WO2019151638A1 - 이차전지 제조방법, 이차전지용 파우치 제조방법 및 이차전지용 파우치 - Google Patents

이차전지 제조방법, 이차전지용 파우치 제조방법 및 이차전지용 파우치 Download PDF

Info

Publication number
WO2019151638A1
WO2019151638A1 PCT/KR2018/015622 KR2018015622W WO2019151638A1 WO 2019151638 A1 WO2019151638 A1 WO 2019151638A1 KR 2018015622 W KR2018015622 W KR 2018015622W WO 2019151638 A1 WO2019151638 A1 WO 2019151638A1
Authority
WO
WIPO (PCT)
Prior art keywords
cup
pouch
depth
secondary battery
recess
Prior art date
Application number
PCT/KR2018/015622
Other languages
English (en)
French (fr)
Inventor
오세운
황수지
정정화
이호섭
박진서
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/611,680 priority Critical patent/US11613053B2/en
Priority to JP2019564800A priority patent/JP7080256B2/ja
Priority to EP18903305.3A priority patent/EP3611774A4/en
Priority to CN201880028193.8A priority patent/CN110574184B/zh
Publication of WO2019151638A1 publication Critical patent/WO2019151638A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7146Battery-cases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery manufacturing method and a secondary battery pouch, and a secondary battery manufacturing method and a secondary battery pouch that can solve the problem of durability degradation of the case that may occur during the case forming process of the secondary battery.
  • a pouch type secondary battery refers to a secondary battery manufactured by accommodating an electrode assembly and an electrolyte solution in a pouch packaging material and then sealing the packaging material.
  • two cups are generally formed. That is, two cups are formed by pressing the first area of the pouch and the second area spaced apart from the first area. The two cups face each other by folding the area between the two cups in the pouch. The electrode assembly is accommodated in the space formed by the two cups facing each other.
  • the electric capacity required for secondary batteries is increasing.
  • the capacity of the secondary battery is directly related to the size of the electrode assembly provided in the secondary battery.
  • the size of the electrode assembly In order to manufacture a large capacity secondary battery, the size of the electrode assembly must be large, which in turn means that the volume of the inner space of the case in which the electrode assembly is accommodated is also larger. It must be big.
  • the reality is that the volume of the inner space of the case in which the electrode assembly is accommodated cannot be increased indefinitely.
  • the depth of the cup formed in the pouch cannot be increased indefinitely.
  • the cracks are easily generated due to minute cracks in the pouch, and vulnerable areas such as whitening of the pouches become white around the cracks. there was. This acted as a constraint to increase the capacity of the pouch type secondary battery.
  • an object of the present invention is to solve the problem of weakening the durability of the pouch that may occur in the process of forming a cup having a different depth in the pouch.
  • Another object of the present invention is to increase the capacity of the pouch type secondary battery as compared with the prior art.
  • preparing a pouch for receiving the electrode assembly A first forming step of pressing two regions spaced apart from each other on the pouch to form recesses recessed to have a predetermined depth and forming first and second cups spaced apart from each other; A second molding step of further pressing the first cup to form the first cup having a recess having a depth different from that of the recess of the first cup formed in the first molding step; It provides a secondary battery pouch manufacturing method comprising a.
  • the depth of the recess of the first cup and the depth of the recess of the second cup may be the same.
  • the concave portion of the first cup and the concave portion of the second cup may be formed at the same time.
  • the molding part for forming the first cup in the first molding step and the molding part for pressing the first cup in the second molding step may be the same.
  • the molding part for forming the first cup in the first molding step and the molding part for pressing the first cup in the second molding step may be different from each other.
  • the sum of the depth of the recess of the first cup and the depth of the recess of the second cup may be greater than 9.0 mm and less than or equal to 11.5 mm.
  • the depth of the recess of the first cup is greater than 4.5mm and 10.0mm or less, the depth of the recess of the second cup may be 1.0mm or more and 3.0mm or less.
  • a pouch for a secondary battery the first cup and the second cup is formed with a recess; An interregion formed between the first cup and the second cup; And a first cup and a second cup facing each other so as to be folded about an area between the regions, and a sum of a depth of a recess of the first cup and a depth of the recess of the second cup is greater than 9.0 mm.
  • a pouch for a secondary battery of 11.5 mm or less is provided.
  • the depth of the recess of the first cup is greater than 4.5mm and 10.0mm or less, and the depth of the recess of the second cup may be 1.0 mm or more and 3.0 mm or less.
  • the ratio of the depth of the recess of the first cup to the depth of the recess of the second cup may have a range of 1.33 to 10.
  • the inter-region may include only a first curved area having a curved surface as an area connected to the first cup and a second curved area having a curved surface as an area connected with the second cup.
  • the length of the first curved area may be 1.5 mm, and the length of the second curved area may be 0.5 mm.
  • preparing a pouch for receiving an electrode assembly A first forming step of pressing two regions spaced apart from each other on the pouch to form recesses recessed to have a predetermined depth and forming first and second cups spaced apart from each other; A second molding step of further pressing the first cup to form the first cup having a recess having a depth different from that of the recess of the first cup formed in the first molding step; Receiving an electrode assembly in the first cup or the second cup; The electrode assembly is arranged on the first cup and the second cup by folding the first and second cups to face each other by folding the interregion R formed between the first cup and the second cup. A folding step to accommodate the; There is provided a secondary battery manufacturing method comprising a.
  • the present invention it is possible to solve the problem of weakening the durability of the pouch that may occur in the process of forming a cup having a different depth in the pouch.
  • the capacity of the pouch type secondary battery can be increased compared to the conventional.
  • FIG. 1 is a side view illustrating a first forming step of a method of manufacturing a pouch in which a plurality of cups having different depths is formed according to an embodiment of the present invention.
  • FIG. 2 is a side view illustrating a second forming step of a method of manufacturing a pouch in which a plurality of cups having different depths are formed according to an example of the present disclosure.
  • FIG. 3 is a side view illustrating a pouch in which a plurality of cups having different depths formed according to one embodiment of the present invention is formed.
  • first cup described as 102 'and 102 refers to the first cup after the first forming step and the second forming step, which will be described below.
  • the first cup described as 102 means the first cup after the first forming step and the second forming step to be described below.
  • FIG. 1 is a side view illustrating a first forming step of a method of manufacturing a pouch in which a plurality of cups having different depths is formed according to an embodiment of the present invention.
  • a secondary battery manufacturing method may include preparing a pouch as an exterior member to accommodate the electrode assembly.
  • the pouch P may have a flat plate shape as shown in FIG. 1, and may have a constant thickness throughout the pouch.
  • the pouch may have a thickness of 60 ⁇ m to 200 ⁇ m, for example, the pouch may have a thickness of 60 ⁇ m to 160 ⁇ m.
  • the pouch may have a plurality of layered structures.
  • the pouch may sequentially include a first polymer layer, a metal layer, and a second polymer layer.
  • the metal layer may be an aluminum layer
  • the polymer used in the first to second polymer layers may be nylon, polypropylene (PP), polyethylene terephthalate (PET), or a combination thereof.
  • the secondary battery manufacturing method as shown in Figure 1 by pressing two areas spaced from each other on the pouch (P), to form a concave recessed recessed to have a constant depth (Fig. 2 And forming a first cup and a second cup spaced apart from each other.
  • the pouch P After the first molding step, as shown in the pouch shape shown in FIG. 2, the pouch P includes a recess C1 ′ having a depth of D1 ′ and a recess C2 having a depth of D2, respectively.
  • Cup 102 'and second cup 104 may be formed.
  • the depths D1 'and D2 of the recesses formed in the first cup 102' and the second cup 104 formed in the first forming step may be the same, but D1 'and D2 may be different from each other. .
  • D1 ' may be larger or smaller than D2.
  • the first forming step when the depths D1 'and D2 of the recesses of the first cup 102' and the second cup 104 are equal to each other, there is a symmetry between the first cup and the second cup. Can be prevented from being oriented in a particular direction.
  • the size, depth or thickness of the two components are the same' means that even if the size of the two components are not exactly the same, those skilled in the art of the present invention the size, depth or thickness of the two components Should be interpreted to include cases where there is a difference that can be judged to be substantially the same.
  • the first cup and the second cup may be formed by pressing two spaced apart regions on the pouch P.
  • pressing the two regions on the pouch is illustrated in FIG. 1.
  • the first molding part 202 and the second molding part 204 may be formed. That is, the first cup 102 ′ may be formed by the first molding part 202, and the second cup 104 may be formed by the second molding part 204.
  • 1 shows a first molded part 202 having a thickness of D3 and a second molded part 204 having a thickness of D4.
  • the first molding part 202 forms the first cup 102 '
  • the second molding part 204 forms the second cup 104, so that the thickness of the first molding part ( That is, D3) may correspond to the depth (ie, D1 ') of the recess C1' of the first cup after the first forming step, and the thickness of the second forming part (ie, D4) may be equal to or after the first forming step. It may correspond to the depth (ie, D2) of the recess C2 of the second cup. Accordingly, the thickness D3 of the first molding part 202 and the thickness D4 of the second molding part 204 may be identical to each other, but D3 and D4 may be different from each other. For example, D3 may be larger or smaller than D4.
  • the recesses of the first cup 102 'and the recesses of the second cup 104 may be formed at the same time. That is, the process of forming the first cup 102 ′ and the second cup 104 by the first molding part 202 and the second molding part 204 in the first molding step may be simultaneously performed.
  • the depth of the recess C1 ′ of the first cup in the first molding step may be the same as the depth of the recess C2 of the second cup.
  • the pouch may be pulled out.
  • the first molding part presses the pouch first to form the first cup in the first molding step
  • the second molding part presses the pouch to form the second cup
  • the first forming part is first formed by the first molding part. Pouch tilting may occur in one cup direction.
  • the process of forming the first cup and the second cup by using the first molding part and the second molding part is performed at the same time, it is possible to prevent the pouch from pulling out.
  • FIG. 2 is a side view illustrating a second forming step of a method of manufacturing a pouch in which a plurality of cups having different depths are formed according to an example of the present disclosure.
  • the secondary battery manufacturing method further pressurizes the first cup 102 ′ formed in the first molding step, thereby forming the first cup 102 formed in the first molding step.
  • further pressing of the first cup 102 ′ in the second molding step may be performed by the third molding part 206.
  • D1 may be greater than D1 'and D1 may be greater than D2.
  • FIG. 3 is a side view illustrating a pouch in which a plurality of cups having different depths formed according to one embodiment of the present invention is formed.
  • the first cup 102 'having the recess C1' having the depth of D1 'in the first molding step is further pressed in the second molding step, thereby providing a deeper depth.
  • a first cup 102 having a recess C1 having a D1 can be formed, and an asymmetric shape secondary battery packaging pouch having cups having recesses having different depths can be manufactured.
  • the distance between the first cup 102 and the second cup 104 may be 2.0mm to 6.0mm, preferably 2.0mm to 4.0mm.
  • the pouch When the distance between the first cup 102 and the second cup 104 is too close, the pouch is not properly made in the process of manufacturing the pouch type secondary battery by folding the region between the first cup and the second cup. If a defect occurs, and the distance between the first cup 102 and the second cup 104 is too far, the volume of the pouch becomes large, thereby reducing the capacity per unit volume of the secondary battery.
  • the molding part forming the first cup 102 ′ in the first molding step and the molding part pressing the first cup 102 ′ in the second molding step may be different from each other. That is, referring to FIGS. 1 and 2, the first molding part 202 and the third molding part 206 may have separate configurations. 1 and 2 show a first molded part 202 having a thickness of D3 and a third molded part 206 having a thickness of D5 greater than D3.
  • the molding part forming the first cup 120 'in the first molding step and the molding part pressing the first cup 102' in the second molding step may be the same. That is, the first molding part 202 and the third molding part 206 may have the same configuration. When the first molding part 202 and the third molding part 206 have the same configuration, an effect of simplifying the components for implementing the secondary battery manufacturing method according to the present invention may be generated.
  • the pouch 100 includes a first cup 102 and a second cup 104 spaced apart from each other by an area R therebetween. Is formed.
  • the ratio of the depth of the recess of the first cup to the depth of the recess of the second cup can range from 1.33 to 10. More preferably, the ratio of the depth of the recess of the first cup to the depth of the recess of the second cup may have a range of 4 to 10, 2 to 4.75 or 1.33 to 2.67.
  • the ratio of the depth of the recess of the first cup to the depth of the recess of the second cup exceeds the above ranges and the depth of the recess of the first cup is increased, cracks may occur in the pouch, and the depth of the recess of the second cup.
