WO2020004759A1 - 전극 조립체 제조방법 - Google Patents

전극 조립체 제조방법 Download PDF

Info

Publication number
WO2020004759A1
WO2020004759A1 PCT/KR2019/001048 KR2019001048W WO2020004759A1 WO 2020004759 A1 WO2020004759 A1 WO 2020004759A1 KR 2019001048 W KR2019001048 W KR 2019001048W WO 2020004759 A1 WO2020004759 A1 WO 2020004759A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
separator
electrode assembly
stack
electrode stack
Prior art date
Application number
PCT/KR2019/001048
Other languages
English (en)
French (fr)
Inventor
유미정
신병헌
이우용
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980004905.7A priority Critical patent/CN111201658B/zh
Priority to EP19826608.2A priority patent/EP3683879B1/en
Priority to US16/761,647 priority patent/US11621434B2/en
Publication of WO2020004759A1 publication Critical patent/WO2020004759A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an electrode assembly, and more particularly to a method for manufacturing an electrode assembly having a curved surface.
  • the specifications required for secondary batteries equipped with electronic devices and capable of recharging and discharging repeatedly are also diversified.
  • the electronic device needs to have a curved shape out of a conventional angular shape. It is required to have a curved shape.
  • the shape of the secondary battery is required to have an atypical shape such as a curved shape out of the existing standard shape.
  • the electrode and the separator are bonded to each other in the electrode assembly before being pressed by the pressure press
  • the curved surface is formed by pressing the electrode assembly with the pressure press
  • the electrode and the separator are pressed before being pressed by the pressure press.
  • the curved surface could not be maintained by the adhesive force and returned to the state before being pressed. This problem tended to worsen as the radius of curvature of the curved surface formed by the pressing press became smaller (that is, the more the electrode assembly was bent by the pressing press).
  • a problem to be solved by the present invention is to manufacture an electrode assembly having a curved surface having a smaller radius of curvature than in the prior art.
  • a first step having a plurality of basic units are prepared by alternately stacking the electrode and the separator;
  • the adhesive force formed before the third step wherein the sum of the adhesive force remaining after the third step of the adhesive force between the electrode and the separator in the electrode stack is called F1
  • the shape of the electrode and the separator is The sum of the forces that the electrode and the separator are to be unfolded again to return to the shape before the electrode laminate is pressed in the third step is R
  • the third step further provides the separation between the electrode and the separator inside the electrode assembly.
  • the sum of the formed adhesive forces is F2
  • an electrode assembly manufacturing method that satisfies the formula of F1 + R ⁇ F2 is provided.
  • a winding step of wrapping the circumference of the electrode stack with a winding separator which is a separate separator from the separator constituting the electrode stack, such that relative distances between the basic units in the electrode stack are maintained; Further, wherein the winding step is made between the second step and the third step, the F2 is further formed in the third step and the adhesive force (e1) between the electrode and the separator inside the electrode stack and the Further formed in the third step may include an adhesive force (e2) between the electrode stack and the winding separator.
  • the radius of curvature may be 70 to 200mm.
  • the temperature at which the electrode and the separator are bonded may be 30 °C to 70 °C.
  • the pressure at which the electrode stack is pressed may be 400kgf to 800kgf.
  • the temperature for pressing the electrode stack may be 60 °C to 100 °C.
  • the winding separator may surround the entire circumference of the electrode stack.
  • the basic unit may include a first bi-cell having positive electrodes on both outermost surfaces thereof; And second bi-cells each having a cathode on an outermost side thereof; In the second step, the first bi-cell and the second bi-cell may be alternately stacked, an insertion separator may be provided as a separate separator between the first bi-cell and the second bi-cell. .
  • the first bicell may have a structure in which an anode, a separator, a cathode, a separator, and an anode are disposed
  • the second bicell may have a structure in which a cathode, a separator, an anode, a separator, and a cathode are disposed.
  • the first bi-cell is provided on the outermost both sides of the electrode stack, the outer surface of the outermost both sides of the first bi-cell provided on the outermost both sides of the electrode stack Only one surface of the whole may be provided with a cross-sectional cathode coated with a positive electrode active material.
  • first bicells may be provided in the electrode stack, and seven second bicells may be provided in the electrode stack.
  • the radius of curvature of the end of the curved surface where the radius of curvature is formed in the electrode stack may be 2 to 8% smaller than the radius of curvature of the central portion of the curved surface is formed.
  • a first step having a plurality of basic units produced by alternately stacking the electrode and the separator;
  • the electrode and the separator is bonded to a temperature of 30 °C to 70 °C
  • the temperature at which the electrode laminate is pressed may be 60 °C to 100 °C.
  • the radius of curvature may be 70 to 200mm.
  • the pressure at which the base unit is pressed may be 10% or less of the pressure at which the electrode stack is pressed in the third step.
  • an electrode assembly having a curved surface having a smaller radius of curvature can be manufactured.
  • FIG. 1 is a side view showing the structure of an electrode laminate according to an embodiment of the present invention.
  • FIG. 2 is a side view illustrating a structure of an electrode assembly before a curved surface according to an example of the present invention is formed.
  • FIG 3 is a side view illustrating a first bicell constituting an electrode assembly according to an exemplary embodiment of the present invention.
  • FIG. 4 is a side view illustrating a second bicell constituting an electrode assembly according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a perspective view illustrating a curved electrode assembly according to one embodiment of the present invention.
  • Figure 1 is a side view showing the structure of an electrode laminate according to an embodiment of the present invention
  • Figure 2 is a side view showing the structure of the electrode assembly before the curved surface according to an embodiment of the present invention.
  • the electrode assembly 10 may include an electrode stack 100 in which a plurality of basic units 110 and 120 are sequentially stacked.
  • the plurality of basic units 110 and 120 may be divided into several types according to the detailed configuration of the basic unit.
  • the plurality of basic units 110 and 120 may be formed of the first basic unit 110 and the second basic unit 120 having different structures.
  • the electrode stack 110 may have a structure in which the first basic unit 110 and the second basic unit 120 are alternately stacked.
  • the present invention is not limited thereto, and the electrode laminate according to the exemplary embodiment may have a structure in which three or more kinds of basic units are alternately stacked, or may have a structure in which one kind of basic units are stacked.
  • the 'basic unit' may be understood as a configuration including at least one electrode. That is, according to the present invention, the 'base unit' may be understood as a concept including not only a configuration including an electrode and a separator, but also a configuration consisting only of an electrode.
  • the electrode assembly 10 may include a separator 102 surrounding at least a portion of the circumference of the electrode stack 100.
  • the separator 102 surrounding at least a portion of the circumference of the electrode stack 100 will be referred to as a 'winding separator'.
  • the winding separator 102 may cover the entire circumference of the electrode stack 100.
  • the winding separator 102 may wrap around the electrode stack 100 once as shown in FIG. 2.
  • the 'winding separator 102 wraps around the electrode stack 100 once' as shown in FIG. 2, so that both ends of the winding separator 102 may be bonded to each other. It should be interpreted to include the case where both ends of) overlap with each other.
  • the 'winding separator 102 may cover the entire circumference of the electrode stack 100' means that the winding separator 102 wraps all the outer surfaces of the electrode stack 100 so that the electrode stack 100 may be wound. It does not mean to isolate from the outside, it may mean that both ends of the winding separation membrane 102 are bonded to each other.
  • the winding separator 102 may be a separate membrane from the separator constituting the electrode stack 100. That is, the electrode assembly 10 may have a structure in which a periphery of the electrode stack 100 is surrounded by a separator (that is, a winding separator) separate from the separator in the electrode stack 100.
  • a separator that is, a winding separator
  • the basic units constituting the electrode stack may be bi-cells.
  • the bicell will be described.
  • FIG. 3 is a side view illustrating a first bicell constituting an electrode assembly according to an embodiment of the present invention
  • FIG. 4 is a side view illustrating a second bicell constituting an electrode assembly according to an embodiment of the present invention.
  • the first bi-cell 110a may be a bi-cell having a structure in which anodes are provided on both outermost surfaces thereof.
  • the first bicell 110a has a five-layer structure in which the anode 142, the separator 146, the cathode 144, the separator 146, and the anode 142 are sequentially disposed.
  • the second bicell 120a may be a bicell having a structure in which cathodes are provided on both outermost surfaces thereof.
  • the second bicell 120a has a five-layer structure in which the cathode 144, the separator 146, the anode 142, the separator 146, and the cathode 144 are sequentially disposed.
  • the first bicell 110a may correspond to the first basic unit
  • the second bicell 120a may include a first unit. It can correspond to two basic units.
  • the electrode stack 100 of the electrode assembly 10 may have the first bicell 110a and the second bicell as shown in FIG. 1.
  • the cells 120a may have a structure in which the cells 120a are alternately stacked.
  • the positive electrode provided on the outermost both sides of the first bi-cell and the negative electrode provided on the outermost both sides of the second bi-cell may be in direct contact.
  • a separate separator 130 may be disposed between the first bicell 110a and the second bicell 120a.
  • a separate separator disposed between the first bicell 110a and the second bicell 120a will be referred to as an 'insertion separator'.
  • the electrode stack 100 may have a structure in which the first bi-cell 110a, the insertion separator 130, and the second bi-cell 120 are alternately stacked.
  • the first bi-cell 110a may be disposed on both outermost surfaces of the electrode stack 100. That is, the anodes disposed on the outermost surface of the first bi-cell 110a may be disposed on both outermost surfaces of the electrode stack 100.
  • the positive electrode active material is disposed on only one surface of the current collector on an outer surface (that is, the outermost surface of the electrode laminate) of the outermost surfaces of the first bi-cell 110a provided on the outermost surfaces of the electrode stack 100. Coated single-sided anodes can be provided.
  • the positive electrodes disposed on the outermost both surfaces of the electrode stack do not participate in the reaction during the charging and discharging process, and thus, the electrode stack according to an example of the present invention.
  • the single-sided anode is disposed on both outermost sides of the sieve, the capacitance per unit volume of the electrode stack can be improved.
  • the winding separator 102 is provided between the separator constituting the first bicell 110a, the separator constituting the second bicell 120a, and between the first bicell 110a and the second bicell 120a.
  • the separation membrane 130 may be a separate membrane.
  • FIG. 5 is a perspective view illustrating a curved electrode assembly according to one embodiment of the present invention.
  • the curved surface C having a constant radius of curvature may be formed in the electrode assembly 10 according to the exemplary embodiment. As shown in FIG. 5, the curved surface C may be formed on both the upper and lower surfaces of the electrode assembly 10. Alternatively, the curved surface C may be formed only on the top or bottom surface of the electrode assembly 10.
  • the winding separator 102 surrounding the circumference of the electrode stack may have a configuration that surrounds the curved surface C formed on the upper or lower surface of the electrode stack.
  • a relative distance between adjacent basic units (or bicells) may be maintained. Therefore, peeling phenomenon can be prevented from occurring between basic units.
  • the winding separator 102 wraps the curved surface C of the electrode stack, thereby constituting the electrode stack and preventing peeling from occurring between the electrodes and the separator adjacent to each other. .
  • an electrode assembly having a relatively small radius of curvature that is, a curved surface is curved.
  • the electrode assembly or the electrode laminate In order to manufacture an electrode assembly having a curved surface having a small radius of curvature, the electrode assembly or the electrode laminate must be pressed by a pressurized press formed with a curved surface. The smaller the radius of curvature, the more peeling phenomenon occurs between the electrode and the separator. This is because the curved surface formed on the electrode assembly cannot be maintained.
  • the winding separator 102 is configured to prevent such peeling phenomenon, and the winding separator 102 may effectively prevent the peeling phenomenon between the electrode and the separator from occurring, particularly in an electrode assembly having a curved surface having a small radius of curvature. Can be.
  • a method of manufacturing an electrode assembly includes: a first step including a plurality of basic units manufactured by alternately stacking electrodes and a separator, and a second step of stacking a plurality of basic units to manufacture an electrode laminate; And a third step of manufacturing an electrode assembly having a curved surface having a radius of curvature on the electrode stack by pressing the outer surface of the electrode stack.
  • the sum of the adhesive force remaining after the third step among the adhesive force formed between the electrode and the separator as the adhesive force formed before the third step is called F1
  • the shape of the electrode and the separator In this third step, the sum of the forces that the electrode and the separator are to be unfolded again to return to the shape before the electrode laminate is pressed is referred to as R, and the sum of the adhesive forces further formed between the electrode and the separator inside the electrode assembly by the third step. If F2, F1 + R ⁇ F2 can be satisfied.
  • the curved surface formed in the electrode assembly in the third step may be unfolded over time. Whether the curved surface formed on the electrode assembly maintains the shape may be determined by the relationship between the forces acting on the curved surface of the electrode assembly.
  • the force acting to unfold the curved surface formed on the electrode assembly (hereinafter, referred to as a "restoration force”) is largely an adhesive force formed before the third step, and the sum F1 'of the adhesive force acting between the electrode and the separator and the electrode And the shape of the separator may be divided by the sum R of the forces at which the electrode and the separator are to be unfolded again to return to the shape before the electrode laminate is pressed in the third step. That is, F1 'is a force formed in the manufacturing of the plurality of basic units and stacking the plurality of basic units, and is a force formed when the electrode and the separator are in a flat state, thus acting as a force to prevent the shape of the curved surface. . Therefore, as the size of F1 'and R increases, the curved surface formed on the electrode assembly tends to return to its original shape.
  • the force for maintaining the shape of the curved surface formed in the third step (hereinafter referred to as the 'curve forming force') can be regarded as the sum F2 of the additional adhesive force formed between the electrode and the separator inside the electrode assembly in the third step.
