WO2019135510A1 - 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법 - Google Patents

유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법 Download PDF

Info

Publication number
WO2019135510A1
WO2019135510A1 PCT/KR2018/016116 KR2018016116W WO2019135510A1 WO 2019135510 A1 WO2019135510 A1 WO 2019135510A1 KR 2018016116 W KR2018016116 W KR 2018016116W WO 2019135510 A1 WO2019135510 A1 WO 2019135510A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
separator
binder
secondary battery
lithium
Prior art date
Application number
PCT/KR2018/016116
Other languages
English (en)
French (fr)
Inventor
김명수
윤수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019565412A priority Critical patent/JP2020522097A/ja
Priority to CN201880028495.5A priority patent/CN110574190B/zh
Priority to EP18898679.8A priority patent/EP3614459A4/en
Priority to US16/611,685 priority patent/US11189885B2/en
Publication of WO2019135510A1 publication Critical patent/WO2019135510A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separation membrane including a binder having a different glass transition temperature, and more particularly, a first coating layer and a second coating layer coated on a separator substrate include different kinds of binders, and the first coating layer has a glass transition temperature
  • the second coating layer comprises a binder having a glass transition temperature of 30 ° C or higher.
  • the secondary battery is also used as a power source for such electric vehicles and hybrid electric vehicles.
  • the separation membrane is composed of a separation membrane substrate and a coating layer coated on the separation membrane substrate, and the physical properties of the separation membrane can be determined according to the structure of the coating layer.
  • a coating layer composed of a single layer may be formed on the separator substrate, or a coating layer composed of a multilayer structure may be formed.
  • a coating layer of a multilayer structure is formed,
  • the layer for increasing the peel strength of the coating layer and facing the electrode is intended to enhance the adhesive force with the electrode mixture layer.
  • the adhesive force between the electrode and the separator is weak, shorting may occur between the electrodes due to the separation of the separator and the electrode during charging and discharging of the battery.
  • the battery may be ignited or exploded due to heat generated by an excessive current flowing locally.
  • the adhesive force between the electrode and the electrode is weak, the interfacial resistance increases due to the interfacial expansion, and the electrode can be bent, resulting in safety problems.
  • Patent Document 1 is the glass transition temperature (T g) is 30 °C than the first polymeric binder and the glass transition temperature (T g) is 30 °C less than the second power storage a porous layer containing a resin binder formed on the porous substrate layer device Discloses a separator.
  • the separation membrane of Patent Document 1 has a structure in which a porous layer composed of a single layer is formed on a separation membrane substrate, which is more heat-shrinkable than the separation membrane having a structure in which a plurality of coating layers are formed on the separation membrane substrate.
  • Patent Document 2 discloses that the content of inorganic particles and binder polymer can be controlled as an active layer component formed on the surface of a polyolefin-based separator base material and / or on a part of the pores in the base material to improve the adhesive strength.
  • Patent Document 2 discloses effects of heat shrinkability and short-circuit stability of the separator, but does not provide a technique for improving the peel strength and adhesion of the separator.
  • the peeling strength between the separation membrane substrate and the coating layer of the separation membrane is improved to prevent the separation of the coating layer from the separation membrane substrate, and the coupling strength between the coating layer and the electrode of the separation membrane is improved, There is no effective solution to the technology that can prevent it.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2016-072117
  • Patent Document 2 Korean Published Patent Application No. 2006-0072065
  • the present invention provides a coating layer having a multilayer structure coated on a separation membrane substrate, wherein the first coating layer includes a binder having a glass transition temperature of less than 30 ° C. and the second coating layer has a glass transition temperature
  • the separation strength of the secondary battery is improved and the adhesion strength to the electrode mixture layer is improved by including a binder having a melting point of 30 DEG C or higher.
  • a separation membrane for a secondary battery includes a separation membrane base material made of a polymer resin having a porous structure, a first coating layer coated on the separation membrane base material and including a first inorganic material and a first binder, wherein the first coating layer comprises a third binder having a glass transition temperature (T g ) of less than 30 ° C, and the second coating layer comprises glass the transition temperature (T g) may be made of a structure comprising a fourth binder less than 30 °C.
  • the secondary battery separator according to the present invention has a coating layer composed of a first coating layer and a second coating layer and is advantageous in that heat shrinkage does not occur and adhesion to an electrode is superior compared with a separation layer in which a single coating layer is formed on a separation membrane substrate have.
  • the first coating layer affects the peeling strength with the separating film as a layer coated on the separating film substrate
  • the second coating layer affects the adhesive force with the electrode as a layer coated on the first coating layer
  • the first coating layer includes a third binder having a glass transition temperature of less than 30 DEG C, and the glass transition temperature of the third binder may be preferably not more than 10 DEG C, and preferably not more than-5 DEG C.
  • the first coating layer includes the third iner having a glass transition temperature of less than 30 ° C, the binder particles can not maintain their original shape even at a low temperature, the shape becomes irregular and fluidity can be obtained, and filming phenomenon can occur. Therefore, the bonding strength of the first coating layer to the separating membrane fabric is improved, so that the effect of increasing the peeling strength can be obtained.
  • the second coating layer includes a fourth binder having a glass transition temperature of 30 ° C or higher.
  • the glass transition temperature of the fourth binder may be preferably 45 ° C or higher, more preferably 60 ° C or higher.
  • the second coating layer includes the fourth binder having a glass transition temperature of 30 ° C or higher, filming does not easily occur. Therefore, by using the fourth binder in the second coating layer, it is possible to prevent the conventional problem that the pores of the separation membrane base are clogged and the resistance of the separation membrane is increased.
  • the first coating layer may have a structure in which the first inorganic material is a main component and the second coating layer is a main component of the second binder.
  • the first coating layer includes an inorganic material as a main component rather than a binder
  • the inorganic particles can form an interstitial volume between inorganic particles to form micropores and a kind of spacer (spacer) function.
  • the inorganic particles generally have a property that their physical properties do not change even at a high temperature of 200 DEG C or more, the formed organic / inorganic composite porous film has excellent heat resistance.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles usable in the present invention are not particularly limited as long as oxidation and / or reduction reaction does not occur in the operating voltage range of the applied battery (for example, 0 to 5 V based on Li / Li +). Particularly, when inorganic particles having an ion-transporting ability are used, the ion conductivity in the electrochemical device can be increased and the performance can be improved. Therefore, it is preferable that the ionic conductivity is as high as possible. In addition, when the inorganic particles have a high density, it is difficult to disperse the particles at the time of coating.
  • the dissociation of an electrolyte salt in the liquid electrolyte for example, a lithium salt
  • the ion conductivity of the electrolytic solution can be improved.
  • A inorganic particles having a dielectric constant of 5 or more, (b) inorganic particles having piezoelectricity, and (c) inorganic particles having a dielectric constant of at least 5, wherein the first inorganic material and the second inorganic material may be of the same material, (c) inorganic particles having lithium ion transferring ability.
  • the first and second inorganic materials may be high-permittivity inorganic particles having a dielectric constant of 5 or more, preferably 10 or more.
  • SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 Y may be a 2 O 3, Al 2 O 3 , TiO 2 or SiC.