  • the ratio of the depth of the recess of the first cup is out of the above ranges and the depth of the recess of the first cup becomes small, the depth of the cups of the pouch may not be sufficiently secured, and thus the capacity of the secondary battery may not be sufficiently increased.
  • the depth of the cups of the pouch may not be sufficiently secured.
  • the capacity may not be sufficiently increased, and cracks may occur in the pouch when the ratio of the depth of the recess of the first cup to the depth of the recess of the second cup exceeds the above ranges and the depth of the recess of the second cup is increased.
  • the numerical range of the ratio of the ratio of the depth of the recess of the first cup to the depth of the recess of the second cup may be supported by Examples 1 to 3 to be described below.
  • the interregion R may be a first curved region including a curved surface as an area connected with the first cup 102, a second curved region including a curved surface as an area connected with the second cup 104, and a first curved area including a curved surface. It may include a planar region formed between the first curved region and the second curved region and formed of a plane.
  • the first curved area and the second curved area may be configured to solve such a problem.
  • the first curved area and the second curved area are formed to smoothly smooth the area where the first cup 102 and the inter-region R are connected, and the area between the inter-region R and the second cup 104. Since it is connected, the durability of the pouch can be improved.
  • the inter-region including the first curved region and the second curved region may be considered to reflect the characteristics of a process of manufacturing a medium-large capacity pouch type secondary battery to which the present invention may be applied. That is, compared with the pouch used for the small capacity pouch type secondary battery, the pouch used for the medium-large capacity pouch type secondary battery has a relatively large thickness of the concave portion of the cup to be formed. The thickness is also generally relatively large. Therefore, a curved region may be formed between the cup and the cup in the process of forming the cup in the pouch used for the medium-large capacity pouch-type secondary battery, and the curved regions may reflect the curved regions according to the present invention.
  • the thickness of the material constituting the pouch used in the small capacity pouch-type secondary battery is generally 60 ⁇ m and has a relatively small thickness. Therefore, since the degree of deflection of the pouch is relatively small in the cup forming process, the pouch may be molded without a curved region formed between the cup and the cup.
  • the present invention may be an invention applied to a pouch type secondary battery having a medium-large capacity. That is, according to the present invention, by forming a pouch secondary battery having a medium-large capacity, the pouch-type secondary battery having a medium-to-large capacity is minimized by minimizing an area projected between the cups by minimizing an area between the cups. The capacity of the battery can be maximized.
  • the inter-region R may not include the planar region but may include only the first curved region and the second curved region.
  • the specific gravity occupied by the planar region in the interregion R disappears, so that the area and the length of the interregion R may be minimized.
  • the pouch-type secondary battery is manufactured by folding the pouch around the interregion R, since the portion protruding in the width direction of the secondary battery by the interregion in the secondary battery is minimized, the secondary The area per unit volume of the cell can be maximized.
  • the distance between the first cup and the second cup (that is, the length of the interregion) may be 2.0 mm to 6.0 mm, or 2.0 mm to 4.0 mm, thereby maximizing the area per unit volume of the secondary battery.
  • the length of the interregion region ie, the sum of the length of the first curved region and the length of the second curved region
  • the pouch since the pouch is not tilted in one direction, which may occur in the process of forming a plurality of cups having recesses having different depths, it may occur in an area between the cups (that is, between the areas R).
  • the crack phenomenon can be prevented and the durability of the pouch and the secondary battery can be improved.
  • the first cup and the second cup are molded together so that the material constituting the pouch does not lean in a specific direction. Subsequently, the depth of the recess of the first cup is further deepened by additional pressurization in the second molding step. The first cup and the second cup are first formed in the first molding step, and the first cup is removed in the second molding step. Further pressurization does not cause the material constituting the pouch to lean in the first cup direction.
  • Secondary battery manufacturing method is made after the first molding step and the second molding step, the first cup 102 and the second cup 104 by folding around the region (R).
  • the opposite to each other may further include a folding step for receiving the electrode assembly in the first cup and the second cup.
  • the pouch manufactured according to the secondary battery manufacturing method according to an embodiment of the present invention may be a pouch used for the secondary battery of medium and large capacity.
  • the perimeter of the pouch can have a rectangular shape when viewed from above (i.e., when viewed from above with reference to FIGS. 1 to 3) after the progress to the folding step.
  • the sides may have a range of 100 mm or more and 500 mm or less, and the vertical sides may have a range of 100 mm or more and 500 mm or less.
  • the horizontal sides of the rectangular pouch may have a range of 100 mm or more and 300 mm or less, and the vertical side may have a range of 100 mm or more and 300 mm or less.
  • the pouch manufactured according to the example of the present invention may be a pouch used for a secondary battery of medium and large capacity
  • the thickness of the material constituting the pouch may have a predetermined range accordingly.
  • the thickness of the material constituting the pouch may be 60 ⁇ m to 200 ⁇ m, for example, the thickness of the material constituting the pouch may be 100 ⁇ m to 160 ⁇ m.
  • the pouch when viewed from above, may have a rectangular shape or a square shape.
  • preparing a pouch for accommodating an electrode assembly by pressing two areas spaced apart from each other on the pouch, a recess is formed to be recessed to have a predetermined depth and is formed of spaced apart from each other
  • a pouch was prepared by pressing a laminate sheet having a thickness of 150 ⁇ m to form a first cup and a second cup.
  • a laminate sheet in which 30 ⁇ m nylon layers, 40 ⁇ m aluminum layers, and 80 ⁇ m PP layers were sequentially stacked from the bottom was used.
  • the first cup and the second cup were each formed by pressing the laminate sheet with a mold.
  • the mold pressurized the laminate sheet at a pressure of 0.5 Mpa and a speed of 40 mm / sec.
  • the depth of the recess of the first cup and the depth of the recess of the second cup were molded until both became 1.0 mm. Then, in the second forming step, the laminate sheet constituting the first cup is further pressed so that the depths of the recesses of the first cup are 4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm, 9.0 mm, 10.0 mm, respectively. 9 pouches, 10.5 mm and 11.0 mm, were formed.
  • the length of the region between the first cup and the second cup was 2.0 mm. That is, the length of the first curved area connected to the first cup and formed of the curved surface was 1.5 mm, and the length of the second curved area connected to the second cup and formed of the curved surface was 0.5 mm. No planar region is formed between the first curved region and the second curved region.
  • the perimeter of the pouch had a rectangular shape of 100 mm in width and 250 mm in length.
  • the thickness of the laminate sheet according to Example 2 the thickness of each layer constituting the laminate sheet, and the contents of the material of each layer constituting the laminate sheet were the same as in Example 1.
  • the pressure and pressurization rate of the mold for pressing the laminate sheet were also the same as in Example 1.
  • the depth of the recesses of the first cup and the depth of the recesses of the second cup were molded until they were 2.0 mm. Then, in the second forming step, the laminate sheet constituting the first cup is further pressed so that the depths of the recesses of the first cup are 4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm, 9.0 mm, 9.5 mm, respectively. 9 pouches of 10.0 mm and 10.5 mm were formed.
  • the length of the region between the first cup and the second cup was 2.0 mm. That is, the length of the first curved area connected to the first cup and formed of the curved surface was 1.5 mm, and the length of the second curved area connected to the second cup and formed of the curved surface was 0.5 mm. No planar region is formed between the first curved region and the second curved region.
  • the perimeter of the pouch had a rectangular shape of 100 mm in width and 250 mm in length.
  • the thickness of the laminate sheet according to Example 3 the thickness of each layer constituting the laminate sheet, and the contents of the material of each layer constituting the laminate sheet were the same as in Example 1.
  • the pressure and pressurization rate of the mold for pressing the laminate sheet were also the same as in Example 1.
  • the depth of the recess of the first cup and the depth of the recess of the second cup were molded until all became 3.0 mm. Then, in the second forming step, the laminate sheet constituting the first cup is further pressed to make the depth of the recess of the first cup 4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm, 8.5 mm, 9.0 mm, respectively. , 8 pouches of 10.0 mm were formed.
  • the length of the region between the first cup and the second cup was 2.0 mm. That is, the length of the first curved area connected to the first cup and formed of the curved surface was 1.5 mm, and the length of the second curved area connected to the second cup and formed of the curved surface was 0.5 mm. No planar region is formed between the first curved region and the second curved region.
  • the perimeter of the pouch had a rectangular shape of 100 mm in width and 250 mm in length.
  • the thickness of the laminate sheet according to the comparative example, the thickness of each layer constituting the laminate sheet, the contents of the material of each layer constituting the laminate sheet was the same as in Example 1.
  • the pressure and pressurization rate of the mold for pressing the laminate sheet were also the same as in Example 1.
  • the depth of the recess of the first cup and the depth of the recess of the second cup were formed equal to each other. At this time, the recessed part of the 1st cup and the recessed part of the 2nd cup were formed simultaneously.
  • seven pouches having the depths of the recesses of the first cup and the recesses of the second cup were 1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm, 4.5 mm, 5.0 mm, and 5.5 mm, respectively.
  • the length of the region between the first cup and the second cup was 3.0 mm. That is, the length of the first curved area connected to the first cup and formed of the curved surface was 1.5 mm, and the length of the second curved area connected to the second cup and formed of the curved surface was 1.5 mm. No planar region is formed between the first curved region and the second curved region.
  • Whether cracks occurred in the pouches for secondary batteries manufactured by Examples 1 to 3 and Comparative Examples was measured. Whether or not a crack occurred in the pouch was measured based on whether a pin hole occurred in the pouch. The occurrence of the pinhole was visually observed, but the light was observed. That is, when the pin hole is formed in the secondary battery pouch including the first cup and the second cup, it is determined that a crack has occurred, and the pin hole is not formed in the secondary battery pouch including the first cup and the second cup. In this case, it was determined that no crack occurred.
  • Example 1 Example 2
  • Example 3 4.0 X (0/3) X (0/3) X (0/3) 5.0 X (0/3) X (0/3) X (0/3) X (0/3) 6.0 X (0/3) X (0/3) X (0/3) 7.0 X (0/3) X (0/3) X (0/3) 8.0 X (0/3) X (0/3) X (0/3) 8.5 - - O (2/5) 9.0 X (0/3) X (0/3) O (4/5) 9.5 - X (0/3) - 10.0 X (0/3) O (4/5) O (5/5) 10.5 O (2/5) O (5/5) - 11.0 O (5/5) - - Maximum value of depth of first cup + depth of second cup 11.0mm 11.5mm 11.0mm
  • Table 1 when the depths of the recesses of the first cup and the depths of the second cup recesses are the same according to the comparative example, the maximum values of the depths of the first cup and the second cup are 4.5 mm, respectively. It can be seen that the maximum value of the sum of the depth of the cup and the depth of the second cup is 9.0 mm. That is, according to the comparative example, when the depth of the first cup and the second cup exceeds 4.5mm, it can be seen that a problem occurs in the pouch.
  • the sum of the thickness of the first cup and the depth of the second cup is directly related to the thickness of the pouch type secondary battery. Therefore, as the sum of the thickness of the first cup and the depth of the second cup increases, the thickness of the electrode assembly provided inside the pouch may also increase, thereby maximizing the capacity of the pouch type secondary battery.
  • the capacity of the pouch type secondary battery using the secondary battery pouch manufactured according to the comparative example is limited to the capacity corresponding to the sum of the thickness of the first cup and the thickness of the second cup of 9.0mm.
  • the capacity of the secondary battery may be remarkably increased. That is, the maximum value of the sum of the depth of the first cup and the depth of the second cup in the secondary battery pouch according to Example 1 is 11.0 mm, and the depth and the first cup of the secondary battery pouch according to Example 2 It can be seen that the maximum value of the sum of the depths of the two cups is 11.5 mm, and the sum of the depth of the first cup and the depth of the second cup is 11.0 mm in the pouch for the secondary battery according to Example 3.
  • Example 1 and Example 3 can exhibit a capacity increase of about 22%, and Example 2 can exhibit a capacity increase of about 27.8% (Examples 1 to 2). 3 and the comparative examples assume that all other specifications of the pouch are the same).
  • the depth of the first cup and the second cup could not exceed 4.5mm, according to Examples 1 to 3 of the present invention to prepare a secondary battery pouch.
  • the depth of the first cup having a relatively large depth can be formed up to 10.0 mm in excess of 4.5 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

이차전지 제조방법이 개시된다. 본 발명에 따르면, 파우치에 서로 다른 깊이를 갖는 컵을 형성하는 과정에서 발생할 수 있는 파우치의 내구성 약화 문제를 해결할 수 있다.

Description

이차전지 제조방법, 이차전지용 파우치 제조방법 및 이차전지용 파우치
관련출원과의 상호인용
본 출원은 2018년 1월 31일자 한국특허출원 제10-2018-0012481호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지 제조방법 및 이차전지용 파우치에 관한 것으로서, 이차전지의 케이스 성형 과정에서 발생할 수 있는 케이스의 내구성 저하 문제를 해결할 수 있는 이차전지 제조방법 및 이차전지용 파우치에 관한 것이다.
반복적인 충전 및 방전이 가능한 이차전지는 다양한 종류가 있는데, 일 예로, 파우치형 이차전지는 파우치 외장재 내부에 전극 조립체 및 전해액을 수용한 후 외장재를 밀봉함으로써 제조되는 이차전지를 의미한다.
이때, 외장재 내부에 전극 조립체가 수용되는 공간을 형성하기 위해 파우치형 이차전지의 제조 과정에서는 파우치의 일부 영역을 가압하여 파우치 중 일부 영역이 오목하게 함몰되어 일정한 깊이를 갖는 컵을 형성하는 단계를 거치는 것이 일반적이다.
이와 같이 파우치에 컵을 형성하는 단계에서, 종래 기술에 따르면 컵은 두 개가 형성되는 것이 일반적이다. 즉, 파우치 중 제1 영역 및 제1 영역과 이격되어 있는 제2 영역을 가압하여 두 개의 컵을 형성하게 된다. 이후 파우치에서 두 컵 사이의 영역을 폴딩하여 두 컵이 서로 마주보게 되는데, 두 컵이 서로 마주봄으로써 형성되는 공간에 전극 조립체가 수용된다.
한편, 최근에는 이차전지에 요구되는 전기 용량이 증대되는 추세이다. 이차전지의 용량은 이차전지에 구비되는 전극 조립체의 크기와 직결되는데, 큰 용량의 이차전지를 제조하기 위해서는 전극 조립체의 크기가 커야하고, 이는 결국 전극 조립체가 수용되는 케이스의 내부 공간의 부피 역시 보다 커져야 함을 의미한다. 그러나, 여러가지 제약 조건 때문에 전극 조립체가 수용되는 케이스의 내부 공간의 부피가 무한정 커질 수는 없는 것이 현실이다.
특히, 파우치형 이차전지의 경우 파우치에 형성되는 컵의 깊이가 무한정 커질 수 없다는 문제점이 있었다. 즉, 파우치 형성되는 컵의 깊이가 일정 범위보다 깊어지는 경우 파우치에 미세한 크랙 등이 발생하여 파우치에 파단이 발생하기 쉽고, 크랙 주위로 파우치가 하얗게 되는 백화 현상이 발생하는 등 취약 영역이 발생하는 문제점이 있었다. 이는 파우치형 이차전지의 용량을 증대하는데 제약 조건으로 작용하였다.
따라서, 본 발명의 목적은 파우치에 서로 다른 깊이를 갖는 컵을 형성하는 과정에서 발생할 수 있는 파우치의 내구성 약화 문제를 해결하는 데 있다.
또한, 본 발명의 다른 목적은 파우치형 이차전지의 용량을 종래에 비해 증대시키는 데 있다.
상기 목적을 달성하기 위한 본 발명의 제1 측면에 따르면, 전극 조립체를 수용하기 위한 파우치를 준비하는 단계; 상기 파우치 상의 서로 이격된 두 영역을 가압하여, 일정한 깊이를 갖도록 오목하게 함몰된 오목부가 형성되며 서로 이격되어 있는 제1 컵 및 제2 컵을 형성하는 제1 성형 단계; 상기 제1 컵을 추가로 가압하여, 상기 제1 성형 단계에서 형성된 제1 컵의 오목부의 깊이와 다른 깊이를 갖는 오목부가 형성된 상기 제1 컵을 형성하는 제2 성형 단계; 를 포함하는 이차전지용 파우치 제조방법이 제공된다.
상기 제1 성형 단계에서, 상기 제1 컵의 오목부의 깊이와 상기 제2 컵의 오목부의 깊이는 서로 동일할 수 있다.
상기 제1 성형 단계에서, 상기 제1 컵의 오목부와 상기 제2 컵의 오목부는 동시에 형성될 수 있다.
상기 제1 성형 단계에서 상기 제1 컵을 형성하는 성형부와 상기 제2 성형 단계에서 상기 제1 컵을 가압하는 성형부는 서로 동일할 수 있다.
상기 제1 성형 단계에서 상기 제1 컵을 형성하는 성형부와 상기 제2 성형 단계에서 상기 제1 컵을 가압하는 성형부는 서로 상이할 수 있다.
상기 제1 컵의 오목부의 깊이와 상기 제2 컵의 오목부의 깊이의 합은 9.0mm 초과 11.5mm 이하일 수 있다.
상기 제2 성형 단계에서, 상기 제1 컵의 오목부의 깊이는 4.5mm 초과 10.0mm 이하이고, 상기 제2 컵의 오목부의 깊이는 1.0mm 이상 3.0mm 이하일 수 있다.
상기 목적을 달성하기 위한 본 발명의 제2 측면에 따르면 이차전지용 파우치로서, 오목부가 형성된 제1 컵 및 제2 컵; 상기 제1 컵과 상기 제2 컵 사이에 형성되는 사이 영역; 을 포함하고, 상기 사이 영역을 중심으로 폴딩되어 상기 제1 컵 및 제2 컵이 서로 마주보도록 구비되고, 상기 제1 컵의 오목부의 깊이와 상기 제2 컵의 오목부의 깊이의 합은 9.0mm 초과 11.5mm 이하인 이차전지용 파우치가 제공된다.
상기 제1 컵의 오목부의 깊이는 4.5mm 초과 10.0mm 이하이고, 상기 제2 컵의 오목부의 깊이는 1.0mm 이상 3.0mm 이하일 수 있다.
상기 제2 컵의 오목부의 깊이에 대한 상기 제1 컵의 오목부의 깊이의 비는 1.33 내지 10의 범위를 가질 수 있다.
상기 사이 영역은, 상기 제1 컵과 연결되는 영역으로서 곡면이 형성되는 제1 곡면 영역과 상기 제2 컵과 연결되는 영역으로서 곡면이 형성되는 제2 곡면 영역만으로 이루어질 수 있다.
상기 제1 곡면 영역의 길이는 1.5mm이고, 상기 제2 곡면 영역의 길이는 0.5mm일 수 있다.
상기 목적을 달성하기 위한 본 발명의 제3 측면에 따르면, 전극 조립체를 수용하기 위한 파우치를 준비하는 단계; 상기 파우치 상의 서로 이격된 두 영역을 가압하여, 일정한 깊이를 갖도록 오목하게 함몰된 오목부가 형성되며 서로 이격되어 있는 제1 컵 및 제2 컵을 형성하는 제1 성형 단계; 상기 제1 컵을 추가로 가압하여, 상기 제1 성형 단계에서 형성된 제1 컵의 오목부의 깊이와 다른 깊이를 갖는 오목부가 형성된 상기 제1 컵을 형성하는 제2 성형 단계; 상기 제1 컵 또는 상기 제2 컵에 전극 조립체를 수용하는 단계; 상기 제1 컵과 상기 제2 컵 사이에 형성되는 사이 영역(R)을 중심으로 폴딩하여 상기 제1 컵 및 상기 제2 컵이 서로 마주보도록 구비함으로써 상기 제1 컵 및 상기 제2 컵에 전극 조립체가 수용되도록 하는 폴딩 단계; 를 포함하는 이차전지 제조방법이 제공된다.
본 발명에 따르면, 파우치에 서로 다른 깊이를 갖는 컵을 형성하는 과정에서 발생할 수 있는 파우치의 내구성 약화 문제를 해결할 수 있다.
또한, 본 발명에 따르면, 파우치형 이차전지의 용량이 종래에 비해 증대될 수 있다.
도 1은 본 발명의 일 예에 따른, 서로 다른 깊이를 갖는 복수의 컵이 형성되는 파우치를 제조하는 방법 중 제1 성형 단계를 도시한 측면도이다.
도 2는 본 발명의 일 예에 따른, 서로 다른 깊이를 갖는 복수의 컵이 형성되는 파우치를 제조하는 방법 중 제2 성형 단계를 도시한 측면도이다.
도 3은 본 발명의 일 예에 따라 제조된, 서로 다른 깊이를 갖는 복수의 컵이 형성된 파우치를 도시한 측면도이다.
이하, 도면을 참고하여 본 발명에 따른 이차전지 제조방법을 설명하도록 한다.
한편, 본 명세서에서는 제1 컵의 도면 부호가 102'및 102로 기재되어 있는데, 102'로 기재된 제1 컵은 하기에서 살펴볼 제1 성형 단계를 거치고 제2 성형 단계를 거치기 전의 제1 컵을 의미하는 것이고, 102로 기재된 제1 컵은 하기에서 살펴볼 제1 성형 단계 및 제2 성형 단계를 거치고 난 후의 제1 컵을 의미하는 것이다.
이차전지 제조방법
도 1은 본 발명의 일 예에 따른, 서로 다른 깊이를 갖는 복수의 컵이 형성되는 파우치를 제조하는 방법 중 제1 성형 단계를 도시한 측면도이다.
본 발명의 일 예에 따른 이차전지 제조방법은, 전극 조립체를 수용하는 외장재로서의 파우치를 준비하는 단계를 포함할 수 있다. 파우치(P)는 도 1에 도시된 바와 같이 평평한 판 형상을 가질 수 있으며, 파우치 전체에 걸쳐 일정한 두께를 가질 수 있다. 파우치의 두께는 60μm 내지 200μm일 수 있고, 예를 들어, 파우치의 두께는 60μm 내지 160μm일 수 있다.
또한, 파우치는 복수의 층상 구조를 가질 수 있다. 예를 들어, 도 1을 기준으로 파우치는 하부에서부터 순차적으로, 제1 고분자층, 금속층 및 제2 고분자층을 포함할 수 있다. 이때, 금속층은 알루미늄층일 수 있고, 제1 내지 제2 고분자층에 사용되는 고분자는 nylon, PP(polypropylene), PET(polyethylene terephthalate) 또는 그들의 조합일 수 있다.
또한, 본 발명의 일 예에 따른 이차전지 제조방법은, 도 1에 도시된 바와 같이 파우치(P) 상의 서로 이격된 두 영역을 가압하여, 일정한 깊이를 갖도록 오목하게 함몰된 오목부가 형성(도 2 참조)되며 서로 이격되어 있는 제1 컵 및 제2 컵을 형성하는 제1 성형 단계를 포함할 수 있다.
제1 성형 단계를 거친 후 도 2에 도시된 파우치 형상과 같이, 파우치(P)에는 각각 D1'깊이를 갖는 오목부(C1') 및 D2의 깊이를 갖는 오목부(C2)가 구비된 제1 컵(102') 및 제2 컵(104)이 형성될 수 있다. 제1 성형 단계에서 형성된 제1 컵(102') 및 제2 컵(104)에 형성된 각각의 오목부의 깊이 D1'과 D2는 서로 동일할 수 있지만, 이와 달리 D1'과 D2는 서로 상이할 수 있다. 예를 들어, D1'은 D2보다 클 수도 있고, 작을 수도 있다.
제1 성형 단계에서 제1 컵(102') 및 제2 컵(104) 각각의 오목부의 깊이 D1' 및 D2가 서로 동일한 경우 제1 컵 및 제2 컵 간에 대칭성을 갖게 되므로 제1 성형 단계 이후 파우치가 특정 방향으로 쏠리는 것을 방지할 수 있다.
한편, 본 명세서에서 '두 구성의 크기, 깊이 또는 두께가 동일'하다는 의미는 두 구성의 크기가 완전히 동일하지는 않더라도, 본 발명의 해당 분야에서 통상의 지식을 가진 자가 두 구성의 크기, 깊이 또는 두께가 실질적으로 동일하다고 판단할 수 있을 정도의 차이를 갖는 경우도 포함하는 것으로 해석되어야 한다.
전술한 바와 같이, 제1 성형 단계에서는 파우치(P) 상의 서로 이격된 두 영역을 가압함으로써 제1 컵 및 제2 컵이 형성될 수 있는데, 이와 같이 파우치 상의 두 영역을 가압하는 것은 도 1에 도시된 바와 같이 제1 성형부(202) 및 제2 성형부(204)에 의해 이루어질 수 있다. 즉, 제1 성형부(202)에 의해 제1 컵(102')이 형성될 수 있고, 제2 성형부(204)에 의해 제2 컵(104)이 형성될 수 있다. 도 1에는 D3의 두께를 갖는 제1 성형부(202) 및 D4의 두께를 갖는 제2 성형부(204)가 도시되어 있다. 또한, 제1 성형 단계에서 제1 성형부(202)는 제1 컵(102')을 형성하고, 제2 성형부(204)는 제2 컵(104)를 형성하므로, 제1 성형부의 두께(즉, D3)는 제1 성형 단계 이후 제1 컵의 오목부(C1')의 깊이(즉, D1')에 대응될 수 있고, 제2 성형부의 두께(즉, D4)는 제1 성형 단계 이후 제2 컵의 오목부(C2)의 깊이(즉, D2)에 대응될 수 있다. 따라서, 제1 성형부(202)의 두께 D3과 제2 성형부(204)의 두께 D4는 서로 동일할 수 있지만, 이와 달리 D3과 D4는 서로 상이할 수 있다. 예를 들어, D3은 D4보다 클 수도 있고, 작을 수도 있다.
또한, 본 발명의 제1 성형 단계에서, 제1 컵(102')의 오목부와 제2 컵(104)의 오목부는 동시에 형성될 수 있다. 즉, 제1 성형 단계에서 제1 성형부(202)와 제2 성형부(204)가 각각 제1 컵(102') 및 제2 컵(104)를 형성하는 공정은 동시에 이루어질 수 있다. 또한, 제1 성형 단계에서 제1 컵의 오목부(C1')의 깊이는 제2 컵의 오목부(C2)의 깊이와 동일할 수 있다.
제1 성형부 및 제2 성형부를 이용하여 제1 컵 및 제2 컵을 형성하는 공정이 시간적으로 따로 이루어지는 경우 파우치의 쏠림 현상이 발생할 수 있다. 예를 들어, 제1 성형 단계에서 제1 성형부가 파우치를 먼저 가압하여 제1 컵을 형성한 후 제2 성형부가 파우치를 가압하여 제2 컵을 형성하는 경우 제1 성형부에 의해 먼저 형성되는 제1 컵 방향으로 파우치의 쏠림 현상이 발생할 수 있다. 그러나, 제1 성형부 및 제2 성형부를 이용하여 제1 컵 및 제2 컵을 형성하는 공정이 동시에 이루어지는 경우 이러한 파우치의 쏠림 현상을 방지할 수 있다.
도 2는 본 발명의 일 예에 따른, 서로 다른 깊이를 갖는 복수의 컵이 형성되는 파우치를 제조하는 방법 중 제2 성형 단계를 도시한 측면도이다.
도 2에 도시된 바와 같이 본 발명의 일 예에 따른 이차전지 제조방법은, 제1 성형 단계에서 형성된 제1 컵(102')을 추가로 가압하여, 제1 성형 단계에서 형성된 제1 컵(102')의 오목부(C1')의 깊이(즉, D1')와 다른 깊이(즉, D1)의 오목부(C1)가 형성되는 제1 컵(102)을 형성하는 제2 성형 단계를 더 포함할 수 있다. 제1 성형 단계의 경우와 유사하게 제2 성형 단계에서 제1 컵(102')을 추가로 가압하는 것은 제3 성형부(206)에 의해 이루어질 수 있다.
따라서, D1은 D1'보다 클 수 있고, D1은 D2보다 클 수 있다.
도 3은 본 발명의 일 예에 따라 제조된, 서로 다른 깊이를 갖는 복수의 컵이 형성된 파우치를 도시한 측면도이다.
즉, 본 발명의 일 예에 따르면, 제1 성형 단계에서 D1'의 깊이를 갖는 오목부(C1')를 갖는 제1 컵(102')을 제2 성형 단계에서 추가로 가압함으로써, 보다 깊은 깊이(즉, D1)를 갖는 오목부(C1)가 형성된 제1 컵(102)을 형성할 수 있고, 서로 다른 깊이의 오목부가 형성된 컵들을 구비한, 비대칭 형상의 이차전지용 외장재 파우치가 제조될 수 있다. 이때, 제1 컵(102)과 제2 컵(104) 간의 거리는 2.0mm 내지 6.0mm일 수 있고, 바람직하게는 2.0mm 내지 4.0mm일 수 있다. 제1 컵(102)과 제2 컵(104) 간의 거리가 지나치게 가까운 경우, 이후, 제1 컵과 제2 컵 사이 영역을 폴딩함으로써 파우치형 이차전지를 제조하는 과정에서 폴딩이 제대로 이루어지지 않아 파우치에 불량이 발생할 수 있고, 제1 컵(102)과 제2 컵(104) 간의 거리가 지나치게 먼 경우에는 파우치의 부피가 커지게 되어 이차전지의 단위 부피당 용량이 감소하게 된다.
한편, 제1 성형 단계에서 제1 컵(102')을 형성하는 성형부와 제2 성형 단계에서 제1 컵(102')을 가압하는 성형부는 서로 상이할 수 있다. 즉, 도 1 및 도 2를 참고하면, 제1 성형부(202)와 제3 성형부(206)는 별개의 구성일 수 있다. 도 1 및 도 2에는 D3의 두께를 갖는 제1 성형부(202)와 D3보다 큰 D5의 두께를 갖는 제3 성형부(206)가 도시되어 있다.
그러나, 이와 달리 제1 성형 단계에서 제1 컵(120')을 형성하는 성형부와 제2 성형 단계에서 제1 컵(102')을 가압하는 성형부는 서로 동일할 수 있다. 즉, 제1 성형부(202)와 제3 성형부(206)는 동일한 구성일 수 있다. 제1 성형부(202)와 제3 성형부(206)가 서로 동일한 구성인 경우 본 발명에 따른 이차전지 제조방법을 실시하기 위한 구성들이 간소화되는 효과가 발생할 수 있다.
본 발명의 일 예에 따라 제1 성형 단계 및 제2 성형 단계를 거친 후 파우치에는 사이 영역(R)만큼 서로 이격되는 제1 컵(102) 및 제2 컵(104)을 포함하는 컵(100)이 형성된다.
제1 성형 단계 및 제2 성형 단계를 거친 후 파우치에 형성되는 제1 컵의 오목부의 깊이와 제2 컵의 오목부의 깊이 간에는 일정한 비율을 가질 수 있다. 예를 들어, 제2 컵의 오목부의 깊이에 대한 제1 컵의 오목부의 깊이의 비는 1.33 내지 10의 범위를 가질 수 있다. 보다 바람직하게는, 제2 컵의 오목부의 깊이에 대한 제1 컵의 오목부의 깊이의 비는 4 내지 10, 2 내지 4.75 또는 1.33 내지 2.67의 범위를 가질 수 있다.
제2 컵의 오목부의 깊이에 대한 제1 컵의 오목부의 깊이의 비가 상기 범위들을 벗어나 제1 컵의 오목부의 깊이가 커지는 경우에는 파우치에 크랙이 발생할 수 있고, 제2 컵의 오목부의 깊이에 대한 제1 컵의 오목부의 깊이의 비가 상기 범위들을 벗어나 제1 컵의 오목부의 깊이가 작아지는 경우에는 파우치의 컵들의 깊이를 충분히 확보하지 못하게 되어 이차전지의 용량이 충분히 증대되지 못할 수 있다.
반대로, 제2 컵의 오목부의 깊이에 대한 제1 컵의 오목부의 깊이의 비가 상기 범위들을 벗어나 제2 컵의 오목부의 깊이가 작아지는 경우에는 파우치의 컵들의 깊이를 충분히 확보하지 못하게 되어 이차전지의 용량이 충분히 증대되지 못할 수 있고, 제2 컵의 오목부의 깊이에 대한 제1 컵의 오목부의 깊이의 비가 상기 범위들을 벗어나 제2 컵의 오목부의 깊이가 커지는 경우에는 파우치에 크랙이 발생할 수 있다. 제2 컵의 오목부의 깊이에 대한 제1 컵의 오목부의 깊이의 비의 수치 범위에 대한 내용은 하기에서 살펴볼 실시예 1 내지 실시예 3에 의해 뒷받침될 수 있다.
한편, 사이 영역(R)은 제1 컵(102)과 연결되는 영역으로서 곡면을 포함하는 제1 곡면 영역, 제2 컵(104)과 연결되는 영역으로서 곡면을 포함하는 제2 곡면 영역, 및 제1 곡면 영역과 제2 곡면 영역 사이에 형성되며 평면으로 이루어진 평면 영역을 포함할 수 있다. 제1 컵(102)과 사이 영역(R)이 연결되는 영역, 및 제2 컵(104)과 사이 영역(R)이 연결되는 영역이 각지게 형성되는 경우 각진 영역에서 크랙이 발생하거나 파단이 일어나기 쉽다. 제1 곡면 영역 및 제2 곡면 영역은 그러한 문제를 해결하기 위한 구성일 수 있다. 즉, 제1 곡면 영역과 제2 곡면 영역이 형성됨으로써 제1 컵(102)와 사이 영역(R)가 연결되는 영역, 및 사이 영역(R)과 제2 컵(104)이 연결되는 영역이 부드럽게 연결되므로, 파우치의 내구성이 향상될 수 있다.
사이 영역이 제1 곡면 영역 및 제2 곡면 영역을 포함하는 것은 본 발명이 적용될 수 있는 중대형 용량의 파우치형 이차전지를 제조하는 과정의 특성을 반영한 것으로 볼 수도 있다. 즉, 소형 용량의 파우치형 이차전지에 사용되는 파우치와 비교하여 중대형 용량의 파우치형 이차전지에 사용되는 파우치의 경우 성형되는 컵의 오목부의 두께가 상대적으로 커서 파우치의 변형 정도도 크므로, 파우치의 두께 역시 상대적으로 큰 것이 일반적이다. 따라서, 중대형 용량의 파우치형 이차전지에 사용하는 파우치에 컵을 성형하는 과정에서 컵과 컵 사이에 곡면 영역이 형성될 수 밖에 없고, 이를 반영한 것이 본 발명에 따른 곡면 영역들일 수 있다.
반면, 소형 용량의 파우치형 이차전지에 사용되는 파우치를 구성하는 재료의 두께는 60μm으로서 상대적으로 작은 두께를 갖는 것이 일반적이다. 따라서, 컵의 성형 과정에서 파우치의 편형 정도가 상대적으로 작으므로, 컵과 컵 사이에 곡면 영역이 형성되지 않은 상태로 파우치가 성형될 수 있다.
따라서, 본 발명은 중대형 용량의 파우치형 이차전지에 적용되는 발명일 수 있다. 즉, 본 발명에 따르면 중대형 용량의 파우치형 이차전지의 제조 과정에서 파우치에 형성될 수 밖에 없는, 컵 간의 사이 영역을 최소화함으로써 사이 영역에 의해 외부로 돌출되는 부분을 최소화하여 중대형 용량의 파우치형 이차전지의 용량을 극대화할 수 있다.
반면, 전술한 바와 달리 사이 영역(R)은 평면 영역을 포함하지 않고, 제1 곡면 영역 및 제2 곡면 영역만을 포함할 수도 있다. 이 경우, 사이 영역(R)에서 평면 영역이 차지하는 비중이 사라지므로, 사이 영역(R)의 면적 및 길이를 최소화할 수 있다. 이 경우, 하기에서 살펴볼 바와 같이 사이 영역(R)을 중심으로 파우치가 폴딩됨으로써 파우치형 이차전지가 제조되는 경우, 이차전지에서 사이 영역에 의해 이차전지의 폭 방향으로 돌출되는 부분이 최소화되므로, 이차전지의 단위 부피당 면적을 극대화할 수 있다. 이때, 전술한 바와 같이 제1 컵과 제2 컵 사이의 거리(즉, 사이 영역의 길이)는 2.0mm 내지 6.0mm, 또는, 2.0mm 내지 4.0mm일 수 있으므로, 이차전지의 단위 부피당 면적을 극대화하기 위해서 사이 영역의 길이(즉, 제1 곡면 영역의 길이 및 제2 곡면 영역의 길이의 합)는 2.0mm일 수 있다.
본 발명에 따르면 서로 다른 깊이의 오목부를 갖는 복수의 컵을 형성하는 과정에서 발생할 수 있는, 파우치가 한쪽 방향으로 쏠리는 현상이 발생하지 않게 되므로 컵 간의 영역(즉, 사이 영역(R))에서 발생할 수 있는 크랙 현상을 방지할 수 있어 파우치 및 이차전지의 내구성이 향상될 수 있다.
즉, 제1 성형 단계에서 제1 컵과 제2 컵이 함께 성형되므로 파우치를 구성하는 재료가 특정 방향으로 쏠리지 않게 된다. 이후, 제2 성형 단계에서 추가적인 가압을 통해 제1 컵의 오목부의 깊이가 더 깊게 형성되는데, 제1 성형 단계에서 제1 컵 및 제2 컵이 우선 형성된 이상, 제2 성형 단계에서는 제1 컵을 추가로 가압하더라도 파우치를 구성하는 재료가 제1 컵 방향으로 쏠리지 않게 된다.
본 발명의 일 예에 따른 이차전지 제조방법은, 제1 성형 단계 및 제2 성형 단계 이후에 이루어지며, 사이 영역(R)을 중심으로 폴딩하여 제1 컵(102) 및 제2 컵(104)이 서로 마주보도록 구비함으로써 제1 컵 및 제2 컵에 전극 조립체가 수용되도록 하는 폴딩 단계를 더 포함할 수 있다.
한편, 본 발명의 일 예에 따른 이차전지 제조방법에 따라 제조되는 파우치는 중대형 용량의 이차전지에 사용되는 파우치일 수 있다. 이를 위해, 폴딩 단계까지 진행된 후의 파우치를 위에서 바라보았을 때(즉, 도 1 내지 도 3을 기준으로 파우치를 위에서 바라보았을 때) 파우치의 둘레는 사각형 형상을 가질 수 있고 위에서 바라본 사각형 형상의 파우치의 가로 변은 100mm 이상 500mm 이하의 범위를 가질 수 있고, 세로 변은 100mm 이상 500mm 이하의 범위를 가질 수 있다. 예를 들어, 사각형 형상의 파우치의 가로 변은 100mm 이상 300mm 이하의 범위를 가질 수 있고, 세로 변은 100mm 이상 300mm 이하의 범위를 가질 수 있다.
또한, 전술한 바와 같이 본 발명의 일 예에 따라 제조되는 파우치는 중대형 용량의 이차전지에 사용되는 파우치일 수 있으므로, 파우치를 구성하는 재료의 두께 역시 그에 맞게 일정한 범위를 가질 수 있다. 따라서, 전술한 바와 같이 파우치를 구성하는 재료의 두께는 60μm 내지 200μm일 수 있고, 예를 들어, 파우치를 구성하는 재료의 두께는 100μm 내지 160μm일 수 있다.
또한, 파우치를 위에서 바라보았을 때 파우치는 직사각형 형상 또는 정사각형 형상을 가질 수 있다.
상기 내용을 토대로 본 발명에 따른 이차전지 제조방법을 설명하면 다음과 같다.
본 발명에 따른 이차전지 제조방법은, 전극 조립체를 수용하기 위한 파우치를 준비하는 단계, 파우치 상의 서로 이격된 두 영역을 가압하여, 일정한 깊이를 갖도록 오목하게 함몰된 오목부가 형성되며 서로 이격되어 있는 제1 컵 및 제2 컵을 형성하는 제1 성형 단계, 제1 컵을 추가로 가압하여, 제1 성형 단계에서 형성된 제1 컵의 오목부의 깊이와 다른 깊이를 갖는 오목부가 형성된 제1 컵을 형성하는 제2 성형 단계, 제1 컵 또는 제2 컵에 전극 조립체를 수용하는 단계, 및 제1 컵과 제2 컵 사이에 형성되는 사이 영역(R)을 중심으로 폴딩하여 제1 컵 및 제2 컵이 서로 마주보도록 구비함으로써 제1 컵 및 제2 컵에 전극 조립체가 수용되도록 하는 폴딩 단계; 를 포함할 수 있다.
실시예 1
두께가 150μm인 라미네이트 시트를 가압하여 제1 컵 및 제2 컵을 형성하여 파우치를 제조하였다. 상기 라미네이트 시트는 하단에서부터 순차적으로 30μm의 nylon층, 40μm의 알루미늄층, 80μm의 PP층이 순차적으로 적층된 라미네이트 시트를 사용하였다.
제1 컵 및 제2 컵은 각각 금형으로 라미네이트 시트를 가압함으로써 형성되었다. 실시예 1에서 금형은 0.5Mpa의 압력 및 40mm/sec의 속도로 라미네이트 시트를 가압하였다.
제1 성형 단계에서 제1 컵의 오목부의 깊이와 제2 컵의 오목부의 깊이는 모두 1.0mm가 될 때까지 성형하였다. 그런 다음, 제2 성형 단계에서 제1 컵을 구성하는 라미네이트 시트를 추가로 가압하여 제1 컵의 오목부의 깊이가 각각 4.0mm, 5.0mm, 6.0mm, 7.0mm, 8.0mm, 9.0mm, 10.0mm, 10.5mm, 11.0mm인 파우치 9개를 형성하였다.
이때, 상기 제1 컵과 제2 컵 간의 사이 영역의 길이는 2.0mm였다. 즉, 사이 영역 중 제1 컵과 연결되고 곡면으로 이루어진 제1 곡면 영역의 길이는 1.5mm였고, 제2 컵과 연결되고 곡면으로 이루어진 제2 곡면 영역의 길이는 0.5mm였다. 제1 곡면 영역과 제2 곡면 영역 사이에 평면 영역은 형성되지 않았다.
상기와 같이 제조된 파우치를 폴딩한 후의 파우치를 위에서 바라보았을 때 파우치의 둘레는 가로 100mm, 세로 250mm의 직사각형 형상을 가졌다.
실시예 2
실시예 2에 따른 라미네이트 시트의 두께, 라미네이트 시트를 구성하는 각 층의 두께, 라미네이트 시트를 구성하는 각 층의 물질에 대한 내용은 실시예 1과 동일하였다. 라미네이트 시트를 가압하는 금형의 압력 및 가압 속도 역시 실시예 1과 동일하였다.
제1 성형 단계에서 제1 컵의 오목부의 깊이와 제2 컵의 오목부의 깊이는 모두 2.0mm가 될 때까지 성형하였다. 그런 다음, 제2 성형 단계에서 제1 컵을 구성하는 라미네이트 시트를 추가로 가압하여 제1 컵의 오목부의 깊이가 각각 4.0mm, 5.0mm, 6.0mm, 7.0mm, 8.0mm, 9.0mm, 9.5mm, 10.0mm, 10.5mm인 파우치 9개를 형성하였다.
이때, 상기 제1 컵과 제2 컵 간의 사이 영역의 길이는 2.0mm였다. 즉, 사이 영역 중 제1 컵과 연결되고 곡면으로 이루어진 제1 곡면 영역의 길이는 1.5mm였고, 제2 컵과 연결되고 곡면으로 이루어진 제2 곡면 영역의 길이는 0.5mm였다. 제1 곡면 영역과 제2 곡면 영역 사이에 평면 영역은 형성되지 않았다.
상기와 같이 제조된 파우치를 폴딩한 후의 파우치를 위에서 바라보았을 때 파우치의 둘레는 가로 100mm, 세로 250mm의 직사각형 형상을 가졌다.
실시예 3
실시예 3에 따른 라미네이트 시트의 두께, 라미네이트 시트를 구성하는 각 층의 두께, 라미네이트 시트를 구성하는 각 층의 물질에 대한 내용은 실시예 1과 동일하였다. 라미네이트 시트를 가압하는 금형의 압력 및 가압 속도 역시 실시예 1과 동일하였다.
제1 성형 단계에서 제1 컵의 오목부의 깊이와 제2 컵의 오목부의 깊이는 모두 3.0mm가 될 때까지 성형하였다. 그런 다음, 제2 성형 단계에서 제1 컵을 구성하는 라미네이트 시트를 추가로 가압하여 제1 컵의 오목부의 깊이가 각각 4.0mm, 5.0mm, 6.0mm, 7.0mm, 8.0mm, 8.5mm, 9.0mm, 10.0mm인 파우치 8개를 형성하였다.
이때, 상기 제1 컵과 제2 컵 간의 사이 영역의 길이는 2.0mm였다. 즉, 사이 영역 중 제1 컵과 연결되고 곡면으로 이루어진 제1 곡면 영역의 길이는 1.5mm였고, 제2 컵과 연결되고 곡면으로 이루어진 제2 곡면 영역의 길이는 0.5mm였다. 제1 곡면 영역과 제2 곡면 영역 사이에 평면 영역은 형성되지 않았다.
상기와 같이 제조된 파우치를 폴딩한 후의 파우치를 위에서 바라보았을 때 파우치의 둘레는 가로 100mm, 세로 250mm의 직사각형 형상을 가졌다.
비교예
비교예에 따른 라미네이트 시트의 두께, 라미네이트 시트를 구성하는 각 층의 두께, 라미네이트 시트를 구성하는 각 층의 물질에 대한 내용은 실시예 1과 동일하였다. 라미네이트 시트를 가압하는 금형의 압력 및 가압 속도 역시 실시예 1과 동일하였다.
비교예에서 제1 컵의 오목부의 깊이와 제2 컵의 오목부의 깊이는 서로 동일하게 형성되었다. 이때, 제1 컵의 오목부와 제2 컵의 오목부는 동시에 형성되었다. 비교예에서는 제1 컵의 오목부와 제2 컵의 오목부의 깊이가 각각 1.0mm, 2.0mm, 3.0mm, 4.0mm, 4.5mm, 5.0mm, 5.5mm인 파우치 7개를 형성하였다.
이때, 상기 제1 컵과 제2 컵 간의 사이 영역의 길이는 3.0mm였다. 즉, 사이 영역 중 제1 컵과 연결되고 곡면으로 이루어진 제1 곡면 영역의 길이는 1.5mm였고, 제2 컵과 연결되고 곡면으로 이루어진 제2 곡면 영역의 길이는 1.5mm였다. 제1 곡면 영역과 제2 곡면 영역 사이에 평면 영역은 형성되지 않았다.
실험예
실시예 1 내지 3 및 비교예에 의해 제조된 이차전지용 파우치에 크랙이 발생하였는지 여부를 측정하였다. 파우치에 크랙이 발생하였는지 여부는 파우치에 핀 홀(pin hole)이 발생하였는지 여부를 기준으로 측정하였으며, 핀 홀의 발생 여부는 육안으로 관찰하되 불빛을 비추어서 관찰하였다. 즉, 제1 컵과 제2 컵을 포함하는 이차전지용 파우치에 핀 홀이 형성되는 경우에는 크랙이 발생한 것으로 판단하였고, 제1 컵과 제2 컵을 포함하는 이차전지용 파우치에 핀 홀이 형성되지 않은 경우에는 크랙이 발생하지 않은 것으로 판단하였다.
실시예 1 내지 실시예 3에 의해 제조된 이차전지용 파우치에 대한 실험 결과는 하기의 표 1과 같고, 비교예에 의해 제조된 이차전지용 파우치에 대한 실험 결과는 하기의 표 2와 같다.
한편, 표 1 및 표 2에서 'a/b(이때, a와 b 모두 숫자)'는 해당 컵을 형성하기 위하여 이루어진 b번의 실험 중 a번의 크랙이 발생하였음을 의미한다.
크랙 발생 여부 및 크랙 발생 빈도
제1 컵의 성형 깊이(mm) 실시예 1 실시예 2 실시예 3
4.0 X(0/3) X(0/3) X(0/3)
5.0 X(0/3) X(0/3) X(0/3)
6.0 X(0/3) X(0/3) X(0/3)
7.0 X(0/3) X(0/3) X(0/3)
8.0 X(0/3) X(0/3) X(0/3)
8.5 - - O(2/5)
9.0 X(0/3) X(0/3) O(4/5)
9.5 - X(0/3) -
10.0 X(0/3) O(4/5) O(5/5)
10.5 O(2/5) O(5/5) -
11.0 O(5/5) - -
제1 컵의 깊이+제2 컵의 깊이의 최대값 11.0mm 11.5mm 11.0mm
크랙 발생 여부 및 크랙 발생 빈도
제1 컵 및 제2 컵의 성형 깊이(mm) 비교예
1.0 X(0/3)
2.0 X(0/3)
3.0 X(0/3)
4.0 X(0/3)
4.5 X(0/3)
5.0 O(2/5)
5.5 O(4/5)
제1 컵의 깊이+제2 컵의 깊이의 최대값 9.0mm
표 2에 기재된 바와 같이 비교예에 따라 제조된 이차전지용 파우치로서 특히, 제1 컵 및 제2 컵의 오목부의 깊이가 서로 동일하게 형성된 경우 제1 컵의 오목부의 깊이와 제2 컵의 오목부의 깊이의 합을 극대화하는데 상당한 제한이 있음을 확인할 수 있었다. 즉, 표 1을 참고하면, 비교예에 따라 제1 컵의 오목부의 깊이와 제2 컵 오목부의 깊이가 서로 동일한 경우 제1 컵 및 제2 컵의 깊이의 최대값은 각각 4.5mm이고, 제1 컵의 깊이와 제2 컵의 깊이의 합의 최대값은 9.0mm임을 확인할 수 있다. 즉, 비교예에 따르면 제1 컵 및 제2 컵의 깊이가 4.5mm를 초과하는 경우 파우치에 크랙이 발생하는 문제가 발생함을 알 수 있다.
제1 컵의 두께와 제2 컵의 깊이의 합은 결국 파우치형 이차전지의 두께와 직결되는 것이다. 따라서, 제1 컵의 두께와 제2 컵의 깊이의 합이 클수록 파우치 내부에 구비되는 전극 조립체의 두께도 커질 수 있게 되어 파우치형 이차전지의 용량이 극대화될 수 있다. 이러한 관점에서 살펴보았을 때, 비교예에 따라 제조된 이차전지용 파우치를 적용한 파우치형 이차전지의 용량은 9.0mm의 제1 컵의 두께 및 제2 컵의 두께의 합에 대응하는 용량에 제한된다.
그러나, 본 발명의 실시예 1 내지 실시예 3에 따라 제조된 이차전지용 파우치를 사용하여 파우치형 이차전지를 제조하는 경우 이차전지의 용량이 현저하게 증가함을 확인할 수 있다. 즉, 본 발명의 실시예 1에 따른 이차전지용 파우치에서 제1 컵의 깊이와 제2 컵의 깊이의 합의 최대값은 11.0mm이고, 실시예 2에 따른 이차전지용 파우치에서 제1 컵의 깊이와 제2 컵의 깊이의 합의 최대값은 11.5mm이고, 실시예 3에 따른 이차전지용 파우치에서 제1 컵의 깊이와 제2 컵의 깊이의 합은 11.0mm임을 알 수 있다. 따라서, 비교예와 대비하였을 때 실시예 1과 실시예 3의 경우 약 22%의 용량 증대 효과를 발휘할 수 있으며, 실시예 2의 경우 약 27.8%의 용량 증대 효과를 발휘할 수 있다(실시예 1 내지 3과 비교예에서 파우치의 다른 규격들은 모두 동일하다고 가정).
특히, 비교예에 따라 이차전지용 파우치를 제조할 경우 제1 컵 및 제2 컵의 깊이가 4.5mm를 초과할 수 없었으나, 본 발명의 실시예 1 내지 실시예 3에 따라 이차전지용 파우치를 제조할 경우 상대적으로 큰 깊이를 갖는 제1 컵의 깊이가 4.5mm를 초과하여 최대 10.0mm까지 형성될 수 있음을 확인할 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 실시가 가능함은 물론이다.

Claims (14)

  1. 전극 조립체를 수용하기 위한 파우치를 준비하는 단계;
    상기 파우치 상의 서로 이격된 두 영역을 가압하여, 일정한 깊이를 갖도록 오목하게 함몰된 오목부가 형성되며 서로 이격되어 있는 제1 컵 및 제2 컵을 형성하는 제1 성형 단계;
    상기 제1 컵을 추가로 가압하여, 상기 제1 성형 단계에서 형성된 제1 컵의 오목부의 깊이와 다른 깊이를 갖는 오목부가 형성된 상기 제1 컵을 형성하는 제2 성형 단계; 를 포함하는 이차전지용 파우치 제조방법.
  2. 청구항 1에 있어서,
    상기 제1 성형 단계에서,
    상기 제1 컵의 오목부의 깊이와 상기 제2 컵의 오목부의 깊이는 서로 동일한 이차전지용 파우치 제조방법.
  3. 청구항 1에 있어서,
    상기 제1 성형 단계에서,
    상기 제1 컵의 오목부와 상기 제2 컵의 오목부는 동시에 형성되는 이차전지용 파우치 제조방법.
  4. 청구항 1에 있어서,
    상기 제1 성형 단계에서 상기 제1 컵을 형성하는 성형부와 상기 제2 성형 단계에서 상기 제1 컵을 가압하는 성형부는 서로 동일한 이차전지용 파우치 제조방법.
  5. 청구항 1에 있어서,
    상기 제1 성형 단계에서 상기 제1 컵을 형성하는 성형부와 상기 제2 성형 단계에서 상기 제1 컵을 가압하는 성형부는 서로 상이한 이차전지용 파우치 제조방법.
  6. 청구항 1에 있어서,
    상기 제2 성형 단계에서,
    상기 제1 컵의 오목부의 깊이와 상기 제2 컵의 오목부의 깊이의 합은 9.0mm 초과 11.5mm 이하인 이차전지용 파우치 제조방법.
  7. 청구항 6에 있어서,
    상기 제2 성형 단계에서,
    상기 제1 컵의 오목부의 깊이는 4.5mm 초과 10.0mm 이하이고,
    상기 제2 컵의 오목부의 깊이는 1.0mm 이상 3.0mm 이하인 이차전지용 파우치 제조방법.
  8. 이차전지용 파우치로서,
    오목부가 형성된 제1 컵 및 제2 컵;
    상기 제1 컵과 상기 제2 컵 사이에 형성되는 사이 영역; 을 포함하고,
    상기 사이 영역을 중심으로 폴딩되어 상기 제1 컵 및 제2 컵이 서로 마주보도록 구비되고,
    상기 제1 컵의 오목부의 깊이와 상기 제2 컵의 오목부의 깊이의 합은 9.0mm 초과 11.5mm 이하인 이차전지용 파우치.
  9. 청구항 8에 있어서,
    상기 제1 컵의 오목부의 깊이는 4.5mm 초과 10.0mm 이하이고,
    상기 제2 컵의 오목부의 깊이는 1.0mm 이상 3.0mm 이하인 이차전지용 파우치.
  10. 청구항 8에 있어서,
    상기 제2 컵의 오목부의 깊이에 대한 상기 제1 컵의 오목부의 깊이의 비는 1.33 내지 10의 범위를 갖는 이차전지용 파우치.
  11. 청구항 8에 있어서,
    상기 사이 영역은,
    상기 제1 컵과 연결되는 영역으로서 곡면이 형성되는 제1 곡면 영역과 상기 제2 컵과 연결되는 영역으로서 곡면이 형성되는 제2 곡면 영역만으로 이루어진 이차전지용 파우치.
  12. 청구항 11에 있어서,
    상기 제1 곡면 영역의 길이는 1.5mm이고,
    상기 제2 곡면 영역의 길이는 0.5mm인 이차전지용 파우치.
  13. 전극 조립체를 수용하기 위한 파우치를 준비하는 단계;
    상기 파우치 상의 서로 이격된 두 영역을 가압하여, 일정한 깊이를 갖도록 오목하게 함몰된 오목부가 형성되며 서로 이격되어 있는 제1 컵 및 제2 컵을 형성하는 제1 성형 단계;
    상기 제1 컵을 추가로 가압하여, 상기 제1 성형 단계에서 형성된 제1 컵의 오목부의 깊이와 다른 깊이를 갖는 오목부가 형성된 상기 제1 컵을 형성하는 제2 성형 단계;
    상기 제1 컵 또는 상기 제2 컵에 전극 조립체를 수용하는 단계;
    상기 제1 컵과 상기 제2 컵 사이에 형성되는 사이 영역(R)을 중심으로 폴딩하여 상기 제1 컵 및 상기 제2 컵이 서로 마주보도록 구비함으로써 상기 제1 컵 및 상기 제2 컵에 전극 조립체가 수용되도록 하는 폴딩 단계; 를 포함하는 이차전지 제조방법.
  14. 청구항 8에 따른 이차전지용 파우치; 및
    상기 이차전지용 파우치에 수용되는 전극 조립체; 를 포함하는 이차전지.
PCT/KR2018/015622 2018-01-31 2018-12-10 이차전지 제조방법, 이차전지용 파우치 제조방법 및 이차전지용 파우치 WO2019151638A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/611,680 US11613053B2 (en) 2018-01-31 2018-12-10 Method for manufacturing secondary battery, method for manufacturing pouch for secondary battery, and pouch for secondary battery
JP2019564800A JP7080256B2 (ja) 2018-01-31 2018-12-10 二次電池の製造方法、二次電池用パウチの製造方法及び二次電池用パウチ
EP18903305.3A EP3611774A4 (en) 2018-01-31 2018-12-10 A SECONDARY BATTERY MANUFACTURING METHOD, A SECONDARY BATTERY BAG, AND A SECONDARY BATTERY BAG
CN201880028193.8A CN110574184B (zh) 2018-01-31 2018-12-10 制造二次电池的方法、制造二次电池的袋的方法和二次电池的袋

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180012481A KR102268404B1 (ko) 2018-01-31 2018-01-31 이차전지 제조방법, 이차전지용 파우치 제조방법 및 이차전지용 파우치
KR10-2018-0012481 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151638A1 true WO2019151638A1 (ko) 2019-08-08

Family

ID=67479745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015622 WO2019151638A1 (ko) 2018-01-31 2018-12-10 이차전지 제조방법, 이차전지용 파우치 제조방법 및 이차전지용 파우치

Country Status (6)

Country Link
US (1) US11613053B2 (ko)
EP (1) EP3611774A4 (ko)
JP (1) JP7080256B2 (ko)
KR (1) KR102268404B1 (ko)
CN (1) CN110574184B (ko)
WO (1) WO2019151638A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483904B2 (ja) 2020-06-04 2024-05-15 エルジー エナジー ソリューション リミテッド パウチ成形装置及び成形方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210025995A (ko) * 2019-08-28 2021-03-10 주식회사 엘지화학 파우치 형 전지 케이스 및 파우치 형 이차 전지
KR102578784B1 (ko) * 2019-12-17 2023-09-15 주식회사 엘지에너지솔루션 이차전지용 케이스 및 이차전지
CN115347282B (zh) * 2021-05-14 2024-05-31 中创新航科技股份有限公司 电池、电池组及电池制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110250A (ja) * 2000-09-27 2002-04-12 At Battery:Kk 非水系電解液二次電池
KR20060037827A (ko) * 2004-10-28 2006-05-03 삼성에스디아이 주식회사 리튬 이차 전지 및 이의 제조 방법
KR20110128594A (ko) * 2010-05-24 2011-11-30 삼성에스디아이 주식회사 이차 전지용 파우치, 그의 제조 방법 및 상기 파우치를 포함하는 이차 전지
KR101253671B1 (ko) * 2010-11-12 2013-04-11 주식회사 이아이지 리튬 이차전지 및 그 제조방법
KR101273472B1 (ko) * 2010-11-10 2013-06-14 주식회사 이아이지 파우치형 이차 전지의 제조 방법 및 이에 의한 파우치형 이차 전지

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224652A (ja) 1997-12-04 1999-08-17 Matsushita Electric Ind Co Ltd ラミネートシートを外装ケースとする電池
JP2001229888A (ja) 2000-02-16 2001-08-24 At Battery:Kk 薄型電池
JP2002367574A (ja) 2001-06-11 2002-12-20 Mitsubishi Electric Corp 電池および携帯端末
JP4140311B2 (ja) 2002-08-05 2008-08-27 トヨタ自動車株式会社 蓄電素子用ケースの製造方法
KR100586896B1 (ko) * 2004-07-30 2006-06-08 주식회사 이스퀘어텍 이차전지용 파우치의 성형장치
KR100571269B1 (ko) * 2004-09-22 2006-04-13 삼성에스디아이 주식회사 이차전지용 파우치 및 파우치형 이차전지
US20120177953A1 (en) * 2011-01-06 2012-07-12 Apple Inc. Batteries with variable terrace positions
KR101192619B1 (ko) * 2012-03-23 2012-10-18 주식회사 엘지화학 전지케이스
JP6017159B2 (ja) 2012-03-28 2016-10-26 三洋電機株式会社 ラミネート外装電池
KR101477018B1 (ko) 2012-05-24 2014-12-29 주식회사 엘지화학 전지케이스 제조 방법
KR101403692B1 (ko) 2012-12-26 2014-06-05 (주)오렌지파워 전지용 파우치, 및 이를 포함하는 파우치형 전지
KR101999405B1 (ko) * 2013-02-05 2019-07-11 삼성에스디아이 주식회사 전지 팩 및 전지 팩의 제조방법
KR101479843B1 (ko) 2013-05-29 2015-01-06 주식회사 누리하이텍 폴리머 케이스 성형 프레스 장치
KR102073192B1 (ko) 2013-08-07 2020-02-04 삼성에스디아이 주식회사 파우치형 배터리셀
KR101688580B1 (ko) * 2013-09-30 2016-12-21 주식회사 엘지화학 곡면이 형성되어 있는 전지셀
KR20170001358A (ko) * 2015-06-26 2017-01-04 삼성에스디아이 주식회사 커브드 이차 전지 및 그의 제조 방법
JP6556256B2 (ja) * 2015-07-27 2019-08-07 エルジー・ケム・リミテッド 安全部材を含むパウチ型二次電池
KR101752307B1 (ko) * 2016-11-14 2017-06-30 율촌화학 주식회사 성형성이 우수한 셀 파우치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110250A (ja) * 2000-09-27 2002-04-12 At Battery:Kk 非水系電解液二次電池
KR20060037827A (ko) * 2004-10-28 2006-05-03 삼성에스디아이 주식회사 리튬 이차 전지 및 이의 제조 방법
KR20110128594A (ko) * 2010-05-24 2011-11-30 삼성에스디아이 주식회사 이차 전지용 파우치, 그의 제조 방법 및 상기 파우치를 포함하는 이차 전지
KR101273472B1 (ko) * 2010-11-10 2013-06-14 주식회사 이아이지 파우치형 이차 전지의 제조 방법 및 이에 의한 파우치형 이차 전지
KR101253671B1 (ko) * 2010-11-12 2013-04-11 주식회사 이아이지 리튬 이차전지 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611774A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483904B2 (ja) 2020-06-04 2024-05-15 エルジー エナジー ソリューション リミテッド パウチ成形装置及び成形方法

Also Published As

Publication number Publication date
JP7080256B2 (ja) 2022-06-03
KR102268404B1 (ko) 2021-06-24
KR20190093045A (ko) 2019-08-08
EP3611774A4 (en) 2020-08-05
US11613053B2 (en) 2023-03-28
CN110574184B (zh) 2022-05-10
EP3611774A1 (en) 2020-02-19
JP2020521295A (ja) 2020-07-16
US20200168852A1 (en) 2020-05-28
CN110574184A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2019151638A1 (ko) 이차전지 제조방법, 이차전지용 파우치 제조방법 및 이차전지용 파우치
WO2015046803A1 (ko) 전극조립체 및 이차전지의 제조방법
WO2014123362A1 (ko) 단차가 형성된 전극 조립체, 상기 전극 조립체를 포함하는 이차전지 및 상기 전극 조립체 제조방법
WO2021054722A1 (ko) 파우치 형 전지 케이스 및 이를 제조하는 제조 장치, 파우치 형 이차 전지
WO2019078453A1 (ko) 균열 방지 구조를 포함하는 파우치형 전지케이스 및 이의 제조방법
WO2013180449A1 (ko) 전극 조립체, 전지셀, 전극 조립체의 제조방법 및 전지셀의 제조 방법
WO2020050534A1 (ko) 육각기둥 형상의 배터리 셀 및 그 제조방법, 그리고 이를 포함하는 배터리 모듈
WO2019078447A1 (ko) 균열을 방지하기 위한 파우치형 이차전지용 실링 블록, 이를 사용하여 제조되는 파우치형 전지케이스 및 파우치형 전지케이스의 실링 방법
WO2014133303A1 (ko) 안정성이 향상된 이차전지용 바이셀 및 그 제조방법
WO2019135510A1 (ko) 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
WO2020197266A1 (ko) 이차전지용 전극 제조장치와, 이를 통해 제조된 이차전지용 전극 및 이차전지
WO2019017668A1 (ko) 전극 조립체, 그 전극 조립체를 포함하는 이차전지 및 그 전극 조립체의 제조 방법
WO2019208912A1 (ko) 전극 조립체 및 그 전극 조립체 제조방법
WO2022092616A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2022035124A1 (ko) 이차전지용 실링장치
WO2018012789A1 (ko) 이차전지
WO2021261698A1 (ko) 파우치와 상기 파우치의 성형장치 및 상기 파우치를 포함하는 이차전지의 제조방법
WO2019009512A1 (ko) 플렉서블 이차 전지용 외장재 및 이를 포함하는 플렉서블 이차 전지
WO2020116780A1 (ko) 두께의 편차가 있는 전지케이스용 라미네이트 시트 및 이를 이용하여 제조된 파우치형 전지케이스
WO2020004759A1 (ko) 전극 조립체 제조방법
WO2019164091A1 (ko) 전극 조립체 제조장치 및 전극 조립체의 제조방법
WO2019177257A1 (ko) 이차전지용 실링장치
WO2022114466A1 (ko) 파우치 성형 장치
WO2022098060A1 (ko) 리드 탭용 필름과 이의 제조 방법, 및 이를 포함하는 이차전지
WO2021251569A1 (ko) 보호부재를 포함하는 전지셀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018903305

Country of ref document: EP

Effective date: 20191114

Ref document number: 2019564800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE