WO2019153632A1 - 醇脱氢酶突变体及其在双芳基手性醇合成中的应用 - Google Patents

醇脱氢酶突变体及其在双芳基手性醇合成中的应用 Download PDF

Info

Publication number
WO2019153632A1
WO2019153632A1 PCT/CN2018/094505 CN2018094505W WO2019153632A1 WO 2019153632 A1 WO2019153632 A1 WO 2019153632A1 CN 2018094505 W CN2018094505 W CN 2018094505W WO 2019153632 A1 WO2019153632 A1 WO 2019153632A1
Authority
WO
WIPO (PCT)
Prior art keywords
mutant
amino acid
acid sequence
dehydrogenase
alcohol dehydrogenase
Prior art date
Application number
PCT/CN2018/094505
Other languages
English (en)
French (fr)
Inventor
倪晔
周婕妤
许国超
王岳
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to CN201880057092.3A priority Critical patent/CN111433357B/zh
Priority to US16/521,656 priority patent/US10822593B2/en
Publication of WO2019153632A1 publication Critical patent/WO2019153632A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)

Definitions

  • the invention relates to an alcohol dehydrogenase mutant and its application in the synthesis of a bisaryl chiral alcohol, and belongs to the technical field of bioengineering.
  • Chiral bisaryl alcohol compounds are key chiral intermediates for the synthesis of numerous drugs and fine chemicals, wherein chiral (4-chlorophenyl)-(pyridin-2-yl)-methanol (CPMA) is a synthetic antihistamine.
  • CPMA (4-chlorophenyl)-(pyridin-2-yl)-methanol
  • a key chiral intermediate for the drug betahistine is mainly achieved by the following five techniques:
  • the above reaction has the problems of high cost of the noble metal ligand catalyst, low substrate concentration, high pressure conditions for the reaction, many operation steps, and low optical purity of the material, which cannot meet the requirements of the optical purity of the drug, and is not favorable for industrialization. produce.
  • Biocatalysis refers to the process of chemical conversion using enzymes or biological organisms (cells, organelles, tissues, etc.) as a catalyst.
  • the action conditions are mild, and are completed in an environment of normal temperature, neutrality, and water.
  • Unique advantages It meets the goals of industrial development such as “sustainable development”, “green chemistry” and “environmentally friendly manufacturing”.
  • the use of alcohol dehydrogenase to asymmetrically reduce the carbonyl group in the latent ketone has the advantages of high stereoselectivity and mild reaction conditions, and has important economic, social and ecological significance.
  • the biological asymmetric reduction method can be mainly realized by the following four technologies:
  • Li Zhe et al. studied the asymmetric reduction of a series of diaryl ketones by a carbonyl reductase PasCR derived from Pichia pastoris GS115.
  • the substrate concentration was 10 mM and the conversion rate was only 50%.
  • the present invention provides a series of alcohol dehydrogenase mutant proteins, a nucleic acid sequence encoding the mutant protein, and a recombinant expression vector containing the nucleic acid sequence, in view of the problem of low stereoselectivity of the alcohol dehydrogenase in the prior art. And recombinantly expressing the transformant, and the alcohol dehydrogenase mutant protein or a recombinant transformant expressing the alcohol dehydrogenase mutant protein as a catalyst for asymmetric reduction, preparation of an optical chiral bisaryl alcohol.
  • a first object of the invention is to provide a higher reactivity and stereoselective alcohol dehydrogenase mutant.
  • the amino acid sequence of the alcohol dehydrogenase mutant comprises: amino acid phenylalanine at position 161, position 196 on the amino acid sequence shown in SEQ ID No.
  • the mutant comprises replacing the serine at position 196 of the alcohol dehydrogenase represented by SEQ ID No. 2 with a proline, designated M1.
  • the mutant comprises replacing the serine at position 196 of the alcohol dehydrogenase represented by SEQ ID No. 2 with tryptophan, designated as M2;
  • the mutant comprises replacing the serine at position 196 of the alcohol dehydrogenase represented by SEQ ID No. 2 with a proline, designated M3.
  • the mutant comprises replacing the serine at position 196 of the alcohol dehydrogenase represented by SEQ ID No. 2 with glycine, designated M4.
  • the mutant comprises replacing the serine at position 196 of the alcohol dehydrogenase represented by SEQ ID No. 2 with glycine, and replacing the phenylalanine at position 161 with guanamine Acid, named M5.
  • the recombinant strain expressing the mutant is expressed.
  • the recombinant bacteria is constructed by cloning a nucleic acid molecule encoding the mutant into a recombinant vector, and transforming the resulting recombinant vector into a transformant to obtain a recombinant expression transformant.
  • the resulting recombinant expression transformant is cultured, and the protein can be isolated and purified.
  • the host of the recombinant strain is Escherichia coli, and the plasmid is pET28a (+).
  • the host of the recombinant strain is E. coli BL21 (DE3).
  • Another object of the present invention is to provide a method for producing an alcohol dehydrogenase by the recombinant bacteria, the specific steps are as follows: inoculating the recombinant bacteria into an LB medium containing 40-60 ⁇ g/mL kanamycin sulfate, 30 ⁇ 40°C, 100 ⁇ 200 rpm shaker culture, when the absorbance OD 600 of the culture solution reaches 0.5-1.0, 0.05-1.0 mM isopropyl- ⁇ -D-hexa-fromogalactopyranoside (IPTG) is added for induction. At a temperature of 16 to 30 ° C, a mutant expressing a recombinant alcohol dehydrogenase can be obtained by inducing 5 to 10 hours.
  • IPTG isopropyl- ⁇ -D-hexa-fromogalactopyranoside
  • the use of the mutant as a catalyst in the preparation of an optically pure chiral bisaryl alcohol in the asymmetric reduction of a latent chiral carbonyl compound is not limited.
  • the latent chiral carbonyl compound is 4-chlorophenyl-pyridin-2-yl-methanone, CPMK ), phenyl-(pyridin-2-yl)-methanone, 4-chlorophenyl-(phenyl)-methanone , 4-fluorophenyl-(phenyl)-methanone, 4-brormophenyl-(phenyl)-methanone, 4-A Oxyphenyl-phenylketone (4-methoxyphenyl)-(phenyl)-methanone.
  • a method for producing chiral CPMA by using alcohol dehydrogenase the specific steps of the method are as follows: constructing a reaction system, the concentration of CPMK is 10-500 mM, and the amount of the dehydrogenase mutant according to any one of claims 1-3 is 1.
  • NADP + dosage is 0.1 ⁇ 1.0mM
  • the coenzyme circulation system contains glucose dehydrogenase GDH and D-glucose, wherein the glucose dehydrogenase GDH dosage is 1 ⁇ 10kU / L, D-
  • the dosage of glucose is 20-1000 mM, the concentration of phosphate buffer is 0.1-0.2 M; the reaction is carried out at 30-35 ° C, pH 6-8 for 1-24 h, after the asymmetric reduction reaction, the organic solvent extraction method can be followed.
  • the chiral CPMA was extracted from the reaction solution.
  • the coenzyme circulation system may also be phosphite/phosphite dehydrogenase (FTDH), formate/formate dehydrogenase (FDH), lactic acid/lactate dehydrogenase (LDH) ) or glycerol/glycerol dehydrogenase.
  • FTDH phosphite/phosphite dehydrogenase
  • FDH formate/formate dehydrogenase
  • LDH lactic acid/lactate dehydrogenase
  • glycerol/glycerol dehydrogenase glycerol/glycerol dehydrogenase
  • the chromatographic analysis method of the (R)- and (S)-CPMA is: taking 100 ⁇ L of the reaction solution, adding 500 ⁇ L of ethyl acetate, shaking for 1 to 2 minutes, and centrifuging at 12,000 rpm for 2-5 minutes. The supernatant was taken to a centrifuge tube, and the organic phase was naturally completely formed. 500 ⁇ L of chromatographically pure ethanol was added, and the conversion and ee values were analyzed by chiral liquid chromatography.
  • the chromatographic conditions are as follows: Daicel Chiralcel OB-H (5 ⁇ m, 250 mm ⁇ 4.6 mm) liquid chromatography column, mobile phase is n-hexane: ethanol: ethanolamine (90:10:0.01, v/v/v), flow rate 1 mL /min, column temperature 30 ° C, UV detection wavelength 254 nm, injection volume 10 ⁇ L, (S)- and (R)-CPMA retention times were 11.14 min and 12.34 min, respectively; the (R)- and (S)-4 - Fluorophenyl-phenylmethanol chromatographic method: Daicel Chiralcel OD-H (5 ⁇ m, 250mm ⁇ 4.6mm) liquid chromatography column, mobile phase is n-hexane: ethanol: ethanolamine (90:10:0.01, v /v/v), flow rate l mL/min, column temperature 30 ° C, UV detection wavelength 254 nm, injection volume 10 ⁇ L, (S)-
  • the alcohol dehydrogenase mutation obtained by the present invention has high activity on various carbonyl compounds, and can catalytically reduce a plurality of aliphatic or aryl-substituted ketone substrates, especially bis-aryl groups having a large steric hindrance. Ketone substrate. Molecular engineering of KpADH by a combination of mutations increases the stereoselectivity of the enzyme, which will make it more industrially useful.
  • the alcohol dehydrogenase mutants M1, M2, M3 of the present invention have an increased R-stereoselectivity to the substrate CPMK, and the ee value of the product CPMA is from the wild.
  • M4 has an R-stereoselectivity with a tendency to reverse the substrate CPMK, and the ee value of the product CPMA is from the wild 82% (R) of the type decreased to 27.2%; in addition, the M4 reducing substrate 4-fluorophenyl-phenyl ketone has excellent stereoselectivity, the product configuration is the same as the wild type, and the ee value is 99.5%; M5 The substrate CPMK has an inverted S-stereoselection, and the ee value of the mutant reduction product CPMA is 75.4% (S); in addition, the M5 reduction substrate 4-methoxyphenyl-phenyl ketone has excellent stereoselectivity. The configuration of the product was the same as that of the wild type, and the ee value was 99.7%.
  • the alcohol dehydrogenase mutant obtained by the invention is particularly suitable for
  • FIG. 1 Whole plasmid PCR nucleic acid electrophoresis pattern of wild type and alcohol dehydrogenase mutants M1 to M5;
  • Figure 2 is an electropherogram of a gradient elution protein of an alcohol dehydrogenase mutant M1 to M5;
  • Figure 4 is an alcohol dehydrogenase mutant M4 catalytic reduction of 4-fluorophenyl-phenyl ketone product chiral chromatogram
  • Figure 5 is a chiral chromatogram of the catalytic reduction of the 4-methoxy-phenyl ketone product by the alcohol dehydrogenase mutant M5.
  • Example 1 Determination of the activity of alcohol dehydrogenase and the optical purity of the product:
  • the total reaction system is 200 ⁇ L, including: 1.0 mM NADPH, 1.0 mM substrate CPMK, sodium phosphate buffer (PBS, 100 mM, pH 7.0), thoroughly mixed, incubated at 30 ° C for 2 min, adding appropriate amount of enzyme solution, detecting 340 nm light The change in absorption value.
  • the enzyme activity was calculated by the following formula:
  • Enzyme activity (U) EW ⁇ V ⁇ 10 3 /(6220 ⁇ l)
  • EW is the change in absorbance at 340 nm in 1 minute
  • V is the volume of the reaction solution in mL
  • 6220 is the molar extinction coefficient of NADPH in units of L/(mol ⁇ cm)
  • 1 is the optical path distance, unit Is cm.
  • One unit of activity (U) corresponds to the amount of enzyme required to catalyze the oxidation of 1 ⁇ mol of NADPH per minute under the above conditions.
  • Example 2 Construction of an alcohol dehydrogenase mutant gene and recombinant expression transformants
  • the full-plasmid PCR method was used to perform site-directed mutagenesis of amino acid residues at positions 161 and 196 to construct an iterative combination mutant.
  • the primers are designed as follows (both in the 5'-3' direction, underlined for the mutation site:
  • F161V-R ACAATAAGCAGT AAC GACATT
  • the PCR reaction system is: PCR reaction system (50 ⁇ L) including KOD enzyme (2.5 U/mL) 1.0 ⁇ L, template (5-50 ng) 1.0 ⁇ L, dNTP 4.0 ⁇ L, 10 ⁇ reaction buffer 5.0 ⁇ L, upstream and downstream primers 1.0 each ⁇ L, ddH 2 O was made up to 50 ⁇ L.
  • the PCR amplification procedure was: (1) denaturation at 94 °C for 3 min, (2) denaturation at 94 °C for 30 sec, (3) annealing at 54 °C for 30 sec, (4) extension at 72 °C for 150 sec, and repeating steps (2) to (4) for 10-. 15 cycles, the last 72 ° C extension for 10 min, 4 ° C to preserve the PCR amplification products.