  • F1 ' may disappear in the third stage. That is, some of the adhesive force between the electrode and the separator formed before the third step may disappear due to temperature and pressure applied to the electrode assembly in the process of forming the curved surface on the electrode assembly. Therefore, as the adhesive force formed before the third step, the sum of the adhesive forces remaining after the third step among the adhesive forces between the electrode and the separator may be smaller than F1 '.
  • the adhesive force formed before the third step the sum of the adhesive forces remaining even after the third step of the adhesive force between the electrode and the separator will be referred to as F1.
  • the shape of the curved surface formed on the electrode assembly can be maintained by F2 greater than the sum of F1 and R in the electrode assembly manufacturing step.
  • the electrode assembly manufacturing method surrounding the electrode stack with a winding separator which is separate from the separator constituting the electrode stack so that the relative distance between the basic units in the electrode stack is maintained. It may further comprise a winding step. In this case, the winding step may be performed between the second step and the third step. In addition, in the winding step, the winding separator may cover the entire circumference of the electrode stack.
  • the electrode assembly manufacturing method according to the present invention further comprises a winding step, the curved surface forming force, that is, F2 can be divided into two again.
  • F2 is additionally formed in the third step and may be further divided by the sum e1 of the adhesive force between the electrode and the separator in the electrode stack and the third step and divided by the sum e2 of the adhesive force between the electrode stack and the winding separator. That is, depending on the stage in which the adhesive force is formed, some of the adhesive force between the electrode and the separator in the electrode stack (that is, F1) may act as a restoring force, and the other portion (ie, e1) may act as a curved forming force.
  • the temperature at which the electrode and the separator are adhered in the first step may be 30 ° C. to 70 ° C.
  • the temperature at which the electrode and the separator are adhered in the first step is less than 30 ° C.
  • adhesion between the electrode and the separator may not be properly performed in the electrode stack, and thus a peeling phenomenon may occur between the electrode and the separator in the third step.
  • the temperature at which the electrode and the separator are bonded in the first step exceeds 70 ° C, too strong adhesion occurs between the electrode and the separator in the electrode stack (that is, the F1 becomes too large) and the electrode assembly in the third step.
  • the curved surface formed on the back may be flattened.
  • the temperature at which the electrode and the separator in the electrode stack are adhered in the first step may be 30 ° C to 55 ° C, and most preferably, 35 ° C to 45 ° C.
  • the radius of curvature of the curved surface C of the electrode stack 100 formed in the third step may be 70 to 200 mm.
  • the present invention may be for manufacturing an electrode assembly having a smaller radius of curvature than in the prior art.
  • the applicants of the present invention have shown that, according to the prior art, it is impossible to manufacture an electrode assembly having a radius of curvature of less than 200 mm, or it takes a long time to produce an electrode assembly having a radius of curvature of less than 200 mm. I found that.
  • the radius of curvature of the curved surface C of the electrode stack 100 may be 70 to 150 mm.
  • the radius of curvature of the curved surface C of the electrode stack 100 is 80 in the third step. To 130 mm. Most preferably, it may be 85 to 95 mm.
  • the pressure at which the electrode stack is pressed in the third step may be 400 kgf to 800 kgf.
  • the third step when the pressure of the electrode stack is less than 400 kgf, adhesion between the electrode and the separator in the electrode assembly is not sufficiently strong (that is, F2 becomes too small) during the curved surface formation, and thus the curved surface formed on the electrode assembly may be flattened. Can be.
  • the pressure at which the electrode stack is pressed in the third step exceeds 800 kgf, damage may occur to the electrode and the separator.
  • the pressure at which the electrode stack is pressed in the third step may be 500 kgf to 700 kgf, and most preferably 550 kgf to 650 kgf.
  • the temperature for pressing the electrode stack in the third step may be 60 °C to 100 °C.
  • the temperature for pressing the electrode stack in the third step is less than 60 ° C, since the adhesion between the electrode and the separator in the electrode assembly is not sufficiently strong (that is, F2 becomes too small) during the curved surface formation, the curved surface formed on the electrode assembly is flattened. Can be lost.
  • the temperature at which the electrode laminate is pressed in the third step exceeds 100 ° C., damage may occur to the electrode and the separator.
  • the temperature at which the electrode stack is pressed in the third step may be 70 ° C to 90 ° C, and most preferably 75 ° C to 85 ° C.
  • the time for pressing the electrode stack in the third step may be 30 seconds to 190 seconds.
  • the time to pressurize the electrode stack in the third step is less than 30 seconds, since the adhesion between the electrode and the separator in the electrode assembly is not strong enough (that is, F2 becomes too small) during the curved surface formation, the curved surface formed on the electrode assembly is flattened. Can be lost.
  • the time for pressing the electrode stack in the third step exceeds 190 seconds, damage may occur to the electrode and the separator, and the productivity of the electrode assembly may be significantly reduced.
  • the time for pressing the electrode stack in the third step may be 40 seconds to 100 seconds, and most preferably 50 seconds to 70 seconds.
  • the basic unit of the electrode stack may include a first bicell each having an anode on the outermost both sides and a second bicell each having a cathode on the outermost both sides.
  • the first bicell and the second bicell may be alternately stacked, but an insertion separator, which is a separate separator, may be provided between the first bicell and the second bicell.
  • the first bicell may have a structure in which an anode, a separator, a cathode, a separator, and an anode are disposed
  • the second bicell may have a structure in which a cathode, a separator, an anode, a separator, and a cathode are disposed.
  • a first bicell may be provided on both outermost surfaces of the electrode stack.
  • the outer surface of the outermost both sides of the first bi-cell provided on the outermost both sides of the electrode stack may be provided with a single-sided anode coated with the positive electrode active material only on one surface of the current collector.
  • the electrode stack may be provided with eight first bicells, and seven second bicells may be provided.
  • the radius of curvature of the curved surface is maintained as it is, but as time passes, the radius of curvature of the curved surface formed in the electrode assembly may increase.
  • This phenomenon occurs especially at both ends of the electrode assembly compared to the central portion of the electrode assembly, which causes a difference between the radius of curvature at the center of the electrode assembly and the radius of curvature at both ends, which would impede the formation of a curved surface with a constant radius of curvature. Can be.
  • the radius of curvature of both ends of the curved surface is formed in the electrode stack is 2% to 8% smaller than the radius of curvature of the central portion of the curved surface formed curvature radius Can be. In this case, even if a slight change in the radius of curvature of the curved surface over time, it is possible to minimize the difference between the radius of curvature at the center of the curved surface and the radius of curvature at both ends of the curved surface.
  • the pressure at which the base unit is pressed when the base units are stacked in the second step may be relatively smaller than the pressure at which the electrode laminate is pressed in the third step.
  • the pressure at which the base unit is pressurized may be 10% or less of the pressure at which the electrode laminate is pressed in the third step, and preferably 5% or less.
  • the electrode assembly according to an embodiment of the present invention may be manufactured by sequentially stacking and adhering a plurality of basic units to prepare an electrode stack, and then wrapping the circumference of the electrode stack with a winding separator.
  • the electrode assembly manufactured by this manufacturing method may have the following advantages compared to a so-called stack-and-fold type electrode assembly, which is manufactured by arranging a plurality of basic units on a separation film and then folding the separation film.
  • the basic unit In the case of the stack-and-fold type electrode assembly, the basic unit is folded during the folding process of the separation film because the separation unit and the basic unit are manufactured by placing the base unit on the separation film and then folding the separation film. Peeling from the film or peeling phenomenon easily occurs between the electrode and the separator in the basic unit. Therefore, in order to manufacture the stack-and-fold type electrode assembly, the adhesive force between the electrode in the basic unit and the separator in the manufacturing process of the basic unit and the adhesive force between the basic unit and the separation film in the folding process need to be relatively strong.
  • the adhesion between the electrode and the separator or the base unit and the separation film is strong before the curved surface is formed, it may be an obstacle in forming the curved surface of the electrode assembly. That is, even when the electrode assembly is pressed to form a curved surface in the electrode assembly by using a curved press, the adhesive force between the electrode and the separator in the base unit formed before the curved surface is formed and the adhesive force between the base unit and the separating film act as a kind of restoring force. This is because the shape is prevented from being maintained. This tendency is stronger the smaller the radius of curvature of the curved surface formed in the electrode assembly (ie, the more curved the surface). Therefore, in the case of the stack-and-fold type electrode assembly, there may be a problem in that the radius of curvature of the curved surface is limited.
  • the electrode assembly according to an embodiment of the present invention is manufactured by stacking a plurality of basic units, since the movement of the basic units is less during the manufacturing of the electrode assembly, the adhesive force between the electrode and the separator in the basic unit need not be strong. Therefore, even if the curved surface is formed by pressing the electrode assembly with a pressing press, since the restoring force due to the adhesive force inside the electrode assembly is relatively small, the radius of curvature of the curved surface formed on the electrode assembly may be relatively freely formed.
  • Eight first bicells having a structure in which an anode, a separator, a cathode, a separator, and an anode are alternately stacked are prepared, and a second bicell having a structure in which the cathode, the separator, the anode, the separator, and the cathode are alternately stacked is provided.
  • Two first bicells of the eight first bicells were prepared to have a single-sided anode on both outermost sides thereof. All electrodes and separators had a rectangular sheet shape.
  • the pressurization temperature applied to the electrode and the separator in order to bond the electrode and the separator in the process of manufacturing the first bicell and the second bicell was 40 ° C.
  • the horizontal length of the positive electrode used in Example 1 was 32.26 mm, and the vertical length was 56.25 mm.
  • the negative electrode used in Example 1 had a horizontal length of 33.96 mm and a vertical length of 57.95 mm.
  • the horizontal length of the separator used in Example 1 was 35.46mm, the vertical length was 60mm.
  • the first bicell, the separator, and the second bicell are sequentially stacked by sequentially stacking the first bicell, the separator, and the second bicell in order from the bottom.
  • An electrode laminate having a bonded structure was prepared (that is, the electrode laminate had a structure in which a first bicell was disposed on both outermost surfaces).
  • the first bicells disposed on both outermost surfaces of the electrode stack were first bicells provided with a cross-sectional anode.
  • a separate membrane was prepared from the separator constituting the electrode stack, the separate separator was wrapped once around the periphery of the electrode laminate, and both ends of the separate separator were adhered to each other.
  • the electrode laminate was pressed by a pressing press to prepare an electrode assembly having a curved surface having a radius of curvature of 89 mm.
  • the pressurization temperature at the time of pressurizing an electrode assembly with a pressurization press was 80 degreeC, the pressurization pressure was 600 kgf, and the pressurization time was 60 second.
  • the electrode laminate was manufactured from eight first bicells, seven second bicells, and 14 separators, and the structure of the electrode laminate was the same as in Example 1.
  • the amount of the separate separator Bonding the ends to each other was also the same as in Example 1.
  • the length and width of the electrode and the separator was also the same as in Example 1.
  • the pressurization temperature applied to the electrode and the separator was 50 ° C. to bond the electrode and the separator.
  • Example 2 the electrode assembly was pressed with a pressing press to prepare an electrode assembly having a curved surface having a radius of curvature of 108 mm.
  • the pressurization temperature at the time of pressurizing an electrode assembly with a pressurization press was 80 degreeC, the pressurization pressure was 600 kgf, and the pressurization time was 60 second.
  • the electrode laminate was manufactured from eight first bicells, seven second bicells, and 14 separators, and the structure of the electrode laminate was the same as in Example 1.
  • the amount of the separate separator Bonding the ends to each other was also the same as in Example 1.
  • the length and width of the electrode and the separator was also the same as in Example 1.
  • the pressurization temperature applied to the electrode and the separator in order to bond the electrode and the separator in the process of manufacturing the first bicell and the second bicell was 60 ° C.
  • Example 3 an electrode assembly was manufactured by pressing the electrode stack with a pressing press to form a curved surface having a radius of curvature of 125 mm.
  • the pressurization temperature at the time of pressurizing an electrode assembly with a pressurization press was 80 degreeC, the pressurization pressure was 600 kgf, and the pressurization time was 60 second.
  • first bicells having a structure in which an anode, a separator, a cathode, a separator, and an anode are alternately stacked are prepared, and a second bicell having a structure in which an anode, a separator, an anode, a separator, and a cathode are alternately stacked is provided.
  • Pieces were prepared and one separation film was prepared.
  • All the electrodes and the separator had a rectangular sheet shape, and the horizontal and vertical lengths of the electrodes and the separator were the same as those in Example 1.
  • the first bicell and the second bicell are alternately disposed adjacent to each other from one end of the separation film to the other end direction on the separation film, but the first bicell is disposed at one end of the separation film.
  • the second bicell was disposed at a distance spaced apart by the width of the first bicell in the direction of the other end of.
  • the separator film was folded to prepare an electrode assembly.
  • the interval at which the separation film was folded was equal to the width of each of the first and second bicells.
  • the pressurization temperature applied to the electrode assembly when folding the separator film was 70 ° C.
  • the pressurization temperature at the time of pressurizing an electrode assembly with a pressurization press was 80 degreeC, the pressurization pressure was 600 kgf, and the pressurization time was 60 second.
  • An electrode assembly was manufactured in the same manner as in Comparative Example 1 except that the pressurization time when the electrode assembly was pressurized with a pressurization press was 320 seconds.
  • An electrode assembly was manufactured in the same manner as in Comparative Example 1 except that the pressing time when the electrode assembly was pressed by the pressure press was 900 seconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

전극 조립체 제조방법이 개시된다. 본 발명의 일 측면에 따르면, 전극과 분리막을 교대로 적층하여 제조되는 기본 단위체를 복수 구비하는 제1 단계; 복수의 상기 기본 단위체를 적층하여 전극 적층체를 제조하는 제2 단계; 및 상기 전극 적층체의 외면을 가압함으로써 상기 전극 적층체에 곡률 반경을 갖는 곡면이 형성된 전극 조립체를 제조하는 제3 단계; 를 포함하고, 상기 제3 단계 이전에 형성되는 접착력으로서, 상기 전극 적층체 내부의 전극과 분리막 간의 접착력 중 상기 제3 단계 이후에 잔존하는 접착력의 합을 F1이라 하고, 상기 전극과 분리막의 형상이 상기 제3 단계에서 상기 전극 적층체가 가압되기 전의 형상으로 돌아가도록 상기 전극과 분리막이 다시 펼쳐지려고 하는 힘의 합을 R이라고 하고, 상기 제3 단계에 의해 상기 전극 조립체 내부의 전극과 분리막 간에 추가로 형성된 접착력의 합을 F2라고 하면, F1 + R ≤ F2의 식을 만족하는 전극 조립체 제조방법이 개시된다.

Description

전극 조립체 제조방법
관련출원과의 상호인용
본 출원은 2018년 06월 29일자 한국특허출원 제10-2018-0075334호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전극 조립체 제조방법에 관한 것으로, 보다 상세하게는 곡면이 형성된 전극 조립체 제조방법에 관한 것이다.
전자기기에 대한 수요 및 전자기기에 대한 수요자의 요구가 점차 다양해짐에 따라 전자기기에 장착되며 반복적인 충전 및 방전이 가능한 이차전지(secondary battery)에 요구되는 사양(specification) 역시 다양해지고 있다. 예를 들어, 최근 전자기기의 사용자가 전자기기를 손에 쥐었을 때의 그립감 향상을 위해 전자기기는 기존의 각진 형태를 벗어나 곡면 형상을 가질 것이 요구되는데, 이를 위해 이차전지 역시 기존의 형상을 벗어나 곡면 형상을 가질 것이 요구된다. 또는, 전자기기의 내부 공간의 활용성을 극대화하기 위해 이차전지의 형상이 기존의 정형적인 형상을 벗어나 곡면 형상 등의 비정형적인 형상을 가질 것이 요구된다.
곡면이 형성되는 이차전지를 제조하기 위해서는 곡면을 포함하는 가압 프레스를 이용하여 전극 조립체의 외부면을 가압하는 과정이 필요한 것이 일반적이다. 그러나, 종래 기술에 따르면 가압 프레스를 이용하여 전극 조립체의 외부면을 가압하여 곡면을 형성하는 과정에서 여러 가지 문제점이 있었다.
예를 들어, 가압 프레스에 의해 가압되기 전의 전극 조립체 내에서 전극과 분리막은 서로 접착된 상태인데, 가압 프레스로 전극 조립체를 가압하여 곡면이 형성되더라도, 가압 프레스에 의해 가압되기 전 전극과 분리막과의 접착력에 의해 곡면이 유지되지 못하고 가압되기 전의 상태로 돌아가는 문제점이 있었다. 이러한 문제점은 가압 프레스에 의해 형성되는 곡면의 곡률 반경이 작아질수록(즉, 가압 프레스에 의해 전극 조립체가 많이 휠수록) 심해지는 경향이 있었다.
이러한 문제점은 종래에 비해 작은 곡률 반경을 갖는 곡면이 형성된 전극 조립체 및 이차전지를 제조하는데 장애로 작용하였다.
따라서, 본 발명이 해결하고자 하는 과제는, 종래에 비해 작은 곡률 반경을 갖는 곡면이 형성된 전극 조립체를 제조하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 전극과 분리막을 교대로 적층하여 제조되는 기본 단위체를 복수 구비하는 제1 단계; 복수의 상기 기본 단위체를 적층하여 전극 적층체를 제조하는 제2 단계; 및 상기 전극 적층체의 외면을 가압함으로써 상기 전극 적층체에 곡률 반경을 갖는 곡면이 형성된 전극 조립체를 제조하는 제3 단계; 를 포함하고, 상기 제3 단계 이전에 형성되는 접착력으로서, 상기 전극 적층체 내부의 전극과 분리막 간의 접착력 중 상기 제3 단계 이후에 잔존하는 접착력의 합을 F1이라 하고, 상기 전극과 분리막의 형상이 상기 제3 단계에서 상기 전극 적층체가 가압되기 전의 형상으로 돌아가도록 상기 전극과 분리막이 다시 펼쳐지려고 하는 힘의 합을 R이라고 하고, 상기 제3 단계에 의해 상기 전극 조립체 내부의 전극과 분리막 간에 추가로 형성된 접착력의 합을 F2라고 하면, F1 + R ≤ F2의 식을 만족하는 전극 조립체 제조방법이 제공된다.
상기 전극 적층체 내의 기본 단위체들 간의 상대적인 거리가 유지되도록 상기 전극 적층체의 둘레를 상기 전극 적층체를 구성하는 상기 분리막과 별개의 분리막인 와인딩 분리막으로 감싸는 와인딩 단계; 를 더 포함하고, 상기 와인딩 단계는 상기 제2 단계 및 상기 제3 단계 사이에서 이루어지고, 상기 F2는 제3 단계에서 추가로 형성되며 상기 전극 적층체 내부의 전극과 분리막 간의 접착력(e1) 및 상기 제3 단계에서 추가로 형성되며 상기 전극 적층체와 상기 와인딩 분리막 간의 접착력(e2)을 포함할 수 있다.
상기 곡률 반경은 70 내지 200mm일 수 있다.
상기 제1 단계에서, 상기 전극과 분리막이 접착되는 온도는 30℃ 내지 70℃일 수 있다.
상기 제3 단계에서, 상기 전극 적층체가 가압되는 압력은 400kgf 내지 800kgf일 수 있다.
상기 제3 단계에서, 상기 전극 적층체를 가압하는 온도는 60℃ 내지 100℃일 수 있다.
상기 와인딩 단계에서, 상기 와인딩 분리막은 상기 전극 적층체의 둘레 전체를 감쌀 수 있다.
상기 기본 단위체는, 최외곽 양면에 각각 양극이 구비되는 제1 바이셀; 및 최외곽 양면에 각각 음극이 구비되는 제2 바이셀; 을 포함하고, 상기 제2 단계에서, 상기 제1 바이셀 및 상기 제2 바이셀은 교대로 적층되되 상기 제1 바이셀 및 상기 제2 바이셀 사이에는 별도의 분리막인 삽입 분리막이 구비될 수 있다.
상기 제1 바이셀은, 양극, 분리막, 음극, 분리막, 양극이 배치된 구조를 가지고, 상기 제2 바이셀은, 음극, 분리막, 양극, 분리막, 음극이 배치된 구조를 가질 수 있다.
상기 제2 단계에서, 상기 전극 적층체의 최외곽 양면에는 상기 제1 바이셀이 구비되고, 상기 전극 적층체의 최외곽 양면에 구비되는 상기 제1 바이셀의 최외곽 양면 중 바깥쪽 면에는 집전체의 일면에만 양극 활물질이 코팅된 단면 양극이 구비될 수 있다.
상기 제2 단계에서, 상기 전극 적층체에 상기 제1 바이셀은 8개가 구비되고, 상기 전극 적층체에 상기 제2 바이셀은 7개가 구비될 수 있다.
상기 제3 단계에서, 상기 전극 적층체에서 상기 곡률 반경이 형성되는 상기 곡면의 끝부의 곡률 반경은 상기 곡률 반경이 형성되는 상기 곡면의 중앙부의 곡률 반경보다 2 내지 8% 작을 수 있다.
상기 목적을 달성하기 위한 본 발명의 다른 측면에 따르면, 전극과 분리막을 교대로 적층하여 제조되는 기본 단위체를 복수 구비하는 제1 단계; 복수의 상기 기본 단위체를 적층하여 전극 적층체를 제조하는 제2 단계; 상기 전극 적층체 내의 기본 단위체들 간의 상대적인 거리가 유지되도록 상기 전극 적층체의 둘레 중 적어도 일부를 상기 전극 적층체를 구성하는 상기 분리막과 별개의 분리막인 와인딩 분리막으로 감싸는 와인딩 단계; 및 상기 전극 적층체의 외면을 가압함으로써 상기 전극 적층체에 곡률 반경을 갖는 곡면이 형성된 전극 조립체를 제조하는 제3 단계; 를 포함하고, 상기 제1 단계에서, 상기 전극과 분리막이 접착되는 온도는 30℃ 내지 70℃이고, 상기 제3 단계에서, 상기 전극 적층체가 가압되는 온도는 60℃ 내지 100℃일 수 있다.
상기 곡률 반경은 70 내지 200mm일 수 있다.
상기 제2 단계에서 상기 기본 단위체를 적층할 때 상기 기본 단위체가 가압되는 압력은 상기 제3 단계에서 상기 전극 적층체가 가압되는 압력의 10% 이하일 수 있다.
본 발명에 따르면, 종래에 비해 작은 곡률 반경을 갖는 곡면이 형성된 전극 조립체를 제조할 수 있다.
도 1은 본 발명의 일 예에 따른 전극 적층체의 구조를 도시한 측면도이다.
도 2는 본 발명의 일 예에 따른 곡면이 형성되기 전의 전극 조립체의 구조를 도시한 측면도이다.
도 3은 본 발명의 일 예에 따른 전극 조립체를 구성하는 제1 바이셀을 도시한 측면도이다.
도 4는 본 발명의 일 예에 따른 전극 조립체를 구성하는 제2 바이셀을 도시한 측면도이다.
도 5는 본 발명의 일 예에 따른 곡면이 형성된 전극 조립체를 도시한 사시도이다.
이하, 도면을 참고하여 본 발명에 따른 전극 조립체의 구조에 대해 설명하도록 한다.
전극 조립체
도 1은 본 발명의 일 예에 따른 전극 적층체의 구조를 도시한 측면도이고, 도 2는 본 발명의 일 예에 따른 곡면이 형성되기 전의 전극 조립체의 구조를 도시한 측면도이다.
도 1 및 도 2를 참고하면, 같이 본 발명의 일 예에 따른 전극 조립체(10)는 복수의 기본 단위체(110, 120)가 순차적으로 적층된 전극 적층체(100)를 포함할 수 있다. 복수의 기본 단위체(110, 120)는 기본 단위체의 세부적인 구성에 따라 몇 가지 종류로 나뉠 수 있다. 예를 들어, 복수의 기본 단위체(110, 120)는 서로 다른 구조를 갖는 제1 기본 단위체(110) 및 제2 기본 단위체(120)로 이루어질 수 있다. 이 경우, 전극 적층체(110)는 제1 기본 단위체(110) 및 제2 기본 단위체(120)가 교대로 적층된 구조를 가질 수 있다. 그러나, 이에 제한되지 않고, 본 발명의 일 예에 따른 전극 적층체는 세 종류 이상의 기본 단위체가 교대로 적층된 구조를 가질 수도 있고, 한 종류의 기본 단위체가 적층된 구조를 가질 수도 있다.
한편, 본 명세서에서 '기본 단위체'는 적어도 하나의 전극을 포함하는 구성으로 이해될 수 있다. 즉, 본 발명에 따르면 '기본 단위체'는 전극과 분리막을 포함하는 구성뿐 아니라, 전극으로만 이루어진 구성도 포함하는 개념으로 이해될 수 있다.
한편, 도 2에 도시된 바와 같이 본 발명의 일 예에 따른 전극 조립체(10)는 전극 적층체(100)의 둘레 중 적어도 일부를 감싸는 분리막(102)을 포함할 수 있다. 하기에서는 전극 적층체(100)의 둘레 중 적어도 일부를 감싸는 분리막(102)을 '와인딩 분리막'이라 부르기로 한다.
와인딩 분리막(102)은 전극 적층체(100)의 둘레 전체를 감쌀 수 있다. 예를 들어, 와인딩 분리막(102)은 도 2에 도시된 바와 같이 전극 적층체(100)의 둘레를 한 바퀴 감쌀 수 있다.
이때, '와인딩 분리막(102)이 전극 적층체(100)의 둘레를 한 바퀴 감싼다'라는 것은 도 2에 도시된 바와 같이, 와인딩 분리막(102)의 양 끝부가 서로 접착될 수 있도록 와인딩 분리막(102)의 양 끝부가 서로 중첩되는 경우를 포함하는 것으로 해석되어야 할 것이다.
또한, '와인딩 분리막(102)이 전극 적층체(100)의 둘레 전체를 감쌀 수 있다'라는 것은 와인딩 분리막(102)이 전극 적층체(100)의 모든 외면을 감쌈으로써 전극 적층체(100)를 외부로부터 격리하는 것을 의미하는 것은 아니며, 와인딩 분리막(102)의 양 끝부가 서로 만나 접착되는 것을 의미할 수 있다.
와인딩 분리막(102)은 전극 적층체(100)를 구성하는 분리막과는 별개의 분리막일 수 있다. 즉, 전극 조립체(10)는, 전극 적층체(100)의 둘레를 전극 적층체(100) 내의 분리막과는 별개의 분리막(즉, 와인딩 분리막)이 감싸는 구조를 가질 수 있다.
본 발명의 일 예에 따른 전극 조립체(10)에서 전극 적층체를 구성하는 기본 단위체들은 바이셀(bi-cell)일 수 있다. 이하, 바이셀에 대해서 설명하도록 한다.
도 3은 본 발명의 일 예에 따른 전극 조립체를 구성하는 제1 바이셀을 도시한 측면도이고, 도 4는 본 발명의 일 예에 따른 전극 조립체를 구성하는 제2 바이셀을 도시한 측면도이다.
도 3을 참고하면, 제1 바이셀(110a)은 최외곽 양면에 각각 양극이 구비된 구조를 갖는 바이셀일 수 있다. 이때, 제1 바이셀(110a)은 도 3에 도시된 바와 같이 양극(142), 분리막(146), 음극(144), 분리막(146) 및 양극(142)이 순차적으로 배치된 5층 구조를 가질 수 있다.
한편, 도 4를 참고하면, 제2 바이셀(120a)은 최외곽 양면에 각각 음극이 구비된 구조를 갖는 바이셀일 수 있다. 이때, 제2 바이셀(120a)은 도 4에 도시된 바와 같이 음극(144), 분리막(146), 양극(142), 분리막(146) 및 음극(144)이 순차적으로 배치된 5층 구조를 가질 수 있다.
전술한 바와 같이 복수의 기본 단위체는 제1 기본 단위체 및 제2 기본 단위체로 나뉠 수 있으므로, 제1 바이셀(110a)은 제1 기본 단위체에 대응될 수 있고, 제2 바이셀(120a)은 제2 기본 단위체에 대응될 수 있다.
기본 단위체가 제1 바이셀 및 제2 바이셀로 나뉘는 경우 본 발명에 따른 전극 조립체(10)의 전극 적층체(100)는 도 1에 도시된 바와 같이 제1 바이셀(110a) 및 제2 바이셀(120a)이 교대로 적층된 구조를 가질 수 있다. 이때, 제1 바이셀과 제2 바이셀이 서로 직접 접촉하도록 적층되는 경우 제1 바이셀의 최외곽 양면에 구비된 양극과 제2 바이셀의 최외곽 양면에 구비된 음극이 직접 접촉할 수 있다. 이를 방지하기 위해, 도 1에 도시된 바와 같이, 제1 바이셀(110a)과 제2 바이셀(120a) 사이에는 별도의 분리막(130)이 배치될 수 있다. 하기에서는 제1 바이셀(110a)과 제2 바이셀(120a) 사이에 배치되는 별도의 분리막을 '삽입 분리막'이라 부르기로 한다.
즉, 본 발명의 일 예에 따르면, 전극 적층체(100)는 제1 바이셀(110a), 삽입 분리막(130) 및 제2 바이셀(120)이 교대로 적층된 구조를 가질 수 있다.
또한, 도 1에 도시된 바와 같이 전극 적층체(100)의 최외곽 양면에는 모두 제1 바이셀(110a)이 배치될 수 있다. 즉, 전극 적층체(100)의 최외곽 양면에는 모두 제1 바이셀(110a)의 최외곽 일면에 배치된 양극이 배치될 수 있다. 그리고, 전극 적층체(100)의 최외곽 양면에 구비되는 제1 바이셀(110a)의 최외곽 양면 중 바깥쪽 면(즉, 전극 적층체의 최외곽 면)에는 집전체의 일면에만 양극 활물질이 코팅된 단면 양극이 구비될 수 있다. 전극 적층체의 최외곽 양면에 배치되는 양극 중 일부(보다 상세하게는, 집전체의 바깥쪽에 코팅된 양극 활물질)는 충전 및 방전 과정에서 반응에 관여하지 않으므로, 본 발명의 일 예에 따라 전극 적층체의 최외곽 양면에 모두 단면 양극이 배치되는 경우, 전극 적층체의 단위 부피 당 전기 용량이 향상될 수 있다.
본 발명의 일 예에 따른 전극 적층체(100)에는 8개의 제1 바이셀(110a)과 7개의 제2 바이셀(120a), 그리고 제1 바이셀과 제2 바이셀 사이에 배치되는 14개의 삽입 분리막(130)이 구비될 수 있다.
한편, 와인딩 분리막(102)은 제1 바이셀(110a)을 구성하는 분리막, 제2 바이셀(120a)을 구성하는 분리막 및 제1 바이셀(110a)과 제2 바이셀(120a) 사이에 구비되는 삽입 분리막(130)과는 별개의 분리막일 수 있다.
도 5는 본 발명의 일 예에 따른 곡면이 형성된 전극 조립체를 도시한 사시도이다.
도 5에 도시된 바와 같이 본 발명의 일 예에 따른 전극 조립체(10)에는 일정한 곡률 반경을 갖는 곡면(C)이 형성될 수 있다. 도 5에 도시된 바와 같이 곡면(C)은 전극 조립체(10)의 상면 및 하면 모두에 형성될 수 있다. 이와 달리 곡면(C)은 전극 조립체(10)의 상면 또는 하면에만 형성될 수도 있다.
이때, 전극 적층체의 둘레를 감싸는 와인딩 분리막(102)은 전극 적층체의 상면 또는 하면에 형성된 곡면(C)을 감싸는 구성일 수 있다. 본 발명에 따르면, 와인딩 분리막(102)이 전극 적층체의 곡면(C)을 감쌈으로써, 서로 인접한 기본 단위체(또는, 바이셀) 간의 상대적인 거리가 유지될 수 있다. 따라서, 기본 단위체 간에 박리 현상이 발생하는 것을 방지할 수 있다. 또는, 본 발명에 따르면, 와인딩 분리막(102)이 전극 적층체의 곡면(C)을 감쌈으로써, 전극 적층체를 구성하며 서로 인접한 전극과 분리막 간에 박리 현상이 발생하는 것을 방지하는 것으로 이해될 수도 있다.
곡면이 형성된 전극 조립체 중에서도 상대적으로 곡면의 곡률 반경이 작은(즉, 곡면이 많이 휘어진) 전극 조립체를 제조하는 것이 어렵다. 곡률 반경이 작은 곡면이 형성되는 전극 조립체를 제조하기 위해서는 곡면이 형성된 가압 프레스로 전극 조립체 또는 전극 적층체를 가압해야 하는데, 곡률 반경이 작을수록 전극 적층체를 구성하는 전극과 분리막 간에 박리 현상이 많이 일어나 전극 조립체에 형성되는 곡면이 유지되지 못하기 때문이다.
전술한 바와 같이 와인딩 분리막(102)은 그러한 박리 현상을 방지하는 구성으로, 와인딩 분리막(102)은 특히, 곡률 반경이 작은 곡면이 형성된 전극 조립체에서 전극과 분리막 간의 박리 현상이 발생하는 것을 효과적으로 방지할 수 있다.
이하, 도면을 참고하여, 본 발명의 일 예에 따른 전극 조립체의 제조방법을 설명하도록 한다.
전극 조립체 제조방법
본 발명의 일 예에 따른 전극 조립체 제조방법은, 전극과 분리막을 교대로 적층하여 제조되는 기본 단위체를 복수 구비하는 제1 단계, 복수의 기본 단위체를 적층하여 전극 적층체를 제조하는 제2 단계; 및 전극 적층체의 외면을 가압함으로써 전극 적층체에 곡률 반경을 갖는 곡면이 형성된 전극 조립체를 제조하는 제3 단계를 포함할 수 있다.
본 발명의 일 예에 따른 전극 조립체 제조방법은, 제3 단계 이전에 형성되는 접착력으로서 전극과 분리막 간의 접착력 중, 상기 제3 단계 이후에 잔존하는 접착력의 합을 F1이라 하고, 전극과 분리막의 형상이 제3 단계에서 전극 적층체가 가압되기 전의 형상으로 돌아가도록 전극과 분리막이 다시 펼쳐지려고 하는 힘의 합을 R이라고 하고, 제3 단계에 의해 전극 조립체 내부의 전극과 분리막 간에 추가로 형성된 접착력의 합을 F2라고 하면, F1 + R ≤ F2의 식을 만족할 수 있다.
전극 조립체의 제조 과정에 따라, 제3 단계에서 전극 조립체에 형성되는 곡면은 시간이 지남에 따라 다시 펴질 수 있다. 전극 조립체에 형성되는 곡면이 형상을 그대로 유지할 것인지 여부는 전극 조립체의 곡면에 작용하는 힘들 간의 관계에 의해 결정될 수 있다.
우선, 전극 조립체에 형성된 곡면이 다시 펴지도록 작용하는 힘(이하, '복원력'이라 한다)은 크게 상기 제3 단계 이전에 형성되는 접착력으로서, 전극과 분리막 간에 작용하는 접착력의 합 F1'와, 전극과 분리막의 형상이 제3 단계에서 전극 적층체가 가압되기 전의 형상으로 돌아가도록 전극과 분리막이 다시 펼쳐지려고 하는 힘의 합 R로 나뉠 수 있다. 즉, F1'은 복수의 기본 단위체를 제조하고 복수의 기본 단위체를 적층하는 단계에서 형성되는 힘으로, 전극과 분리막이 평평한 상태일 때 형성되는 힘이므로 곡면 형상을 유지하는 데 방해하는 힘으로 작용한다. 따라서, 상기 F1'과 R의 크기가 클수록 전극 조립체에 형성된 곡면은 원래 형태로 돌아가려는 경향이 강해진다.
반면, 제3 단계에서 형성된 곡면의 형상을 유지하는 힘(이하, '곡면 형성력'이라 한다)은 제3 단계에서 전극 조립체 내부의 전극과 분리막 간에 추가로 형성된 접착력의 합 F2라고 볼 수 있다.
그런데, F1'중 일부는 은 제3 단계에서 사라질 수 있다. 즉, 전극 조립체에 곡면이 형성되는 과정에서 전극 조립체에 가해지는 온도와 압력 등에 의해 제3 단계 이전에 형성된 전극과 분리막 간의 접착력 중 일부는 사라질 수 있다. 따라서, 제3 단계 이전에 형성되는 접착력으로서, 전극과 분리막 간의 접착력 중 제3 단계 이후에도 잔존하는 접착력의 합은 F1'보다 작을 수 있다. 하기에서는, 제3 단계 이전에 형성되는 접착력으로서, 전극과 분리막 간의 접착력 중 제3 단계 이후에도 잔존하는 접착력의 합을 F1이라 부르기로 한다.
제3 단계에서 형성된 전극 조립체의 곡면이 형상이 유지되기 위해서는 제3 단계 이후에서, 곡면 형성력이 복원력보다 커야 한다. 따라서, 본 발명에 따르면, 전극 조립체 제조단계에서 F2가 F1과 R의 합보다 큼으로써 전극 조립체에 형성된 곡면의 형상이 유지될 수 있다.
한편, 본 발명의 일 예에 따른 전극 조립체 제조방법은, 전극 적층체 내의 기본 단위체들 간의 상대적인 거리가 유지되도록 전극 적층체의 둘레를 전극 적층체를 구성하는 분리막과 별개의 분리막인 와인딩 분리막으로 감싸는 와인딩 단계를 더 포함할 수 있다. 이때, 와인딩 단계는 상기 제2 단계 및 상기 제3 단계 사이에서 이루어질 수 있다. 또한, 와인딩 단계에서 와인딩 분리막은 전극 적층체의 둘레 전체를 감쌀 수 있다.
본 발명에 따른 전극 조립체 제조방법이 와인딩 단계를 더 포함하는 경우, 곡면 형성력, 즉, F2는 다시 두 가지로 나뉠 수 있다.
즉, F2는 제3 단계에서 추가로 형성되며 전극 적층체 내부의 전극과 분리막 간의 접착력의 합 e1과 제3 단계에서 추가로 형성되며 전극 적층체와 와인딩 분리막 간의 접착력의 합 e2로 나뉠 수 있다. 즉, 접착력이 형성되는 단계에 따라 전극 적층체 내부에서 전극과 분리막 간의 접착력 중 일부(즉, F1)는 복원력으로 작용하기도 하고, 다른 일부(즉, e1)는 곡면 형성력으로 작용하기도 하는 것이다.
제1 단계에서 전극과 분리막이 접착되는 온도는 30℃ 내지 70℃일 수 있다.
제1 단계에서 전극과 분리막이 접착되는 온도가 30℃ 미만인 경우 전극 적층체 내에서 전극과 분리막의 접착이 제대로 이루어지지 않아 제3 단계에서 전극과 분리막 간에 박리 현상이 일어날 수 있다. 반대로, 제1 단계에서 전극과 분리막이 접착되는 온도가 70℃를 초과하는 경우 전극 적층체 내의 전극과 분리막 간에 너무 강한 접착이 일어나게 되어(즉, F1이 너무 커지게 되어) 제3 단계에서 전극 조립체에 형성된 곡면이 다시 펴지게 될 수 있다. 바람직하게는, 제1 단계에서 전극 적층체 내의 전극과 분리막이 접착되는 온도는 30℃ 내지 55℃일 수 있고, 가장 바람직하게는, 35℃ 내지 45℃일 수 있다.
제3 단계에서 형성되는 전극 적층체(100)의 곡면(C)의 곡률 반경은 70 내지 200mm일 수 있다.
전술한 바와 같이 본 발명은 종래에 비해 작은 곡률 반경을 갖는 전극 조립체를 제조하기 위한 것일 수 있다. 특히, 본 발명의 출원인은 실험을 통해 종래 기술에 따를 경우 200mm 미만의 곡률 반경을 갖는 전극 조립체를 제조하는 것이 불가능하거나 200mm 미만의 곡률 반경을 갖는 전극 조립체를 제조하는 데 현저하게 오랜 시간이 걸린다는 것을 발견하였다. 제3 단계에서 전극 적층체(100)의 곡면(C)의 곡률 반경은 70 내지 150mm일 수 있고, 바람직하게는, 제3 단계에서 전극 적층체(100)의 곡면(C)의 곡률 반경은 80 내지 130mm일 수 있다. 가장 바람직하게는, 85 내지 95mm일 수 있다.
제3 단계에서 전극 적층체가 가압되는 압력은 400kgf 내지 800kgf일 수 있다.
제3 단계에서 전극 적층체가 가압되는 압력이 400kgf 미만인 경우 곡면 형성 과정에서 전극 조립체 내 전극과 분리막 간의 접착이 충분히 강하지 않으므로(즉, F2가 너무 작아지게 되어) 전극 조립체에 형성된 곡면이 다시 펴지게 될 수 있다. 반대로, 제3 단계에서 전극 적층체가 가압되는 압력이 800kgf를 초과하는 경우 전극 및 분리막에 손상이 일어날 수 있다. 바람직하게는, 제3 단계에서 전극 적층체가 가압되는 압력은 500kgf 내지 700kgf일 수 있고, 가장 바람직하게는 550kgf 내지 650kgf일 수 있다.
제3 단계에서 전극 적층체를 가압하는 온도는 60℃ 내지 100℃일 수 있다.
제3 단계에서 전극 적층체를 가압하는 온도가 60℃ 미만인 경우 곡면 형성 과정에서 전극 조립체 내 전극과 분리막 간의 접착이 충분히 강하지 않으므로(즉, F2가 너무 작아지게 되어) 전극 조립체에 형성된 곡면이 다시 펴지게 될 수 있다. 반대로, 제3 단계에서 전극 적층체가 가압하는 온도가 100℃를 초과하는 경우 전극 및 분리막에 손상이 일어날 수 있다. 바람직하게는, 제3 단계에서 전극 적층체가 가압되는 온도는 70℃ 내지 90℃일 수 있고, 가장 바람직하게는 75℃ 내지 85℃일 수 있다.
제3 단계에서 전극 적층체를 가압하는 시간은 30초 내지 190초일 수 있다.
제3 단계에서 전극 적층체를 가압하는 시간이 30초 미만인 경우 곡면 형성 과정에서 전극 조립체 내 전극과 분리막 간의 접착이 충분히 강하지 않으므로(즉, F2가 너무 작아지게 되어) 전극 조립체에 형성된 곡면이 다시 펴지게 될 수 있다. 반대로, 제3 단계에서 전극 적층체를 가압하는 시간이 190초를 초과하는 경우 전극 및 분리막에 손상이 일어날 수 있고 전극 조립체의 생산성이 현저하게 떨어질 수 있다. 바람직하게는, 제3 단계에서 전극 적층체를 가압하는 시간은 40초 내지 100초일 수 있고, 가장 바람직하게는 50초 내지 70초일 수 있다.
한편, 전극 적층체의 기본 단위체는 최외곽 양면에 각각 양극이 구비되는 제1 바이셀 및 최외곽 양면에 각각 음극이 구비되는 제2 바이셀을 포함할 수 있다. 또한, 제2 단계에서 제1 바이셀 및 제2 바이셀은 교대로 적층되되 제1 바이셀 및 제2 바이셀 사이에는 별도의 분리막인 삽입 분리막이 구비될 수 있다. 이때, 제1 바이셀은 양극, 분리막, 음극, 분리막, 양극이 배치된 구조를 가질 수 있고, 제2 바이셀은 음극, 분리막, 양극, 분리막, 음극이 배치된 구조를 가질 수 있다.
또한, 제2 단계에서 전극 적층체의 최외곽 양면에는 제1 바이셀이 구비될 수 있다. 이때, 전극 적층체의 최외곽 양면에 구비되는 제1 바이셀의 최외곽 양면 중 바깥쪽 면에는 집전체의 일면에만 양극 활물질이 코팅된 단면 양극이 구비될 수 있다. 또한, 제2 단계에서 전극 적층체에는 제1 바이셀이 8개가 구비될 수 있고, 제2 바이셀은 7개가 구비될 수 있다.
한편, 전극 조립체에 곡면이 형성된 직후에는 곡면의 곡률 반경이 그대로 유지되지만 시간이 지남에 따라 전극 조립체에 형성된 곡면의 곡률 반경이 증가하는 현상이 발생할 수 있다. 이러한 현상은 특히, 전극 조립체의 중앙부에 비해 전극 조립체의 양끝부에서 많이 발생하는데, 이는 전극 조립체의 중앙부의 곡률 반경과 양끝부의 곡률 반경의 차이를 야기하여 일정한 곡률 반경을 갖는 곡면을 형성하는 데 장애가 될 수 있다.
따라서, 본 발명에 따른 전극 조립체 제조방법의 제3 단계에서, 전극 적층체에서 곡률 반경이 형성되는 곡면의 양끝부의 곡률 반경은 곡률 반경이 형성되는 곡면의 중앙부의 곡률 반경보다 2% 내지 8% 작을 수 있다. 이 경우, 시간이 지나 곡면의 곡률 반경에 다소 변화가 생기더라도 곡면의 중앙부의 곡률 반경과 곡면의 양끝부의 곡률 반경 간의 차이를 최소화할 수 있다.
한편, 제3 단계에서 기본 단위체를 적층할 때 기본 단위체가 가압되는 압력이 지나치게 작을 경우, 곡면 형성 과정에서 전극 조립체 내 전극과 분리막 간의 접착이 충분히 강하지 않으므로 전극 조립체에 형성된 곡면이 다시 펴지게 될 수 있다. 따라서, 제2 단계에서 기본 단위체를 적층할 때 기본 단위체가 가압되는 압력은 제3 단계에서 전극 적층체가 가압되는 압력에 비해 상대적으로 작을 수 있다. 제2 단계에서 기본 단위체를 적층할 때 기본 단위체가 가압되는 압력은 제3 단계에서 전극 적층체가 가압되는 압력의 10% 이하일 수 있고, 바람직하게는 5% 이하일 수 있다.
전술한 바와 같이 본 발명의 일 예에 따른 전극 조립체는 복수의 기본 단위체를 순차적으로 적층 및 접착하여 전극 적층체를 제조한 후, 전극 적층체의 둘레를 와인딩 분리막으로 감쌈으로써 제조될 수 있다. 이러한 제조 방식에 의해 제조된 전극 조립체는, 분리 필름에 복수의 기본 단위체를 배치한 후 분리 필름을 폴딩함으로써 제조되는, 이른바 스택앤 폴딩형 전극 조립체와 비교하여 다음과 같은 장 점을 가질 수 있다.
스택앤 폴딩형 전극 조립체의 경우, 분리 필름 상에 기본 단위체를 배치한 후 분리 필름을 폴딩함으로써 제조되고 이 과정에서 분리 필름 및 기본 단위체의 움직임이 많기 때문에, 분리 필름의 폴딩 과정에서 기본 단위체가 폴딩 필름으로부터 박리되거나, 기본 단위체 내의 전극과 분리막 간에 박리 현상이 일어나기 쉽다. 그러므로, 스택앤 폴딩형 전극 조립체를 제조하기 위해서는 기본 단위체의 제조 과정에서 기본 단위체 내 전극과 분리막 간의 접착력과 폴딩 과정에서 기본 단위체와 분리 필름 간의 접착력이 상대적으로 강할 필요가 있다.
그러나, 곡면이 형성되기 전에 전극과 분리막 또는 기본 단위체와 분리 필름 간에 접착력이 강한 경우, 전극 조립체에 곡면을 형성하는 데 장애가 될 수 있다. 즉, 곡면이 형성된 가압 프레스로 전극 조립체를 가압하여 전극 조립체에 곡면을 형성하더라도, 곡면이 형성되기 전에 형성된 기본 단위체 내 전극과 분리막간의 접착력과 기본 단위체와 분리 필름 간의 접착력이 일종의 복원력으로 작용하여 곡면 형상이 유지되는 것을 방해하기 때문이다. 이러한 경향은 전극 조립체에 형성된 곡면의 곡률 반경이 작을수록(즉, 곡면이 많이 휠수록) 강해진다. 따라서, 스택앤 폴딩형 전극 조립체의 경우 곡면의 곡률 반경이 제한되는 문제가 있을 수 있다.
반면, 본 발명의 일 예에 따른 전극 조립체의 경우 복수의 기본 단위체를 적층함으로써 제조되기 때문에 전극 조립체의 제조 과정에서 기본 단위체의 움직임이 적기 때문에 기본 단위체 내 전극과 분리막의 접착력이 강할 필요가 없다. 따라서, 가압 프레스로 전극 조립체를 가압하여 곡면을 형성하더라도 전극 조립체 내부의 접착력에 의한 복원력이 상대적으로 작게 작용하므로 전극 조립체에 형성되는 곡면의 곡률 반경을 상대적으로 자유롭게 형성할 수 있다.
실시예 1
양극, 분리막, 음극, 분리막 및 양극이 교대로 적층된 구조를 갖는 제1 바이셀을 8개 준비하고, 음극, 분리막, 양극, 분리막 및 음극이 교대로 적층된 구조를 갖는 제2 바이셀을 7개 준비하고, 14개의 분리막을 준비하였다. 8개의 제1 바이셀 중 2개의 제1 바이셀을 최외곽 양면에 단면 양극이 구비되도록 준비하였다. 모든 전극과 분리막은 직사각형의 시트 형상을 가졌다.
한편, 제1 바이셀 및 제2 바이셀을 제조하는 과정에서 전극과 분리막을 접착하기 위해 전극과 분리막에 가해진 가압 온도는 40℃였다.
실시예 1에 사용된 양극의 가로 길이는 32.26mm였고, 세로 길이는 56.25mm였다. 실시예 1에 사용된 음극의 가로 길이는 33.96mm였고, 세로 길이는 57.95mm였다. 실시예 1에 사용된 분리막의 가로 길이는 35.46mm였고, 세로 길이는 60mm였다.
이후, 밑에서부터 제1 바이셀, 분리막, 제2 바이셀, 제1 바이셀 순으로 제1 바이셀, 분리막 및 제2 바이셀을 순차적으로 적층함으로써 제1 바이셀, 분리막 및 제2 바이셀 서로 접착된 구조를 갖는 전극 적층체를 제조하였다(즉, 전극 적층체는 최외곽의 양면에 제1 바이셀이 배치된 구조를 가짐). 이때, 전극 적층체의 최외곽의 양면에 배치된 제1 바이셀은 단면 양극이 구비된 제1 바이셀이었다.
이후, 전극 적층체를 구성하는 분리막과는 별개의 분리막을 준비하여 전극 적층체의 둘레를 따라 별개의 분리막을 한 바퀴 감싼 후, 별개의 분리막의 양 끝부를 서로 접착하였다.
이후, 가압 프레스로 전극 적층체를 가압하여 89mm의 곡률 반경을 갖는 곡면이 형성된 전극 조립체를 제조하였다.
가압 프레스로 전극 조립체를 가압할 때의 가압 온도는 80℃, 가압 압력은 600kgf, 가압 시간은 60초였다.
실시예 2
8개의 제1 바이셀, 7개의 제2 바이셀, 14개의 분리막으로 전극 적층체를 제조하는 것 및 전극 적층체의 구조는 실시예 1과 동일하였다. 또한, 전극 적층체를 구성하는 분리막과 별개의 분리막을 준비하여 전극 적층체의 둘레를 따라 별개의 분리막을 준비하여 전극 적층체의 둘레를 따라 별개의 분리막을 한 바퀴 감싼 후, 별개의 분리막의 양 끝부를 서로 접착하는 것 역시 실시예 1과 동일하였다. 또한, 전극과 분리막의 가로 및 세로 길이 역시 실시예 1과 동일하였다.
한편, 제1 바이셀 및 제2 바이셀을 제조하는 과정에서 전극과 분리막을 접착하기 위해 전극과 분리막에 가해진 가압 온도는 50℃였다.
또한, 실시예 2에서는 가압 프레스로 전극 적층체를 가압하여 108mm의 곡률 반경을 갖는 곡면이 형성된 전극 조립체를 제조하였다.
가압 프레스로 전극 조립체를 가압할 때의 가압 온도는 80℃, 가압 압력은 600kgf, 가압 시간은 60초였다.
실시예 3
8개의 제1 바이셀, 7개의 제2 바이셀, 14개의 분리막으로 전극 적층체를 제조하는 것 및 전극 적층체의 구조는 실시예 1과 동일하였다. 또한, 전극 적층체를 구성하는 분리막과 별개의 분리막을 준비하여 전극 적층체의 둘레를 따라 별개의 분리막을 준비하여 전극 적층체의 둘레를 따라 별개의 분리막을 한 바퀴 감싼 후, 별개의 분리막의 양 끝부를 서로 접착하는 것 역시 실시예 1과 동일하였다. 또한, 전극과 분리막의 가로 및 세로 길이 역시 실시예 1과 동일하였다.
한편, 제1 바이셀 및 제2 바이셀을 제조하는 과정에서 전극과 분리막을 접착하기 위해 전극과 분리막에 가해진 가압 온도는 60℃였다.
또한, 실시예 3에서는 가압 프레스로 전극 적층체를 가압하여 125mm의 곡률 반경을 갖는 곡면이 형성된 전극 조립체를 제조하였다.
가압 프레스로 전극 조립체를 가압할 때의 가압 온도는 80℃, 가압 압력은 600kgf, 가압 시간은 60초였다.
비교예 1
양극, 분리막, 음극, 분리막 및 양극이 교대로 적층된 구조를 갖는 제1 바이셀을 8개 준비하고, 음극, 분리막, 양극, 분리막 및 음극이 교대로 적층된 구조를 갖는 제2 바이셀을 7개 준비하고, 분리 필름 1개를 준비하였다.
모든 전극과 분리막은 직사각형의 시트 형상을 가졌으며, 전극과 분리막의 가로 및 세로 길이는 실시예 1과 동일하였다.
이후, 분리 필름 상에 분리 필름의 일끝부부터 타끝부 방향으로 제1 바이셀과 제2 바이셀을 교대로 서로 인접하게 배치하되, 분리 필름의 일끝부에는 제1 바이셀을 배치하였고, 분리 필름의 타끝부 방향으로 제1 바이셀의 폭만큼 이격된 거리에 제2 바이셀을 배치하였다.
이후, 분리 필름을 폴딩하여 전극 조립체를 제조하였다. 분리 필름이 폴딩되는 간격은 제1 바이셀 및 제2 바이셀 각각의 폭과 동일하였다. 분리 필름을 폴딩할 때 전극 조립체에 가해지는 가압 온도는 70℃였다.
이후, 가압 프레스로 전극 조립체를 가압하여 서로 다른 곡률 반경을 갖는 곡면이 형성된 전극 조립체들을 다수 제조하였다.
가압 프레스로 전극 조립체를 가압할 때의 가압 온도는 80℃, 가압 압력은 600kgf, 가압 시간은 60초였다.
비교예 2
가압 프레스로 전극 조립체를 가압할 때의 가압 시간이 320초인 것을 제외하고는, 비교예 1과 동일하게 전극 조립체를 제조하였다.
비교예 3
가압 프레스로 전극 조립체를 가압할 때의 가압 시간이 900초인 것을 제외하고는, 비교예 1과 동일하게 전극 조립체를 제조하였다.
실험예
실시예 및 비교예에 의해 제조된 전극 조립체를 구성하는 전극과 분리막 간에 박리 현상이 발생하였는지 여부를 육안으로 확인하였다.
확인 결과, 실시예 1 내지 3에 의해 제조된 전극 조립체에서는 모두 박리 현상은 관찰되지 않았다.
반면, 비교예에 의해 제조된 전극 조립체들 중 일부에는 박리 현상이 관찰되었다. 즉, 비교예 1에서는 310mm보다 작은 곡률 반경을 갖는 전극 조립체에서 박리 현상이 관찰되었고, 비교예 2에서는 208mm보다 작은 곡률 반경을 갖는 전극 조립체에서 박리 현상이 관찰되었다. 그리고, 비교예 3에서는 175mm보다 작은 곡률 반경을 갖는 전극 조립체에서 박리 현상이 관찰되었다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 실시가 가능함은 물론이다.

Claims (15)

  1. 전극과 분리막을 교대로 적층하여 제조되는 기본 단위체를 복수 구비하는 제1 단계;
    복수의 상기 기본 단위체를 적층하여 전극 적층체를 제조하는 제2 단계; 및
    상기 전극 적층체의 외면을 가압함으로써 상기 전극 적층체에 곡률 반경을 갖는 곡면이 형성된 전극 조립체를 제조하는 제3 단계; 를 포함하고,
    상기 제3 단계 이전에 형성되는 접착력으로서, 상기 전극 적층체 내부의 전극과 분리막 간의 접착력 중 상기 제3 단계 이후에 잔존하는 접착력의 합을 F1이라 하고,
    상기 전극과 분리막의 형상이 상기 제3 단계에서 상기 전극 적층체가 가압되기 전의 형상으로 돌아가도록 상기 전극과 분리막이 다시 펼쳐지려고 하는 힘의 합을 R이라고 하고,
    상기 제3 단계에 의해 상기 전극 조립체 내부의 전극과 분리막 간에 추가로 형성된 접착력의 합을 F2라고 하면,
    F1 + R ≤ F2의 식을 만족하는 전극 조립체 제조방법.
  2. 청구항 1에서,
    상기 전극 적층체 내의 기본 단위체들 간의 상대적인 거리가 유지되도록 상기 전극 적층체의 둘레를 상기 전극 적층체를 구성하는 상기 분리막과 별개의 분리막인 와인딩 분리막으로 감싸는 와인딩 단계; 를 더 포함하고,
    상기 와인딩 단계는 상기 제2 단계 및 상기 제3 단계 사이에서 이루어지고,
    상기 F2는 제3 단계에서 추가로 형성되며 상기 전극 적층체 내부의 전극과 분리막 간의 접착력의 합(e1) 및 상기 제3 단계에서 추가로 형성되며 상기 전극 적층체와 상기 와인딩 분리막 간의 접착력의 합(e2)을 포함하는 전극 조립체 제조방법.
  3. 청구항 1에서,
    상기 곡률 반경은 70 내지 200mm인 전극 조립체 제조방법.
  4. 청구항 1에서,
    상기 제1 단계에서,
    상기 전극과 분리막이 접착되는 온도는 30℃ 내지 70℃인 전극 조립체 제조방법.
  5. 청구항 1에서,
    상기 제3 단계에서,
    상기 전극 적층체가 가압되는 압력은 400kgf 내지 800kgf인 전극 조립체 제조방법.
  6. 청구항 1에서,
    상기 제3 단계에서,
    상기 전극 적층체를 가압하는 온도는 60℃ 내지 100℃인 전극 조립체 제조방법.
  7. 청구항 2에서,
    상기 와인딩 단계에서,
    상기 와인딩 분리막은 상기 전극 적층체의 둘레 전체를 감싸는 전극 조립체 제조방법.
  8. 청구항 1에서,
    상기 기본 단위체는,
    최외곽 양면에 각각 양극이 구비되는 제1 바이셀; 및
    최외곽 양면에 각각 음극이 구비되는 제2 바이셀; 을 포함하고,
    상기 제2 단계에서,
    상기 제1 바이셀 및 상기 제2 바이셀은 교대로 적층되되 상기 제1 바이셀 및 상기 제2 바이셀 사이에는 별도의 분리막인 삽입 분리막이 구비되는 전극 조립체 제조방법.
  9. 청구항 8에서,
    상기 제1 바이셀은,
    양극, 분리막, 음극, 분리막, 양극이 배치된 구조를 가지고,
    상기 제2 바이셀은,
    음극, 분리막, 양극, 분리막, 음극이 배치된 구조를 가지는 전극 조립체 제조방법.
  10. 청구항 8에서,
    상기 제2 단계에서,
    상기 전극 적층체의 최외곽 양면에는 상기 제1 바이셀이 구비되고, 상기 전극 적층체의 최외곽 양면에 구비되는 상기 제1 바이셀의 최외곽 양면 중 바깥쪽 면에는 집전체의 일면에만 양극 활물질이 코팅된 단면 양극이 구비되는 전극 조립체 제조방법.
  11. 청구항 8에서,
    상기 제2 단계에서,
    상기 전극 적층체에 상기 제1 바이셀은 8개가 구비되고,
    상기 전극 적층체에 상기 제2 바이셀은 7개가 구비되는 전극 조립체 제조방법.
  12. 청구항 1에서,
    상기 제3 단계에서,
    상기 전극 적층체에서 상기 곡률 반경이 형성되는 상기 곡면의 끝부의 곡률 반경은 상기 곡률 반경이 형성되는 상기 곡면의 중앙부의 곡률 반경보다 2 내지 8% 작은 전극 조립체 제조방법.
  13. 전극과 분리막을 교대로 적층하여 제조되는 기본 단위체를 복수 구비하는 제1 단계;
    복수의 상기 기본 단위체를 적층하여 전극 적층체를 제조하는 제2 단계;
    상기 전극 적층체 내의 기본 단위체들 간의 상대적인 거리가 유지되도록 상기 전극 적층체의 둘레 중 적어도 일부를 상기 전극 적층체를 구성하는 상기 분리막과 별개의 분리막인 와인딩 분리막으로 감싸는 와인딩 단계; 및
    상기 전극 적층체의 외면을 가압함으로써 상기 전극 적층체에 곡률 반경을 갖는 곡면이 형성된 전극 조립체를 제조하는 제3 단계; 를 포함하고,
    상기 제1 단계에서,
    상기 전극과 분리막이 접착되는 온도는 30℃ 내지 70℃이고,
    상기 제3 단계에서,
    상기 전극 적층체가 가압되는 온도는 60℃ 내지 100℃인 전극 조립체 제조방법.
  14. 청구항 13에서,
    상기 곡률 반경은 70 내지 200mm인 전극 조립체 제조방법.
  15. 청구항 13에서,
    상기 제2 단계에서 상기 기본 단위체를 적층할 때 상기 기본 단위체가 가압되는 압력은 상기 제3 단계에서 상기 전극 적층체가 가압되는 압력의 10% 이하인 전극 조립체 제조방법.
PCT/KR2019/001048 2018-06-29 2019-01-24 전극 조립체 제조방법 WO2020004759A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980004905.7A CN111201658B (zh) 2018-06-29 2019-01-24 制造电极组件的方法
EP19826608.2A EP3683879B1 (en) 2018-06-29 2019-01-24 Method for manufacturing electrode assembly
US16/761,647 US11621434B2 (en) 2018-06-29 2019-01-24 Method for manufacturing electrode assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0075334 2018-06-29
KR1020180075334A KR102500240B1 (ko) 2018-06-29 2018-06-29 전극 조립체 제조방법

Publications (1)

Publication Number Publication Date
WO2020004759A1 true WO2020004759A1 (ko) 2020-01-02

Family

ID=68985482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001048 WO2020004759A1 (ko) 2018-06-29 2019-01-24 전극 조립체 제조방법

Country Status (5)

Country Link
US (1) US11621434B2 (ko)
EP (1) EP3683879B1 (ko)
KR (1) KR102500240B1 (ko)
CN (1) CN111201658B (ko)
WO (1) WO2020004759A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220170109A (ko) * 2021-06-22 2022-12-29 주식회사 엘지에너지솔루션 전극 조립체 제조공정

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049028B2 (en) * 2001-08-24 2006-05-23 Koninklijke Philips Electronics N.V. Method of manufacturing a lithium battery, a lithium battery and an electrical appliance
KR20070110566A (ko) * 2006-05-15 2007-11-20 주식회사 엘지화학 고용량 및 우수한 안전성의 이차전지
KR20130131246A (ko) * 2012-05-23 2013-12-03 주식회사 엘지화학 전극조립체 및 이를 포함하는 전기화학소자
KR101578367B1 (ko) * 2013-07-31 2015-12-17 주식회사 엘지화학 휘어진 형상의 전극 적층체 및 이를 포함하는 전지셀
KR20160115357A (ko) * 2015-03-27 2016-10-06 주식회사 엘지화학 휘어진 형상의 전지셀 제조방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515571B1 (ko) * 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기 화학 셀
KR101049841B1 (ko) * 2008-03-12 2011-07-15 주식회사 엘지화학 휘어진 형상의 전지셀 및 이를 포함하는 전지팩
US20120183825A1 (en) * 2011-01-14 2012-07-19 Seung-Hun Lee Secondary battery and method of manufacturing the same
US20130108907A1 (en) * 2011-10-28 2013-05-02 Apple Inc. Curved battery cells for portable electronic devices
KR20130103202A (ko) 2012-03-09 2013-09-23 한화케미칼 주식회사 전극 조립체 및 이를 포함하는 이차 전지
KR101523427B1 (ko) 2012-06-28 2015-05-27 주식회사 엘지화학 전극조립체의 제조공정
CN102769146A (zh) 2012-06-29 2012-11-07 宁德新能源科技有限公司 一种锂离子电池极芯及其制备方法
JP2014165096A (ja) * 2013-02-27 2014-09-08 Nippon Zeon Co Ltd リチウムイオン二次電池耐熱層用スラリーの製造方法及びリチウムイオン二次電池用電極の製造方法
US20140272529A1 (en) * 2013-03-15 2014-09-18 Apple Inc. Manufacturing techniques using uniform pressure to form three-dimensional stacked-cell batteries
WO2014189316A1 (ko) 2013-05-23 2014-11-27 주식회사 엘지화학 전극 조립체 및 이를 위한 기본 단위체
TWM482169U (zh) 2013-07-05 2014-07-11 Power Source Energy Co Ltd 曲面電池
KR101738734B1 (ko) 2013-09-26 2017-06-08 주식회사 엘지화학 파우치형 이차전지
US10608215B2 (en) 2013-09-30 2020-03-31 Lg Chem, Ltd. Curved surface-structured battery pack
US9912005B2 (en) * 2013-10-29 2018-03-06 Samsung Sdi Co., Ltd. Method of manufacturing curved secondary battery
ITMO20130311A1 (it) * 2013-11-11 2015-05-12 Kemet Electronics Italia S R L Metodo di laminazione
US10147556B2 (en) 2014-03-31 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
KR102256294B1 (ko) * 2014-07-14 2021-05-26 삼성에스디아이 주식회사 가요성 이차 전지
JP2016033988A (ja) 2014-07-31 2016-03-10 ダイハツ工業株式会社 二次電池
EP3190652B1 (en) * 2014-12-08 2019-08-14 LG Chem, Ltd. Electrode assembly having improved safety, manufacturing method therefor and electrochemical element comprising electrode assembly
KR101963763B1 (ko) * 2015-06-23 2019-03-29 주식회사 엘지화학 만곡형 전극 조립체 제조 방법
WO2016209015A1 (ko) 2015-06-25 2016-12-29 엘지이노텍 주식회사 자외선 발광소자, 발광소자 패키지 및 조명장치
EP3340333B1 (en) 2015-11-23 2020-09-16 LG Chem, Ltd. Curved battery cell having less structure strain and method for manufacturing the same
US9837682B1 (en) 2016-08-29 2017-12-05 Microsoft Technology Licensing, Llc Variable layer thickness in curved battery cell
KR102187172B1 (ko) 2016-12-01 2020-12-07 주식회사 엘지화학 커브드 케이스용 금형장치 및 그를 이용한 커브드 이차전지 제조방법
KR102347981B1 (ko) 2018-04-23 2022-01-07 주식회사 엘지에너지솔루션 전극 조립체 및 그 전극 조립체 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049028B2 (en) * 2001-08-24 2006-05-23 Koninklijke Philips Electronics N.V. Method of manufacturing a lithium battery, a lithium battery and an electrical appliance
KR20070110566A (ko) * 2006-05-15 2007-11-20 주식회사 엘지화학 고용량 및 우수한 안전성의 이차전지
KR20130131246A (ko) * 2012-05-23 2013-12-03 주식회사 엘지화학 전극조립체 및 이를 포함하는 전기화학소자
KR101578367B1 (ko) * 2013-07-31 2015-12-17 주식회사 엘지화학 휘어진 형상의 전극 적층체 및 이를 포함하는 전지셀
KR20160115357A (ko) * 2015-03-27 2016-10-06 주식회사 엘지화학 휘어진 형상의 전지셀 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683879A4 *

Also Published As

Publication number Publication date
CN111201658A (zh) 2020-05-26
EP3683879A1 (en) 2020-07-22
US20210184243A1 (en) 2021-06-17
CN111201658B (zh) 2023-05-23
EP3683879B1 (en) 2024-10-02
EP3683879A4 (en) 2021-04-07
KR20200002150A (ko) 2020-01-08
US11621434B2 (en) 2023-04-04
KR102500240B1 (ko) 2023-02-16

Similar Documents

Publication Publication Date Title
WO2014073751A1 (ko) 단차가 형성된 전극 조립체, 상기 전극 조립체를 포함하는 이차전지, 전지팩 및 디바이스, 상기 전극 조립체 제조방법
WO2020105834A1 (ko) 전극조립체
WO2015046803A1 (ko) 전극조립체 및 이차전지의 제조방법
WO2013180378A1 (ko) 코너부 형상이 다양한 단차를 갖는 전극 조립체, 이를 포함하는 전지셀, 전지팩 및 디바이스
WO2013180449A1 (ko) 전극 조립체, 전지셀, 전극 조립체의 제조방법 및 전지셀의 제조 방법
WO2020159306A1 (ko) 전극 조립체 제조방법과, 이를 통해 제조된 전극 및 이차전지
WO2014126434A1 (ko) 전극 조립체
WO2019151638A1 (ko) 이차전지 제조방법, 이차전지용 파우치 제조방법 및 이차전지용 파우치
WO2019208912A1 (ko) 전극 조립체 및 그 전극 조립체 제조방법
WO2020004759A1 (ko) 전극 조립체 제조방법
WO2017191910A2 (ko) 이차전지의 제조방법 및 전극 조립체의 제조방법
WO2022035124A1 (ko) 이차전지용 실링장치
WO2020138841A1 (ko) 벤딩 현상이 개선된 스택형 전극 조립체 및 이의 제조방법
WO2022092616A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2021235724A1 (ko) 이차전지 및 그의 제조방법
WO2015005697A1 (ko) 적층 형태 안정성이 우수한 단차를 갖는 전극 조립체 및 그 제조방법
WO2021112582A1 (ko) 파우치형 이차전지, 전지 팩 및 파우치형 이차전지 제조방법
WO2020153594A1 (ko) 전극조립체, 그를 포함하는 이차전지, 이차전지 제조방법 및 전지팩
WO2021085917A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2018012789A1 (ko) 이차전지
WO2018048148A1 (ko) 두께의 차이를 갖는 전극탭의 제조방법 및 이를 포함하는 이차전지
WO2014137018A1 (ko) 계단 구조의 전극군 적층체
WO2020197246A1 (ko) 전극조립체 및 그 전극조립체 제조용 라미네이션 장치 및 그 전극조립체의 제조 방법
WO2021251569A1 (ko) 보호부재를 포함하는 전지셀
WO2021080239A1 (ko) 전극 조립체 제조방법 및 이를 통해 제조된 전극 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019826608

Country of ref document: EP

Effective date: 20200417

NENP Non-entry into the national phase

Ref country code: DE