WO2019151516A1 - 細胞内でのatp産生を賦活するための補酵素因子の使用 - Google Patents
細胞内でのatp産生を賦活するための補酵素因子の使用 Download PDFInfo
- Publication number
- WO2019151516A1 WO2019151516A1 PCT/JP2019/003860 JP2019003860W WO2019151516A1 WO 2019151516 A1 WO2019151516 A1 WO 2019151516A1 JP 2019003860 W JP2019003860 W JP 2019003860W WO 2019151516 A1 WO2019151516 A1 WO 2019151516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituted
- phenyl
- alkyl group
- specimen
- Prior art date
Links
- 230000002407 ATP formation Effects 0.000 title claims abstract description 28
- 239000005515 coenzyme Substances 0.000 title description 14
- 230000004913 activation Effects 0.000 title description 9
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 52
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 44
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 21
- 125000005843 halogen group Chemical group 0.000 claims abstract description 18
- -1 5-deazaflavin compound Chemical class 0.000 claims abstract description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 12
- 125000000753 cycloalkyl group Chemical group 0.000 claims abstract description 9
- 230000003213 activating effect Effects 0.000 claims abstract description 4
- 125000004093 cyano group Chemical group *C#N 0.000 claims abstract description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims abstract description 3
- 150000001875 compounds Chemical class 0.000 claims description 45
- 125000003282 alkyl amino group Chemical group 0.000 claims description 4
- 230000004936 stimulating effect Effects 0.000 claims description 4
- 125000004390 alkyl sulfonyl group Chemical group 0.000 claims description 2
- 239000012190 activator Substances 0.000 abstract description 4
- 125000003277 amino group Chemical group 0.000 abstract 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 abstract 1
- 239000011575 calcium Substances 0.000 description 79
- DAYLJWODMCOQEW-TURQNECASA-N NMN zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)([O-])=O)O2)O)=C1 DAYLJWODMCOQEW-TURQNECASA-N 0.000 description 55
- 210000001787 dendrite Anatomy 0.000 description 49
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical group NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 description 45
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 45
- 229950006238 nadide Drugs 0.000 description 43
- 210000004556 brain Anatomy 0.000 description 38
- 210000004027 cell Anatomy 0.000 description 37
- 210000003470 mitochondria Anatomy 0.000 description 36
- 230000002438 mitochondrial effect Effects 0.000 description 34
- 230000000971 hippocampal effect Effects 0.000 description 30
- 238000010586 diagram Methods 0.000 description 29
- 210000002569 neuron Anatomy 0.000 description 28
- 230000000694 effects Effects 0.000 description 26
- 239000013078 crystal Substances 0.000 description 24
- 239000000843 powder Substances 0.000 description 24
- 238000005160 1H NMR spectroscopy Methods 0.000 description 21
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 21
- KWHWFTSHDPJOTG-UHFFFAOYSA-N Deazaflavin Chemical compound C1=CC=C2C=C(C(=O)NC(=O)N3)C3=NC2=C1 KWHWFTSHDPJOTG-UHFFFAOYSA-N 0.000 description 19
- 210000003050 axon Anatomy 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 18
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 17
- 241000700159 Rattus Species 0.000 description 17
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 16
- 241000699666 Mus <mouse, genus> Species 0.000 description 15
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- 230000001086 cytosolic effect Effects 0.000 description 15
- 108050002485 Sirtuin Proteins 0.000 description 14
- 210000000805 cytoplasm Anatomy 0.000 description 14
- 231100000673 dose–response relationship Toxicity 0.000 description 14
- 239000003814 drug Substances 0.000 description 14
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 13
- 230000009471 action Effects 0.000 description 13
- 229910052791 calcium Inorganic materials 0.000 description 13
- 210000003710 cerebral cortex Anatomy 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 13
- 210000000225 synapse Anatomy 0.000 description 13
- 108010041191 Sirtuin 1 Proteins 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 210000004748 cultured cell Anatomy 0.000 description 11
- 238000011161 development Methods 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 11
- 210000001320 hippocampus Anatomy 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 230000028161 membrane depolarization Effects 0.000 description 11
- 230000001537 neural effect Effects 0.000 description 11
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 10
- 230000032683 aging Effects 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- VWWQXMAJTJZDQX-UYBVJOGSSA-N flavin adenine dinucleotide Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1CO[P@](O)(=O)O[P@@](O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C2=NC(=O)NC(=O)C2=NC2=C1C=C(C)C(C)=C2 VWWQXMAJTJZDQX-UYBVJOGSSA-N 0.000 description 10
- 239000011714 flavin adenine dinucleotide Substances 0.000 description 10
- 229940093632 flavin-adenine dinucleotide Drugs 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 210000005056 cell body Anatomy 0.000 description 9
- 235000019162 flavin adenine dinucleotide Nutrition 0.000 description 9
- 210000004295 hippocampal neuron Anatomy 0.000 description 9
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 230000003834 intracellular effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 238000012113 quantitative test Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 8
- 101000979001 Homo sapiens Methionine aminopeptidase 2 Proteins 0.000 description 7
- 101000969087 Homo sapiens Microtubule-associated protein 2 Proteins 0.000 description 7
- 102100023174 Methionine aminopeptidase 2 Human genes 0.000 description 7
- 102100031455 NAD-dependent protein deacetylase sirtuin-1 Human genes 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 230000005284 excitation Effects 0.000 description 7
- 230000002964 excitative effect Effects 0.000 description 7
- 210000004498 neuroglial cell Anatomy 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 6
- 230000004898 mitochondrial function Effects 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 210000004958 brain cell Anatomy 0.000 description 5
- 238000012744 immunostaining Methods 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 208000020658 intracerebral hemorrhage Diseases 0.000 description 5
- 239000002504 physiological saline solution Substances 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- WBQHPGBBOIFJLF-GJCUDGATSA-N (8R,9S,10R,13S,14S,17S)-17-hydroxy-2-(hydroxymethylidene)-10,13-dimethyl-6,7,8,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-one Chemical compound O=C1C(=CO)C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 WBQHPGBBOIFJLF-GJCUDGATSA-N 0.000 description 4
- 102000029816 Collagenase Human genes 0.000 description 4
- 108060005980 Collagenase Proteins 0.000 description 4
- 206010029260 Neuroblastoma Diseases 0.000 description 4
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 4
- 238000010162 Tukey test Methods 0.000 description 4
- 230000003712 anti-aging effect Effects 0.000 description 4
- 210000001130 astrocyte Anatomy 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 206010008118 cerebral infarction Diseases 0.000 description 4
- GEHSZWRGPHDXJO-ALELSXGZSA-N coenzyme f420 Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)CC[C@H](C(O)=O)NC(=O)[C@@H](C)O[P@@](O)(=O)OC[C@H](O)[C@@H](O)[C@H](O)CN1C2=CC(O)=CC=C2C=C2C1=NC(=O)NC2=O GEHSZWRGPHDXJO-ALELSXGZSA-N 0.000 description 4
- 229960002424 collagenase Drugs 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 210000005036 nerve Anatomy 0.000 description 4
- 230000004770 neurodegeneration Effects 0.000 description 4
- 208000015122 neurodegenerative disease Diseases 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000027756 respiratory electron transport chain Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 3
- 208000032612 Glial tumor Diseases 0.000 description 3
- 206010018338 Glioma Diseases 0.000 description 3
- 208000032843 Hemorrhage Diseases 0.000 description 3
- 102100040243 Microtubule-associated protein tau Human genes 0.000 description 3
- BOPGDPNILDQYTO-NNYOXOHSSA-L NADH(2-) Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP([O-])(=O)OP([O-])(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-L 0.000 description 3
- 102000004316 Oxidoreductases Human genes 0.000 description 3
- 108090000854 Oxidoreductases Proteins 0.000 description 3
- 108091006283 SLC17A7 Proteins 0.000 description 3
- 102000046052 Vesicular Glutamate Transport Protein 1 Human genes 0.000 description 3
- 235000010724 Wisteria floribunda Nutrition 0.000 description 3
- 208000018404 acrocardiofacial syndrome Diseases 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000001054 cortical effect Effects 0.000 description 3
- 210000003618 cortical neuron Anatomy 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 125000004072 flavinyl group Chemical group 0.000 description 3
- 238000002073 fluorescence micrograph Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000004776 molecular orbital Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 3
- PFDDSGLPIFLJTA-RANCRSHJSA-N (8S,9S,10R,13R,14S,17R)-2-(hydroxymethylidene)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-6,7,8,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-one Chemical compound C1CC2=CC(=O)C(=CO)C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 PFDDSGLPIFLJTA-RANCRSHJSA-N 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- 206010003210 Arteriosclerosis Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 201000006474 Brain Ischemia Diseases 0.000 description 2
- 238000011814 C57BL/6N mouse Methods 0.000 description 2
- 0 CCC1*(C2C*C3C(C4)C4(C4)C4C3)C2C2=*(C)C12 Chemical compound CCC1*(C2C*C3C(C4)C4(C4)C4C3)C2C2=*(C)C12 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 206010008120 Cerebral ischaemia Diseases 0.000 description 2
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 2
- 206010011878 Deafness Diseases 0.000 description 2
- 206010012289 Dementia Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- YPZRHBJKEMOYQH-UYBVJOGSSA-N FADH2 Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C(NC(=O)NC2=O)=C2NC2=C1C=C(C)C(C)=C2 YPZRHBJKEMOYQH-UYBVJOGSSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 102000003964 Histone deacetylase Human genes 0.000 description 2
- 108090000353 Histone deacetylase Proteins 0.000 description 2
- 102000006947 Histones Human genes 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- 108020005196 Mitochondrial DNA Proteins 0.000 description 2
- 102100030710 NAD-dependent protein deacetylase sirtuin-3, mitochondrial Human genes 0.000 description 2
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- QNVSXXGDAPORNA-UHFFFAOYSA-N Resveratrol Natural products OC1=CC=CC(C=CC=2C=C(O)C(O)=CC=2)=C1 QNVSXXGDAPORNA-UHFFFAOYSA-N 0.000 description 2
- 108091005770 SIRT3 Proteins 0.000 description 2
- 102000011990 Sirtuin Human genes 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- LUKBXSAWLPMMSZ-OWOJBTEDSA-N Trans-resveratrol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC(O)=CC(O)=C1 LUKBXSAWLPMMSZ-OWOJBTEDSA-N 0.000 description 2
- APERIXFHHNDFQV-UHFFFAOYSA-N [2-[2-[2-[bis(carboxymethyl)amino]-5-methylphenoxy]ethoxy]-4-[3,6-bis(dimethylamino)xanthen-9-ylidene]cyclohexa-2,5-dien-1-ylidene]-bis(carboxymethyl)azanium;chloride Chemical compound [Cl-].C12=CC=C(N(C)C)C=C2OC2=CC(N(C)C)=CC=C2C1=C(C=1)C=CC(=[N+](CC(O)=O)CC(O)=O)C=1OCCOC1=CC(C)=CC=C1N(CC(O)=O)CC(O)=O APERIXFHHNDFQV-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 230000003602 anti-herpes Effects 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 208000011775 arteriosclerosis disease Diseases 0.000 description 2
- 238000011888 autopsy Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000002414 glycolytic effect Effects 0.000 description 2
- 230000010370 hearing loss Effects 0.000 description 2
- 231100000888 hearing loss Toxicity 0.000 description 2
- 208000016354 hearing loss disease Diseases 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- 230000007574 infarction Effects 0.000 description 2
- 230000000302 ischemic effect Effects 0.000 description 2
- 230000000366 juvenile effect Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 210000001577 neostriatum Anatomy 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000010627 oxidative phosphorylation Effects 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 229940016667 resveratrol Drugs 0.000 description 2
- 235000021283 resveratrol Nutrition 0.000 description 2
- 229960002477 riboflavin Drugs 0.000 description 2
- 235000019192 riboflavin Nutrition 0.000 description 2
- 239000002151 riboflavin Substances 0.000 description 2
- 210000003625 skull Anatomy 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- IASPBORHOMBZMY-UHFFFAOYSA-N srt1720 Chemical compound C=1N=C2C=CC=CC2=NC=1C(=O)NC1=CC=CC=C1C(N=C1SC=2)=CN1C=2CN1CCNCC1 IASPBORHOMBZMY-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229960003604 testosterone Drugs 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- XHELUUHUHSGXOC-ZNMIVQPWSA-N 7,8-dimethyl-10-[(2s,3s,4r)-2,3,4,5-tetrahydroxypentyl]pyrimido[4,5-b]quinoline-2,4-dione Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2C=C2C1=NC(=O)NC2=O XHELUUHUHSGXOC-ZNMIVQPWSA-N 0.000 description 1
- 108010001058 Acyl-CoA Dehydrogenase Proteins 0.000 description 1
- 102000002735 Acyl-CoA Dehydrogenase Human genes 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 108091006149 Electron carriers Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010009306 Forkhead Box Protein O1 Proteins 0.000 description 1
- 102100035427 Forkhead box protein O1 Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010034791 Heterochromatin Proteins 0.000 description 1
- 101000616727 Homo sapiens NAD-dependent protein deacylase sirtuin-5, mitochondrial Proteins 0.000 description 1
- 101000863629 Homo sapiens NAD-dependent protein lipoamidase sirtuin-4, mitochondrial Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 101000654471 Mus musculus NAD-dependent protein deacetylase sirtuin-1 Proteins 0.000 description 1
- 102100022913 NAD-dependent protein deacetylase sirtuin-2 Human genes 0.000 description 1
- 102100021839 NAD-dependent protein deacylase sirtuin-5, mitochondrial Human genes 0.000 description 1
- 102100030709 NAD-dependent protein lipoamidase sirtuin-4, mitochondrial Human genes 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 108020001027 Ribosomal DNA Proteins 0.000 description 1
- 102000000344 Sirtuin 1 Human genes 0.000 description 1
- 108010041216 Sirtuin 2 Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 102000019259 Succinate Dehydrogenase Human genes 0.000 description 1
- 108010012901 Succinate Dehydrogenase Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- TTWYZDPBDWHJOR-IDIVVRGQSA-L adenosine triphosphate disodium Chemical compound [Na+].[Na+].C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O TTWYZDPBDWHJOR-IDIVVRGQSA-L 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000001165 anti-coccidial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000009087 cell motility Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 201000010251 cutis laxa Diseases 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006196 deacetylation Effects 0.000 description 1
- 238000003381 deacetylation reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012137 double-staining Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000037149 energy metabolism Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 230000008717 functional decline Effects 0.000 description 1
- 230000003371 gabaergic effect Effects 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000000848 glutamatergic effect Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 210000004458 heterochromatin Anatomy 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 230000005787 mitochondrial ATP synthesis coupled electron transport Effects 0.000 description 1
- 230000006676 mitochondrial damage Effects 0.000 description 1
- 208000012268 mitochondrial disease Diseases 0.000 description 1
- 210000001700 mitochondrial membrane Anatomy 0.000 description 1
- 230000006705 mitochondrial oxidative phosphorylation Effects 0.000 description 1
- 230000016273 neuron death Effects 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- 229940101270 nicotinamide adenine dinucleotide (nad) Drugs 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 239000002417 nutraceutical Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 229940070891 pyridium Drugs 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000020095 red wine Nutrition 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 125000001452 riboflavin group Chemical group 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- SBEWVVLMFLTQFE-UHFFFAOYSA-N srt1460 Chemical compound COC1=C(OC)C(OC)=CC(C(=O)NC=2C(=CC=CC=2)C=2N=C3SC=C(CN4CCNCC4)N3C=2)=C1 SBEWVVLMFLTQFE-UHFFFAOYSA-N 0.000 description 1
- MUFSINOSQBMSLE-JOCHJYFZSA-N srt2183 Chemical compound C1[C@H](O)CCN1CC1=CSC2=NC(C=3C(=CC=CC=3)NC(=O)C=3C=C4C=CC=CC4=CC=3)=CN12 MUFSINOSQBMSLE-JOCHJYFZSA-N 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 210000003411 telomere Anatomy 0.000 description 1
- 108091035539 telomere Proteins 0.000 description 1
- 102000055501 telomere Human genes 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/58—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
Definitions
- the present invention relates to the use of a coenzyme factor for activating ATP production in a cell, and more particularly to the use of a coenzyme factor that assists an oxidoreductase involved in ATP production.
- Non-patent Document 1 Research is also progressing on the relationship between the sirtuin gene and mitochondria, and when the sirtuin gene is activated, the amount of mitochondria that are organelles in the cell increases, and it is further activated to prevent dementia, arteriosclerosis, hearing loss prevention, It is considered that not only the burning of fat, cell repair, and removal of active oxygen are promoted to suppress the expression of aging factors, but also the effect of healing mitochondrial disorders can be obtained (Non-patent Document 2).
- NMN Neurotinamide mononucleotide
- SIRT2 one of the long-lived protein sirtuin genes discovered by Prof. Imai et al., Is a heterochromatin component that terminates transcription with telomere and ribosomal DNA, and it has become clear that it is a NAD-dependent histone deacetylase. It was. This enzyme restores the binding of DNA to histones weakened by acetylation by deacetylation, enhances the wrapping of DNA around histones, and suppresses transcription, which is thought to be related to longevity. (Non-Patent Document 4).
- NAD + Natural Acidamide Adenine Dinucleotide
- NMN + NAD + is an intermediate substance in NAD + synthesis.
- Non-patent Document 5 has been reported to be involved in the anti-aging action.
- NAD + is one of the most important molecules of energy production involved in the first stage of oxidative phosphorylation in mitochondria and the oxidation reaction in the TCA cycle.
- SIRT1 which is one of long-lived protein sirtuin genes, is known to be mainly involved in the repair and regeneration of damaged mitochondria while expressed in the nucleus. Furthermore, it has been clarified that SIRT3, SIRT4, and SIRT5 are mainly expressed in mitochondria among the seven sirtuin genes of mammals that have been discovered so far (Non-patent Documents 7 and 8). Summing up these results, it is considered that various sirtuin genes are involved in the life extension action through activation of mitochondrial function (Non-patent Document 9).
- NMN a precursor compound of NAD + (nicotine, amide, adenine, dinucleotide)
- NAD + oxidative phosphorylation by the electron transfer system in mitochondria and ATP (adenosine triphosphate) which is a life-sustaining energy source produced by the glycolytic system in the cytoplasmic substrate are reduced (Non-patent Document 10).
- NADH Dihydro-nicotinamide adenine dinucleotide
- FADH 2 Dihydro-flavin adenine dinucleotide
- NAD nicotinamide adenine dinucleotide
- NAD + nicotinamide mononucleotide
- the primary source of FAD in eukaryotic metabolism is the cytoplasmic substrate on which mitochondrial citrate cycle and ⁇ -oxidation take place.
- FAD functions as a coenzyme for succinate dehydrogenase that oxidizes succinic acid to fumaric acid, and in ⁇ -oxidation, it functions as a coenzyme for the enzyme reaction of acyl CoA dehydrogenase.
- NMN and NAD + belonging to the redox (oxidation-reduction) system are easily decomposed in the metabolic system and are chemically unstable, and it is considered difficult to develop them as future medicines.
- combines it will become expensive. Therefore, there is a strong demand for the development of chemicals that are sufficiently satisfactory as pharmaceuticals in that they have an excellent ATP production function activation action and exhibit excellent pharmacokinetics (absorbability in the body, transferability into the brain, etc.).
- a 5-deazaflavin (pyrimido [4,5-b] quinoline-2,4 (3H, 10H) -dione) derivative having a unique chemical structure in which N at the 5-position of riboflavin is substituted with CH was introduced in 1970 It is the first compound synthesized as an analog.
- derivatives of 5-deazaflavin those showing excellent anticancer activity and those having antiherpesvirus activity are known, and some are used as anticancer agents and antiherpesvirus agents (Patent Documents 1 to 5). ).
- Non-patent Document 11 Catalytic function for the conversion reaction of alcohols to ketones and aldehydes accompanying the change in structure, conversion reaction of amines to imines (ketones), reduction of carbonyl compounds to alcohols, reduction of imines to amines and asymmetry Reductions and similarities with NAD + (nicotinamide nucleotide) have also been studied (Non-patent Document 11).
- Various patent literatures have been published on mitochondrial function activators (Patent Literatures 6 to 8). However, there is no literature that focuses on the redox catalytic activity of this 5-deazaflavin derivative and applied to the mitochondrial function activation action.
- 5-deazaflavin derivatives have redox catalytic activity, it is clear that they influence the ATP production function in mitochondrial oxidative phosphorylation.
- 5 Deazafurabin skeleton is found in a redox reaction involving the coenzyme coenzyme F 420 methane fermentation (Coenzyme F 420), are also analogs of flavin. Its redox behavior is similar to NAD (P) + rather than flavin.
- NAD (P) + One of the resonance limit formulas has a NAD (P) + structure built into the molecule, and the electron density (determined by molecular orbital calculation chemistry) is “flavin type NAD (P) + ”. Can be considered.
- 5-deazaflavin has the same redox (redox) function as NAD + and FAD, and therefore activates ATP production in the cell and further directly or indirectly activates the sirtuin gene.
- redox redox
- 5-deazaflavin compounds with a specific structural formula are chemically very stable, can be synthesized at low cost, activate ATP production, and activate sirtuin genes that control mitochondrial functions As a result, the present invention has been completed.
- An object of the present invention is to provide a 5-deazaflavin compound having a structural formula effective to activate ATP production in cells among various 5-deazaflavin derivatives.
- the present inventors have conducted intensive research to solve the above problems, prepared 5-deazaflavin derivative compounds having various different structural formulas as specimens, and used them to conduct various experiments in vitro. As a result, a compound having a structural formula that increases ATP production in cells was found.
- the present inventors have replaced the nitrogen at the 5-position of the flavin skeleton of riboflavin (vitamin B 2 ), which is known as a growth factor and is a water-soluble vitamin, with a methylene group as an analog of NMN (see FIG. 17). Focused on deazaflavin. 5-Deazariboflavin antagonized riboflavin and showed potent anticoccidial activity. Recently, coenzyme F 420 (see Fig. 18) with a 5-deazaflavin skeleton was found from methanogens, and it plays an important role in the process of reducing carbon dioxide to methane and biosynthesis of antibiotics. I understand that.
- the redox behavior of 5-deazaflavin is similar to NAD (P) + (see FIG. 19) rather than flavin.
- One of the resonance limit formulas has a NAD (P) + structure built into the molecule, and the electron density (determined by molecular orbital calculation chemistry) is “flavin type NAD (P) + ”.
- P the electron density (determined by molecular orbital calculation chemistry) is “flavin type NAD (P) + ”.
- the 5-position of the 5-deazaflavin ring is very ⁇ -electron deficient (net charge net charge: +0.24)
- the 4-position of nicotinamide nucleotide is similarly ⁇ -electron deficient (net charge: +0.210).
- the 5-deazaflavin ring is considered to belong to both the NAD (+) and FAD (see FIG. 21) electron transport systems.
- Nicotinamide adenine dinucleotide (NAD) is an electron carrier used in all eukaryotes, many archaea, and eubacteria.
- this 5-deazaflavin compound which has a redox function similar to NAD + and FAD, is chemically very stable and inexpensive compared to ⁇ -NMN, which is currently being studied for use in pharmaceuticals supplemented with NMN.
- the inventors thought that they could be synthesized, activated NAD + , and also directly or indirectly activated mitochondrial longevity genes (SIRT1 and SIRT3). That is, the inventors have activated FOXO1, which is a target transcription factor of SIRT1, for the purpose of evaluating the activation of the longevity gene SIRT1, which is activated depending on NAD + and has already been revealed as an important gene for maintaining mitochondrial function. Screening evaluation of mRNA increase was performed by q-RT-PCR method using HCT116 cells with expression as an activity index.
- the compound according to the present invention has the ability to activate SIRT1 at a lower dose as compared with ⁇ -NMN. Therefore, it can be expected that the compound according to the present invention directly activates NAD + and continuously produces ATP even under pathological conditions such as ischemia, and the effect is sustained and strong. Therefore, it is considered that the compound according to the present invention has sufficient requirements for development as a pharmaceutical product.
- the chemical structure is functionally and electronically close to the combined structure of the core part of NAD + and FAD coenzyme, that is, a hybrid structure of nicotinamide and flavin, the side effect is expressed. I can guess that there will be almost none.
- the structure of the compound according to the present invention has a higher redox potential and superior redox ability than NAD and FAD as coenzymes, as judged from the measured redox potential.
- the present invention has been completed based on the above findings. That is, the compounds represented by the following formulas (I) to (IV) were identified as effective coenzyme factors for activating ATP production in cells according to the present invention.
- R 1 represents a hydrogen atom, an alkyl group, a halogen-substituted alkyl group, a carboxy-substituted alkyl group, or a phenyl group
- R 2 represents an alkyl group, a cycloalkyl group, a phenyl-substituted lower alkyl group, a phenyl group
- R 3 and R 4 represent a hydrogen atom, a lower alkyl group, a halogen atom, a hydroxyl group, Represents a nitro group, a cyano group, a lower alkoxy group, a phenyl-substituted lower alkoxy, a lower alkylamino group, a phenyl
- R 1 and R 3 are substituted with a hydrogen atom, an alkyl group, a halogen-substituted alkyl group, a carboxy-substituted alkyl group, or one of a phenyl group, a halogen atom, a lower alkyl group, or a lower alkoxy group.
- R 2 is substituted with one of an alkyl group, a cycloalkyl group, a phenyl-substituted lower alkyl group, a phenyl group, a halogen atom, a lower alkyl group, or a lower alkoxy group.
- R 1 represents a hydrogen atom, an alkyl group, a halogen-substituted alkyl group, a carboxy-substituted alkyl group, or a phenyl group substituted with one of a phenyl group, a halogen atom, a lower alkyl group, or a lower alkoxy group.
- R 2 represents an alkyl group, a cycloalkyl group, a phenyl-substituted lower alkyl group, a phenyl group, a phenyl group substituted with one of a halogen atom, a lower alkyl group, or a lower alkoxy group, and a lower alkyl disubstituted phenyl group.
- R 1 represents a hydrogen atom, an alkyl group, a halogen-substituted alkyl group, a carboxy-substituted alkyl group, or a phenyl group substituted with one of a phenyl group, a halogen atom, a lower alkyl group, or a lower alkoxy group.
- R 2 represents an alkyl group, a cycloalkyl group, a phenyl-substituted lower alkyl group, a phenyl group, a phenyl group substituted with one of a halogen atom, a lower alkyl group, or a lower alkoxy group, and a lower alkyl disubstituted phenyl group.
- the coenzyme factor that activates ATP production provided by the present invention, it is possible to improve the functional decline of energy production in cells. Therefore, it is extremely useful as a prophylactic / therapeutic agent for Alzheimer's disease, Parkinson's disease, neurodegenerative diseases and depression associated with cerebral hemorrhage / infarction.
- FIG. 1 shows the results of fluorescence measurement of the ATP concentration inside and outside the cell after adding specimen 1 to cultured cells of human-derived neuroblastoma (neuroblastoma) SH-SY5Y strain.
- FIG. 2A is a diagram showing the result of fluorescence measurement by adding specimen 1 to a type of central nervous system glial cell, cultured astrocyte cells.
- FIG. 2B is a diagram quantifying the measurement results in FIG. 2A.
- FIG. 3 is a diagram showing a relative comparison with the case where the specimens 1 and 2 were added to cultured cells of human glioma U251 (Sig1-R transfected cells) and the intracellular ATP concentration was not added (Cont.). It is.
- FIG. 1 shows the results of fluorescence measurement of the ATP concentration inside and outside the cell after adding specimen 1 to cultured cells of human-derived neuroblastoma (neuroblastoma) SH-SY5Y strain.
- FIG. 2A is a diagram showing the result
- FIG. 4 shows the hippocampal neuron (neuron) nerve axis after collecting hippocampal cultured cells from a young (day 0) ICR mouse brain, culturing the neurons in a culture dish, and adding the specimen 1 It is an immuno-staining image showing the extension, development, and branching of the cord (Axon).
- FIG. 5 is a diagram showing the results of measuring the number of branches of the hippocampal nerve cell axon (Axon) by adding the specimen 1 in the same manner as in FIG.
- FIG. 6 is an immunostained image showing the extension / development / branching of hippocampal neuronal dendrites (Dentrite) after addition of specimen 1 as in FIG.
- FIG. 7 is a diagram showing the results of measuring the number of branches of hippocampal nerve cell dendrite (Dendrite) by adding specimen 1 as in FIG.
- FIG. 8 is an immunostained image of a synapse in an autopsy specimen cultured as in FIG. 4 and immunostained for excitatory synapses on the 14th day.
- FIG. 9 is a diagram in which the number of excitatory synapses on the 14th day was quantified after culturing in the same manner as in FIG.
- FIG. 10 is an immunostained image of hippocampal neuronal dendrites (Dendrite) quantified 3 days later (day 14 of culture) after sample 1 was administered once to mature cultured hippocampal cells (day 11 of culture).
- FIG. 11 is a diagram in which the number of branches of dendrites (Dendrite) was measured by immunostaining with the MAP2 antibody during the development period of the 14th day of culture, as in the case of FIG.
- FIG. 12 shows that adult C57BL / 6N mice (10 to 17 weeks old, body weight 28 to 31 g) were administered physiological saline (control) and specimen 3 (10 ⁇ g / kg) intraperitoneally, and after 22 hours the cortex and cortex A brain thin slice (slice) specimen containing the hippocampus region was prepared, and 80 mM KCl (80 K) was added to the external solution to cause depolarization of the cell membrane, and in the cerebral cortical neurons (neuronal cells) generated by K + depolarization
- FIG. 12 shows that adult C57BL / 6N mice (10 to 17 weeks old, body weight 28 to 31 g) were administered physiological saline (control) and specimen 3 (10 ⁇ g / kg) intraperitoneally, and after 22 hours the cortex and cortex A
- FIG. 6 is a diagram in which the Ca 2+ concentration increase in mitochondria existing in the urine and the inhibitory effect by the specimen 3 are measured.
- FIG. 13 is a diagram in which the increase in intramitochondrial Ca 2+ concentration due to K + depolarization of hippocampal neurons (neurons) and its inhibitory effect by specimen 3 were measured, as in FIG.
- FIG. 14 shows that after making a small hole in the skull of a Wistar adult rat (200 to 230 g body weight) under inhalation anesthesia, the right brain striatum is filled with 0.24 U collagenase (in the control group, physiological saline, and in the bleeding group).
- FIG. 15 shows that, in order to verify the brain cell protective effect of specimen 4 on intracerebral hemorrhage model rats, 100 ⁇ g / kg of specimen 4 was injected into a spot in the brain 1 hour after administration of collagenase, and the exercise footprint of the rat was quantitatively determined.
- FIG. FIG. 16 is a diagram in which the daily change in the exercise distance and exercise speed of the rat with or without sample 4 administration was measured in the same manner as in FIG.
- FIG. 17 shows the chemical structural formula of ⁇ -NMN.
- FIG. 18 is a diagram showing the chemical structural formulas of coenzyme F 420.
- FIG. 19 is a diagram for explaining the chemical structural formula of NAD (P) + and its redox reaction (Redox).
- FIG. 20 is a graph showing electron densities obtained by molecular orbital calculation chemistry of 5-deazaflavin and NAD (P) + flavin ring.
- FIG. 21 is a diagram for explaining the structural similarity with FAD as a comparison with NAD + .
- FIG. 22 is a diagram showing the results of quantitative test of the number of branches of hippocampal neuronal dendrites (Dendrite) after adding specimen 5.
- FIG. 23 is a diagram showing the results of quantitative test of the number of branches of hippocampal neuronal dendrites (Dendrite) after adding specimen 6.
- FIG. 24 is a diagram showing the results of quantitative test of the number of branches of hippocampal neuronal dendrites (Dendrite) after adding specimen 7.
- FIG. 25 is a diagram showing the results of quantitative test of the number of branches of hippocampal neuronal dendrites (Dendrite) after adding specimen 8.
- FIG. 26 is a diagram showing the results of quantitative test of the number of branches of hippocampal nerve cell dendrite (Dendrite) with the addition of specimen 9.
- FIG. 27 is a diagram showing the result of quantitative test of the number of branches of hippocampal nerve cell dendrite (Dendrite) with the specimen 10 added.
- FIG. 28 is a diagram showing the results of quantitative test of the number of branches of hippocampal nerve cell dendrite (Dendrite) with the specimen 10 added.
- FIG. 29 is a diagram showing the analysis result of intramitochondrial Ca 2+ in the brain specimen of a mouse subcutaneously administered with ⁇ -NMN 24 hours ago. Samples stained with the mitochondrial selective Ca 2+ indicator Xrhod-1 were exposed to 80K ACFS for 5 minutes—washing for 5 minutes was repeated three times.
- a dose of ⁇ -NMN was administered subcutaneously, and whole brain slices were prepared 24 hours later and stained with a mitochondrial-specific Ca 2+ indicator Xrhod-1. From the red (> 600 nm) fluorescence image upon excitation at 580 nm, the intramitochondrial Ca 2+ increase obtained by three 80K ACSF stimulations was measured over time.
- FIG. 30 is a diagram showing the analysis result of intra-mitochondrial Ca 2+ in the brain specimen of a mouse to which specimen 1 (TND1128) was subcutaneously administered 24 hours ago. The specimen stained with the mitochondrial selective Ca 2+ indicator Xrhod-1 was repeatedly exposed to 80K ACFS for 5 minutes—washing for 5 minutes three times as in FIG.
- FIG. 31 is a graph showing the dose-response relationship of the protective effect on the mitochondrial Ca 2+ concentration when ⁇ -NMN is exposed to 80K ACSF.
- the data in FIG. 29 were quantitatively summarized (see FIG. 37).
- CX cerebral cortex
- CA1 hippocampus
- FIG. 32 is a graph showing the amount-response relationship of the protective effect on the mitochondrial Ca 2+ concentration when the specimen 1 (TND1128) is exposed to 80K ACSF.
- the data in FIG. 29 were quantitatively summarized (see FIG. 37).
- FIG. 33 is a diagram showing the analysis results of cytoplasmic Ca 2+ in a brain specimen of a mouse subcutaneously administered with ⁇ -NMN 24 hours ago.
- Each dose of ⁇ -NMN was administered subcutaneously, and 24 hours later, whole brain slice specimens were prepared, and the brain slice specimens were stained with Ca 2+ indicator Fura-4F that remained in the cytoplasm.
- the ratio of the fluorescence intensity (F360 and F380) of blue-green color (> 500 nm) when excitation light of 360 nm and 380 nm is given from this brain specimen is obtained over time every 10 seconds, and is obtained by three 80K-ACSF stimulations. Time course of cytosolic Ca 2+ increase.
- FIG. 34 is a view showing the analysis results of cytoplasmic Ca 2+ in a brain specimen of a mouse subcutaneously administered with Specimen 1 (TND1128) 24 hours ago. The specimen stained with cytoplasm-selective Ca 2+ indicator Fura-4F was subjected to 3 times of 5 minutes 80K ACFS exposure and 5 minutes washing operation as in FIG.
- FIG. 35 is a graph showing a dose-response relationship of protective effect on cytoplasmic Ca 2+ concentration when ⁇ -NMN is exposed to 80K ACSF.
- the data in FIG. 33 was quantitatively summarized (see FIG. 37).
- A ⁇ relative to the amount of Ca 2+ uptake in cytoplasm in the cerebral cortex (CTX) (white) and hippocampus (CA1) (black) over the entire 80K ACSF three consecutive exposures.
- action of -NMN B 80K ACSF exposure in the cerebral cortex, the dose-response relationship of Ca 2+ uptake in the cytoplasm in each time
- C 80K ACSF exposure in the hippocampus, the dose-response relationship of Ca 2+ uptake in the cytoplasm in each time
- FIG. 36 is a graph showing the amount-response relationship of the protective effect on the cytosolic Ca 2+ concentration when the specimen 1 (TND1128) is exposed to 80K ACSF.
- the data of FIG. 34 were quantitatively summarized (see FIG. 37).
- CTX cerebral cortex
- CA1 hippocampus
- FIG. 37 is a diagram illustrating a method for quantifying the amount of Ca 2+ increase in mitochondria or cytoplasm when exposed to 80K for three consecutive times.
- the 5-deazaflavin compounds (I-1 to I-118) (3) represented by the general formula I can be synthesized by the production methods described in known literatures (1 to 14).
- most derivatives can be synthesized by the general production method described in Document (1) described in (Production Method A). That is, 6-N-substituted-aminouracils (1) and appropriate o-halogenobenzaldehyde (2) are heated to reflux in dimethylformamide (DMF). The heating time is suitably 3-7 hours.
- the reaction solution is concentrated under reduced pressure, and the residue is recrystallized from an appropriate solvent (alcohol, dioxane, DMF, etc.) to obtain the corresponding 5-deazaflavin (3).
- the pyridodipyrimidine compounds (II) (II-1 to II-32) (5) represented by the general formula II can be synthesized by the production methods described in known literatures (15 to 19).
- most derivatives can be synthesized by the general production method described in Document (15) described in (Production Method B). That is, 6-N-substituted-aminouracils (1) and a suitable 3-substituted-6-chlorouracil-5-carbaldehyde (4) are heated to reflux in dimethylformamide or acetic acid. The heating time is suitably 2 to 5 hours.
- the reaction solution is concentrated under reduced pressure, and the residue is recrystallized with a suitable solvent (alcohol, acetic acid, DMF, etc.) to obtain the corresponding pyridodipyrimidine (5).
- the deazaflavinotestosterone compounds (III) (III-1 to III-2) (7) represented by the general formula III can be synthesized by the production method described in the known literature (20, 21).
- the unknown compounds (III-3 to III-23) can also be synthesized by the same method. That is, 6-N-monosubstituted-aminouracils (1) and 2-hydroxymethylene testosterone (6) were added to diphenyl ether, and p-toluenesulfonic acid was added to the mixture, and then at 180 ° C. in an argon atmosphere. Stir for 30 to 60 minutes under heating. After the reaction, the reaction product is purified by column chromatography. This reaction can also be synthesized by heating under pressure for several hours in dioxane.
- Tables 5 and 6 show the instrumental analysis values of the new compounds (III-3 to III-23).
- the pyridodipyrimidine compounds (IV) (IV-1 to IV-26) (9) represented by the general formula IV can be synthesized by the production method described in the known literature (22) (Production method D). That is, p-toluenesulfonic acid, 3-substituted-6-monosubstituted aminouracil (1) and 2-hydroxymethylenecholest-4-en-3-one (8) are added to diphenyl ether, and the mixture is heated at 180 ° C. in a nitrogen atmosphere. Heat and stir for 45 minutes. After the reaction, this is separated and purified by column chromatography (Fuji Silysia 230-400mesh; eluent: ethyl acetate) to obtain powder crystals.
- Example 1 Specimen 1 was added to cultured cells of human-derived neuroblastoma (neuroblastoma) SH-SY5Y strain, and ATP concentrations inside and outside the cells were measured by fluorescence. The result is shown in FIG. In the cells, an increase in ATP production (increase in fluorescence intensity) is observed from 5 hours after the addition of specimen 1 (1 ⁇ M), and the action disappears after 12 hours. There is no change in the morphology of the cultured cells due to the specimen treatment. Even outside the cells, an increase in ATP production was observed from immediately after the addition of specimen 1 (1 ⁇ M) to 5 hours later, and the ATP concentration increased. This is probably because ATP increased in the cell flowed out of the cell.
- FIG. 2A and FIG. 2B show the results of fluorescence measurement of specimen 1 added to cultured astrocyte cells, a type of central nervous system glial cells.
- the amount of ATP in glial cells significantly increased after 12 hours and 24 hours when Sample 1 was administered at 1 ⁇ M, and the same trend was also observed extracellularly.
- Example 3 Samples 1 and 2 were added to cultured cells of human glioma U251 (Sig1-R transfected cells), respectively, and compared with the case where the intracellular ATP concentration after addition was not added (Cont.). As a result, it was verified that sample 1 and sample 2 significantly increased the amount of ATP produced by human glioma U251 cells as shown in FIG. Specimen 2 with high fat solubility is more effective than Specimen 1. The fluorescence measurement was performed 6 hours after administration of the specimen.
- Examples 1 to 3 are experiments on brain neurons (neurons), but brain neurons (neurons) require oxygen (O 2 ) and glucose. These two substances are first taken up into glia (astrocytes) from the blood and then transmitted from glia to neurons. The same applies to the specimen. Therefore, an increase in the amount of ATP in glia due to the specimen indicates that the function of glia is directly promoted and suggests that neurons are indirectly activated.
- Example 4 Hippocampal cultured cells were collected from young (day 0) ICR mouse brains, and neurons were cultured in a culture dish. Specimen 1 is added once to cells in early development (culture day 1), and after 3 days (culture day 4), hippocampal neurons (neurons) nerve axons (Axon), dendrites (Dendrite) and development The number of synapses to be quantified. Sample 1 (0.1 ⁇ M, 0.3 ⁇ M, 1.0 ⁇ M) was added only once on the first day of culture. Three days after the addition (4th day of culture), Axon and Dendrite were immunostained with tau antibody and MAP2 antibody, respectively, and morphology observation was performed.
- FIG. 4 shows an immunostained image of hippocampal nerve cell axon (Axon).
- the axon was immunostained with the tau antibody on the 4th day of culture.
- the left shows the Control (control group), and the right shows the sample-treated nerve cells to which the sample 1 (1 ⁇ M) was added only once on the first day of culture.
- FIG. 5 shows the number of branches of hippocampal nerve cell axon (Axon).
- the number of axon branches was quantified with the tau antibody on the 4th day of culture.
- concentric circles (not shown) were drawn around the cell body at intervals of 10 ⁇ m, and the number of axons crossing the circles was measured.
- 4 and 5 show that specimen 1 increases the axon extension / development and the number of branches in a concentration-dependent manner. It should be noted that the maximum drug efficacy was almost the same at the specimen concentrations of 0.3 ⁇ M and 1.0 ⁇ M.
- FIG. 6 shows an immunostained image of hippocampal neuronal dendrites (Dendrite).
- Dendrite hippocampal neuronal dendrites
- FIG. 7 shows the number of branches of hippocampal neuronal dendrites (Dendrite). Immunostaining was performed with the MAP2 antibody on the fourth day of culture, and the number of branches of dendrites was quantified. In the experiment, concentric circles (not shown) were drawn at intervals of 10 ⁇ m around the cell body, and the number of dendrites intersecting the circles was measured. From FIG. 6 and FIG. 7, it was shown that the specimen 1 increased the dendrite extension and the number of branches in a concentration-dependent manner. The specimen concentrations of 0.3 ⁇ M and 1.0 ⁇ M showed almost the same maximum efficacy. Next, excitatory synapses on the 14th day of culture were immunostained using VGLUT1 antibody, and the number of synapses was quantified.
- FIG. 8 shows an immunostained image of synapse in an autopsy specimen.
- the left is Control (control group)
- the right is sample 1 (1 ⁇ M) added once on the first day of culture, and the 14th day of culture.
- the neuron which immunostained excitatory synapse with VGLUT1 antibody is shown.
- FIG. 9 is a diagram in which an increase in excitatory synapses projected on hippocampal neurons is measured.
- the brain has two synapses of glutamatergic and GABAergic that quickly transmit nerve excitement and suppression, but FIG. 9 is immunostained with VGLUT1 antibody on the 14th day of culture to determine the number of excitatory synapses. Quantified. From FIG. 8 and FIG. 9, it was shown that Sample 1 significantly increased the number of excitatory synapses to the maximum value by the addition of 0.3 ⁇ M.
- Example 5 In the same manner as in Example 4, hippocampal cultured cells were collected from young (0-day-old) ICR mouse brain and cultured on neurons in a culture dish. Sample 1 was administered once to mature cultured hippocampal cells (cultured day 11), and after 3 days (cultured day 14), hippocampal neurons (neurons) nerve axons (Axon), dendrites (Dendrite) was observed. Since the axons on the 14th day of culture were markedly extended and crossed between axons, and the number of axons could not be determined, only the morphology of dendrites was observed.
- FIG. 10 shows immunostained images of hippocampal neuronal dendrites (Dendrite).
- the left is an image of Control (control group), the right is an image on the 14th day of culture, and the sample 1 is administered, and the 14th day of culture Eyes were immunostained with MAP2 antibody.
- FIG. 11 shows immunostaining with the MAP2 antibody at the late stage of development on the 14th day of culture, and the number of dendrites (Dendrite) is quantified at a specimen concentration of 0.1 to 1 ⁇ M. 10 ⁇ m centering on the cell body. Concentric circles were drawn at intervals of, and the number of dendrites intersecting the circles was measured. The number of dendrites growing from the cell body is increased depending on the number of days of culture (FIG. 11), compared to dendrites on the fourth day of juvenile cultured cells (FIG. 7).
- Example 6 Adult C57BL / 6N mice (10 to 17 weeks of age, body weight 28 to 31 g) were administered intraperitoneally with physiological saline (Control) on one side and specimen 3 (10 ⁇ g / kg) on the other side. Brain thin slice (slice) specimens containing mouse cortex and hippocampus regions were prepared. 80 mM KCl (80K) was added to the external solution to cause depolarization of the cell membrane, and the resulting increase in Ca 2+ concentration in the mitochondria was measured by a fluorescent method using Rhod-2 (Note 1). In brain slices, it is indirectly shown that the sample 3 is actively involved in ATP activity in mitochondria, using as an index how the Ca 2+ concentration (Note 2) increased by 80K is suppressed by the sample 3. It was verified (Note 3).
- Rhod-2 Ca 2+ fluorescent dye that is selectively taken up by mitochondria
- Depolarization of nerve cell membrane by 80K is caused by influx of Ca 2+ from the outside into the cell and from intracellular Ca store. It occurs by both the release of Ca 2+ . Increased free Ca 2+ in the cell easily flows into mitochondria, which is an independent organ in the cell. As a result, the Ca 2+ concentration in mitochondria increases.
- Free Ca 2+ increased in the neurocytoplasm due to depolarization by 80K stimulation is immediately transferred from the cytoplasm into the mitochondria.
- FIG. 12 is a diagram in which an increase in Ca 2+ concentration in mitochondria present in cerebral cortical neurons (neurons) caused by K + depolarization and its inhibitory effect by specimen 3 are measured.
- a is a control reaction when 80 mM KCl external solution (washed for 5 minutes after being applied for 5 minutes) was continuously applied 3 times to a brain slice sample obtained from a normal mouse.
- the vertical axis represents the result of fluorescence measurement of the increase in mitochondrial Ca 2+ concentration.
- b shows changes in mitochondrial Ca 2+ concentration when 80 K external solution was given to brain slice specimens prepared by excision from rats 22 hours after intraperitoneal (ip) injection of specimen 3 at 10 ⁇ g / kg.
- FIG. 13 is a diagram in which an increase in mitochondrial Ca 2+ concentration due to K + depolarization of hippocampal neurons (neuronal cells) is measured.
- a is a control reaction when 80 mM KCl external solution (washed for 5 minutes after being applied for 5 minutes) was continued three times.
- b is a graph showing changes in mitochondrial Ca 2+ concentration when a brain slice sample was prepared 22 hours after intraperitoneal injection of specimen 3 at 10 ⁇ g / kg and given an 80 K external solution.
- c is a graph showing a comparison of the inhibitory effect of hippocampal neurons on the control of intramitochondrial Ca 2+ concentration and 10 ⁇ g and 10 mg / kg ip of specimen 3.
- FIG. The maximum effect is obtained at 10 ⁇ g / kg.
- N 3 average value: data obtained from three slices obtained from the same individual)
- Example 7 An experiment was conducted to confirm the effect of sample addition on the reduction of exercise behavior in adult rats with cerebral ischemia. A small hole was made in the skull of a Wistar adult rat (body weight 200 to 230 g) by inhalation anesthesia, and then the right striatum was given saline (control group) for the control group and 0.24 U collagenase (type IV) for the bleeding group. An intracerebral hemorrhage model rat was prepared by injecting 1.2 ⁇ l of physiological saline containing it.
- FIG. 14 is a view showing a cross section of the brain of an intracerebral hemorrhage model rat.
- 100 ⁇ g / kg of specimen 4 was injected into a spot in the brain (in the figure / white rhombus) 1 hour after collagenase administration, and the rat's exercise footprint was quantitatively measured.
- the momentum was measured by moving the rat for 5 minutes.
- the free behavior (movement distance and speed) for the last 3 minutes of the shooting time was analyzed.
- FIG. 15 is a diagram in which the exercise footprint of the rat is measured
- FIG. 16 is a diagram in which the daily change in the exercise distance and exercise speed is measured.
- Specimen 4 mitigates the decrease in ischemic distance and speed caused by rat cerebral hemorrhage (FIGS. 15 and 16). The effect is also seen on the first day and one week after bleeding. Based on the experimental results, it was shown that Specimen 4 contributes to the prevention of ischemic damage of mature rat brain cells (indirect proof of increased ATP).
- the number of intersecting dendrites measured for each distance from the cell body is converted into a line graph.
- the area under the line graph (Area) is Student's t-test, paired (t-test). , Two-sided distribution). For samples with a sufficient number of cases, the maximum and minimum values were removed and the test was performed. The sample concentration to be added was 0.3 ⁇ M in all cases.
- Whether or not the dendrites are significantly elongated is determined by calculating the p-value from the t-value, and when the p value is p ⁇ 0.05, it is significantly elongated (effect ++), and 0.05 ⁇ p ⁇ An extension (effect +) was distal or proximal at 0.2, and no significant difference (effect ⁇ ) at p> 0.2.
- FIGS. 22 to 28 are graphs showing the results of quantitative test of the number of branches of hippocampal nerve cell dendrites (Dendride) with the addition of specimens 5 to 10, respectively.
- a is the figure which showed the number of cross dendrites with respect to the distance from a cell body (soma), and b was the test result which compared AUC.
- the solid line indicates the case where the sample is added, and the dotted line indicates the case where the sample is not added (control). Note that n is the number of samples.
- specimen 7 (III-2) and specimen II (IV-23) have a statistically significant difference (p ⁇ 0.05), but other specimen 5 (II -13), 6 (II-31), 8 (III-2), 9 (IV-10), 10 (IV-15), and 11 (IV-23) also show the effect of protrusion extension.
- specimen 1 (TND1128) was selected, and an action comparison experiment with ⁇ -NMN was conducted.
- ⁇ -NMN an action comparison experiment with ⁇ -NMN was conducted.
- SIRT1 was significantly increased in nematodes treated with specimen 1 (TND1128) for 24 hours, so that the same effect was obtained with ⁇ -NMN 24 hours after administration. To compare.
- ACSF artificial cerebrospinal fluid
- This specimen was placed in a chamber mounted on the stage of an inverted fluorescence microscope (Olympus IX71), covered with black cotton strips, fixed with a platinum ring, and perfused with O 2 95%, CO 2 5% aerated ACSF (70 ml). / Hr).
- a fluorescence image of the specimen was acquired with a 4x objective lens, and images of the hippocampal ventral region and the cerebral cortex were displayed on one screen.
- the intensity change of red fluorescence (> 600 nm) generated by excitation light 580 nm was measured for the measurement of mitochondrial calsim concentration, and the cytosolic calcium measurement was obtained as the ratio of fluorescence (> 500 nm) by 360 nm excitation and 380 nm excitation.
- Measurement sites were placed in two locations, the hippocampal CA1 site and the cerebral cortex.
- ⁇ -NMN is dissolved in water to dissolve 10 mg / kg, 30 mg / kg or 100 mg / kg
- specimen 1 is dissolved in alcohol to 1 mg / ml, which is diluted with water to give 0.01 mg / kg, 0 .1 mg / kg or 1.0 mg / kg was administered subcutaneously (0.1 ml / 10 g) to mice 24 hours before specimen preparation.
- FIG. 31 and FIG. 32 show the results of quantifying the effect of each concentration of ⁇ -NMN and specimen 1 (TND1128), respectively.
- FIG. 31 and FIG. 32A shows the magnitude of mitochondrial calcium concentration from AUC (Area under the curve) up to 35 minutes after 3 minutes of exposure to 80K-ACSF after 5 minutes from the start of the administration experiment. (See FIG. 37).
- B and C are respectively 80K administration for 5 minutes in the cerebral cortex (CTX) and hippocampus (CA1) and subsequent washing for 5 minutes (1st: 5 to 15 minutes, 2nd: 15 to 25 minutes, 3rd: 25 to 35 minutes), respectively (See FIG. 37).
- CTX cerebral cortex
- CA1 hippocampus
- the Tukey method was used for the significant difference test.
- a dose-response relationship between ⁇ -NMN and TND1128 was observed in the dose range studied.
- FIG. 33 and FIG. 34 show the effects of ⁇ -NMN and specimen 1 (TND1128) on cytoplasmic calcium fluctuations during three consecutive administrations of 80KACSF.
- the control reactions shown in FIG. 33 and FIG. 34 show little recovery of the response for each 80K-ACSF administration. At first glance, it seems that the response of the calcium indicator has peaked, but the intracellular calcium concentration indicator used in this test.
- Non-Patent Document 8 the mitochondria of the mouse brain that was actually administered subcutaneously as in this experiment. There are no reports mentioning its effectiveness on function.
- Specimen 1 (TND1128) is highly hydrophobic and extremely stable. Using this advantage, it may be possible to adjust the topical medicine and activate the weakened roots to treat gray hair and baldness, and to rejuvenate loose skin cells. Furthermore, it seems that the effect on the brain can be expected by percutaneous absorption.
Landscapes
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Urology & Nephrology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Pain & Pain Management (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
Description
上記疾患の発症要因の一つとして、細胞内でのエネルギー産生(ATP産生)の機能低下が挙げられる。ATP産生は細胞質基質でも行なわれるが、有酸素下では主としてミトコンドリア複合体において行なわれる。ミトコンドリアは全ての動物細胞内に存在し、電子伝達システムを介して細胞の治動に必要なエネルギー産生を担っている。ミトコンドリアおよびミトコンドリア遺伝子は、電子伝達異常による酸化的ストレスに対して脆弱なため、その結果、エネルギー代謝の低下、細胞の変性に至る。特に脳細胞においては、エネルギー要求量が高いため、ミトコンドリアはより変性を受け易く、老化に伴うミトコンドリア電子伝達異常による、いわゆる脳ミトコンドリア障害が惹起される。
サーチュイン遺伝子とミトコンドリアとの関係についても研究が進んでおり、サーチュイン遺伝子が活性化されると細胞内の小器官であるミトコンドリアの量が増え、さらに賦活され認知症予防、動脈硬化予防、難聴予防、脂肪の燃焼、細胞修復、活性酸素の除去を促進し、老化要因の発現を抑制するだけでなく、ミトコンドリア障害を治癒する効果も得られると考えられている(非特許文献2)。
これはNAD+がミトコンドリアにおける酸化的リン酸化の第一段階およびTCAサイクルにおける酸化反応に係わるエネルギー産生の最も重要な分子の一つであることからも理解できる。
これらの結果を総合すると、多様なサーチュイン遺伝子がミトコンドリア機能の活性化を介して寿命延長作用に関与していると考えられている(非特許文献9)。
NADの構造は、ニコチンアミドモノヌクレオチド(NMN)とアデニル酸がホスホジエステル結合している。酸化型NADにおけるピリジン環の窒素原子はピリジウムイオンとして存在するので、これをNAD+と表現する。NAD+の重要な機能はATP産生機構(酸化反応)にNAD+の還元が共役している点にある。
また、FAD(フラビンアデニンジヌクレオチド)も酸化還元酵素に関与する補酵素の一つで、還元型はFADH2で、ミトコンドリアの電子伝達系でのATP産生に使用される。
従って、優れたATP産生機能賦活作用を有し、かつ優れた体内動態(体内吸収性、脳内移行性等)を示す点において医薬品として十分満足できる化学物の開発が切望されている。
即ち、本発明により細胞内でATP産生を賦活するために有効な補酵素因子として、下記の式(I)~式(IV)で示される化合物を特定した。
従って、アルツハイマー病、パーキンソン病、脳出血・梗塞に伴う神経変性疾患やうつ病などの予防・治療薬として極めて有用である。
本発明では、式(I),(II),(III)及び(IV)で示される構造式を有する化合物の使用が細胞内でのATP産生を賦活するのに有効である。
以下、それらの化合物の具体例とその製法を示す文献を第1表~第4表に示す。
一般式Iで表される5-デアザフラビン化合物(I-1~I-118)(3)は既知文献(1~14)記載の製造方法により合成できる。特に、(製法A)に記した文献(1)の一般製造方法により大半の誘導体が合成できる。即ち、6-N-置換-アミノウラシル類(1)と適当なo-ハロゲノベンズアルデヒド(2)をジメチルホルムアミド(DMF)中で、加熱還流する。加熱時間は3~7時間が適当である。反応液を減圧下濃縮し、残留物を適当な溶媒(アルコール、ジオキサンやDMFなど)で再結晶し、対応する5-デアザフラビン(3)を得る。
(8’-置換-5’-デアザ-17β-ヒドロキシ-3’-メチルアンドロスト-2,4-ジエノ[2,3-g]プテリジン-2’,4’(3’H,8’H)-ジオン誘導体(III-3~III-13)の一般合成)
ジオキサン(50ml)にp-トルエンスルホン酸(60mg,0.32mmol)と6-モノ置換アミノ-3-メチルウラシル(1)(2.84mmol)を加え、更に、2-ヒドロキシメチレンテストステロン(6)(1.0g,3.16mmol)を加えた後、アルゴン雰囲気下で封管中12時間加熱する。反応後、これをカラムクロマトグラフィー(Fuji Silysia 230~400mesh;溶出液:酢酸エチル:エタノール=12:1又は酢酸エチルのみ)で分離精製し、粉末結晶を得る。更に、再結晶は酢酸エチルとn-ヘキサンの混合溶液より行なえる。
(8’-置換-5’-デアザ-17β-ヒドロキシ-3’-フェニルアンドロスト-2,4-ジエノ[2,3-g]プテリジン-2’,4’(3’H,8’H)-ジオン誘導体(III-14~III-23)の一般合成)
ジフェニルエーテル(1ml)にp-トルエンスルホン酸(60mg,0.32mmol),6-モノ置換アミノ-3-フェニルウラシル(1)(0.66g,2.84mmol)及び2-ヒドロキシメチレンテストステロン(6)(1.0g, 3.16mmol)を加え、窒素雰囲気下155℃で45分撹拌する。反応後、これをカラムクロマトグラフィー(Fuji Silysia230~400mesh;溶出液:酢酸エチル:エタノール=10:1又は酢酸エチルのみ)で分離精製し、粉末結晶を得る。更に、再結晶は酢酸エチルとn-ヘキサンの混合溶液より行なえる。
ヒト由来神経芽細胞(ニューロブラスト-マ)SH-SY5Y株の培養細胞に検体1を添加後、細胞内・外のATP濃度を蛍光測定した。その結果を図1に示す。細胞内においては、検体1(1μM)添加直後から5時間後までATP産生の増加(蛍光の強さの増加)がみられ、12時間後には作用消失する。なお、検体処置による培養細胞の形態変化はない。
細胞外においても、検体1(1μM)添加直後から5時間後までATP産生の増加がみられATP濃度が増加した。これは細胞内で増加したATPが細胞外に流出したものと思われる。
中枢神経系のグリア細胞の一種、培養アストロサイト細胞に検体1を添加し、蛍光測定した結果を図2Aと図2Bとに示す。
グリア細胞内のATP量は検体1を1μM投与したとき、12時間と24時間後に有意に増加しており、細胞外についても同様な動向を示している。
ヒトグリオーマU251の培養細胞(Sig1-R transfected cells)に検体1,2をそれぞれ添加し、添加後の細胞内のATP濃度を添加しない場合(Cont.)と相対比較した。その結果、図3に示すように検体1と検体2とはヒトグリオーマU251細胞のATP産生量を有意に増加させていることが検証された。脂溶性の高い検体2は検体1に比較して効果が大である。なお蛍光測定は検体の投与後6時間で行った。
幼若(生後0日目)のICRマウス脳から海馬培養細胞を採取して培養皿にて神経細胞を培養した。
発達初期の細胞(培養1日目)に検体1を1回添加し、3日後(培養4日目)に海馬神経細胞(ニューロン)の神経軸索(Axon)、樹状突起(Dendrite)や発達するシナプス数を定量した。検体1(0.1μM,0.3μM,1.0μM)は培養1日目に1回のみ添加した。添加3日後(培養4日目)において、AxonとDendriteをtau抗体とMAP2抗体とを用いてそれぞれ免疫染色し、形態観察を行った。
図4と図5から、検体1は濃度依存的に神経軸索(Axon)の伸展・発達と、その分岐数を増加させることを示した。なお、検体濃度0.3μMと1.0μMではほぼ同程度の最大薬効を示した。
図6と図7から、検体1は濃度依存的に樹状突起の伸展と、その分岐数を増加させることを示した。なお検体濃度0.3μMと1.0μMではほぼ同程度の最大薬効を示した。
次いで、培養14日目における興奮性シナプスをVGLUT1抗体を用いて免疫染色し、シナプス数を定量した。
図8と図9から、検体1は0.3μMの添加により興奮性シナプス数を有意に最大値まで増加させることを示した。
実施例4と同様に、幼若(生後0日目)のICRマウス脳から海馬培養細胞を採取して培養皿にて神経細胞を培養した。
成熟培養海馬細胞(培養11日目)に検体1を1回投与して3日後(培養14日目)に海馬神経細胞(ニューロン)の神経軸索(Axon)、樹状突起(Dendrite)の様子を観察した。培養14日目の軸索は伸展および軸索同士の交差が著しく、軸索本数の定量が不可能であったので、樹状突起の形態のみを観察した。
樹状突起は幼若培養細胞4日目(図7)と比較して、細胞体から生える樹状突起の本数は、培養日数に依存して増加している(図11)。添加される検体濃度(0.3μMと1μM)によって樹状突起は成熟培養細胞でも増加する傾向は認められるものの、培養4日目の細胞でみられた薬効ほどの顕著な分岐数の増加は認められなかった。
成熟C57BL/6Nマウス(10~17週齢、体重28~31g)に、一方には生理食塩水(Control)を他方には検体3(10μg/kg)を腹腔内投与し、22時間後にそれぞれのマウスの皮質(Cortex)と海馬(Hippocampus)領域を含む脳薄切片(スライス)標本を作製した。外液に80mM KCl(80K)を添加して細胞膜の脱分極を起こし、その結果生じるミトコンドリア内のCa2+濃度の増加をRhod-2(注1)を用いて蛍光的方法にて計測した。脳スライスにおいて、80Kによる増加するCa2+濃度(注2)が検体3により、いかに抑制されるのかを指標とし、ミトコンドリアでのATP活性に検体3が積極的に関与していることを間接的に検証した(注3)。
(注2)80Kによる神経細胞膜の脱分極は細胞外から細胞内へのCa2+の流入と細胞内のCaストアーからのCa2+の遊離の両者によって起こる。細胞内に増加した遊離Ca2+は細胞内の独立器官であるミトコンドリア内へと容易に流れ込む。その結果ミトコンドリア内のCa2+濃度が上昇する。
(注3)80K刺激による脱分極で神経細胞質内に増加した遊離Ca2+は直ちに細胞質内からミトコンドリア内に速やかに移行する。検体によるミトコンドリア内遊離Ca2+濃度の減少は神経細胞質膜に存在する外向きCaポンプによって遊離Ca2+が細胞外へ汲み出されるか、ミトコンドリア内部の一部に吸着、固定される。そのためのエネルギーはミトコンドリアで産生されるATPから供給される。よって得られた結果から、腹腔内注射された検体3は血液中からグリア(アストロサイト)細胞を経て大脳皮質や海馬ニューロン内のミトコンドリア内に取り込まれ、このことによりミトコンドリアでのATP産生が活性化して神経細胞が活性化され、神経細胞膜上のCaポンプがエネルギー源のATPをミトコンドリアから得て、余分な細胞内遊離Ca2+を細胞外へと排出し、神経細胞を間接的に保護する。
aは、正常マウスから得た脳スライス標本に80mM KCl外液(5分間適用後5分間洗浄)を3回連続した時のコントロール反応。縦軸はミトコンドリア内Ca2+濃度の増加の蛍光測定の結果を示す。
bは、検体3を10μg/kg腹腔内(i.p.)注射後22時間後にラットより摘出作製した脳スライス標本に80K外液を与えた時のミトコンドリア内Ca2+濃度の変化。aと比較してCa2+濃度上昇の抑制と80K脱分極によって上昇したCa2+濃度のより速い回復がみられる。
cは、大脳皮質ニューロンのミトコンドリア内におけるCa2+濃度に対するコントロールと検体3の比較。10μg/kgでCa2+濃度抑制の最大効力がみられる。(1000倍量の10mg/kgの結果と変わらない。)(n=3平均値:同一固体から得た3枚のスライスから得たデータ)
aは、80mM KCl外液(5分間適用後5分間洗浄)を3回連続した時のコントロール反応。
bは、検体3を10μg/kg腹腔内注射後22時間後に脳スライス標本を作製し、これに80K外液を与えた時のミトコンドリア内Ca2+濃度の変化を示す図。
cは、海馬ニューロンのミトコンドリア内Ca2+濃度のコントロールと検体3の10μgと10mg/kg i.p.による抑制効果の比較を示す図。10μg/kgで最大効果が得られる。(n=3平均値:同一個体から得た3枚のスライスから得たデータ)
即ち、成熟マウス脳細胞(ニューロン)を損傷するミトコンドリア内遊離Ca2+増加によるCa負荷に対して、検体3によるATP増加が細胞膜上のCaポンプを賦活してミトコンドリア内遊離Ca2+量を減少させ、その結果として神経細胞死の防止に貢献することを示す(ATP増加の間接的証明)。
脳虚血モデル成体ラットによる運動の行動の低下に対して検体添加が及ぼす効果を確認するための実験を行った。
ウイスター系成熟ラット(体重200~230g)の頭蓋骨に吸入麻酔科で小穴をあけた後、右脳線条体にコントロール群には生理食塩水、出血群には0.24Uのコラゲナーゼ(type IV)を含む生理食塩水1.2μlを注入して脳内出血モデルラットを作製した。
脳内出血モデルラットに対する検体4の脳細胞保護作用を確認するために、コラゲナーゼ投与の1時間後に検体4を100μg/kgを脳内のスポット(図中/白色菱形)へ注入し、ラットの運動足跡を定量的に量測定した。
運動量の測定はラットを5分間動画撮影。その撮影時間の後半の3分間の自由行動(運動距離と運動スピード)を解析した。
検体4はラットの脳出血によって起こる虚血性の運動距離と運動スピードの低下を緩和する(図15と16)。その効果は出血1日目と1週間後にもみられる。
実験結果を踏まえると、成熟ラット脳細胞の虚血損傷の防止に検体4が貢献することが示された(ATP増加の間接的証明)。
幼若(生後0日目)のICRマウス脳から海馬培養細胞を採取して培養皿にて培養した。
発達初期の細胞(培養1日目)に各検体を1回添加し、3日後(培養4日目)にMAP2抗体にて免疫染色し、樹状突起の分岐数を定量した。
測定は細胞体(soma)を中心に10μm間隔で20μm~100μmの同心円(図示せず)を描き、その円を交差する樹状突起の本数を計測した。
例数が十分にある検体に対しては最大値と最小値を外して検定をした。添加する検体濃度はいずれも0.3μMであった。
樹状突起が有意に伸長しているか否かの判定は、t-値よりp-値を算出し、p値がp<0.05では有意に伸長(効果++)、0.05<p<0.2では遠位又は近位において伸長(効果+)、p>0.2では有意差なし(効果±)とした。
aは細胞体(soma)からの距離に対する交差樹状突起の本数を、bは、AUCを比較した検定結果を示した図である。
また、実線は検体を添加した場合を、点線は検体の添加がなかった場合(control)を示している。なおnは標本数である。
図から明らかなように、統計的に有意差が認められる(p<0.05)のは検体7(III-2)と検体II(IV-23)だけであるが、他の検体5(II-13)、6(II-31)、8(III-2)、9(IV-10)、10(IV-15)、11(IV-23)についても突起伸長の効果が認められる。
脳スライス標本作成とカルシウム濃度計測:24時間前に検体1を皮下投与したマウス(C57B/6NL)の全脳スライス(300μm)を正中線で半切した全脳半切標本を用いた。この標本をO2 95%、CO2 5%通気した人工脳脊髄液(ACSF)内に室温で保存し、ミトコンドリアに選択的に取り込まれるXrhod-1/AM(Kd=700μM)、および細胞質に留まるfura-4F/AM(Kd=770μM)で二重染色した。この標本を倒立型蛍光顕微鏡(Olympus IX71)のステージに装着したチェンバーに置き、黒色木綿片でカバーしさらに白金リングで固定して、O2 95%、CO2 5%通気ACSFで潅流した(70ml/hr)。標本の蛍光画像を4倍の対物レンズで取得し、海馬腹側部と大脳皮質側頭部の画像を一画面に促えた。ミトコンドリア内カルシム濃度の計測には励起光580nmにより生ずる赤色蛍光(>600nm)の強度変化を、細胞質のカルシウム計測には360nm励起と380nm励起による蛍光(>500nm)の比として求めた。計測部位(ROI)は海馬CA1部位と大脳皮質の二カ所に置いた。
β-NMNは水に溶解して、10mg/kg、30mg/kgまたは100mg/kgを、検体1はアルコールに溶解し、1mg/mlとし、これを水で希釈し、0.01mg/kg、0.1mg/kgまたは1.0mg/kgを標本作成24時間前にマウスに皮下投与した(0.1ml/10g)。
本試験では、二種の薬物の各濃度を投与したマウスから作成した脳標本を等張80mM KCl-ACSF(人工脳脊髄液)に5分間暴露し、その後5分間正常ACSFに戻す操作を三回連続で行うことで、標本に厳しいカルシウム負荷を与え、その際の、細胞質内とミトコンドリア内のカルシウム濃度の変動を計測した。
ミトコンドリア内カルシウム濃度の変動に及ぼすβ-NMNと検体1(TND1128)の作用
図29は、β-NMN(A:0(control)(n=6)、B:10(n=5)、C:30(n=5)およびD:100mg/kg(n=5))を皮下投与されたマウスから24時間後に作成した標本を80K ACSFに三回暴露した時のミトコンドリアにおけるCa2+濃度変動を示している。図30は同様に80K ACSF暴露時の検体1(TND1128)(A:0(control)(n=6)、B:0.01(n=5)、C:0.1(n=5)およびD:1.0mg/kg(n=5)s.c.)投与マウスの脳標本におけるミトコンドリアのカルシウム濃度の変動を示す。両薬物のそれぞれの用量で処置された個体から得た標本の反応は第一回目の80K投与時点の蛍光強度を基準として標準化(normalize)し、細胞質またはミトコンドリア内Ca2+ 濃度の時間平均値とその標準誤差を示している。この図29と図30から両薬物は用いた用量範囲でミトコンドリア内Ca2+ 上昇を用量依存性に抑制していることは明らかである。
図33および図34は80KACSF三連続投与時の細胞質内カルシウム変動に及ぼすβ-NMNおよび検体1(TND1128)の作用を示す。図33と図34に示したコントロール反応は80K-ACSF投与毎の反応の回復が小さく、一見、カルシウム指示薬の反応が頭打ちになっている様に見えるが、この試験に用いた細胞内カルシウム濃度指示薬fura-4FはCa2+キレート能(Kd)は770nMであり、予想される細胞内カルシウム濃度の激しい上昇にも十分対応できると考えられるので、対照群の細胞内Ca2+ の動きは細胞質膜のCa2+ ポンプの機能限界に達していることを示すものと考えることができる。β-NMNの30mg/kgおよび100mg/kg処置されたマウスから得られた標本、また、検体1(TND1128)の0.01mg/kgから1.0mg/kg処置マウスの標本では投与毎の細胞質内カルシウム濃度の変動に同様な回復が見られている。しかし、図35および図36に見られる様に、この値をミトコンドリアと同様な方法で定量化した場合、β-NMNの10mg/kg投与群以外の濃度で有意な差はみられなかった。
両薬物はほぼ同程度のミトコンドリア内 Ca2+ 濃度制御作用を示すが、有効濃度からその作用は検体1(TND1128)の方が100倍強力であった。非特許文献6ではβ-NMN投与後、NAD+ が30分後にはピークに達し、投与されたNMNの血中濃度はそれに対応して減少すると報告しており、投与されたNMNがNAD+ 生合成の基質になっている可能性を示している。しかし、本実験で用いた検体1(TND1128)有効量は1.0mg/kg以下の微量であり、これをβ-NMNと同じように生合成の原料と考えることはできない。最終的にミトコンドリアの酸化的エネルギー獲得過程でのNAD+ の生合成量が増えているとしても、投与後24時間後に見られた有意なミトコンドリア機能安定作用はサーチュイン遺伝子群の発現促進によるNAD+ 増加によるものと考えるべきであろう。本研究では24時間前に投与したβ-NMNで有意なミトコンドリア保護機能が見られたことから、β-NMNの作用も単純にNAD+ の基質として供給された結果ではなく、サーチュイン遺伝子群への作用を介したものと考えるべきであろう。
すでに赤ワインの成分であるresveratrolやその誘導体としてSRT1720などの合成サーチュイン活性化薬物の薬理作用が報告されているが(非特許文献8)、実際に本実験のように皮下投与されたマウス脳のミトコンドリア機能に対する有効性を言及した報告はない。
この利点を利用して、外用薬を調整し、衰えた毛根を活性化して、白髪や禿げの治療に、また、たるんだ皮膚細胞の若返りにも使用可能と思われる。さらに、経皮吸収によって脳への作用も期待できるのではないかと思われる。
Claims (4)
- 細胞内でのATP産生を賦活するための式(I)で表わされる5-デアザフラビン化合物の使用
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3071744A CA3071744C (en) | 2018-02-05 | 2019-02-04 | Use of coenzyme factor for activation of atp production in cell |
KR1020227043210A KR102521761B1 (ko) | 2018-02-05 | 2019-02-04 | 세포 내에서 atp 생산을 활성화하기 위한 보효소 인자의 사용 |
KR1020227043211A KR102521762B1 (ko) | 2018-02-05 | 2019-02-04 | 세포 내에서 atp 생산을 활성화하기 위한 보효소 인자의 사용 |
EP19747358.0A EP3750543A4 (en) | 2018-02-05 | 2019-02-04 | USE OF COENZYME FACTOR TO ACTIVATE ATP PRODUCTION IN A CELL |
CN201980003658.9A CN111032051A (zh) | 2018-02-05 | 2019-02-04 | 用于激活细胞中atp产生的辅酶因子的使用 |
KR1020227043212A KR102521763B1 (ko) | 2018-02-05 | 2019-02-04 | 세포 내에서 atp 생산을 활성화하기 위한 보효소 인자의 사용 |
US16/637,280 US11439644B2 (en) | 2018-02-05 | 2019-02-04 | Use of coenzyme factor for activation of ATP production in cell |
EP23217881.4A EP4324528A3 (en) | 2018-02-05 | 2019-02-04 | Use of coenzyme factor for activation of atp production in cell |
KR1020207003037A KR102478363B1 (ko) | 2018-02-05 | 2019-02-04 | 세포 내에서 atp 생산을 활성화하기 위한 보효소 인자의 사용 |
US17/738,022 US11813265B2 (en) | 2018-02-05 | 2022-05-06 | Use of coenzyme factor for activation of ATP production in cell |
US17/738,027 US11806351B2 (en) | 2018-02-05 | 2022-05-06 | Use of coenzyme factor for activation of ATP production in cell |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-018388 | 2018-02-05 | ||
JP2018018388 | 2018-02-05 | ||
JP2019-009224 | 2019-01-23 | ||
JP2019009224A JP6717989B2 (ja) | 2018-02-05 | 2019-01-23 | 細胞内でのatp産生を賦活するための補酵素因子の使用 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/637,280 A-371-Of-International US11439644B2 (en) | 2018-02-05 | 2019-02-04 | Use of coenzyme factor for activation of ATP production in cell |
US17/738,027 Division US11806351B2 (en) | 2018-02-05 | 2022-05-06 | Use of coenzyme factor for activation of ATP production in cell |
US17/738,022 Division US11813265B2 (en) | 2018-02-05 | 2022-05-06 | Use of coenzyme factor for activation of ATP production in cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151516A1 true WO2019151516A1 (ja) | 2019-08-08 |
Family
ID=67478260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/003860 WO2019151516A1 (ja) | 2018-02-05 | 2019-02-04 | 細胞内でのatp産生を賦活するための補酵素因子の使用 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11813265B2 (ja) |
EP (1) | EP4324528A3 (ja) |
KR (3) | KR102521762B1 (ja) |
CA (1) | CA3071744C (ja) |
TW (2) | TW202313061A (ja) |
WO (1) | WO2019151516A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0381276A (ja) * | 1989-08-24 | 1991-04-05 | Fumio Yoneda | 5−デアザフラビン系化合物を有効成分とする制癌剤 |
JPH0673058A (ja) | 1992-08-26 | 1994-03-15 | Nippon Soda Co Ltd | 5−デアザフラビン誘導体、その製造法 |
JPH06199857A (ja) | 1993-01-07 | 1994-07-19 | Taisho Pharmaceut Co Ltd | 5−デアザフラボ−6,9−キノン誘導体及びその製造方法 |
JP2000212087A (ja) | 1999-01-20 | 2000-08-02 | Fujimoto Brothers:Kk | ニトロ―5―デアザフラビン誘導体を有効成分とする放射線増感剤。 |
JP3073309B2 (ja) | 1992-03-27 | 2000-08-07 | 雪印乳業株式会社 | シアル酸結合5−デアザフラビン系化合物 |
JP2001048784A (ja) | 1999-08-11 | 2001-02-20 | Takeda Chem Ind Ltd | ミトコンドリア機能賦活剤 |
JP2002322058A (ja) | 2001-02-26 | 2002-11-08 | Toyama Chem Co Ltd | ミトコンドリア機能賦活剤 |
JP2005104868A (ja) * | 2003-09-29 | 2005-04-21 | Okayama Univ | ピリドピリミジン骨格とステロイド骨格を内蔵する融合化合物及びその製造方法 |
JP2008255059A (ja) | 2007-04-05 | 2008-10-23 | Cosmo Oil Co Ltd | ミトコンドリア障害脳疾患治療剤及び診断剤 |
JP2013234178A (ja) * | 2012-04-12 | 2013-11-21 | Kracie Seiyaku Kk | 細胞死抑制組成物 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11322746A (ja) | 1998-05-12 | 1999-11-24 | Fujimoto Brothers:Kk | 抗ヘルペスウイルス剤 |
IT1311627B1 (it) | 1999-01-18 | 2002-03-14 | Benetton Spa | Struttura di supporto, particolarmente per calzature. |
KR100359918B1 (ko) | 1999-11-29 | 2002-11-04 | 엘지전자 주식회사 | 멀티미디어 객체 검색방법과 멀티미디어 객체의 특징정보 생성방법 및 그 특징정보가 기록된 기록매체 |
-
2019
- 2019-02-01 TW TW111147809A patent/TW202313061A/zh unknown
- 2019-02-01 TW TW111147803A patent/TW202313054A/zh unknown
- 2019-02-04 KR KR1020227043211A patent/KR102521762B1/ko active IP Right Grant
- 2019-02-04 KR KR1020227043212A patent/KR102521763B1/ko active IP Right Grant
- 2019-02-04 EP EP23217881.4A patent/EP4324528A3/en active Pending
- 2019-02-04 WO PCT/JP2019/003860 patent/WO2019151516A1/ja unknown
- 2019-02-04 KR KR1020227043210A patent/KR102521761B1/ko active IP Right Grant
- 2019-02-04 CA CA3071744A patent/CA3071744C/en active Active
-
2022
- 2022-05-06 US US17/738,022 patent/US11813265B2/en active Active
- 2022-05-06 US US17/738,027 patent/US11806351B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0381276A (ja) * | 1989-08-24 | 1991-04-05 | Fumio Yoneda | 5−デアザフラビン系化合物を有効成分とする制癌剤 |
JP3073309B2 (ja) | 1992-03-27 | 2000-08-07 | 雪印乳業株式会社 | シアル酸結合5−デアザフラビン系化合物 |
JPH0673058A (ja) | 1992-08-26 | 1994-03-15 | Nippon Soda Co Ltd | 5−デアザフラビン誘導体、その製造法 |
JPH06199857A (ja) | 1993-01-07 | 1994-07-19 | Taisho Pharmaceut Co Ltd | 5−デアザフラボ−6,9−キノン誘導体及びその製造方法 |
JP2000212087A (ja) | 1999-01-20 | 2000-08-02 | Fujimoto Brothers:Kk | ニトロ―5―デアザフラビン誘導体を有効成分とする放射線増感剤。 |
JP2001048784A (ja) | 1999-08-11 | 2001-02-20 | Takeda Chem Ind Ltd | ミトコンドリア機能賦活剤 |
JP2002322058A (ja) | 2001-02-26 | 2002-11-08 | Toyama Chem Co Ltd | ミトコンドリア機能賦活剤 |
JP2005104868A (ja) * | 2003-09-29 | 2005-04-21 | Okayama Univ | ピリドピリミジン骨格とステロイド骨格を内蔵する融合化合物及びその製造方法 |
JP2008255059A (ja) | 2007-04-05 | 2008-10-23 | Cosmo Oil Co Ltd | ミトコンドリア障害脳疾患治療剤及び診断剤 |
JP2013234178A (ja) * | 2012-04-12 | 2013-11-21 | Kracie Seiyaku Kk | 細胞死抑制組成物 |
Non-Patent Citations (28)
Title |
---|
A. R. SHRESTHAT. SHINDON. ASHIDAT, NAGAMATSU, BIOORG. & MED. CHEM., vol. 16, 2008, pages 8685 - 8696 |
ALI I. HAMED ET AL.: "Antitumor studies - Part 2: Structure - activity relationship study for Flavin analogs including investigations on their in vitro antitumor assay and docking simulation into protein tyrosine kinase", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 43, no. 7, 14 October 2007 (2007-10-14) - July 2008 (2008-07-01), pages 1376 - 1389, XP022795982 * |
F. YONEDAH. YAMATOT. NAGAMATSUH. EGAWA, J. POLYMER SCI.:PLYMER LETT. ED., vol. 20, 1982, pages 667 - 670 |
F. YONEDAK. MORIS. MATSUOY, KADOKAWAY. SAMUMA, J. CHEM. SOC., PERKIN TRANS., vol. 1, 1981, pages 1836 - 1839 |
F. YONEDAK. MORIY. SAKUMA, J. CHEM. SOC., PERKIN TRANS, vol. 1, 1980, pages 978 - 981 |
F. YONEDAK. TANAKAH. YAMATOK. MORIYAMAT. NAGAMATSU, J. AM. CHEM. SOC., vol. 111, 1989, pages 9199 - 9202 |
F. YONEDAK. TSUKUDAK. SHINOZUKAF. HIRAYAMAK. UEKAMAA. KOSHIRO, CHEM. PHARM. BULL., vol. 28, 1980, pages 3514 - 3520 |
F. YONEDAT. NAGAMATSUM. TAKAMOTO, CHEM. PHARM. BULL., vol. 31, 1983, pages 344 - 347 |
F. YONEDAY. SAKUMAS. MIZUMOTOR. ITO, J. CHEM. SOC., PERKIN TRANS., vol. 1, 1976, pages 1805 - 1808 |
IMAI S1ARMSTRONG CMKAEBERLEIN MGUARENTE L: "Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase", NATURE, vol. 403, no. 6771, 2000, pages 795 - 800 |
IMAI: "A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis", PHARMACOL RES., vol. 62, no. 1, 2010, pages 42 - 7, XP027046798 |
K. KURODAT, NAGAMATSUR. YANADAF. YONEDA, J. CHEM. SOC., PERKIN TRANS., vol. 1, 1993, pages 547 - 550 |
K. KURODAT. NAGAMATSUY. SAKUMAF. YONEDA, J. HETEROCYCLIC CHEM., vol. 19, 1982, pages 945 - 947 |
K. MORIK. SHINOZUKAY SAKUMAF. YONEDA: "J. Chem. Soc.", CHEM. COMM., 1978, pages 764 |
K. TANAKAT. KIMURAX. CHENT. KAWAMOTOF. YONEDA, CHEM. PHARM. BULL., vol. 38, 1990, pages 312 - 317 |
MICHISHITA E1PARK JYBURNESKIS JMBARRETT JCHORIKAWA I.: "Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins", MOL BIOL CELL, vol. 16, no. 10, October 2005 (2005-10-01), pages 4623 - 35, XP002430110, DOI: 10.1091/mbc.E05-01-0033 |
MILLS KFYOSHIDA SSTEIN LRGROZIO AKUBOTA SSASAKI YREDPATH PMIGAUD MEAPTE RSUCHIDA K: "Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Declinde in Mice", CELL METAB., vol. 24, no. 6, 2016, pages 795 - 806, XP029847468, DOI: 10.1016/j.cmet.2016.09.013 |
PACHOLEC MBLEASDALE JECHRUNYK BCUNNINGHAM DFLYNN DGAROFALO RSGRIFFITH DGRIFFOR MLOULAKIS PPABST B: "SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1", J BIOL CHEM., vol. 285, no. 11, 2010, pages 8340 - 51, XP008162683, DOI: 10.1074/jbc.M109.088682 |
R. HIRAYAMAM. KAWASET. KIMACHIK. TANAKAF. YONEDA, J., HETEROCYCLIC CHEM., vol. 26, 1989, pages 1255 - 1259 |
SHRESTHA R. AJAYA ET AL.: "Synthesis, biological active molecular design, and molecular docking study of novel deazaflavin-cholestane hybrid compounds", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 16, no. 18, 22 August 2008 (2008-08-22) - 15 September 2008 (2008-09-15), pages 8685 - 8696, XP025427664 * |
SYNTHESIS OF HETEROCYCLIC COMPOUND HAVING REDOX FUNCTIONALITY, Retrieved from the Internet <URL:www.waseda.jp/prj-prac-chem/product/research%20product/2002nitta.pdf> |
T, NAGAMATSUH. YAMATOM. ONOS. TAKARADAF. YONEDA, J. CHEM. SOC., PERKIN TRANS, vol. 1, 1992, pages 2101 - 2109 |
T. KIMACHIK. TANAKAF. YONEDA, J. HETEROCYCLIC CHEM., vol. 28, 1991, pages 439 - 443 |
T. NAGAMATSUY. HASHIGUCBIY. YONEDA, J. CHEM. SOC., PERKIN TRANS., vol. 1, 1984, pages 561 - 565 |
T. NAGAMATSUY. SAKUMAY. YONEDA, SYNTHESIS, 1983, pages 923 - 924 |
TANG BL: "Sirt1 and the Mitochondria Mol", CELLS, vol. 39, no. 2, 2016, pages 87 - 95 |
TANIGAWA AKIE ET AL.: "Stimulation of Nerve Growth Factor Synthesis/Secretion by 5-Deazaflavoquinone in Mouse Astrocytes", JOURNAL OF BIOCHEMISTRY, MOLECULAR BIOLOGY AND BIOPHYSICS, vol. 3, no. 3, January 1999 (1999-01-01), pages 231 - 237, XP009518519, ISSN: 1025-8140 * |
Y. EIKYUY. NAKAMURAT. AKIYAMAF. YONEDAK. TANAKAK. FUJI, CHEM. PHARM. BULL., vol. 40, 1992, pages 291 - 293 |
Also Published As
Publication number | Publication date |
---|---|
KR20230004893A (ko) | 2023-01-06 |
TW202313061A (zh) | 2023-04-01 |
US20220265661A1 (en) | 2022-08-25 |
US11806351B2 (en) | 2023-11-07 |
TW202313054A (zh) | 2023-04-01 |
KR20230004894A (ko) | 2023-01-06 |
US11813265B2 (en) | 2023-11-14 |
US20220265662A1 (en) | 2022-08-25 |
EP4324528A2 (en) | 2024-02-21 |
CA3071744A1 (en) | 2019-08-08 |
EP4324528A3 (en) | 2024-05-01 |
CA3071744C (en) | 2022-01-04 |
KR102521762B1 (ko) | 2023-04-14 |
KR102521761B1 (ko) | 2023-04-14 |
KR20230003307A (ko) | 2023-01-05 |
KR102521763B1 (ko) | 2023-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Heretsch et al. | Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives | |
Thomas et al. | Reactive gliosis in the adult zebrafish retina | |
JP2012529432A (ja) | アミノピロリジノン誘導体及びその使用 | |
BR112016020233B1 (pt) | Composições de compostos seleno orgânicos e seus usos | |
Chen et al. | Cytoprotective effects of fisetin against hypoxia-induced cell death in PC12 cells | |
JP2003519654A (ja) | 脈管形成を抑制するためのエピガロカテキンガラートの使用 | |
Inoguchi et al. | A possible target of antioxidative therapy for diabetic vascular complications-vascular NAD (P) H oxidase | |
Xiyang et al. | COX5A plays a vital role in memory impairment associated with brain aging via the BDNF/ERK1/2 signaling pathway | |
CN114478450A (zh) | 苄氧基苯酞类化合物、其制备方法和用途 | |
JP2016537426A (ja) | 概日性タンパク質関連状態の治療または予防のための組成物および方法 | |
JP6717989B2 (ja) | 細胞内でのatp産生を賦活するための補酵素因子の使用 | |
WO2019151516A1 (ja) | 細胞内でのatp産生を賦活するための補酵素因子の使用 | |
Shim et al. | Discovery of a NADPH oxidase inhibitor,(E)-3-cyclohexyl-5-(4-((2-hydroxyethyl)(methyl) amino) benzylidene)-1-methyl-2-thioxoimidazolidin-4-oneone, as a novel therapeutic for Parkinson's disease | |
EP2808023A1 (en) | New drug for the treatment and/or prevention of depressive disorders | |
Monir et al. | Anti-hypertensive activity of punica granatum peels ethyl acetate extract on fludrocortisones induced hypertension in wistar rats | |
JP2010539079A (ja) | スコパロンの新規な用途 | |
Du et al. | Design, synthesis and biological evaluation of indoline derivatives as multifunctional agents for the treatment of ischemic stroke | |
RU2799454C2 (ru) | Терапевтический препарат для лечения нейродегенеративных заболеваний и его применение | |
Wang et al. | Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases | |
Maiese | The Impact of Sirtuins, Erythropoietin, and Hypoxia-inducible Factor-1 on Neurovascular Disease | |
Jassim | Pre-Degenerative Hypoxia and Oxidative Stress Contribute to Glaucoma Progression | |
Liu et al. | Research Article Red Yeast Rice Protects Circulating Bone Marrow-Derived Proangiogenic Cells against High-Glucose-Induced Senescence and Oxidative Stress: The Role of Heme Oxygenase-1 | |
Wu et al. | VDR agonist prevents diabetic endothelial dysfunction through inhibition of prolyl isomerase-1 mediated mitochondrial oxidative stress and inflammation | |
Fu et al. | Aldose reductase deficiency protects the retinal neurons in a mouse model of retinopathy of prematurity | |
Klein | Activity-dependent modulation of neuronal sodium channel expression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19747358 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3071744 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20207003037 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019747358 Country of ref document: EP Effective date: 20200907 |