  • DpnI restriction enzyme was added to the reaction mixture and incubated at 37 ° C for 1 h. 10 ⁇ L of the digested PCR reaction solution was transferred to 50 ⁇ L of E. coli BL21 (DE3) competent cells by CaCl 2 thermal transformation. The samples were uniformly coated on an LB agar plate containing 50 ⁇ g/ml kanamycin sulfate, and cultured in an inverted manner at 37 ° C for 12 hours.
  • the recombinant Escherichia coli carrying the stereoselective improvement mutant was inoculated into LB medium containing kanamycin sulfate (50 ⁇ g/mL) at 2% transfer rate, and cultured at 37 ° C, shaking at 200 rpm, and the absorbance of the culture solution.
  • kanamycin sulfate 50 ⁇ g/mL
  • IPTG isopropyl- ⁇ -D-hexa-galfuran-galactoside
  • the column used for purification was a nickel affinity column HisTrap FF crude, which was performed by affinity chromatography using a histidine tag on the recombinant protein.
  • the nickel column was equilibrated with the A solution, the crude enzyme solution was loaded, and the breakthrough peak was further eluted using the A solution. After the equilibration, the gradient was washed with the B solution (20 mM sodium phosphate, 500 mM NaCl, 1000 mM imidazole, pH 7.4).
  • the recombinant protein that binds to the nickel column is eluted to obtain a recombinant alcohol dehydrogenase mutant.
  • the purified protein was assayed for viability (CPMK as substrate, NADPH as coenzyme) and SDS-PAGE analysis. After purifying the nickel column, a single band was displayed at around 45 kDa, and the amount of heteroprotein was small, indicating that the column purification effect was better.
  • the purified alcohol dehydrogenase protein was then replaced with Tris-HCl (100 mM, pH 7.0) buffer using a Hi-Trap Desalting Desalting Column (GE Healthcare).
  • KpADH has a k cat /K m of C8.9K of 28.9 s -1 ⁇ mM -1 , and its reduced product configuration is an R configuration with an ee value of 82.5%.
  • the stereoselectivity of (R)-CPMA was increased by mutants M1, M2 and M3, reaching over 95%, and the product ee values were 98.7%, 97.7% and 95.2%, respectively.
  • Mutant M4 showed reduced stereoselectivity, and the reduction product configuration was the same as the R configuration.
  • the ee value of the product was 22.4%, respectively.
  • Mutant M5 exhibited reverse stereoselectivity, and the reduced product was in the S configuration. The ee value of the product was 75.4%, respectively.
  • the alcohol dehydrogenase mutant obtained in Example 2 was investigated for the reduction of latent chiral carbonyl compounds.
  • the ee value of the M1 catalytic product is above 99%, while the ee value of the M2 catalytic product is also higher, 95.5%;
  • the ee value of the catalytic product of M5 is above 95% and is identical to the configuration of the parent.
  • Example 6 Alcohol dehydrogenase mutant asymmetric reduction CPMK Preparation of high optical purity (R)-CPMA
  • a 20 mL biocatalytic system was established: 100 mM potassium phosphate buffer (pH 7.0), and the alcohol dehydrogenase mutant M1 obtained in Example 2 and wild KpADH 10 g/L, CPMK 100 mM, 200 mM and 500 mM (substrate added in batches) were added. .
  • the reaction was carried out at 30 ° C and 200 rpm for 12 h with a constant pH of 7.5.
  • the results of the conversion analysis during the reaction are shown in Tables 3 and 4. It is known that both the wild-type dehydrogenase and the mutant M1 can asymmetrically reduce 100 mM and 200 mM CPMK.
  • wild-type KpADH and mutant M1 required 12 h and 24 h, respectively, to achieve a conversion of approximately 99.9%.
  • the final reduction product of wild type KpADH is (R)-CPMA, the ee value is 82%; the final reduction product of mutant M1 is the same as (R)-CPMA, the ee value is 99.7%; the obtained (R)-CPMA crude product is redissolved.
  • the corresponding product (R)-CPMA pure product was added and the crystal was recrystallized at 4 ° C to finally obtain a product with an optical purity of >99.9% ee.
  • Example 7 Alcohol dehydrogenase mutant asymmetric reduction CPMK Preparation of (R)-4-fluorophenyl-phenylmethanol with high optical purity
  • a 20 mL biocatalytic system was established: 100 mM potassium phosphate buffer (pH 7.0), and alcohol dehydrogenase mutant M4 cells obtained in Example 2 were added at 10 g/L, and 4-fluorophenyl-phenyl ketone 50 mM.
  • the reaction was carried out at 30 ° C and 200 rpm for 24 h with a constant pH of 7.5.
  • the conversion analysis results during the reaction are shown in Table 5.
  • the alcohol dehydrogenase mutant M4 can achieve more than 99% substrate conversion rate within 24, and their reduction products are all (R)-4-fluorophenyl-phenylmethanol.
  • the ee value of the wild-type KpADH reduction product was only 25.3%, and the ee value of the mutant M4 reduction product was 99.5%.
  • the obtained crude product of (R)-4-fluorophenyl-phenylmethanol was redissolved in ethanol, and the corresponding pure product was added as a seed crystal to recrystallize at 4 ° C to finally obtain a product having an optical purity of >99.9% ee.
  • Example 8 Alcohol dehydrogenase mutant asymmetric reduction CPMK Preparation of high optical purity (R)-4-methoxyphenyl-phenyl ketone Established 20 mL of biocatalytic system: 100 mM potassium phosphate buffer (pH 7.0) The alcohol dehydrogenase mutant M4 cells obtained in Example 2 were added at 10 g/L, and 4-methoxyphenyl-phenyl ketone 50 mM. The reaction was carried out at 30 ° C and 200 rpm for 24 h with a constant pH of 7.5. The conversion analysis results during the reaction are shown in Table 6.
  • the alcohol dehydrogenase mutant M4 can achieve a substrate conversion rate of more than 99% within 24, and their reduction products are both (R)-4-methoxyphenyl-phenylmethanol.
  • the ee value of the wild-type KpADH reduction product was only 15.1%, and the ee value of the mutant M4 reduction product was 99.7%.
  • the obtained crude product of (R)-4-methoxyphenyl-phenylmethanol was redissolved in ethanol, and the corresponding pure product was added as a seed crystal to recrystallize at 4 ° C to finally obtain a product having an optical purity of >99.9% ee.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