  • a piezoelectricity material refers to a non-conductive material at normal pressure, or a material having electrical properties due to a change in internal structure when a certain pressure is applied.
  • the piezoelectricity material exhibits a high dielectric constant with a dielectric constant of 100 or more, And when charged or compressed, the charge is generated so that one side is charged in positive and the other side is charged negatively, thereby forming an electric potential difference between both surfaces.
  • Inorganic particles having the piezoelectricity is to be the potential difference is formed due to the positive charge and negative charge are generated between the both surfaces of the particles upon application of a predetermined pressure, BaTiO 3, Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), Pb (Mg 1/3 Nb 2/3) O 3 -PbTiO 3 (PMN-PT), hafnia (HfO 2), SrTiO 3, SnO 2, CeO 2, And may be at least one selected from the group consisting of MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC or a mixture thereof.
  • the inorganic particles having a lithium ion transferring ability are inorganic particles having a function of transferring lithium ions without containing lithium but containing lithium element in the present invention, Since lithium ions can be transferred and transferred due to a kind of defects present, the lithium ion conductivity in the battery is improved and the performance of the battery can be improved.
  • the inorganic particles having the lithium ion transferring ability include a lithium element which contains a lithium element and does not store lithium but which transports lithium ions.
  • the inorganic particles include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium aluminum titanium phosphate (Li x Al y Ti z ( PO 4) 3, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5 and (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO such 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3) and Li 3.25 Ge 0.25 P 0.75 S 4
  • the first binder and the second binder may be made of the same material or may be made of different materials.
  • polyvinylidenefluoride-co-hexafluoropropylene polyvinylidene fluoride-co-hexafluoropropylene
  • Polyvinylidene fluoride-trichlorethylene polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate (polyvinylpyrrolidone), polyvinylpyrrolidone
  • Cyanoethylpullulan but are not limited to, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pull
  • the first inorganic material as a main component of the first coating layer may be contained in an amount of 50% by weight to 99% by weight, and preferably 60% by weight to 95% by weight based on the total solid content.
  • the content of the first inorganic material is less than 50% by weight based on the total solid mass of the first coating layer, physical form maintenance and heat resistance may be deteriorated, and if it is greater than 99% by weight, The bonding force between the inorganic materials and the bonding force with respect to the separator substrate may be lowered, which is not preferable.
  • the second binder which is a main component of the second coating layer, may be contained in an amount of 50% by weight to 100% by weight, and preferably 60% by weight to 95% by weight based on the total solid content.
  • the content of the second binder is less than 50% by weight based on the total solid mass of the second coating layer, the adhesion to the electrode may be lowered, which is undesirable.
  • the separator substrate may be a composite porous separator substrate having a uniform pore structure.
  • the separator may provide a separator having a high electrolyte permeability as well as a smooth migration of lithium ions through the pores.
  • the material of the separator base material is not particularly limited, but may be composed of, for example, at least one selected from the group consisting of high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene and polypropylene.
  • the present invention also provides a process for producing the separation membrane for a secondary battery.
  • the separation membrane for a secondary battery comprises
  • the separation membrane produced through the step of forming the first coating layer on the separation membrane substrate, followed by drying, and then forming and drying the second coating layer has a boundary between the first coating layer and the second coating layer, It is possible to manufacture a separation membrane having high peel strength and adhesive force by maximizing physical properties of each of the first coating layer and the second coating layer.
  • the present invention also provides a secondary battery including the secondary battery separator, and a battery pack including the secondary battery as a unit battery.
  • the battery pack may be used as a power source for devices requiring high-temperature safety, long cycle characteristics, and high rate characteristics.
  • devices include a mobile device, a wearable device A power tool powered by an electric motor; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like; An electric motorcycle including an electric bike (E-bike) and an electric scooter (E-scooter); An electric golf cart; And an energy storage system, but the present invention is not limited thereto.
  • the slurry for the first coating layer was coated on a porous polypropylene separation membrane substrate and dried at 25 DEG C for 1 hour to form a first coating layer.
  • the slurry for the second coating layer was coated on the first coating layer, And dried for 1 hour to form a second coating layer.
  • an acrylic polymer binder (a binder having a Tg of -5 DEG C) was water-dispersed to prepare a slurry for the second coating layer.
  • the slurry for the first coating layer was coated on a porous polypropylene separation membrane substrate and dried at 25 DEG C for 1 hour to form a first coating layer.
  • the slurry for the second coating layer was coated on the first coating layer, And dried for 1 hour to form a second coating layer.
  • the slurry for the first coating layer was coated on a porous polypropylene separation membrane substrate and dried at 25 DEG C for 1 hour to form a first coating layer.
  • the slurry for the second coating layer was coated on the first coating layer, And dried for 1 hour to form a second coating layer.
  • an acrylic polymer binder (a binder having a Tg of -5 DEG C) was water-dispersed to prepare a slurry for the second coating layer.
  • the slurry for the first coating layer was coated on a porous polypropylene separation membrane substrate and dried at 25 DEG C for 1 hour to form a first coating layer.
  • the slurry for the second coating layer was coated on the first coating layer, And dried for 1 hour to form a second coating layer.
  • a slurry for the first coating layer and a slurry for the second coating layer were prepared in the same manner as in Example 1.
  • the slurry for the first coating layer is coated on the porous membrane of a porous polypropylene material
  • the slurry for the second coating layer is coated on the slurry for the first coating layer
  • the slurry for the second coating layer is dried at 25 DEG C for 1 hour to prepare a separation membrane.
  • the double-sided adhesive tape was attached on the slide glass in the order of the prepared separator, and then, in a state in which the slide glass was fixed, The force was measured by pulling the end to 180..
  • the measured peel strengths are shown in Table 1 below.
  • an electrode adhesion measurement sample was prepared by applying a load of 8.5 MPa to the cathode and the separator at 90 DEG C by a flat plate press. After attaching to the slide glass in the order of double-sided adhesive tape and adhesive force measurement sample, one end of the separator was pulled to 180 ⁇ and the force was measured.
  • the measured electrode adhesion is shown in Table 1 below.
  • Example 1 and Comparative Example 1 using a binder having a Tg of -5 DEG C in the first coating layer the peel strength with the fabric was high.
  • Comparative Example 2 and Comparative Example 3 using a binder having a temperature of 60 ⁇ ⁇ the peel strength was much lower than that of Example 1 and Comparative Example 1.
  • Example 1 using a binder having a Tg of 60 ⁇ ⁇ in the second coating layer, the electrode adhesion was higher than that in Comparative Example 1 using a binder having a temperature of -5 ⁇ ⁇ , whereas Comparative Example 2 and Comparative Example 3 showed peeling strength In the case of 4 in the case of simultaneous coating to form a single layer, the electrode adhesion was slightly increased, but the peel strength was measured to be very low.
  • the first coating layer contains a binder having a Tg of less than 30 ° C and the second coating layer contains a binder having a Tg of 30 ° C or higher, both the peel strength and the electrode adhesion are improved.
  • the secondary battery separator according to the present invention includes a first coating layer and second and second coating layer is formed, the first coating layer is the binder is less than 30 °C glass transition temperature (T g) on the separator base material,
  • the second coating layer includes a binder having a glass transition temperature of 30 ° C or higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

