (ja) リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
JP6135396B2 (ja) リチウムイオン二次電池用セパレータ、及びリチウムイオン二次電池
JP2012243476A (ja) 全固体二次電池の製造方法
JP2015028842A (ja) リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ、及びリチウムイオン二次電池
JPWO2013146515A1 (ja) 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池
WO2016031163A1 (fr) Stratifié pour batteries secondaires non aqueuses et procédé de fabrication d'élément de batterie secondaire non aqueuse
WO2022057666A1 (fr) Feuille d'électrode positive et batterie
WO2020040031A1 (fr) Composition de coulis pour couche fonctionnelle de batterie secondaire non aqueuse, couche fonctionnelle pour batterie secondaire non aqueuse, séparateur pour batterie secondaire non aqueuse, et batterie secondaire non aqueuse
CN115411457A (zh) 一种锂离子电池隔膜及其制备方法和应用
JP6536017B2 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池部材、非水系二次電池、および非水系二次電池用接着層の製造方法
WO2019004459A1 (fr) Composition de liant pour élément électrochimique, composition de bouillie pour couche fonctionnelle d'élément électrochimique, composition de bouillie pour couche adhésive d'élément électrochimique, et film composite
WO2024213060A1 (fr) Séparateur et son procédé de préparation, et batterie
JP2017103031A (ja) 非水系二次電池用積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904859

Country of ref document: EP

Kind code of ref document: A1