提供了醇脱氢酶突变体及其在双芳基手性醇合成中的应用,属于生物工程技术领域。该醇脱氢酶突变体具有优良的催化活性和立体选择性,可高效催化制备一系列R-和S-构型的手性双芳基醇。将所述的醇脱氢酶与葡萄糖脱氢酶或甲酸脱氢酶进行偶联,可用于多种抗组胺药物手性双芳基醇中间体的合成。与现有报道相比,该醇脱氢酶不对称催化还原制备双芳基手性醇的方法具有操作简便、底物浓度高、反应完全、产品纯度高的优势,具有很强的工业应用前景。

Description

醇脱氢酶突变体及其在双芳基手性醇合成中的应用 技术领域
本发明涉及醇脱氢酶突变体及其在双芳基手性醇合成中的应用,属于生物工程技术领域。
背景技术
手性双芳基醇化合物是合成众多药物和精细化学品的关键手性中间体,其中手性(4-氯苯基)-(吡啶-2-基)-甲醇(CPMA)是合成抗组胺药物倍他司汀的关键手性中间体。以潜手性(4-氯苯基)-(吡啶-2-基)-甲酮(CPMK)为原料,通过化学法不对称还原合成手性CPMA主要由以下五种技术实现:
1.在底物浓度为1.0mM条件下,以trans-RuCl 2[(R)-xylbinap][(R)-daipen]为催化剂,在压力为40-60psi充氮气条件下室温反应24h,还原获得(S)-(4-氯苯基)-(吡啶-2-基)-甲醇((S)-CPMA),其ee值为60.6%,产率为98%。(C.Y.Chen,et al.,Org.Lett.,2003,5,5039-5042)。
2.以(S)-[Ru(BINAP)Cl 2] 2(NE 3)为催化剂,加压,通氢气,还原得到(S)-CPMA),ee值为99%。(赵志全等,中国医药工业杂志,2006,37,726-727)。
3.以CPMK为原料,在底物浓度仅为0.2mM条件下以(S,S)-6-CHOONa为催化剂,在50℃条件下反应24h,还原获得的(R)-(4-氯苯基)-(吡啶-2-基)-甲醇((R)-CPMA),其ee值为40.8%,产率为90%。(B.G.Wang,Org.Lett.,2017,19,2094-2097)。
4.以CPMK为原料,采用三步反应,1)先用三氟甲磺酸酐等进行保护,2)再用催化剂钯配位体及Me-CBS等还原羰基到S构型羟基,3)在三苯基磷钯作用下脱保护,得到(S)-CPMA。(中国专利CN101848893A)。
5.以手性BINAL-H为手性还原剂,在底物浓度为400mM CMPK条件下定向合成单一构型CPMA。进行乙酸乙酯-石油醚重结晶后,(R)-CPMA收率88.2%,纯度96.2%,(S)-CPMA收率87.4%,纯度95.7%。(中国专利CN103121966A)。
由此可见,上述反应存在贵金属配位体催化剂成本较高、底物浓度低、反应需要高压条件、操作步骤较多、物光学纯度低的问题,不能满足药物对光学纯度的要求,不利于工业化生产。
生物催化是指利用酶或者生物有机体(细胞、细胞器、组织等)作为催化剂进行化学转化的过程,作用条件温和,在常温、中性和水等环境中完成,对于手性活性药物成分的合成具有独特的优点。符合“可持续发展”、“绿色化学”、“环境友好制造”等工业发展的目标。与化学合成方法相比,使用醇脱氢酶将潜手性酮中的羰基进行不对称还原的反应具有立体选 择性高、反应条件温和等优势,具有重要的经济、社会价值和生态意义。生物不对称还原法主要可通过以下四种技术实现:
1. 2007年,Truppo等筛选了一系列商品化酮还原酶KRED后,发现虽然有一些酮还原酶对双芳基底物有还原能力,但立体选择性一般,且底物谱较窄,底物中的取代基团对立体选择性的影响较大。仅KRED124可以不对称还原CPMK生成(R)-CPMA,ee值为94%,转化率98%,且需要外加葡萄糖脱氢酶提供辅酶循环。(M.D.Truppo,Org.Lett.,2007,9,335-338)。
2. 2009年,朱敦明等发现来游于Sporobolomyces salmonicolor的重组羰基还原酶SsCR及其突变体可以立体选择性还原不同双芳基酮底物(8-99%ee)。在葡萄糖脱氢酶的协助下,还原CPMK生成(R)-CPMA,转化率62%,对映选择性为88%(R)。(D.M.Zhu,Org.Lett.,2008,10,525-528)。
3. 2012年,周婕妤等通过传统富集培养筛选到一株克鲁维酵母Kluyveromyces sp.CCTCCM2011385,可催化还原CPMK生成(S)-CPMA(87%ee)。然而活性酶在野生菌中的含量低,最高仅能催化2g/L底物,产物浓度较低,分离成本高,因而不能满足应用的需要。(Y.Ni,Process Biochem.,2012,47,1042-1048;中国专利CN102559520A)。
4. 2013年,李哲等研究了一个来源于毕赤酵母GS115的羰基还原酶PasCR对一系列双芳香基甲酮类化合物的不对称还原,底物浓度为10mM,转化率最高只有50%。(李哲等,生物工程学报,2013,29,68-77)。
由此可知,采用生物不对称还原法制备手性CPMA的立体选择性较难达到医药的要求大于95%的对映体过量值,尤其缺乏合成制备(S)-CPMA的还原酶,因此亟需开发高效、高立体选择性的生物酶催化剂。
发明内容
本发明针对现有技术中的醇脱氢酶立体选择性较低的问题,提供了一系列醇脱氢酶的突变体蛋白质、编码该突变体蛋白质的核酸序列,含有该核酸序列的重组表达载体和重组表达转化体,以及该醇脱氢酶突变体蛋白质或表达该醇脱氢酶突变体蛋白质的重组转化体作为催化剂在不对称还原、制备光学手性双芳基醇中应用。
本发明的第一个目的是提供一种更高的反应活性和立体选择性的醇脱氢酶突变体。
在本发明的一种实施方式中,所述醇脱氢酶突变体的氨基酸序列包括:在SEQ ID No.2所示的氨基酸序列上将第161位的氨基酸苯丙氨酸、第196位的氨基酸丝氨酸中的一个或两个氨基酸位点进行突变而得到的氨基酸序列。
在本发明的一种实施方式中,所述突变体包括将氨基酸序列如SEQ ID No.2所示醇脱氢 酶的第196位丝氨酸替换为缬氨酸,命名为M1。
在本发明的一种实施方式中,所述突变体包括将氨基酸序列如SEQ ID No.2所示醇脱氢酶的第196位丝氨酸替换为色氨酸,命名为M2;
在本发明的一种实施方式中,所述突变体包括将氨基酸序列如SEQ ID No.2所示醇脱氢酶的第196位丝氨酸替换为脯氨酸,命名为M3。
在本发明的一种实施方式中,所述突变体包括将氨基酸序列如SEQ ID No.2所示醇脱氢酶的第196位丝氨酸替换为甘氨酸,命名为M4。
在本发明的一种实施方式中,所述突变体包括将氨基酸序列如SEQ ID No.2所示醇脱氢酶的第196位丝氨酸替换为甘氨酸,第161位苯丙氨酸替换为缬氨酸,命名为M5。
在本发明的一种实施方式中,表达所述突变体的重组菌。
在本发明的一种实施方式中,所述重组菌的构建方法:将编码所述突变体的核酸分子克隆到重组载体中,将所得重组载体转化到转化体中,得到重组表达转化体,通过培养所得重组表达转化体,即可分离纯化获得所述蛋白质。
在本发明的一种实施方式中,所述重组菌的宿主为大肠杆菌(Escherichia coli),所述质粒为pET28a(+)。
在本发明的一种实施方式中,所述重组菌的宿主为E.coli BL21(DE3)。
本发明的另一个目的是,提供一种所述重组菌生产醇脱氢酶的方法,具体步骤如下:将重组菌接种至含有40-60μg/mL硫酸卡那霉素的LB培养基中,30~40℃,100~200rpm摇床培养,培养液的吸光度OD 600达到0.5~1.0时,加入0.05~1.0mM的异丙基-β-D-六代呋喃半乳糖苷(IPTG)进行诱导,诱导温度为16~30℃,诱导5~10h即可获得高效表达重组醇脱氢酶的突变体。
在本发明的一种实施方式中,所述突变体作为催化剂在不对称还原潜手性羰基化合物制备光学纯手性双芳基醇中的应用。
在本发明的一种实施方式中,所述潜手性羰基化合物为4-氯苯基-吡啶-2-基-甲酮((4-chlorophenyl)-(pyridin-2-yl)-methanone,CPMK),苯基-吡啶-2-基-甲酮(phenyl-(pyridin-2-yl)-methanone),4-氯苯基-苯基甲酮((4-chlorophenyl)-(phenyl)-methanone),4-氟苯基-苯基-甲酮(4-fluorophenyl)-(phenyl)-methanone,4-溴苯基-苯基-甲酮(4-brormophenyl)-(phenyl)-methanone,4-甲氧苯基-苯基甲酮(4-methoxyphenyl)-(phenyl)-methanone。
一种应用醇脱氢酶生产手性CPMA的方法,所述方法的具体步骤如下:构建反应体系, CPMK浓度为10-500mM,权利要求1-3任一所述脱氢酶突变体用量为1-10kU/L,NADP +用量为0.1~1.0mM,加入辅酶循环系统,辅酶循环系统中含有葡萄糖脱氢酶GDH和D-葡萄糖,其中葡萄糖脱氢酶GDH用量为1~10kU/L,D-葡萄糖用量为20~1000mM,磷酸盐缓冲液的浓度为0.1-0.2M;在30~35℃,pH 6~8的条件下反应1~24h,不对称还原反应结束后,可按照有机溶剂萃取方法从反应液中提取手性CPMA。
在本发明的一种实施方式中,所述辅酶循环系统还可以是亚磷酸盐/亚磷酸盐脱氢酶(FTDH)、甲酸/甲酸脱氢酶(FDH)、乳酸/乳酸脱氢酶(LDH)或甘油/甘油脱氢酶。
在本发明的一种实施方式中,所述(R)-和(S)-CPMA的色谱分析方法为:取100μL反应液,加入500μL乙酸乙酯,震荡1~2min,12000rpm离心2-5min,取上清到离心管中,待有机相自然会发完全,加入500μL色谱纯乙醇,进行手性液相色谱分析转化率和ee值。色谱条件具体如下:Daicel Chiralcel OB-H(5μm,250mm×4.6mm)液相色谱柱,流动相为正已烷:乙醇:乙醇胺(90:10:0.01,v/v/v),流速l mL/min,柱温30℃,紫外检测波长254nm,进样量10μL,(S)-和(R)-CPMA保留时间分别为11.14min和12.34min;所述(R)-和(S)-4-氟苯基-苯基甲醇的色谱分析方法为:Daicel Chiralcel OD-H(5μm,250mm×4.6mm)液相色谱柱,流动相为正已烷:乙醇:乙醇胺(90:10:0.01,v/v/v),流速l mL/min,柱温30℃,紫外检测波长254nm,进样量10μL,(S)-和(R)-CPMA保留时间分别为6.29min和7.10min;所述(R)-和(S)-4-甲氧苯基-苯基甲醇的色谱分析方法为:Daicel Chiralcel OD-H(5μm,250mm×4.6mm)液相色谱柱,流动相为正已烷:乙醇:乙醇胺(90:10:0.01,v/v/v),流速l mL/min,柱温30℃,紫外检测波长254nm,进样量10μL,(S)-和(R)-CPMA保留时间分别为6.96min和8.45min;
本发明的有益效果为:
(1)本发明得到的醇脱氢酶突变对多种羰基化合物具有较高的活力,可以催化还原多种脂肪族或芳基取代的酮底物,尤其是空间位阻较大的双芳基酮底物。通过组合突变手段对KpADH进行分子改造,提高该酶的立体选择性,这将使其具有更高的工业应用价值。
(2)与野生型醇脱氢酶KpADH相比,本发明所述醇脱氢酶突变体M1,M2,M3对底物CPMK具有提高的R-立体选择性,其产物CPMA的ee值由野生型的82%(R)提高至98.7%(M1),97.7%(M2)和95.2%(M3);M4对底物CPMK具有翻转趋势的R-立体选择性,其产物CPMA的ee值由野生型的82%(R)下降至27.2%;此外,M4还原底物4-氟苯基-苯基甲酮具有优异的立体选性,产物构型与野生型相同,ee值为99.5%;M5对底物CPMK具有翻转的S-立体选择,突变体还原产物CPMA的ee值为75.4%(S);此外,M5还原底物4-甲氧苯基-苯基甲酮具有优秀的立体选择性,产物的构型与野生型相同,ee值为99.7%。本发明所获得 的醇脱氢酶突变体特别适用于双芳基酮的不对称还原,具有良好的工业应用前景。
附图说明
图1野生型和醇脱氢酶突变体M1~M5的全质粒PCR核酸电泳图;
图2醇脱氢酶突变体M1~M5梯度洗脱蛋白电泳图;
图3醇脱氢酶突变体M1催化还原CPMK产物手性色谱图:
图4醇脱氢酶突变体M4催化还原4-氟苯基-苯基甲酮产物手性色谱图;
图5醇脱氢酶突变体M5催化还原4-甲氧基-苯基甲酮产物手性色谱图。
具体实施方式
下面通过具体实施例对本发明进行详细说明,但并不因此将本发明限制在所述的实施例范围之中。下述实施例中未注明具体实验条件的实验方法,可按照常规方法和条件,或按照说明书进行选择。
实施例1:醇脱氢酶的活力和产物光学纯度的测定方法:
总反应体系为200μL,包括:1.0mM NADPH,1.0mM底物CPMK,磷酸钠缓冲液(PBS,l00mM,pH 7.0),充分混匀,30℃保温2min,加入适量的酶液,检测340nm下光吸收值的变化。
用下式计算得到酶活力:
酶活力(U)=EW×V×10 3/(6220×l)
式中,EW为1分钟内340nm处吸光度的变化;V为反应液的体积,单位为mL;6220为NADPH的摩尔消光系数,单位为L/(mol·cm);1为光程距离,单位为cm。1个活力单位(U)对应于上述条件下每分钟催化氧化lμmol NADPH所需的酶量。
光学纯度ee的测定方法:
Figure PCTCN2018094505-appb-000001
As:液相色谱获得的(S)-CPMA的摩尔浓度;A R:液相色谱获得的(R)-CPMA的摩尔浓度;
实施例2:醇脱氢酶突变体基因和重组表达转化体的构建
采用全质粒PCR方法对位于161位、196位氨基酸残基进行定点突变,构建迭代组合突变体。其引物设计如下(均按5’-3’方向描述,下划线代表突变位点:
M1(以pET28a-KpADH重组质粒为模板)
S196V-F:ACTATCCACCCA GTTTTCGTT
S196V-R:TCCGAAAACGAA AACTGGGTG
M2(以pET28a-KpADH重组质粒为模板)
S196W-F:ACTATCCACCCA TGGTTCGTT
S196W-R:TCCGAAAACGAA CCATGGGTG
M3(以pET28a-KpADH重组质粒为模板)
S196P-F:ACTATCCACCCA CCTTTCGTT
S196P-R:TCCGAAAACGAA AGGTGGGTG
M4(以pET28a-KpADH重组质粒为模板)
S196G-F:ACTATCCACCCA GGTTTCGTT
S196G-R:TCCGAAAACGAA ACCTGGGTG
M5(以M4重组质粒为模板)
F161V-F:TATGAAAATGTC GTTACTGCT
F161V-R:ACAATAAGCAGT AACGACATT
PCR反应体系为:PCR反应体系(50μL)包括KOD酶(2.5U/mL)l.0μL,模板(5-50ng)l.0μL,dNTP 4.0μL,10×reaction buffer 5.0μL,上下游引物各1.0μL,ddH 2O补足至50μL。
PCR扩增程序为:(1)94℃变性3min,(2)94℃变性30sec,(3)54℃退火30sec,(4)72℃延伸150sec,重复步骤(2)~(4)进行10-15个循环,最后72℃延伸10min,4℃保存PCR扩增产物。
PCR结束后,添加DpnI限制性内切酶于反应混合物中并置于37℃孵育1h,用CaCl 2热转化法将10μL消化后PCR反应液转入50μL E.coli BL21(DE3)感受态细胞,并均匀涂布于含有50μg/ml硫酸卡那霉素的LB琼脂平板,37℃倒置培养12h。
实施例3:醇脱氢酶及其突变体的表达及纯化
将携带立体选择性改善突变体的重组大肠杆菌按2%的转接量接种至含有硫酸卡那霉素(50μg/mL)的LB培养基中,37℃,200rpm摇床培养,培养液的吸光度OD 600达到0.8时,加入0.2mM的异丙基-β-D-六代呋喃半乳糖苷(IPTG)进行诱导,诱导温度为25℃,诱导8h后,8000rpm离心10min获得高效表达重组醇脱氢酶突变体的菌体,将收集的菌体悬浮于磷酸钾缓冲液(100mM,pH 6.0)中,超声破碎。
纯化所使用的柱子为镍亲和柱HisTrap FF crude,利用重组蛋白上的组氨酸标签进行亲和层析来完成。首先使用A液将镍柱平衡,粗酶液上样,继续使用A液将穿透峰洗脱下来,待平衡后用B液(20mM磷酸钠,500mM NaCl,l000mM咪唑,pH 7.4)进行梯度洗脱,将结合到镍柱上的重组蛋白洗脱下来,获得重组醇脱氢酶突变体。对纯化后的蛋白进行活力测定(CPMK为底物,NADPH为辅酶)及SDS-PAGE分析。镍柱纯化后,在45kDa左右显示单条带,且杂蛋白较少,说明柱纯化效果较好。之后使用Hi-Trap Desalting脱盐柱(GE Healthcare) 将纯化后的醇脱氢酶蛋白置换到Tris-HCl(l00mM,pH 7.0)缓冲液中。
实施例4:醇脱氢酶突变体的动力学和立体选择性分析
测定KpADH在不同底物浓度和辅酶浓度情况下的活力,并根据活力和底物浓度的倒数做出双倒数曲线,计算动力学参数。
由表1可知KpADH对CPMK的k cat/K m为28.9s –1·mM –1,其还原产物构型为R构型,ee值为82.5%。突变体M1,M2和M3合成(R)-CPMA立体选择性提高,达到95%以上,产物ee值分别为98.7%,97.7%和95.2%。突变体M4表现为降低的立体选择性,还原产物构型同为R构型,产物的ee值分别为22.4%。突变体M5表现为反转的立体选择性,还原产物为S构型,产物的ee值分别为75.4%。
表1 醇脱氢酶突变体的动力学参数及立体选择性
Figure PCTCN2018094505-appb-000002
实施例5:醇脱氢酶突变体的底物特异性分析
考察了实例2得到的醇脱氢酶突变体还原潜手性羰基化合物的情况,所考察的潜手性羰基化合物包括4-氯苯基-吡啶-2-基-甲酮((4-chlorophenyl)-(pyridin-2-yl)-methanone,CPMK),苯基-吡啶-2-基-甲酮(phenyl-(pyridin-2-yl)-methanone),4-氯苯基-苯基甲酮
((4-chlorophenyl)-(phenyl)-methanone),4-氟苯基-苯基-甲酮
(4-fluorophenyl)-(phenyl)-methanone,4-溴苯基-苯基-甲酮
(4-brormophenyl)-(phenyl)-methanone,4-甲氧苯基-苯基甲酮
(4-methoxyphenyl)-(phenyl)-methanone。由表2可以看出,对于底物CPMK,M1,M2和M3的还原产物均为R-构型,且产物的ee值均高于95%;对于底物苯基-吡啶-2-基-甲酮仅有M3的还原产物的ee值达到95%以上,M5的还原产物的构型与母本相反,为75.5%。对于底物4-溴苯基-吡啶-2-基-甲酮,M1催化产物的ee值达到99%以上,同时M2催化产物的ee值也较高,为95.5%;对于4-氟苯基-吡啶-2-基-甲酮和4-甲氧苯基-苯基甲酮,M5的催化产物的ee值均在95%以上,且与母本的构型相同。
表2 醇脱氢酶突变体的底物特异性
Figure PCTCN2018094505-appb-000003
实施例6:醇脱氢酶突变体不对称还原CPMK制备高光学纯度的(R)-CPMA
建立了20mL的生物催化体系:100mM磷酸钾缓冲液(pH 7.0),加入实例2获得的醇脱氢酶突变体M1和野生KpADH 10g/L,CPMK 100mM,200mM和500mM(底物分批添加)。在30℃和200rpm条件下反应12h,恒定pH7.5。反应过程中的转化率分析结果见表3和表4,可知野生型脱氢酶和突变体M1均能不对称还原100mM和200mM CPMK。当CPMK浓度为200mM时,野生型KpADH和突变体M1分别需要12h和24h以达到接近99.9%的转化率。野生型KpADH最终还原产物为(R)-CPMA,ee值为82%;突变体M1最终还原产物为同为(R)-CPMA,ee值为99.7%;将所得(R)-CPMA粗品重新溶解于乙醇中,加入相应的产物(R)-CPMA纯品为晶种于4℃重结晶,最终获得光学纯度均>99.9%ee的产品。
表3 野生型醇脱氢酶KpADH催化CPMK的不对称还原
Figure PCTCN2018094505-appb-000004
表4 醇脱氢酶突变体M1催化CPMK不对称还原
Figure PCTCN2018094505-appb-000005
实施例7:醇脱氢酶突变体不对称还原CPMK制备高光学纯度的(R)-4-氟苯基-苯基甲醇
建立了20mL的生物催化体系:100mM磷酸钾缓冲液(pH 7.0),加入实例2获得的醇脱氢酶突变体M4细胞10g/L,4-氟苯基-苯基甲酮50mM。在30℃和200rpm条件下反应24h,恒定pH7.5。反应过程中的转化率分析结果见表5。当底物浓度为50mM,醇脱氢酶突变体M4均能够在24内达到99%以上的底物转化率,它们的还原产物均为(R)-4-氟苯基-苯基甲醇,其中野生型KpADH还原产物的ee值仅为25.3%,突变体M4还原产物的ee值可达到99.5%。将所得(R)-4-氟苯基-苯基甲醇粗品重新溶解于乙醇中,加入相应的产物纯品为晶种于4℃重结晶,最终获得光学纯度均>99.9%ee的产品。
表5 醇脱氢酶突变体M4催化50mM4-氟苯基-苯基甲酮不对称还原
Figure PCTCN2018094505-appb-000006
实施例8:醇脱氢酶突变体不对称还原CPMK制备高光学纯度的(R)-4-甲氧苯基-苯基甲酮建立了20mL的生物催化体系:100mM磷酸钾缓冲液(pH 7.0),加入实例2获得的醇脱氢酶 突变体M4细胞10g/L,4-甲氧苯基-苯基甲酮50mM。在30℃和200rpm条件下反应24h,恒定pH7.5。反应过程中的转化率分析结果见表6。当底物浓度为50mM,醇脱氢酶突变体M4均能够在24内达到99%以上的底物转化率,它们的还原产物均为(R)-4-甲氧苯基-苯基甲醇,其中野生型KpADH还原产物的ee值仅为15.1%,突变体M4还原产物的ee值可达到99.7%。将所得(R)-4-甲氧苯基-苯基甲醇粗品重新溶解于乙醇中,加入相应的产物纯品为晶种于4℃重结晶,最终获得光学纯度均>99.9%ee的产品。
表6 醇脱氢酶突变体M5催化CPMK不对称还原
Figure PCTCN2018094505-appb-000007
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
Figure PCTCN2018094505-appb-000008
Figure PCTCN2018094505-appb-000009
Figure PCTCN2018094505-appb-000010
Figure PCTCN2018094505-appb-000011
Figure PCTCN2018094505-appb-000012
Figure PCTCN2018094505-appb-000013
Figure PCTCN2018094505-appb-000014

Claims (10)

  1. 一种醇脱氢酶的突变体,其特征在于,所述突变体的氨基酸序列包括:在SEQ ID NO.2所示的氨基酸序列上进行一个或多个氨基酸位点的突变而得到的氨基酸序列。
  2. 根据权利要求1所述突变体,其特征在于,所述醇脱氢酶突变体的氨基酸序列包括在SEQ ID No.2的氨基酸序列上将第161位的氨基酸苯丙氨酸、第196位的氨基酸丝氨酸中的一个或两个氨基酸位点进行突变而得到的氨基酸序列。
  3. 根据权利要求1或2所述突变体,其特征在于,所述突变体的氨基酸序列包括以下M1~M7中的任意一种替换得到的氨基酸序列:
    M1是将SEQ ID No.2所示氨基酸序列的第196位丝氨酸替换为缬氨酸;
    M2是将SEQ ID No.2所示氨基酸序列的第196位丝氨酸替换为色氨酸;
    M3是将SEQ ID No.2所示氨基酸序列的第196位丝氨酸替换为脯氨酸;
    M4是将SEQ ID No.2所示氨基酸序列的第196位丝氨酸替换为甘氨酸;
    M5是将SEQ ID No.2所示氨基酸序列的第196位丝氨酸替换为甘氨酸,第161位苯丙氨酸替换为缬氨酸。
  4. 编码权利要求1-3任一所述突变体的核苷酸序列。
  5. 表达权利要求1-3任一所述突变体的重组菌。
  6. 构建权利要求5所述重组菌的方法,其特征在于,具体步骤如下:将编码所述突变体的核苷酸序列克隆到重组载体中,将所得重组载体转化到宿主中,得到重组转化体,通过培养所得重组表达转化体,即可分离纯化获得所述突变体。
  7. 根据权利要求6所述方法,其特征在于,所述重组菌的宿主为大肠杆菌(Escherichia coli),所述质粒为pET28a(+)。
  8. 根据权利要求6或7所述方法,其特征在于,重组菌的宿主为E.coli BL21(DE3)。
  9. 应用权利要求5所述重组菌生产醇脱氢酶突变体的方法,其特征在于,所述方法为:将重组菌接种至含有40-60μg/mL硫酸卡那霉素的LB培养基中,30~40℃,100~200rpm摇床培养,培养液的吸光度OD 600达到0.5~1.0时,加入0.05~1.0mM的异丙基-β-D-六代呋喃半乳糖苷(IPTG)进行诱导,诱导温度为16~30℃,诱导5~10h即可获得高效表达重组醇脱氢酶的突变体。
  10. 一种应用醇脱氢酶生产手性CPMA的方法,其特征在于,所述方法的具体步骤如下:构建反应体系,CPMK浓度为10-500mM,权利要求1-3任一所述脱氢酶突变体用量为1-10kU/L,NADP +用量为0.1~1.0mM,加入辅酶循环系统,辅酶循环系统中含有葡萄糖脱氢酶GDH和D-葡萄糖,其中葡萄糖脱氢酶GDH用量为1~10kU/L,D-葡萄糖用量为20~1000mM,磷酸盐缓冲液的浓度为0.1-0.2M;在30~35℃,pH 6~8的条件下反应1~24h,不对称还原反 应结束后,可按照有机溶剂萃取方法从反应液中提取手性CPMA;所述辅酶循环系统还可以是亚磷酸盐/亚磷酸盐脱氢酶(FTDH)、甲酸/甲酸脱氢酶(FDH)、乳酸/乳酸脱氢酶(LDH)或甘油/甘油脱氢酶。
PCT/CN2018/094505 2018-02-12 2018-07-04 醇脱氢酶突变体及其在双芳基手性醇合成中的应用 WO2019153632A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880057092.3A CN111433357B (zh) 2018-02-12 2018-07-04 醇脱氢酶突变体及其在双芳基手性醇合成中的应用
US16/521,656 US10822593B2 (en) 2018-02-12 2019-07-25 Alcohol dehydrogenase mutant and application thereof in synthesis of diaryl chiral alcohols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810146463.7A CN108504641A (zh) 2018-02-12 2018-02-12 醇脱氢酶突变体及其在双芳基手性醇合成中的应用
CN201810146463.7 2018-02-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/521,656 Continuation US10822593B2 (en) 2018-02-12 2019-07-25 Alcohol dehydrogenase mutant and application thereof in synthesis of diaryl chiral alcohols

Publications (1)

Publication Number Publication Date
WO2019153632A1 true WO2019153632A1 (zh) 2019-08-15

Family

ID=63374992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094505 WO2019153632A1 (zh) 2018-02-12 2018-07-04 醇脱氢酶突变体及其在双芳基手性醇合成中的应用

Country Status (3)

Country Link
US (1) US10822593B2 (zh)
CN (2) CN108504641A (zh)
WO (1) WO2019153632A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359649A (zh) * 2018-02-12 2018-08-03 江南大学 醇脱氢酶突变体及其在双芳基手性醇合成中的应用
CN109402076A (zh) * 2018-10-30 2019-03-01 江南大学 一种醇脱氢酶突变体及其在辅酶再生中的应用
CN113025588A (zh) * 2021-03-30 2021-06-25 江南大学 一种能够催化合成哌啶类化合物的醇脱氢酶KpADH突变体
CN114277007A (zh) * 2021-12-31 2022-04-05 江南大学 一种醇脱氢酶突变体及其应用
CN114591991B (zh) * 2022-03-31 2023-05-09 西南交通大学 一种基于短链羰基还原酶制备钙泊三醇关键手性中间体的方法
CN115161297B (zh) * 2022-05-09 2024-01-05 河北工业大学 三酶纳米反应器及其应用和手性叔α-苯基环醇的合成
CN115011520B (zh) * 2022-06-14 2023-05-12 南京工业大学 一种蜡状芽孢杆菌及其在羰基还原中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559520A (zh) * 2011-12-15 2012-07-11 江南大学 一种利用微生物催化制备(s)-(4-氯苯基)-(吡啶-2-基)-甲醇的方法
CN105936895A (zh) * 2016-05-31 2016-09-14 江南大学 一种醇脱氢酶突变体及其基因和在制备手性双芳基醇中的应用
CN105936909A (zh) * 2016-05-31 2016-09-14 江南大学 一种醇脱氢酶及其基因、重组酶和合成手性双芳基仲醇的应用
CN106047985A (zh) * 2016-05-31 2016-10-26 江南大学 一种醇脱氢酶的高通量筛选方法
CN108359649A (zh) * 2018-02-12 2018-08-03 江南大学 醇脱氢酶突变体及其在双芳基手性醇合成中的应用
CN108384765A (zh) * 2018-02-12 2018-08-10 江南大学 醇脱氢酶突变体及其在双芳基手性醇合成中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105274069B (zh) * 2014-07-07 2018-04-13 上海弈柯莱生物医药科技有限公司 一种醇脱氢酶及其在合成度罗西汀中间体中的应用
CN105543186B (zh) * 2016-01-29 2019-06-07 华东理工大学 一种醇脱氢酶lc3及其基因和应用
CN106636020A (zh) * 2016-10-17 2017-05-10 浙江大学 短链脱氢酶的突变体、重组表达载体、基因工程菌和应用
CN107099516B (zh) * 2017-06-05 2020-04-07 华东理工大学 7β-羟基甾醇脱氢酶突变体及其在熊脱氧胆酸合成中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559520A (zh) * 2011-12-15 2012-07-11 江南大学 一种利用微生物催化制备(s)-(4-氯苯基)-(吡啶-2-基)-甲醇的方法
CN105936895A (zh) * 2016-05-31 2016-09-14 江南大学 一种醇脱氢酶突变体及其基因和在制备手性双芳基醇中的应用
CN105936909A (zh) * 2016-05-31 2016-09-14 江南大学 一种醇脱氢酶及其基因、重组酶和合成手性双芳基仲醇的应用
CN106047985A (zh) * 2016-05-31 2016-10-26 江南大学 一种醇脱氢酶的高通量筛选方法
CN108359649A (zh) * 2018-02-12 2018-08-03 江南大学 醇脱氢酶突变体及其在双芳基手性醇合成中的应用
CN108384765A (zh) * 2018-02-12 2018-08-10 江南大学 醇脱氢酶突变体及其在双芳基手性醇合成中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE PROTEIN 26 February 2008 (2008-02-26), SCANNELL, D. R. ET AL.: "hypothetical protein Kpol_529p27 [Vanderwaltozyma polyspora DSM 70294", XP055630120, retrieved from NCBI Database accession no. XP _ 001644505 *
NI, Y. ET AL.: "Production of a key chiral intermediate of Betahistine with a newly isolated Kluyveromyces sp. in an aqueous two-phase system", PROCESS BIOCHEMISTRY, vol. 47, 6 April 2012 (2012-04-06), pages 1042 - 1048, XP028505543 *
TRUPPO, M. D. ET AL.: "Enzyme-Catalyzed Enantioselective Diaryl Ketone Reductions", ORGANIC LETTERS, vol. 9, no. 2, 16 December 2006 (2006-12-16) - 2007, pages 335 - 338, XP055630126 *
ZHOU, JIEYU: "Biocatalytic Synthesis of Betahistine Chiral Intermediate by Asymmetric Reduction Using Kluweromyces sp", ENGINEERING TECHNOLOGY 1, CHINA MASTER'S THESES FULL-TEXT DATABASE, vol. 1, no. 4, 15 April 2013 (2013-04-15) *
ZHU, D. M. ET AL.: "Inverting the Enantioselectivity of a Carbonyl Reductase via Substrate- Enzyme Docking-Guided Point Mutation", ORGANIC LETTERS, vol. 10, no. 4, 19 January 2008 (2008-01-19), pages 525 - 528, XP055630128 *

Also Published As

Publication number Publication date
CN111433357A (zh) 2020-07-17
US20190345457A1 (en) 2019-11-14
US10822593B2 (en) 2020-11-03
CN111433357B (zh) 2022-11-11
CN108504641A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2019153633A1 (zh) 醇脱氢酶突变体及其在双芳基手性醇合成中的应用
WO2019153632A1 (zh) 醇脱氢酶突变体及其在双芳基手性醇合成中的应用
WO2019153634A1 (zh) 醇脱氢酶突变体及其在双芳基手性醇合成中的应用
WO2021103432A1 (zh) 一种醇脱氢酶突变体及其应用
WO2018090929A1 (zh) (1r,2s)-2-(3,4-二氟苯基)环丙胺d-扁桃酸盐(i)的生物制备方法
EP1416050A1 (en) Method of modifying enzyme and oxidoreductase variant
CN109837317B (zh) 一种手性双芳基醇化合物的合成方法
CN108546690B (zh) 一种短链脱氢酶及其突变体与基因的制备及应用
WO2021139689A1 (zh) 一种生物酶用于制备奥利司他中间体的用途及制备方法
WO2023109530A1 (zh) 氧化还原酶及其突变体在生物合成圆柚酮中的应用
CN113652407B (zh) 羰基还原酶突变体及其不对称合成双手性化合物的应用
Habrych et al. Purification and Identification of an Escherichiacoli β‐Keto Ester Reductase as 2, 5‐Diketo‐d‐gluconate Reductase YqhE
WO2016095223A1 (zh) 双羰基还原酶突变体及其应用
JPS63500493A (ja) 遺伝子的に修飾された生物体を用いるビタミンcの製造方法
CN114277007A (zh) 一种醇脱氢酶突变体及其应用
CN109943543B (zh) 醇脱氢酶突变体及其制备方法和应用
CN110272879B (zh) 醛酮还原酶BcAKR及其突变体和应用
CN116891838B (zh) 烯还原酶突变体、其组合物、生物材料及应用
CN117230031B (zh) 羰基还原酶突变体及其应用
CN112176019B (zh) 一种生物催化制备(r)-1-(3-三氟甲基苯基)乙醇的方法
CN110257349B (zh) 醛酮还原酶BmAKR2及其突变体和应用
WO2019011237A1 (zh) 一种乳酸脱氢酶在不对称合成手性羟基化合物中的应用
Lu et al. Enantioselective biosynthesis of (R)-γ-hydroxy sulfides via a one-pot approach with ChKRED20
CN116574706A (zh) 羰基还原酶突变体及在依鲁替尼关键中间体合成中的应用
CN107794270B (zh) 酮基还原酶dna分子、重组载体和菌株及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904833

Country of ref document: EP

Kind code of ref document: A1