본원 발명은 다공성 구조의 고분자 수지로 이루어진 분리막 기재, 상기 분리막 기재 상에 코팅되며 제1무기물과 제1바인더를 포함하는 제1코팅층, 및 상기 제1코팅층 상에 코팅되며 제2무기물과 제2바인더를 포함하는 제2코팅층을 포함하고, 상기 제1코팅층은 유리전이온도(Tg)가 30℃ 미만인 제3바인더를 포함하고, 상기 제2코팅층은 유리전이온도가 30℃ 이상인 제4바인더를 포함하는 이차전지용 분리막에 대한 것이다.

Description

유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
본원 발명은 유리전이온도가 다른 바인더를 포함하는 분리막에 대한 것으로서, 구체적으로 분리막 기재 상에 코팅되는 제1코팅층 및 제2코팅층은 서로 다른 종류의 바인더를 포함하고, 상기 제1코팅층은 유리전이온도가 30℃ 미만인 바인더를 포함하며, 상기 제2코팅층은 유리전이온도가 30℃ 이상인 바인더를 포함하는 이차전지용 분리막에 대한 것이다.
최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 가지고 사이클 수명이 길며 자기방전율이 낮은 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
환경 문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차 등에 대한 연구가 많이 진행되고 있으며, 리튬 이차전지는 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로도 사용되고 있다.
이에 따라, 높은 에너지 밀도의 리튬 이차전지에 대한 안전성을 높이기 위한 시도들이 계속 진행되고 있다.
일반적으로, 분리막은 분리막 기재 및 상기 분리막 기재 상에 코팅되는 코팅층으로 구성되며, 상기 코팅층의 구성에 따라 분리막의 물성이 결정될 수 있다.
구체적으로, 분리막 기재 상에 단일층으로 구성되는 코팅층이 형성될 수 있고, 또는 다층 구조로 이루어진 코팅층이 형성될 수 있으며, 다층 구조의 코팅층이 형성되는 경우에는, 분리막 기재와 인접한 층은 분리막에 대한 코팅층의 박리 강도를 높이고, 전극과 대면하는 층은 전극 합제층과의 접착력을 높이기 위한 것이다.
전극과 분리막 간 접착력이 약한 경우에는 전지의 충방전 동안에 분리막 및 전극의 밀림으로 전극 간 단락이 일어날 수 있고, 이때 국부적으로 흐르는 과도한 전류에 의한 발열로 전지가 발화되거나 폭발하는 문제가 발생할 수 있다. 전극과의 접착력이 약한 경우에는 전극 간 벌어짐에 의해 계면 저항이 증가하며, 전극이 휘어질 수 있는 바, 이로 인한 안전성이 문제된다.
특허문헌 1은 유리전이온도(Tg)가 30℃ 이상인 제1수지 바인더 및 유리전이온도(Tg)가 30℃ 미만인 제2수지 바인더를 포함하는 다공층이 다공 기재층 상에 형성된 축전 장치용 세퍼레이터를 개시하고 있다.
그러나, 특허문헌 1의 분리막은 분리막 기재 상에 단일층으로 이루어진 다공층이 형성된 구조인 바, 복수의 코팅층이 분리막 기재 상에 형성된 구조의 분리막에 비하여 열수축성이 크고 접착력이 낮은 문제가 있다.
특허문헌 2는 폴리올레핀 계열 분리막 기재의 표면 및/또는 기재 중 기공부 일부에 형성되는 활성층 성분으로서 무기물 입자와 바인더 고분자의 함량을 조절하여 접착력을 향상시킬 수 있음을 개시하고 있다.
그러나, 특허문헌 2는 분리막의 열수축성, 단락 안정성 등의 효과를 개시하고 있으나, 분리막의 박리강도 및 접착력을 향상시키기 위한 기술은 제시하지 못하고 있다.
이와 같이, 분리막 기재와 분리막의 코팅층 간의 박리강도가 향상되어 코팅층이 분리막 기재로부터 분리되는 것을 방지하고, 상기 분리막의 코팅층과 전극과의 결합력이 향상되어 분리막의 밀림 내지 들뜸으로 인해 전극 간에 단락이 일어나는 것을 방지할 수 있는 기술에 대한 효율적인 해결책은 아직까지 제시되지 않았다.
(선행기술문헌)
(특허문헌 1) 일본 공개특허공보 제2016-072117호
(특허문헌 2) 대한민국 공개특허공보 제2006-0072065호
본원 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 분리막 기재 상에 코팅되는 다층 구조의 코팅층으로서, 상기 제1코팅층은 유리전이온도가 30℃ 미만인 바인더를 포함하고, 상기 제2코팅층은 유리전이온도가 30℃ 이상인 바인더를 포함함으로써, 분리막 기재에 대한 박리강도가 향상되고, 전극 합제층과의 접착력이 향상된 이차전지용 분리막을 제공하는 것을 목적으로 한다.
이러한 목적을 달성하기 위한 본원 발명에 따른 이차전지용 분리막은, 다공성 구조의 고분자 수지로 이루어진 분리막 기재, 상기 분리막 기재 상에 코팅되며 제1무기물과 제1바인더를 포함하는 제1코팅층 및 상기 제1코팅층 상에 코팅되며 제2무기물과 제2바인더를 포함하는 제2코팅층을 포함하고, 상기 제1코팅층은 유리전이온도(Tg)가 30℃ 미만인 제3바인더를 포함하고, 상기 제2코팅층은 유리전이온도(Tg)가 30℃ 이상인 제4바인더를 포함하는 구조로 이루어질 수 있다.
본원 발명에 따른 이차전지용 분리막은 제1코팅층 및 제2코팅층으로 이루어진 코팅층을 포함하는 바, 분리막 기재 상에 단일 코팅층이 형성된 분리막과 비교할 때, 열수축이 잘 일어나지 않고, 전극과의 접착력이 우수한 장점이 있다.
상기 제1코팅층은 분리막 기재 상에 코팅되는 층으로서 분리막과의 박리강도에 영향을 주고, 상기 제2코팅층은 상기 제1코팅층 상에 코팅되는 층으로서 전극과의 접착력에 영향을 주게 된다.
상기 제1코팅층은 유리전이온도가 30℃ 미만인 제3바인더를 포함하는 바, 상기 제3바인더의 유리전이온도는 바람직하게는 10℃이하일 수 있고, 바람직하게는 - 5℃이하일 수 있다.
이와 같이, 상기 제1코팅층은 유리전이온도가 30℃ 미만인 제3인더를 포함하기 때문에 저온에서도 바인더 입자가 원형을 유지하지 못하고 형태가 비정형화되며 유동성을 가질 수 있어 필름화 현상이 일어날 수 있다. 따라서, 제1코팅층은 분리막 원단에 대한 결합력이 향상되는 바, 박리강도가 증가하는 효과를 얻을 수 있다.
상기 제2코팅층은 유리전이온도가 30℃ 이상인 제4바인더를 포함하는 바, 상기 제4바인더의 유리전이온도는 바람직하게는 45℃이상일 수 있고, 더욱 바람직하게는 60℃이상일 수 있다.
이와 같이, 상기 제2코팅층은 유리전이온도가 30℃ 이상인 제4바인더를 포함하기 때문에 필름화 현상이 쉽게 일어나지 않는다. 따라서, 상기 제4바인더를 제2코팅층에 사용함으로써, 분리막 기재의 기공이 막히면서 분리막의 저항이 증가되었던 종래의 문제를 방지할 수 있다.
하나의 구체적인 예에서, 상기 제1코팅층은 상기 제1무기물이 주성분이고, 상기 제2코팅층은 상기 제2바인더가 주성분인 구조로 이루어질 수 있다.
즉, 상기 제1코팅층은 바인더 보다는 무기물이 주성분으로 포함되는 바, 상기 무기물 입자는 무기물 입자들 간의 빈 공간(interstitial volume)을 가능하게 하여 미세 기공을 형성하는 역할과 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 겸하게 된다. 또한, 상기 무기물 입자는 일반적으로 200℃ 이상의 고온이 되어도 물리적 특성이 변하지 않는 특성을 갖기 때문에, 형성된 유/무기 복합 다공성 필름이 탁월한 내열성을 갖게 된다.
상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본원 발명에서 사용할 수 있는 무기물 입자는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li+기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는 경우 전기 화학 소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있으므로, 가능한 이온 전도도가 높은 것이 바람직하다. 또한, 상기 무기물 입자가 높은 밀도를 갖는 경우 코팅시 분산시키는데 어려움이 있을 뿐만 아니라 전지 제조시 무게 증가의 문제점도 있으므로, 가능한 밀도가 작은 것이 바람직하다. 또한, 유전율이 높은 무기물인 경우 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
상기 제1무기물과 제2무기물은 동일한 소재의 것이 사용될 수 있고, 또는 서로 다른 소재의 것들이 사용될 수도 있으며, (a) 유전율 상수가 5 이상인 무기물 입자, (b) 압전성(piezoelectricity)을 갖는 무기물 입자 및 (c) 리튬 이온 전달 능력을 갖는 무기물 입자로 구성된 군으로부터 선택된 1종 이상일 수 있다.
상기 제1무기물과 제2무기물은 유전율 상수가 5이상, 바람직하게는 10 이상인 고유전율 무기물 입자일 수 있는 바, 예를 들어, SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2 또는 SiC일 수 있다.
압전성(piezoelectricity) 물질은 상압에서는 부도체이나, 일정 압력이 인가되었을 경우 내부 구조 변화에 의해 전기가 통하는 물성을 갖는 물질을 의미하는 것으로서, 유전율 상수가 100 이상인 고유전율 특성을 나타낼 뿐만 아니라 일정 압력을 인가하여 인장 또는 압축되는 경우 전하가 발생하여 한 면은 양으로, 반대편은 음으로 각각 대전됨으로써, 양쪽 면 간에 전위차가 발생하는 기능을 갖는 무기물 입자이다.
상기 압전성을 갖는 무기물 입자는 일정 압력 인가시 입자의 양쪽면 간에 발생되는 양 전하 및 음전하로 인해 전위차가 형성되는 것으로, BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), hafnia (HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 또는 이들의 혼합체로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
리튬 이온 전달 능력을 갖는 무기물 입자는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 본원 발명에서 지칭하는 것으로서, 리튬 이온 전달 능력을 갖는 무기물 입자는 입자 구조 내부에 존재하는 일종의 결함(defect)으로 인해 리튬 이온을 전달 및 이동시킬 수 있기 때문에, 전지 내 리튬 이온 전도도가 향상되고, 이로 인하여 전지의 성능이 향상될 수 있다.
상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬 원소를 함유하되, 리튬을 저장하지 않고 리튬 이온을 이동시키는 것으로, 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트 (LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), 14Li2O-9Al2O3-38TiO2-39P2O5와 같은 (LiAlTiP)xOy 계열 glass(0<x<4, 0<y<13), 리튬란탄티타네이트 (LixLayTiO3, 0<x<2, 0<y<3), Li3.25Ge0.25P0.75S4와 같은 리튬게르마니움티오포스페이트 (LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), Li3N와 같은 리튬나이트라이드 (LixNy, 0<x<4, 0<y<2), Li3PO4-Li2S-SiS2와 같은 SiS2 계열 glass(LixSiySz, 0<x<3, 0<y<2, 0<z<4), LiI-Li2S-P2S5와 같은 P2S5 계열 glass(LixPySz, 0<x<3, 0<y< 3, 0<z<7) 또는 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 제1바인더와 제2바인더는 동일한 소재의 것이 사용될 수 있고, 또는 서로 다른 소재의 것들이 사용될 수도 있으며, 예를 들어, 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidenefluoride-co-hexafluoropropylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌 (polyvinylidene fluorideco-trichloroethylene), 폴리메틸메타클릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리에틸렌 비닐아세테이트 공중합체 (polyethylene-co-vinylacetate), 폴리이미드 (polyimide), 폴리에틸렌옥사이드 (polyethyleneoxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스아세테이트부틸레이트(celluloseacetatebutyrate), 셀룰로오스아세테이트프로피오네이트 (celluloseacetatepropionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실메틸셀룰로오스 (carboxylmethylcellulose) 및 폴리비닐알코올 (polyvinylalcohol)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 제1코팅층의 주성분인 상기 제1무기물은 전체 고형분 질량을 기준으로 50중량% 내지 99중량%로 포함될 수 있으며, 바람직하게는 60중량% 내지 95중량%로 포함될 수 있다.
상기 제1무기물의 함량이 제1코팅층의 전체 고형분 질량을 기준으로 50중량%보다 적은 경우에는 물리적 형태 유지 및 내열성이 저하될 수 있으므로 바람직하지 않고, 99중량% 보다 큰 경우에는, 바인더의 함량이 너무 적기 때문에 무기물 간의 결합력 및 분리막 기재에 대한 결합력이 낮아질 수 있으므로 바람직하지 않다.
상기 제2코팅층의 주성분인 상기 제2바인더는 전체 고형분 질량을 기준으로 50중량% 내지 100중량%로 포함될 수 있으며, 바람직하게는 60중량% 내지 95중량%로 포함될 수 있다.
상기 제2바인더의 함량이 제2코팅층의 전체 고형분 질량을 기준으로 50중량% 보다 적은 경우에는 전극과의 접착력이 낮아지는 문제가 생길 수 있으므로 바람직하지 않다.
상기 분리막 기재는 기공 구조가 균일하게 형성된 복합 다공성 분리막 기재일 수 있는 바, 상기 기공을 통해 리튬 이온의 원활한 이동이 이루어질 뿐 아니라, 전해액 함침율이 높은 분리막을 제공할 수 있다.
상기 분리막 기재의 소재는 특별히 한정되지 않지만, 예를 들어, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌 및 폴리프로필렌으로 이루어진 군으로부터 선택된 1종 이상으로 이루어질 수 있다.
본원 발명은 또한, 상기 이차전지용 분리막의 제조방법을 제공한다.
하나의 구체적인 예에서, 상기 이차전지용 분리막은
(a) 다공성 구조의 고분자 수지로 이루어진 분리막 기재를 준비하는 단계;
(b) 상기 분리막 기재 상에 제1코팅층을 형성하는 단계;
(c) 상기 제1코팅층을 건조하는 단계;
(d) 상기 제1코팅층 상에 제2코팅층을 형성하는 단계; 및
(e) 상기 제2코팅층을 건조하는 단계;
를 포함하는 단계로 제조될 수 있다.
이와 같이, 제1코팅층을 분리막 기재 상에 형성한 후 건조하고, 이후 제2코팅층을 형성하고 건조하는 단계를 통해 제조되는 분리막은 제1코팅층과 제2코팅층 사이에 경계가 형성되어 다층 구조의 코팅층이 형성되는 바, 제1코팅층 및 제2코팅층 각각이 갖는 물성을 최대한 발휘하여 높은 박리강도 및 접착력을 갖는 분리막을 제조할 수 있다.
본원 발명은 또한, 상기 이차전지용 분리막을 포함하는 이차전지, 및 상기 이차전지를 단위 전지로 포함하는 전지팩을 제공한다.
구체적으로, 상기 전지팩은 고온 안전성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 디바이스의 전원으로 사용될 수 있으며, 이러한 디바이스의 상세한 예로는, 모바일 전자기기(mobile device), 웨어러블 전자기기(wearable device), 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력 저장 장치(Energy Storage System) 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이들 디바이스의 구조 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명은 생략한다.
이하, 본원 발명의 실시예를 참조하여 본원 발명을 더욱 상술하지만, 본원 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
아크릴계 고분자 바인더(Tg가 -5℃인 바인더) 5 g, 무기물로서 Al2O3 95 g을 수분산시켜 제1코팅층용 슬러리를 준비한다.
아크릴계 고분자 바인더(Tg가 60℃인 바인더) 100 g을 수분산시켜 제2코팅층용 슬러리를 준비한다.
다공성 폴리프로필렌 소재의 분리막 기재 상에 상기 제1코팅층용 슬러리를 코팅하고 25℃로 1시간 건조하여 제1코팅층을 형성하고, 상기 제1코팅층 상에 상기 제2코팅층용 슬러리를 코팅하고 25℃로 1시간 건조하여 제2코팅층을 형성한다.
<비교예 1>
아크릴계 고분자 바인더(Tg가 -5℃인 바인더) 5 g, 무기물로서 Al2O3 95 g을 수분산시켜 제1코팅층용 슬러리를 준비한다.
아크릴계 고분자 바인더(Tg가 -5℃인 바인더) 100 g을 수분산시켜 제2코팅층용 슬러리를 준비한다.
다공성 폴리프로필렌 소재의 분리막 기재 상에 상기 제1코팅층용 슬러리를 코팅하고 25℃로 1시간 건조하여 제1코팅층을 형성하고, 상기 제1코팅층 상에 상기 제2코팅층용 슬러리를 코팅하고 25℃로 1시간 건조하여 제2코팅층을 형성한다.
<비교예 2>
아크릴계 고분자 바인더(Tg가 60℃인 바인더) 5 g, 무기물로서 Al2O3 95 g을 수분산시켜 제1코팅층용 슬러리를 준비한다.
아크릴계 고분자 바인더(Tg가 60℃인 바인더)을 100 g을 수분산시켜 제2코팅층용 슬러리를 준비한다.
다공성 폴리프로필렌 소재의 분리막 기재 상에 상기 제1코팅층용 슬러리를 코팅하고 25℃로 1시간 건조하여 제1코팅층을 형성하고, 상기 제1코팅층 상에 상기 제2코팅층용 슬러리를 코팅하고 25℃로 1시간 건조하여 제2코팅층을 형성한다.
<비교예 3>
아크릴계 고분자 바인더(Tg가 60℃인 바인더) 5 g, 무기물로서 Al2O3 95 g을 수분산시켜 제1코팅층용 슬러리를 준비한다.
아크릴계 고분자 바인더(Tg가 -5℃인 바인더) 100 g을 수분산시켜 제2코팅층용 슬러리를 준비한다.
다공성 폴리프로필렌 소재의 분리막 기재 상에 상기 제1코팅층용 슬러리를 코팅하고 25℃로 1시간 건조하여 제1코팅층을 형성하고, 상기 제1코팅층 상에 상기 제2코팅층용 슬러리를 코팅하고 25℃로 1시간 건조하여 제2코팅층을 형성한다.
<비교예 4>
실시예 1과 동일한 방법으로 제1코팅층용 슬러리 및 제2코팅층용 슬러리를 제조한다.
다공성 폴리프로필렌 소재의 분리막 기재 상에 상기 제1코팅층용 슬러리를 코팅하고, 상기 제1코팅층용 슬러리 상에 상기 제2코팅층용 슬러리를 코팅하고 25 ℃로 1시간 건조하여 분리막을 제조한다.
박리강도 측정
상기 실시예 1 및 비교예 1 내지 비교예 4에서 제조된 분리막의 박리강도를 측정하기 위하여, 슬라이드 글라스 위에 양면 접착 테이프, 제조된 분리막 순서로 부착을 한 후, 슬라이드 글라스를 고정한 상태에서 분리막의 한쪽 끝을 180ㅀ로 잡아당겨 그 힘을 측정하는 방법을 사용하였다.
측정된 박리강도는 하기 표 1에 나타내었다.
전극 접착력 측정
상기 실시예 1 및 비교예 1 내지 비교예 4에서 제조된 분리막의 박리강도를 측정하기 위하여, 음극과 분리막을 90℃ 에서 평판 프레스로 8.5MPa 하중을 주어 전극 접착력 측정 샘플을 제조한다. 슬라이드 글라스에 양면 접착 테이프, 접착력 측정 샘플 순으로 부착을 한 후 분리막의 한쪽 끝을 180ㅀ로 잡아당겨 그 힘을 측정하는 방법을 사용하였다.
측정된 전극 접착력을 하기 표 1에 나타내었다.
박리강도(gf/15mm) 전극 접착력(gf/15mm)
실시예 1 50 12
비교예 1 40 7
비교예 2 2 0
비교예 3 5 1
비교예 4 10 19
상기 표 1을 참조하면, 제1코팅층에서 Tg가 -5℃인 바인더를 사용한 실시예 1 및 비교예 1의 경우에 원단과의 박리강도가 높다. 60℃인 바인더를 사용한 비교예 2 및 비교예 3의 경우에는 박리강도가 실시예 1 및 비교예 1 대비 매우 낮다. 또한 제2코팅층에서 Tg가 60℃인 바인더를 사용한 실시예 1의 경우가 -5℃인 바인더를 사용한 비교예 1의 경우보다 전극 접착력이 높게 나온 반면, 비교예 2 및 비교예 3은 박리강도가 낮기 때문에 전극 접착력도 낮게 측정되었다.동시 코팅되어 단일층을 형성한 비교에 4의 경우에는, 전극 접착력은 소폭 상승하였으나, 박리강도가 매우 낮게 측정되었다.
따라서, 제1코팅층에는 Tg가 30℃ 미만인 바인더를 포함하고, 제2코팅층에는 Tg가 30℃ 이상인 바인더를 포함하는 경우에, 박리강도 및 전극 접착력이 모두 향상되는 효과가 나타나는 것을 알 수 있다.
본원 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본원 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본원 발명에 따른 이차전지용 분리막은 분리막 기재상에 제1코팅층 및 제2코팅층이 형성되고, 상기 제1코팅층은 유리전이온도(Tg)가 30℃ 미만인 바인더를 포함하고, 상기 제2코팅층은 유리전이온도가 30℃ 이상인 바인더를 포함하는 바, 다층 구조의 코팅층이 형성된 이차전지용 분리막을 사용함으로써, 분리막 기재에 대한 박리강도가 향상된 코팅층을 제공하여 코팅층이 탈리되거나 들뜨는 것을 방지할 수 있다.
또한, 분리막과 전극 간의 접착력이 향상되는 바, 충방전에 따른 전극 간 단락을 효과적으로 방지하여 전지셀의 안전성이 더욱 향상되는 효과가 있다.

Claims (12)

  1. 다공성 구조의 고분자 수지로 이루어진 분리막 기재;
    상기 분리막 기재 상에 코팅되며 제1무기물과 제1바인더를 포함하는 제1코팅층; 및
    상기 제1코팅층 상에 코팅되며 제2무기물과 제2바인더를 포함하는 제2코팅층;
    을 포함하고,
    상기 제1코팅층은 유리전이온도(Tg)가 30℃ 미만인 제3바인더를 포함하고, 상기 제2코팅층은 유리전이온도(Tg)가 30℃ 이상인 제4바인더를 포함하는 이차전지용 분리막.
  2. 제1항에 있어서, 상기 제1코팅층은 상기 제1무기물이 주성분이고, 상기 제2코팅층은 상기 제2바인더가 주성분인 이차전지용 분리막.
  3. 제1항에 있어서, 상기 제1무기물과 제2무기물은 동일한 소재인 이차전지용 분리막.
  4. 제1항에 있어서, 상기 제1무기물 및 제2무기물은 서로 동일하거나 상이할 수 있으며,
    (a) 유전율 상수가 5 이상인 무기물 입자, (b) 압전성(piezoelectricity)을 갖는 무기물 입자 및 (c) 리튬 이온 전달 능력을 갖는 무기물 입자로 구성된 군으로부터 선택된 1종 이상인 이차전지용 분리막.
  5. 제4항에 있어서,
    상기 유전율 상수가 5 이상인 무기물 입자(a)는 SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2 또는 SiC이며;
    상기 압전성을 갖는 무기물 입자(b)는 일정 압력 인가시 입자의 양쪽면 간에 발생되는 양 전하 및 음전하로 인해 전위차가 형성되는 것으로, BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), hafnia (HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 또는 이들의 혼합체로 이루어진 군으로부터 선택된 1종 이상이며, 및
    상기 리튬 이온 전달 능력을 갖는 무기물 입자(c)는 리튬 원소를 함유하되, 리튬을 저장하지 않고 리튬 이온을 이동시키는 것으로, 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트 (LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), 14Li2O-9Al2O3-38TiO2-39P2O5와 같은 (LiAlTiP)xOy 계열 glass(0<x<4, 0<y<13), 리튬란탄티타네이트 (LixLayTiO3, 0<x<2, 0<y<3), Li3.25Ge0.25P0.75S4와 같은 리튬게르마니움티오포스페이트 (LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), Li3N와 같은 리튬나이트라이드 (LixNy, 0<x<4, 0<y<2), Li3PO4-Li2S-SiS2와 같은 SiS2 계열 glass(LixSiySz, 0<x<3, 0<y<2, 0<z<4), LiI-Li2S-P2S5와 같은 P2S5 계열 glass(LixPySz, 0<x<3, 0<y< 3, 0<z<7) 또는 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상인 이차전지용 분리막.
  6. 제1항에 있어서, 상기 제1바인더와 제2바인더는 동일한 소재인 이차전지용 분리막.
  7. 제1항에 있어서, 상기 제1바인더 및 제2바인더는 서로 동일하거나 상이할 수 있으며,
    폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidenefluoride-co-hexafluoropropylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌 (polyvinylidene fluorideco-trichloroethylene), 폴리메틸메타클릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리에틸렌 비닐아세테이트 공중합체 (polyethylene-co-vinylacetate), 폴리이미드 (polyimide), 폴리에틸렌옥사이드 (polyethyleneoxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스아세테이트부틸레이트(celluloseacetatebutyrate), 셀룰로오스아세테이트프로피오네이트 (celluloseacetatepropionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실메틸셀룰로오스 (carboxylmethylcellulose) 및 폴리비닐알코올 (polyvinylalcohol)로 이루어진 군으로부터 선택된 1종 이상인 이차전지용 분리막.
  8. 제2항에 있어서, 상기 제1코팅층의 주성분인 상기 제1무기물은 전체 고형분 질량을 기준으로 50중량% 내지 99중량%로 포함되는 이차전지용 분리막.
  9. 제2항에 있어서, 상기 제2코팅층의 주성분인 상기 제2바인더는 전체 고형분 질량을 기준으로 50중량% 내지 100중량%로 포함되는 이차전지용 분리막.
  10. 제1항에 있어서, 상기 분리막 기재는 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌 및 폴리프로필렌으로 이루어진 군으로부터 선택된 1종 이상으로 이루어지는 이차전지용 분리막.
  11. 제 1 내지 제 10 항 중 어느 한 항에 따른 이차전지용 분리막을 포함하는 이차전지.
  12. 제 1 내지 제 10 항 중 어느 한 항에 따른 이차전지용 분리막의 제조방법으로서,
    (a) 다공성 구조의 고분자 수지로 이루어진 분리막 기재를 준비하는 단계;
    (b) 상기 분리막 기재 상에 제1코팅층을 형성하는 단계;
    (c) 상기 제1코팅층을 건조하는 단계;
    (d) 상기 제1코팅층 상에 제2코팅층을 형성하는 단계; 및
    (e) 상기 제2코팅층을 건조하는 단계;
    를 포함하는 이차전지용 분리막 제조방법.
PCT/KR2018/016116 2018-01-05 2018-12-18 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법 WO2019135510A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019565412A JP2020522097A (ja) 2018-01-05 2018-12-18 ガラス転移温度の相異なるバインダーを含む分離膜及びその製造方法
CN201880028495.5A CN110574190B (zh) 2018-01-05 2018-12-18 包括具有不同玻璃化转变温度的粘合剂的隔板及其制造方法
EP18898679.8A EP3614459A4 (en) 2018-01-05 2018-12-18 SEPARATOR WITH BINDERS WITH DIFFERENT GLASS TRANSITION TEMPERATURES AND PRODUCTION METHOD THEREFOR
US16/611,685 US11189885B2 (en) 2018-01-05 2018-12-18 Separator including binders having different glass transition temperatures and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180001881A KR102263460B1 (ko) 2018-01-05 2018-01-05 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
KR10-2018-0001881 2018-01-05

Publications (1)

Publication Number Publication Date
WO2019135510A1 true WO2019135510A1 (ko) 2019-07-11

Family

ID=67144454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016116 WO2019135510A1 (ko) 2018-01-05 2018-12-18 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법

Country Status (6)

Country Link
US (1) US11189885B2 (ko)
EP (1) EP3614459A4 (ko)
JP (1) JP2020522097A (ko)
KR (1) KR102263460B1 (ko)
CN (1) CN110574190B (ko)
WO (1) WO2019135510A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210052847A (ko) 2019-11-01 2021-05-11 주식회사 엘지화학 코팅층의 두께가 균일한 분리막의 제조방법 및 상기 방법으로 제조된 분리막
JP7483039B2 (ja) * 2020-04-14 2024-05-14 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びその製造方法
EP4152509A1 (en) * 2020-07-20 2023-03-22 LG Energy Solution, Ltd. Separator for secondary battery, manufacturing method therefor, manufacturing method of secondary battery comprising same, and secondary battery manufactured thereby
CN112103468B (zh) * 2020-09-21 2022-03-18 珠海冠宇电池股份有限公司 一种负极片及包括该负极片的锂离子电池
CN115386166B (zh) * 2022-09-19 2023-08-29 成都金发科技新材料有限公司 一种聚丙烯复合材料及制备方法和应用
KR20240047634A (ko) * 2022-10-05 2024-04-12 주식회사 엘지에너지솔루션 전기화학소자용 분리막, 이의 제조방법 및 이를 포함하는 전기화학소자

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060072065A (ko) 2004-12-22 2006-06-27 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
KR20140055901A (ko) * 2011-09-29 2014-05-09 가부시키가이샤 히타치세이사쿠쇼 비수 전해질 2차 전지용 세퍼레이터, 그 제조 방법 및 비수 전해질 2차 전지
JP2016072117A (ja) 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
KR20160118986A (ko) * 2015-04-02 2016-10-12 에스케이이노베이션 주식회사 리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법
KR20160127473A (ko) * 2015-04-27 2016-11-04 삼성에스디아이 주식회사 높은 겔화 특성을 가진 아크릴계 공중합체를 포함하는 분리막 및 이를 포함하는 전기 화학 전지
KR20170112250A (ko) * 2016-03-31 2017-10-12 주식회사 엘지화학 접착층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 전극 조립체
KR20170132349A (ko) * 2012-07-26 2017-12-01 아사히 가세이 이-매터리얼즈 가부시키가이샤 축전 디바이스용 세퍼레이터, 적층체 및 다공막

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314706A (ja) * 1994-07-12 2005-11-10 Nippon Shokubai Co Ltd 有機質無機質複合体粒子、その製造方法およびその用途
JP5703306B2 (ja) * 2009-11-23 2015-04-15 エルジー・ケム・リミテッド 多孔性コーティング層を備えるセパレータの製造方法、その方法によって形成されたセパレータ、及びそれを備える電気化学素子
CN102244223A (zh) * 2011-05-26 2011-11-16 东莞新能源科技有限公司 电化学装置及其无机/有机复合多孔性薄膜
TWI484685B (zh) * 2011-11-11 2015-05-11 Lg Chemical Ltd 分隔件及包含其之電化學裝置
KR101637477B1 (ko) 2012-02-10 2016-07-07 주식회사 엘지화학 높은 전극 접착력을 갖는 세퍼레이터 및 이의 제조방법
JP6191597B2 (ja) * 2012-04-05 2017-09-06 日本ゼオン株式会社 二次電池用セパレータ
JP6208663B2 (ja) * 2012-04-20 2017-10-04 エルジー・ケム・リミテッド セパレータの製造方法、その方法で形成されたセパレータ、及びそれを含む電気化学素子
KR101535198B1 (ko) 2012-06-04 2015-07-08 주식회사 엘지화학 접착력이 개선된 전기화학소자용 분리막 및 그의 제조방법
CN107834009B (zh) 2012-06-12 2021-10-12 三菱制纸株式会社 锂离子电池用隔板
KR102210881B1 (ko) 2013-04-16 2021-02-03 삼성에스디아이 주식회사 세퍼레이터 및 이를 채용한 리튬전지
KR102246767B1 (ko) * 2014-08-13 2021-04-30 삼성에스디아이 주식회사 리튬이차전지용 세퍼레이터, 이를 채용한 리튬이차전지 및 그 제조방법
KR101957406B1 (ko) 2015-03-18 2019-06-19 주식회사 엘지화학 일체형 전극조립체 및 이를 포함하는 전기화학소자
PL3279975T3 (pl) * 2015-03-30 2021-02-08 Zeon Corporation Kompozycja na porowatą membranę baterii akumulatorowej, porowata membrana dla baterii akumulatorowej i bateria akumulatorowa
KR102390373B1 (ko) * 2015-05-21 2022-04-25 삼성전자주식회사 리튬공기전지 및 그 제조방법
KR102005908B1 (ko) 2015-06-12 2019-07-31 주식회사 엘지화학 전극 조립체 및 이를 포함하는 이차 전지
KR102153008B1 (ko) 2016-02-05 2020-09-07 주식회사 엘지화학 분리막-바인더층 복합체 및 이를 포함하는 이차전지 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060072065A (ko) 2004-12-22 2006-06-27 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
KR20140055901A (ko) * 2011-09-29 2014-05-09 가부시키가이샤 히타치세이사쿠쇼 비수 전해질 2차 전지용 세퍼레이터, 그 제조 방법 및 비수 전해질 2차 전지
KR20170132349A (ko) * 2012-07-26 2017-12-01 아사히 가세이 이-매터리얼즈 가부시키가이샤 축전 디바이스용 세퍼레이터, 적층체 및 다공막
JP2016072117A (ja) 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
KR20160118986A (ko) * 2015-04-02 2016-10-12 에스케이이노베이션 주식회사 리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법
KR20160127473A (ko) * 2015-04-27 2016-11-04 삼성에스디아이 주식회사 높은 겔화 특성을 가진 아크릴계 공중합체를 포함하는 분리막 및 이를 포함하는 전기 화학 전지
KR20170112250A (ko) * 2016-03-31 2017-10-12 주식회사 엘지화학 접착층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 전극 조립체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614459A4

Also Published As

Publication number Publication date
EP3614459A1 (en) 2020-02-26
CN110574190B (zh) 2022-05-13
EP3614459A4 (en) 2020-05-27
CN110574190A (zh) 2019-12-13
US11189885B2 (en) 2021-11-30
KR102263460B1 (ko) 2021-06-11
JP2020522097A (ja) 2020-07-27
KR20190083894A (ko) 2019-07-15
US20200152945A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
WO2019135510A1 (ko) 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
WO2017171524A1 (ko) 접착층을 포함하는 전기화학소자용 분리막 및 상기 분리막을 포함하는 전극 조립체
WO2017135792A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
WO2009110726A2 (en) Separator having porous coating layer and electrochemical device containing the same
WO2012046966A2 (ko) 사이클 특성이 개선된 전기화학소자
WO2011126310A2 (ko) 스택 타입 셀, 개선된 바이-셀, 이들을 이용한 이차 전지용 전극 조립체 및 그 제조 방법
WO2013070031A1 (ko) 세퍼레이터 및 이를 구비한 전기화학소자
WO2013005898A1 (ko) 전기화학소자용 전극 조립체 및 이를 구비한 전기화학소자
WO2014182095A1 (ko) 절연층을 포함한 전극 구조체, 그 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2016148408A1 (ko) 일체형 전극조립체 및 이를 포함하는 전기화학소자
WO2012128440A1 (ko) 전극조립체 및 이의 제조방법
WO2018038584A1 (ko) 전기화학소자용 분리막 및 상기 분리막을 포함하는 전기화학소자
WO2010027203A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2018147714A1 (ko) 접착층을 구비한 리튬 이차전지용 분리막
WO2016171519A1 (ko) 리튬 이차전지용 분리막 및 그의 제조방법
WO2017213444A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2015065116A1 (ko) 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극 구조체
WO2021033795A1 (ko) 그래핀을 포함하는 2차원소재 코팅 조성물과 이를 이용한 이차전지 분리막 및 그 제조방법
WO2019135532A1 (ko) 이차전지용 분리막 및 이를 적용한 전기화학소자
WO2021075687A1 (ko) 관통홀이 형성된 금속 플레이트와 상기 관통홀을 충진하는 다공성 보강재를 포함하는 전지용 집전체 및 이를 포함하는 이차전지
WO2020149674A1 (ko) 이중 코팅층이 형성된 분리막 및 이를 포함하는 이차전지
WO2020050559A1 (ko) 분리막 기재가 없는 이차전지용 분리막
WO2020091400A1 (ko) 무기물 코팅층이 형성된 가교 폴리올레핀 분리막 및 이를 포함한 고출력 이차 전지
WO2019022474A1 (ko) 불산을 저감하는 물질을 포함하는 전지 분리막
WO2021080212A1 (ko) 가압식 분리막 저항 측정 장치 및 측정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018898679

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018898679

Country of ref document: EP

Effective date: 20191121

ENP Entry into the national phase

Ref document number: 2019565412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE