WO2019151386A1 - 細胞の製造方法 - Google Patents

細胞の製造方法 Download PDF

Info

Publication number
WO2019151386A1
WO2019151386A1 PCT/JP2019/003336 JP2019003336W WO2019151386A1 WO 2019151386 A1 WO2019151386 A1 WO 2019151386A1 JP 2019003336 W JP2019003336 W JP 2019003336W WO 2019151386 A1 WO2019151386 A1 WO 2019151386A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
inhibitor
differentiate
ability
Prior art date
Application number
PCT/JP2019/003336
Other languages
English (en)
French (fr)
Inventor
奈穂 山▲崎▼
裕太 村上
細谷 昌樹
太一 村口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201980011114.7A priority Critical patent/CN111684063A/zh
Priority to EP19748057.7A priority patent/EP3747996A4/en
Priority to JP2019569542A priority patent/JPWO2019151386A1/ja
Publication of WO2019151386A1 publication Critical patent/WO2019151386A1/ja
Priority to US16/944,730 priority patent/US20200362302A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/065Modulators of histone acetylation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the present invention relates to a method for producing a cell having an ability to differentiate into any one or more of endoderm, mesoderm and ectoderm.
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • naive type cells and prime type cells exist in pluripotent stem cells such as iPS cells.
  • Naive-type cells are close to the initial stage of development, and prime-type cells are more advanced cells.
  • Non-Patent Document 1 describes a method of resetting pluripotent stem cells with a histone deacetylation inhibitor and converting them into na ⁇ ve cells.
  • US Pat. No. 6,057,049 contacts a non-pluripotent cell with a TGF ⁇ receptor / ALK5 inhibitor; a MEK inhibitor; and a ROCK inhibitor under conditions sufficient to induce the cell to become a pluripotent stem cell.
  • a method of inducing non-pluripotent mammalian cells into induced pluripotent stem cells comprising contacting the cells with a histone deacetylase inhibitor.
  • non-pluripotent cells are contacted with a 3′-phosphoinositide-dependent kinase-1 (PDK1) activator under conditions sufficient to induce the cells to become pluripotent stem cells.
  • PDK1 3′-phosphoinositide-dependent kinase-1
  • a method of inducing non-pluripotent mammalian cells into induced pluripotent stem cells comprising the step of inducing non-pluripotent mammalian cells into induced pluripotent stem cells, It is described that the method may further comprise contacting the pluripotent cell with a histone deacetylase inhibitor.
  • Patent Document 3 transiently expresses Nanog and Klf2 in primed pluripotent stem cells and includes LIF, MEK inhibitor, GSK3 inhibitor, cAMP production promoter, TGF- ⁇ inhibitor and PKC inhibitor
  • a method for producing na ⁇ ve pluripotent stem cells is described which comprises culturing in a medium.
  • Patent Document 4 discloses a method of resetting human stem cells to a more naive state, comprising (a) providing human stem cells to be initialized, (b) (i) optionally one or more different initial types By cultivating the cells in a reset medium comprising (ii) a MEK inhibitor, optionally further comprising a STAT3 activator, and optionally one or more further inhibitors, A method is described that includes inducing a na ⁇ ve condition, and (c) maintaining the cells in a naive medium comprising a MEK inhibitor, a PKC inhibitor and optionally a GSK3 inhibitor, and a STAT3 activator.
  • iPS cells produced by introducing reprogramming factors into somatic cells are differentiated into all three germ layers even when markers as iPS cells are expressed. It has been found that there are inability iPS cells.
  • An object of the present invention is to provide a method for producing pluripotent stem cells that can be efficiently differentiated into desired differentiated cells.
  • the present inventor has found undifferentiated cells obtained by introducing reprogramming factors into somatic cells, which have relatively low ability to differentiate into specific differentiated cells. After obtaining the cells, the cells are treated while maintaining an undifferentiated state to obtain cells having a relatively high ability to differentiate into the specific differentiated cells, thereby efficiently differentiating into the desired differentiated cells. Succeeded in producing pluripotent stem cells.
  • the present invention has been completed based on the above findings.
  • the endoderm, mesoderm and outer cells possessed by the cells obtained in the first step have the ability to differentiate into any one or more of the endoderm, mesoderm and ectoderm possessed by the cells obtained in the second step.
  • the method according to (1) wherein the method is improved more than the ability to differentiate into any one or more germ layers.
  • the ability of the cells obtained in the second step to differentiate into endoderm and ectoderm is improved over the ability of the cells obtained in the first step to differentiate into endoderm and ectoderm, respectively; or The ability of the cells obtained in the second step to differentiate into endoderm and mesoderm is higher than the ability of the cells obtained in the first step to differentiate into endoderm and mesoderm, respectively; The method according to (1).
  • the method according to (2) or (3), wherein the cells obtained in the second step are cells that can differentiate into all of endoderm, mesoderm, and ectoderm.
  • the method according to (1), wherein the specific differentiated cells are mesoderm cells or ectoderm cells.
  • the specific differentiated cells are blood cells, cardiomyocytes, or nerve cells.
  • the expression level of STELLA in the cells obtained in the second step is higher than the expression level of STELLA in the cells obtained in the first step.
  • the expression level of KLF17 in the cells obtained in the second step is higher than the expression level of KLF17 in the cells obtained in the first step.
  • the second step is a step of treating the cell with a histone deacetylase inhibitor while maintaining an undifferentiated state.
  • the second step is a step of treating the cells with a histone deacetylase inhibitor and a basic fibroblast growth factor while maintaining an undifferentiated state.
  • the second step after the cells are cultured in a medium containing a histone deacetylase inhibitor, a MAPK / ERK kinase inhibitor, and a leukemia inhibitory factor, and without a histone deacetylase inhibitor, The method according to (9) or (10), comprising a step of culturing in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, and a Wnt signal inhibitor, and a leukemia inhibitory factor.
  • Prime type pluripotent stem cells which comprises a step of treating prime type pluripotent stem cells with a histone deacetylase inhibitor while maintaining an undifferentiated state.
  • a method for producing pluripotent stem cells 17.
  • Differentiating into a primed pluripotent stem cell comprising a step of treating a primed pluripotent stem cell with a histone deacetylase inhibitor while maintaining an undifferentiated state.
  • a method of producing improved pluripotent stem cells (18) The method according to (17), wherein the specific differentiated cells are blood cells, cardiomyocytes, or nerve cells.
  • pluripotent stem cells that can be efficiently differentiated into target differentiated cells can be produced.
  • FIG. 1 shows the results of quantitative RT-PCR measurement of the expression of genes that define undifferentiation in untreated and treated human iPS cell lines (253G1 strain).
  • FIG. 2 shows the results of quantitative RT-PCR measurement of each germ layer-specific gene expression in cells (253G1 strain) differentiated into the three germ layer lineage.
  • FIG. 3 shows the results of quantitative RT-PCR measurement of each germ layer-specific gene expression in different iPS cell lines (201B7 strain and A strain) differentiated into three germ layer lineages.
  • FIG. 4 shows the result of analyzing untreated and treated iPS cells into blood cells and analyzing the ratio of cells expressing CD34 and KDR, which are blood cell markers, using a flow cytometer.
  • FIG. 1 shows the results of quantitative RT-PCR measurement of the expression of genes that define undifferentiation in untreated and treated human iPS cell lines (253G1 strain).
  • FIG. 2 shows the results of quantitative RT-PCR measurement of each germ layer-specific gene expression in cells (253G1 strain
  • FIG. 5 shows the results of evaluation of the ability to differentiate three germ layers by quantitative RT-PCR of iPS cells.
  • FIG. 6 shows a summary of the results of evaluation of the ability of iPS cells to differentiate into three germ layers.
  • FIG. 7 shows the results of evaluating the treatment efficiency by flow cytometry when the concentration of MEK inhibitor is changed.
  • FIG. 8 shows the results of evaluating the copy number of a specific region of the chromosome when the concentration of MEK inhibitor is changed.
  • FIG. 9 shows the results of comparing untreated and treated iPS cells into cardiomyocytes and comparing the cTnT positive rate in living cells by flow cytometry.
  • FIG. 10 shows the results of measuring the positive rate of cTnT when the iPS cell line was induced into cardiomyocytes.
  • FIG. 11 shows an image obtained by observing cells obtained by induction of differentiation into neural stem cells with a fluorescence microscope.
  • FIG. 12 shows the results of quantifying the luminance of an image obtained by observing cells obtained by differentiation induction into neural stem cells with a fluorescence microscope.
  • Klf Kruppel-like factor
  • LIF Leukemia inhibitory factor
  • MEK MAPK / ERK kinase (MAPK: extracellar signal-regulated kinase)
  • GSK3 glycogen syn-phase kinase-3
  • TGF Transforming growth factor
  • PKC Protein kinase
  • C RT-PCR Reverse Transcript polymerase chain reaction PCR: polymerase chain reaction
  • KDR Kinase insert domain-containing receptor
  • Tert Telomerase Reverse Transscriptase
  • Fbx15 F-Box Protein 15
  • ECAT ES cell associated transscripts
  • Dnmt3L DNA Methyltransferase 3
  • Gdf3 Growth differentiation factor-3
  • Fthl17 Ferritin heavy polypeptide-like 17
  • Sal4 Sal-like protein 4
  • Rex1 Reduced-expression 1
  • UTF1 Undifferentiated Embryonic Cell Tran
  • na ⁇ ve pluripotent stem cells As pluripotent stem cells, cells in two different states are known: na ⁇ ve pluripotent stem cells and primed pluripotent stem cells.
  • Naive pluripotent stem cells and primed pluripotent stem cells can be distinguished by molecular and cellular characteristics.
  • Naive pluripotent stem cells typically express high levels of the pluripotency factors Oct4, Nanog, Sox2, Klf2, and Klf4, and in response to either Lif / Stat3 or 2i (ERKi / GSKi) It is characterized by self-renewal, differentiation in response to Fgf / Erk, and exhibiting an XaXa X chromosome state.
  • Prime-type pluripotent stem cells typically express high levels of pluripotency factors Oct4, Sox2 and Nanog, do not respond to Lif / Stat3, self-renew in response to Fgf / Erk, and XaXi It has the characteristic of exhibiting an X chromosome activation state (Nichols et al., (2009) Cell Stem Cell 4 (6): 487-492).
  • Xa represents an active X chromosome
  • Xi represents an inactive X chromosome.
  • the method for producing a cell according to the first aspect of the present invention comprises: A first step of obtaining an undifferentiated cell obtained by introducing a reprogramming factor into a somatic cell and having a relatively low ability to differentiate into a specific differentiated cell; and maintaining the cell in an undifferentiated state
  • the second step of obtaining a cell having a relatively high ability to differentiate into the specific differentiated cell including. Cells that have been subjected to the same operation under the same culture conditions are regarded as cells having the same properties even if they are different as individuals.
  • the method for producing cells according to the second aspect of the present invention comprises a step of treating prime-type pluripotent stem cells with a histone deacetylase inhibitor while maintaining an undifferentiated state, This is a method for producing a pluripotent stem cell that has an improved ability to differentiate into three germ layers or a specific differentiated cell.
  • Patent Documents 1 and 2 describe contacting cells with a histone deacetylase inhibitor when inducing pluripotent cells from non-pluripotent cells.
  • Patent Document 3 describes that na ⁇ ve pluripotent stem cells are produced by culturing prime-type pluripotent stem cells under predetermined conditions.
  • iPS cells prepared by introducing reprogramming factors into somatic cells there are iPS cells that cannot be differentiated in all three germ layers even when markers as iPS cells are expressed.
  • Patent Document 4 describes a method of resetting human stem cells to a more naive state, and describes that the obtained stem cells differentiate into nerve cells, endoderm and smooth muscle cells. It is not described that the differentiation ability is improved by resetting.
  • the culture medium in patent document 4 is a culture medium containing ascorbic acid.
  • the first step in the present invention is a step of obtaining undifferentiated cells obtained by introducing reprogramming factors into somatic cells and having relatively low ability to differentiate into specific differentiated cells.
  • the somatic cell is not particularly limited, and any somatic cell can be used.
  • any somatic cell can be used.
  • adult-derived somatic cells ie, mature somatic cells
  • somatic cells include (1) tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, dental pulp stem cells, (2) tissue progenitor cells, (3) fibroblasts (skin cells, etc.) ), Epithelial cells, hepatocytes, lymphocytes (T cells, B cells), endothelial cells, muscle cells, hair cells, gastric mucosa cells, intestinal cells, spleen cells (pancreatic exocrine cells, etc.), brain cells, lungs Examples thereof include differentiated cells such as cells, kidney cells, and skin cells.
  • the living body from which the rod cells are derived is not particularly limited, and examples thereof include humans and non-human animals (for example, monkeys, sheep, cows, horses, dogs, cats, rabbits, rats, mice). Preferably, it is a human.
  • the reprogramming factor introduced into the somatic cell is not particularly limited.
  • Oct3 / 4 Klf4, c-Myc, Sox2, Nanog, Klf2, L-Myc, N-Myc, Klf5, Lin28, Tert, Fbx15, ERas, ECAT15-1, ECAT15-2, Tcl1, ⁇ -catenin, ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, Fthl17, Sall4, Rex1, UTF1, Stella, Stat3, Grb2, Nr5, Pr3, Nr5a cadherin.
  • two or more genes can be selected from these gene groups and introduced in any combination.
  • a combination having at least Oct3 / 4, Sox2, Klf4 and c-Myc, a combination having at least Oct3 / 4, Sox2, Klf4 and L-Myc, or a combination having at least Oct3 / 4, Sox2, Nanog and Lin28 preferable.
  • the type of gene to be introduced is preferably the same as the type of the cell to which the gene is introduced.
  • the gene introduced into a human-derived cell is a human gene.
  • a gene to be introduced into a human-derived somatic cell a combination having at least human Oct3 / 4, human Sox2, human Klf4 and human c-Myc, a combination having at least Oct3 / 4, Sox2, Klf4 and L-Myc Or a combination having at least human Oct3 / 4, human Sox2, human Nanog and human Lin28.
  • the reprogramming factor gene can be introduced into a somatic cell using a gene expression vector.
  • the gene expression vector is not particularly limited, and examples thereof include viral vectors, plasmid vectors, artificial chromosome vectors, and transposon vectors.
  • virus vectors include retrovirus vectors, adenovirus vectors, Sendai virus vectors, lentivirus vectors, and adeno-associated virus vectors.
  • Undifferentiated cells obtained by introducing reprogramming factors into somatic cells that have a relatively low ability to differentiate into specific differentiated cells can be produced by introducing reprogramming factors into somatic cells.
  • cells provided or sold by research institutions or companies may be obtained. That is, the first step in the present invention may be a step of obtaining induced pluripotent stem cells from the induced pluripotent stem cell bank.
  • 201B7, 253G1, 253G4, 1201C1, 1205D1, 1210B2, 1231A3, 1383D2, 1383D6, iPS-TIG120-3f7, iPS-TIG120-4f1, iPS-TIG114-4f1, CiRA086Ai provided by iPS Cell Research Institute, Kyoto University -M1, CiRA188Ai-M1, or iRA188Ai-W1 can be obtained and used.
  • An undifferentiated cell in “an undifferentiated cell obtained by introducing a reprogramming factor into a somatic cell” means a cell that has not undergone terminal differentiation, and preferably any one or more of endoderm, mesoderm, and ectoderm Cells that have the ability to differentiate into “Specific differentiated cells” in “cells having relatively low ability to differentiate into specific differentiated cells” means any of endoderm, mesoderm and ectoderm, or endoderm, mesoderm and ectoderm. Any particular differentiated cell derived from, eg, a blood cell, cardiomyocyte, or nerve cell.
  • the phrase “relatively low ability to differentiate into specific differentiated cells” refers to “relatively high ability to differentiate into specific differentiated cells” obtained in the second step described later in the present invention. This means that the ability to differentiate into specific differentiated cells is low.
  • “Undifferentiated cells obtained by introducing reprogramming factors into somatic cells and having a relatively low ability to differentiate into specific differentiated cells” obtained in the first step are the plates coated with feeder cells or Maintenance culture can be performed in a suitable medium on a plate coated with a scaffold such as Matrigel (registered trademark). Although it does not specifically limit as a feeder cell, A mouse embryonic fibroblast (MEF cell) and a mouse embryo fibroblast (STO cell) are mentioned.
  • MEF cell mouse embryonic fibroblast
  • STO cell mouse embryo fibroblast
  • a commercially available medium such as mTeSR (registered trademark) 1 (Stemcell Technologies) or StemFlex (registered trademark) can be used.
  • mTeSR Registered trademark
  • StemFlex Registered trademark
  • DMEM Denssion Medium
  • F12 mixed medium of DMEM and F12
  • Knockout TM D-MEM Invitrogen
  • KSR Knockout TM Serum Replacement (Invitrogen)), fetal bovine serum (FBS), non-essential amino acids (NEAA), L-glutamine, 2-mercaptoethanol, antibiotics (eg, streptomycin, penicillin, puromycin, mitomycin), Examples thereof include those prepared by arbitrarily combining additional components such as bFGF and adding to any one of the above basal media. It is preferable that the medium during maintenance culture does not contain ascorbic acid.
  • the culture conditions for the maintenance culture are preferably 37 ° C., 5% CO 2 , 10% O 2 and the like, but are not particularly limited.
  • the second step in the present invention is a step of obtaining cells having a relatively high ability to differentiate into specific differentiated cells by treating the cells obtained in the first step while maintaining an undifferentiated state.
  • the term “second step” includes the “step of treating with a histone deacetylase inhibitor while maintaining an undifferentiated state” in the second aspect of the present invention.
  • the “specific differentiated cell” in the “cell having a relatively high ability to differentiate into a specific differentiated cell” means any specific differentiated cell belonging to any of endoderm, mesoderm and ectoderm. .
  • the phrase “relatively high ability to differentiate into specific differentiated cells” refers to a specific comparison with “cells having relatively low ability to differentiate into specific differentiated cells” obtained in the first step of the present invention. This means that the ability to differentiate into differentiated cells is high.
  • “Processing while maintaining an undifferentiated state” in the second step means that the cells obtained in the first step have a relatively high ability to differentiate into specific differentiated cells in a medium capable of maintaining the undifferentiated state. It means culturing under conditions where cells are obtained.
  • the second step is preferably a step of treating the cells obtained in the first step with a histone deacetylase inhibitor while maintaining an undifferentiated state. That is, the second step is preferably a step including culturing the cells obtained in the first step in a medium containing a histone deacetylase inhibitor.
  • the second step is more preferably a step of treating the cells obtained in the first step with a histone deacetylase inhibitor and a basic fibroblast growth factor while maintaining an undifferentiated state.
  • the medium in the second step (or the step of treating with a histone deacetylase inhibitor while maintaining an undifferentiated state) preferably does not contain ascorbic acid.
  • valproic acid or a salt thereof such as sodium valproate
  • butyric acid or a salt thereof such as sodium butyrate
  • trichostatin A such as sodium butyrate
  • apicidin can be used, but are not particularly limited. .
  • the concentration of the histone deacetylase inhibitor in the medium can be appropriately set according to the type of the histone deacetylase inhibitor.
  • valproic acid it is preferably 0.1 mmol / L to 10 mmol / L, more preferably 0.2 mmol / L to 5 mmol / L, and further preferably 0.5 mmol / L to 2 mmol / L. It is.
  • DMEM Densibecco Modified Eagle medium
  • F12 A mixed medium of DMEM and F12
  • Knockout TM D-MEM Invitrogen
  • Neurobasal registered trademark
  • B27 registered trademark
  • N2 Thermo Fisher Scientific, Gluo 1-thioglycerol, 1-thioglycerol, 1-thioglycerol
  • Additive components such as registered trademark (Thermo Fisher Scientific) or L-Glutamin (Thermo Fisher Scientific) are arbitrarily combined (preferably all of the above-mentioned additive components) and added to the basal medium.
  • LIF and a medium supplemented with a MEK inhibitor are preferable.
  • the MEK inhibitor is not particularly limited.
  • PD0325901 N-[(2R) -2,3-dihydroxypropoxy] -3,4-difluoro-2-[(2-fluoro-4-iodophenyl) amino CAS registration number: 391210-10-9
  • U0126 (1,4-diamino-2,3-dicyano-1,4-bis [2-aminophenylthio] butadiene; CAS registration number: 109511-58 -2)
  • PD98059 (2- (2-amino-3-methoxyphenyl) -4H-1-benzopyran-4-one; CAS Registry Number: 167869-21-8
  • PD184352 (2- (2-chloro-4 -Iodophenylamino) -N-cyclopropylmethoxy-3,4-difluorobenzamide; CAS Registry Number: 21 631-79-3 may be mentioned.
  • preferred is PD0325901.
  • the second step may include culturing the cells obtained in the first step in a medium containing a histone deacetylase inhibitor and then culturing the cells in a medium not containing a histone deacetylase inhibitor.
  • a medium not containing a histone deacetylase inhibitor Neurobasal (registered trademark) (Thermo Fisher Scientific), B27 (registered trademark) (Thermo Fisher Scientific, Inc.), N2 (Thermo Fisher Scientific 1) , And any combination of additive components such as GlutaMAX (Thermo Fisher Scientific) or L-Glutamin (Thermo Fisher Scientific) (preferably all of the above-mentioned additive components) are added to the basic medium.
  • LIF, MEK inhibitor specific examples are as described above
  • PKC inhibitor GSK3- ⁇ inhibitor
  • Wnt sig It can be used medium supplemented with Le inhibitor.
  • the second step comprises treating the cell with a histone deacetylase inhibitor, a MAPK / ERK kinase inhibitor, and leukemia.
  • a histone deacetylase inhibitor e.g., a MAPK / ERK kinase inhibitor
  • leukemia e.g., a MAPK / ERK kinase inhibitor
  • After culturing in a medium containing a blocking factor culturing in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, and a Wnt signal inhibitor, and a leukemia blocking factor without a histone deacetylase inhibitor.
  • the PKC inhibitor is not particularly limited.
  • Go6983 (3- [1- [3- (dimethylamino) propyl] -5-methoxy-1H-indol-3-yl] -4- (1H-indole- 3-yl) -1H-pyrrole-2,5-dione; CAS Registry Number: 133053-19-7), GF109203X (3- (1- (3-dimethylamino) propyl) -1H-indol-3-yl) -4- (1H-indol-3-yl) -1H-pyrrole-2,5-dione; CAS Registry Number: 133052-90-1). Of these, Go6983 is preferable.
  • the GSK3- ⁇ inhibitor is not particularly limited, but CHIR99021 (CAS registration number: 252927-06-9) is preferable.
  • the Wnt signal inhibitor is not particularly limited, but XAV939 (tankylase inhibitor) (CAS registration number: 284028-89-3), IWP-1, IWP-2, IWP-3, IWP-4, IWR-1, Examples include 53AH (above porcupine inhibitor), low molecular weight compounds such as KY02111 and derivatives thereof, and proteins such as IGFBP4, DKK1, and Wnt-C59. Of these, XAV939 is preferable.
  • the concentration of LIF in the medium is not particularly limited, but is, for example, 0.1 ng / mL to 100 ng / mL, preferably 0.2 ng / mL to 10 ng / mL.
  • the concentration of the MEK inhibitor in the medium is not particularly limited, and is, for example, 50 nmol / L to 100 ⁇ mol / L, preferably 100 nmol / L to 10 ⁇ mol / L, more preferably 200 nmol / L to 5 ⁇ mol / L. More preferably, it is 500 nmol / L to 2 ⁇ mol / L, and particularly preferably 800 nmol / L to 1.2 ⁇ mol / L.
  • the concentration of the PKC inhibitor in the medium is not particularly limited, but is, for example, 50 nmol / L to 100 ⁇ mol / L, preferably 100 nmol / L to 10 ⁇ mol / L.
  • the concentration of the GSK3- ⁇ inhibitor in the medium is not particularly limited, but is preferably 0 nmon / L to 0.3 nmol / L.
  • the concentration of the Wnt signal inhibitor in the medium is not particularly limited, and is, for example, 50 nmol / L to 100 ⁇ mol / L, preferably 100 nmol / L to 10 ⁇ mol / L.
  • the culture conditions in the second step are obvious to those skilled in the art, and examples include culturing under conditions of low oxygen (5% O 2 ), which can include 37 ° C. and 5% CO 2 conditions. Is preferred.
  • the culture period in the second step is not particularly limited.
  • the culture can be performed for 1 day to 14 days, preferably 2 days to 14 days.
  • CD75 (ST6GAL1), which is a specific cell surface marker, is generally known as an index for measuring the naive efficiency. Therefore, the completion of the treatment in the second step can be evaluated by the positive rate of the cell surface marker CD75.
  • Cells collected in the second step are collected from the culture vessel, stained with a fluorescence-labeled anti-CD75 antibody (for example, Alexa Fluor 647 Mouse Anti-Human CD75 antibody), and the positive rate of CD75 is analyzed by flow cytometry. Can do.
  • the positive rate of CD75 may be, for example, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, or 70% or more.
  • the cells obtained after the treatment in the second step preferably have a low incidence of DNA mutation.
  • the low incidence of DNA mutation can be evaluated, for example, by measuring the copy number of the long arm region of chromosome 20 by a conventional method (for example, real-time PCR).
  • the copy number of the long arm region of chromosome 20 in the cell obtained after the treatment in the second step is preferably 1.5 to 4.5, more preferably 1.5 to 3.5, still more preferably 1 .5 to 2.5.
  • the undifferentiation of the cells obtained in the first step and the cells obtained in the second step is not particularly limited, but can be evaluated by measuring the expression of a gene defining undifferentiation.
  • the method for measuring the expression of a gene that defines undifferentiation is not particularly limited, and for example, it can be measured by quantitative RT-PCR.
  • RT-PCR is a method of synthesizing cDNA using an mRNA to be measured as a template and amplifying the cDNA by PCR using this cDNA as a template.
  • PCR is performed using a primer combined with a quencher fluorescent dye and a reporter fluorescent dye to quantify the amount of amplified product at each cycle, and the detected fluorescence intensity increases rapidly.
  • a method for measuring the amount of template DNA in the sample can be mentioned.
  • Quantitative RT-PCR techniques are well known in the art and can also be performed using commercially available kits.
  • the expression level or copy number of a gene can be measured as a relative value with respect to the expression level or copy number of a control housekeeping gene (eg, GAPDH gene).
  • the measurement of gene mRNA can also be performed by subjecting the amplification product obtained by amplification of mRNA by ordinary RT-PCR or the like to gel electrophoresis and measuring the band intensity after staining.
  • gene mRNA or cDNA can be detected or quantified using a DNA chip.
  • genes that define undifferentiation include, but are not limited to, NANOG, POU5F1, LIN28, SOX2, DNMT3B, STELLA, and KLF17.
  • the expression level of STELLA in the cells obtained in the second step is higher than the expression level of STELLA in the cells obtained in the first step.
  • the expression level of KLF17 in the cells obtained in the second step is higher than the expression level of KLF17 in the cells obtained in the first step.
  • the expression level of SOX2 in the cells obtained in the second step is higher than the expression level of SOX2 in the cells obtained in the first step.
  • the expression copy number of STELLA in the cells obtained in the second step is preferably 0.001 or more, more preferably 0.002 or more, and further preferably 0.003 or more as a ratio to the expression copy number of GAPDH. And particularly preferably 0.004 or more.
  • the expression copy number of KLF17 in the cells obtained in the second step is preferably 5.0 ⁇ 10 ⁇ 5 or more, more preferably 1.0 ⁇ 10 ⁇ 4 or more, as a ratio to the expression copy number of GAPDH. More preferably, it is 1.1 ⁇ 10 ⁇ 4 or more, and particularly preferably 1.2 ⁇ 10 ⁇ 4 or more.
  • the expression copy number of SOX2 in the cells obtained in the second step is preferably 5.0 ⁇ 10 ⁇ 5 or more, more preferably 6.0 ⁇ 10 ⁇ 5 as a ratio to the expression copy number of GAPDH. Or more, more preferably 7.0 ⁇ 10 ⁇ 5 or more, and particularly preferably 8.0 ⁇ 10 ⁇ 5 or more.
  • the ability of the cells obtained in the second step to differentiate into any one or more of the endoderm, mesoderm and ectoderm is any of the endoderm, mesoderm and ectoderm that the cells obtained in the first step have. Or more than the ability to differentiate into one or more. More preferably, the ability of the cells obtained in the second step to differentiate into endoderm and ectoderm is improved than the ability of the cells obtained in the first step to differentiate into endoderm and ectoderm, respectively. Alternatively, the ability of the cells obtained in the second step to differentiate into endoderm and mesoderm is higher than the ability of the cells obtained in the first step to differentiate into endoderm and mesoderm, respectively.
  • the cells obtained in the second step are cells that can differentiate into all of endoderm, mesoderm and ectoderm.
  • the specific differentiated cells in the present invention are preferably mesoderm cells or ectoderm cells, more preferably blood cells, cardiomyocytes or nerve cells.
  • the improvement of the differentiation ability of the three germ layers is not limited as long as the differentiation ability to any one or more of endoderm, mesoderm and ectoderm is improved. It is the improvement of differentiation ability to one or more of them, and more preferably the improvement of differentiation ability to mesoderm and ectoderm.
  • the ability of a cell to differentiate into endoderm the ability of a cell to differentiate into mesoderm, and the ability of a cell to differentiate into ectoderm, differentiate the cell into endoderm, mesoderm or ectoderm, It can be evaluated by measuring the expression of each germ layer-specific gene in cells differentiated into the above three germ layer lineages.
  • the method for measuring the expression of each germ layer-specific gene is not particularly limited.
  • the measurement can be performed by a quantitative RT-PCR method.
  • the endoderm-specific gene is not particularly limited, and examples thereof include SOX17 and FOXA2.
  • the mesoderm-specific gene is not particularly limited, and examples thereof include T and PDGFRA.
  • the ectoderm-specific gene is not particularly limited, and examples thereof include PAX6 and MAP2.
  • the cell obtained in the second step has the ability to differentiate into endoderm, which is higher than the ability to differentiate into the endoderm of the cell obtained in the first step.
  • the relative expression level of SOX17 in the cells obtained by differentiating the cells obtained in the second step into endoderm is preferably 2 or more, more preferably, relative to the expression level of SOX17 in cells obtained by differentiating cells into endoderm. Examples include 4 or more, 6 or more, 8 or more, 10 or more, 12 or more, or 15 or more.
  • the cell obtained in the second step has the ability to differentiate into endoderm, which is higher than the ability to differentiate into the endoderm of the cell obtained in the first step.
  • the relative expression level of FOXA2 in the cells obtained by differentiating the cells obtained in the second step into endoderm is preferably 3 or more, more preferably, relative to the expression level of FOXA2 in cells obtained by differentiating the cells into endoderm. Examples include 5 or more, 10 or more, 15 or more, 18 or more, 20 or more, or 22 or more.
  • the ability to differentiate into the mesoderm in the cells obtained in the first step has been obtained in the first step.
  • the relative expression level of T in cells obtained by differentiating cells obtained in the second step into endoderm relative to the expression level of T in cells obtained by differentiating cells into mesoderm is preferably 2 or more, more preferably The case where it is 3 or more, 5 or more, 8 or more, 9 or more, or 10 or more can be mentioned.
  • the ability to differentiate into the mesoderm in the cells obtained in the first step has been obtained in the first step.
  • the relative expression level of PDGFRA in cells obtained by differentiating cells obtained in the second step into endoderm relative to the expression level of PDGFRA in cells obtained by differentiating cells into mesoderm is preferably 1.1 or more, and more The case where it is 1.2 or more, 1.3 or more, or 1.4 or more can be mentioned.
  • the ability to differentiate into the ectoderm in the cells obtained in the first step has been obtained in the first step.
  • the relative expression level of PAX6 in the cells obtained by differentiating the cells obtained in the second step into the ectoderm relative to the expression level of PAX6 in the cells obtained by differentiating the cells into ectoderm is preferably 1.1 or more, and more Preferably, it is 1.2 or more, 1.3 or more, 1.4 or more, or 1.5 or more.
  • the ability to differentiate into the ectoderm in the cells obtained in the first step has been obtained in the first step.
  • the relative expression level of MAP2 in cells obtained by differentiating cells obtained in the second step into ectoderm relative to the expression level of MAP2 in cells obtained by differentiating cells into ectoderm is preferably 1.1 or more, and more The case where it is 1.2 or more, or 1.3 or more can be mentioned.
  • the method for producing cells according to the present invention may further include a third step for differentiating the cells obtained in the second step.
  • the method for producing cells according to the present invention may not include the third step described above.
  • the type of cell obtained by inducing differentiation of the cell obtained in the second step is not particularly limited. If desired, differentiation can be induced into endoderm cells, mesoderm cells, or ectoderm cells.
  • the method for inducing differentiation of the cells obtained in the second step is not particularly limited.
  • differentiation can be induced in each of the endoderm, mesoderm, and ectoderm using a commercially available StemDiff (registered trademark) Trilineage Differentiation Kit (Stemcell Technologies).
  • differentiation induction into blood cells can be performed by culturing the cells under the conditions described in Example 2 described later. Specifically, on the first day, the cells were cultured in a medium containing BMP4 and Y27634 (ROCK inhibitor), bFGF and BMP4 were added on the second day, and cells formed spheroid-like colonies on the third day.
  • BMP4 and Y27634 ROCK inhibitor
  • the eyes are cultured in a medium containing SB431542 (TGF- ⁇ receptor inhibitor), CHIR99021 (GSK3 inhibitor), bFGF and BMP4 (days 3 and 4), days 5 to 6
  • the eyes are cultured in a medium containing VEGF and bFGF, and from day 7 to day 10, cells are cultured in a medium containing VEGF, bFGF, IL-6, IGF-1, IL-11, and SCF, so that blood cells are cultured. Differentiation can be induced. Induction of differentiation into blood cells can be confirmed by analyzing the expression of blood cell markers CD34 and KDR with a flow cytometer.
  • Differentiation induction into cardiomyocytes can be performed, for example, by culturing the cells under the conditions described in Example 5 described later. Specifically, the cells can be induced to differentiate into cardiomyocytes according to the procedure manual using PSC Cardiomyocyte Differentiation Kit (ThermoFisher Scientific). Differentiation into cardiomyocytes can be confirmed by measuring the expression of Cardiac Troponin T (cTnT), which is a cardiomyocyte marker, by flow cytometry.
  • cTnT Cardiac Troponin T
  • the positive rate of cTnT analyzed by the above method is preferably 5% or more, more preferably 10% or more, still more preferably 20% or more, still more preferably 30% or more, and particularly preferably It is 40% or more, and most preferably 45% or more.
  • the treatment described above is performed.
  • the positive rate of cTnT is preferably increased by 1.1 to 100 times, more preferably increased by 1.2 to 100 times, and most preferably increased by 2 to 50 times as compared with the case where it is not performed.
  • Differentiation induction into neural stem cells can be performed, for example, by culturing the cells under the conditions described in Example 6 described later. Specifically, the cells can be induced to differentiate into neural stem cells according to the procedure manual using PSC Natural Induction Medium (Thermo Fisher Scientific). Induction of differentiation into neural stem cells can be confirmed, for example, by immunostaining SOX1 protein which is a marker of neural stem cells.
  • the cells of the present invention ie, cells that are relatively highly capable of differentiating into specific differentiated cells by treating the cells while maintaining an undifferentiated state
  • the luminance is preferably increased by 1.1 to 10 times, and more preferably by 1.5 to 5 times, compared with the case where the above treatment is not performed.
  • the cells obtained in the second step can be differentiated into endoderm cells by culturing under endoderm cell differentiation conditions.
  • endoderm system cell For example, a digestive system cell (a hepatocyte, a bile duct cell, a pancreatic endocrine cell, an acinar cell, a duct cell, an absorption cell, a goblet cell, a panate cell, an enteroendocrine cell, etc.) And cells of tissues such as lung and thyroid.
  • the cells obtained in the second step can be differentiated into mesodermal cells by culturing under mesodermal cell differentiation conditions other than those described above.
  • group cell A blood cell and a lymphocyte system cell (hematopoietic stem cell, erythrocyte, platelet, macrophage, granulocyte, helper T cell, killer T cell, B lymphocyte etc.), a vascular system cell ( Vascular endothelial cells), cardiomyocytes (eg, atrial myocytes, ventricular myocytes, etc.), osteoblasts, bone cells, chondrocytes, tendon cells, fat cells, skeletal muscle cells, smooth muscle cells, and the like.
  • a lymphocyte system cell hematopoietic stem cell, erythrocyte, platelet, macrophage, granulocyte, helper T cell, killer T cell, B lymphocyte etc.
  • a vascular system cell vascular endothelial cells
  • cardiomyocytes eg, atrial myocyte
  • the cells obtained in the second step can be differentiated into ectodermal cells by culturing under ectodermal cell differentiation conditions other than those described above.
  • ectoderm cells include, but are not limited to, nervous system cells, sensory organ cells (lens, retina, inner ear, etc.), skin epidermis cells, hair follicles and the like.
  • the cells induced to differentiate using the cells obtained in the second step can be used for screening drug candidate compounds for treatment of various diseases. For example, by adding drug candidate compounds to differentiation-induced cells, alone or in combination with other drugs, by detecting changes in cell morphology or function, increase / decrease in various factors, gene expression profiling, etc. Can be evaluated.
  • the cell is preferably a cell having a phenotype similar to that of the disease to be treated, and more preferably induced differentiation from the cell produced by the method of the present invention using a somatic cell derived from a patient suffering from the disease. Cells.
  • a tissue can be prepared from the cells induced to differentiate using the cells obtained in the second step and used in the field of regenerative medicine.
  • a person skilled in the art will understand how to transplant the produced tissue into a patient.
  • Example 1 The following experiments were conducted to improve and enhance the trioderm differentiation ability of human iPS cells.
  • Methods ⁇ Cell> Regarding the human iPS cell line, the 253G1 and 201B7 strains were purchased from iPS Portal, Inc. (Takahashi K, et al. Cell. 2007, Nakagawa M, et al. Nat Miotechnol. 2008). Strain A was purchased from Cellular Dynamics International (CDI).
  • CDI Cellular Dynamics International
  • ⁇ Cell culture and compound treatment> Human iPS cells were grown in StemFlex® (Thermo Fisher Scientific) medium at 37 ° C., 5% CO 2 , 10% O 2 conditions on 6 well plates coated with Matrigel® (Corning). Maintenance culture was performed under.
  • the cells obtained here are prime-type pluripotent stem cells and are relatively low in ability to differentiate into specific differentiated cells.
  • iPS cells in culture were detached with TrpLE TM Select (Invitrogen) at 37 ° C. for 5 minutes to form single cells.
  • Mouse embryo-derived fibroblasts (MEF, Lonza) were seeded at 0.5 ⁇ 10 6 cells / well ( 6 well plate) or Matrigel-coated wells, and human iPS cells were transformed into mTeSR® 1 (Stemcell Technologies) or 1 ⁇ 10 5 cells / well was seeded in a medium in which Y-27684 (10 ⁇ mol / L, Wako) was added to StemFlex (registered trademark). Thereafter, the cells were cultured at 37 ° C., 5% CO 2 and 5% O 2 until the ninth day.
  • Day 1 The medium was changed to medium 1 in Table 1.
  • Day 2-3 Half of the medium was replaced with fresh medium 1.
  • the medium was changed to the medium 2 in Table 1, and the medium was changed every other day until the 8th day.
  • Day 9 Treated with TrypLE TM Select for 5 minutes at 37 ° C. to detach the cells, then seeded with MEF in medium 2 supplemented with Y-27684 (10 ⁇ mol / L, Wako) or coated with Matrigel (registered trademark) Passage. Thereafter, the cells were maintained and cultured in medium 2.
  • ⁇ Three germ layer differentiation> In order to examine the differentiation potential into three germ layers, the cells subjected to the above treatment were cultured on a Matrigel-coated plate for 4 to 7 days until they grew to the required number of cells with StemFlex (registered trademark).
  • StemFlex registered trademark
  • untreated or the above-treated human iPS cells were differentiated according to the protocol using a StemDiff (registered trademark) Trilineage Differentiation Kit (Stemcell Technologies).
  • RNeasy registered trademark
  • Applied Biosystems reverse transcription using High-Capacity RNA-to-cDNA TM Kit
  • Biosystems To the synthesized cDNA, genes that are undifferentiated indicators shown in Table 3 or genes specific to each germ layer, TaqMan (registered trademark) gene expression assay (Applied Biosystems) and TaqMan (registered trademark) Fast Advanced Master Mix (Applied). Biosystems) was added, and a PCR reaction was performed with Via7 TM (Applied Biosystems).
  • Probe primer set in Table 3 is the code name of Probe primer set for performing PCR of a gene in Taqman (registered trademark) Gene expression assay of Thermo Fisher.
  • FIG. 1 shows the results of quantitative RT-PCR measurement of the expression of genes that define undifferentiation in human iPS cell lines (253G1 strain) that had not been treated and the above treatment.
  • the expression of NANOG, POU5F1, LIN28, and DNMT3B did not change significantly between untreated and treated cells.
  • the expression of STELLA and KLF17 specifically expressed in SOX2 and naive ES / iPS cells was significantly increased in iPS cells after treatment.
  • FIG. 2 shows the results of quantitative RT-PCR measurement of each germ layer-specific gene expression in cells differentiated into three germ layer lineages (253G1 strain). As shown in FIG. 2, the expression of endoderm-specific genes (SOX17 and FOXA2) and ectoderm-specific genes (PAX6 and MAP2) were remarkably increased in the treated cells compared to the untreated cells.
  • FIG. 3 shows the results of quantitative RT-PCR measurement of each germ layer-specific gene expression in different iPS cell lines (201B7 strain and A strain) differentiated into three germ layer lineages.
  • iPS cell lines 201B7 strain and A strain
  • endoderm-specific genes SOX17 and FOXA2
  • mesoderm-specific genes T and PDGFRA
  • Example 2 The effect of the treatment performed in Example 1 on the differentiation ability into blood cells, which is a kind of mesodermal lineage, was verified.
  • [Method] ⁇ Cell> The iPS cell line B used was sold by CDI.
  • Day 2 bFGF (5 ng / mL) and BMP4 (10 ng / mL) were added.
  • Day 3 The cells were confirmed to form spheroid-like colonies, and the medium was changed to Day3 medium.
  • Day 5 Medium was changed to Day 5 medium. From day 7: Changed to Day 7 medium, and thereafter changed to Day 7 medium every other day until days 8-10.
  • FIG. 4 shows the results of differentiating untreated and treated iPS cell B strains into blood cells, and analyzing the ratio of cells expressing blood cells, CD34 and KDR, using a flow cytometer. As shown in FIG. 4, the proportion of CD34 and KDR positive cells increased by about 17.7 times when differentiated from treated iPS cells compared to untreated.
  • Example 3 In order to verify the necessity of Valproic acid (VPA) and bFGF in the three germ layer differentiation improving treatment, the following experiment was conducted.
  • [Method] ⁇ Cell> The human iPS cell 253G1 strain used was purchased from iPS Portal.
  • Human iPS cells were maintained in StemFlex® medium at 37 ° C., 5% CO 2 , 10% O 2 on Matrigel-coated 6-well plates.
  • Day 0 In order to examine the effect of improving differentiation, human iPS cells in culture were detached by treating with TlypLE TM Select at 37 ° C. for 5 minutes to form single cells.
  • Human iPS cells were seeded at 1 ⁇ 10 5 cells / well in a medium in which Y-27684 (10 ⁇ mol / L, Wako) was added to StemFlex® in one well of a 6-well plate coated with Matrigel®. Thereafter, the cells were cultured at 37 ° C., 5% CO 2 and 5% O 2 until the ninth day.
  • Day 1 The medium was changed to medium 1 in Table 5.
  • Day 2-3 Half of the medium was replaced with fresh medium 1.
  • the medium was changed to the medium 2 in Table 5, and the medium was changed every other day until the 8th day.
  • Day 9 All conditions of the cells were replaced with StemFlex (registered trademark) and cultured for about 4 days.
  • FIG. 5 shows the results of evaluation of the ability to differentiate three germ layers by quantitative RT-PCR.
  • endoderm differentiation of the 253G1 strain the expression of endoderm-specific genes (SOX17 and FOXA2) was significantly increased by treatment with the condition (1) Valproic acid (VPA) + inhibitor (PD0325901, Go6983 and XAV939).
  • VPA Valproic acid
  • PD0325901, Go6983 and XAV939 Valproic acid
  • FIG. 5 A summary of the results of FIG. 5 is shown in FIG.
  • Example 4 The effect of the difference in the concentration of the MEK inhibitor PD0325901 on human iPS cells on the treatment effect was examined.
  • [Method] ⁇ Cell> Regarding human iPS cell lines the 253G1 and 201B7 strains were provided by the Kyoto University iPS Research Institute (CiRA) (Takahashi K, et al. Cell. 2007, Nakagawa M, et al. Nat Biotechnol. 2008). C and D strains were provided by Cellular Dynamics International (CDI).
  • CiRA Kyoto University iPS Research Institute
  • CDI Cellular Dynamics International
  • PD0325901 was treated under a concentration condition of 0.3 to 1.0 ⁇ mol / L, and subculture was performed for about 2 weeks after the 9th day.
  • Example 1 ⁇ Evaluation of processing efficiency by flow cytometry> Completion of the treatment of Example 1 was evaluated by the positive rate of the cell surface marker CD75.
  • the cultured human iPS cells were detached with TrypLE Select and stained with Alexa Fluor 647 Mouse Anti-Human CD75 antibody.
  • the positive rate of CD75 was analyzed by flow cytometry Attune NxT.
  • Fig. 8 shows the results of the copy number evaluation of a specific region of the chromosome.
  • the copy number decreased depending on the concentration of PD0325901 and approached the normal copy number of 1.5 to 2.5 (FIG. 8). From the above results, it was shown that it is desirable to add PD0325901 at 0.8 to 1.2 ⁇ mol / L in order to minimize DNA mutation.
  • Example 5 The effect of the treatment performed in Example 1 on the differentiation ability of human iPS cells into cardiomyocytes was examined.
  • D, E, G, H, and I strains were provided by Cellular Dynamics International (CDI).
  • ⁇ Cell culture and compound treatment> Human iPS cells were treated in the same manner as in Example 1 and subcultured in medium 2 for about 2 weeks. Thereafter, the treated cells were subcultured onto matrigel-coated plates, and subcultured for about 2 weeks in StemFlex or mTeSR1 medium.
  • ⁇ Evaluation method> The efficiency of induction into cardiomyocytes was evaluated by flow cytometry for the expression of Cardiac Troponin T (cTnT), a cardiomyocyte marker.
  • cTnT Cardiac Troponin T
  • the cells were detached with TrypLE Select, and dead cells were stained with ghost Dye Violet 510 (TONBO Bioscience). After washing, the cells were fixed and permeabilized with a BD Cytofix Fixation buffer and Perm / Wash buffer (BD Bioscience). The cells were stained with Alexa Fluor 647 Mouse Anti-Cardiac Troponin T antibody (BD Pharmingen), and the positive rate of cTnT was analyzed by flow cytometry Attune NxT (ThermoFisher Scientific).
  • FIG. 9 shows the results of inducing untreated and treated iPS cells into cardiomyocytes, and comparing the cTnT positive rates in living cells by flow cytometry.
  • the positive rate of 38.2% was 49.4% in the treated cells, an increase of 1.29 times (FIG. 9).
  • FIG. 10 shows the results of measuring the positive rate of cTnT when induced into cardiomyocytes under the same conditions. The positive rate of cTnT increased in 5 strains (FIG. 10).
  • Example 6 The effect of improving differentiation into neural stem cells by the method of the present invention was verified.
  • Method of Method ⁇ Cell> Five strains (J strain, K strain, L strain, M strain, and N strain) that were purchased from Cellular Dynamics International (CDI) were treated by the method of Example 1 to obtain cells.
  • ⁇ Induction of neural stem cells In order to examine the differentiation potential into neural stem cells, the cells subjected to the above treatment are cultured on a Geltrex (Thermo Fisher Scientific) coated plate for 1 to 2 days until they are grown to the required number of cells with mTeSR (registered trademark). did.
  • mTeSR registered trademark
  • untreated or the above-treated human iPS cells were differentiated according to the procedure manual using PSC Natural Induction Medium (Thermo Fisher Science).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Cardiology (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Transplantation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明の課題は、目的とする分化細胞へと効率よく分化させることができる多能性幹細胞の製造方法を提供することである。本発明によれば、体細胞に初期化因子を導入して得られる未分化細胞であって、特定の分化細胞に分化する能力が相対的に低い細胞を得る第一工程;および上記細胞を、未分化状態を維持しながら処理して、上記特定の分化細胞に分化する能力が相対的に高い細胞を得る第二工程、を含む、細胞の製造方法が提供される。

Description

細胞の製造方法
 本発明は、内胚葉、中胚葉および外胚葉の何れか一つ以上に分化する能力を有する細胞の製造方法に関する。
 多能性幹細胞としては、人工多能性幹細胞(induced pluripotent stem cell;iPS細胞とも言う)、胚性幹細胞(embryonic stem cell:ES細胞とも言う)などが知られている。再生医療分野においては、特にiPS細胞の実用化に向けた研究が進められている。
 iPS細胞などの多能性幹細胞には、ナイーブ型の細胞とプライム型の細胞とが存在することが知られている。ナイーブ型の細胞は、発生初期の状態に近く、プライム型の細胞はより発生が進んだ細胞である。
 非特許文献1には、ヒストン脱アセチル化阻害剤により多能性幹細胞をリセットして、ナイーブ型の細胞に転換する方法が記載されている。
 特許文献1には、細胞を多能性幹細胞にするよう誘導するのに十分な条件下で、非多能性細胞を、TGFβ受容体/ALK5阻害剤;MEK阻害剤;およびROCK阻害剤と接触させる段階を含む、非多能性哺乳動物細胞を誘導多能性幹細胞へと誘導する方法が記載されており、細胞をヒストン脱アセチル化酵素阻害剤とさらに接触させることが記載されている。特許文献2には、細胞が多能性幹細胞になるよう誘導するのに十分な条件の下で、非多能性細胞を3’-ホスホイノシチド依存性キナーゼ-1(PDK1)活性化剤と接触させる工程であって、それにより、非多能性哺乳動物細胞を誘導多能性幹細胞へ誘導する工程を含む、非多能性哺乳動物細胞を誘導多能性幹細胞へ誘導する方法が記載され、非多能性細胞をヒストンデアセチラーゼ阻害剤と接触させる工程をさらに含んでもよいことが記載されている。
 特許文献3には、NanogおよびKlf2をプライム型多能性幹細胞に一時的に発現させ、かつLIF、MEK阻害剤、GSK3阻害剤、cAMP産生促進剤、TGF-β阻害剤およびPKC阻害剤を含む培地で培養することを含む、ナイーブ型多能性幹細胞の製造方法が記載されている。
 特許文献4には、ヒト幹細胞をよりナイーブな状態にリセットする方法であって、(a)初期化されるべきヒト幹細胞を提供すること、(b)(i)所望により1以上の異種の初期化因子を細胞に発現または導入し、(ii)MEK阻害剤を含み、さらに所望によりSTAT3活性化剤、および所望により1以上のさらなる阻害剤を含むリセット培地中で細胞を培養することにより、よりナイーブな状態を誘発すること、(c)MEK阻害剤、PKC阻害剤および所望によりGSK3インヒビター、およびSTAT3活性化剤を含むナイーブ培地中に細胞を維持することを含む方法が記載されている。
特開2016-27808号公報 特開2016-171798号公報 国際公開WO2016/148253号 国際公開WO2016/027099号
Guo G.et al.Development,2017 Aug 1;144(15):2748-2763
 本発明者らのこれまでの検討により、体細胞に初期化因子を導入することにより作製されたiPS細胞について、iPS細胞としてのマーカーが発現している場合であっても、三胚葉全てに分化できないiPS細胞が存在することが見出されている。
 本発明は、目的とする分化細胞へと効率よく分化させることができる多能性幹細胞の製造方法を提供することを解決すべき課題とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、体細胞に初期化因子を導入して得られる未分化細胞であって、特定の分化細胞に分化する能力が相対的に低い細胞を得た後に、上記細胞を、未分化状態を維持しながら処理して、上記特定の分化細胞に分化する能力が相対的に高い細胞を得ることによって、目的とする分化細胞へと効率よく分化させることができる多能性幹細胞を製造することに成功した。本発明は、上記の知見に基づいて完成したものである。
 即ち、本発明によれば、以下の発明が提供される。
(1)体細胞に初期化因子を導入して得られる未分化細胞であって、特定の分化細胞に分化する能力が相対的に低い細胞を得る第一工程;および
上記細胞を、未分化状態を維持しながら処理して、上記特定の分化細胞に分化する能力が相対的に高い細胞を得る第二工程、
を含む、細胞の製造方法。
(2)第二工程で得られる細胞が有する、内胚葉、中胚葉および外胚葉の何れか一つ以上に分化する能力が、第一工程で得られる細胞が有する、内胚葉、中胚葉および外胚葉の何れか一つ以上に分化する能力よりも向上している、(1)に記載の方法。
(3)第二工程で得られる細胞が有する内胚葉および外胚葉に分化する能力が、第一工程で得られる細胞が有する内胚葉および外胚葉に分化する能力よりもそれぞれ向上している;または
第二工程で得られる細胞が有する内胚葉および中胚葉に分化する能力が、第一工程で得られる細胞が有する内胚葉および中胚葉に分化する能力よりもそれぞれ向上している;
(1)に記載の方法。
(4)第二工程で得られる細胞が、内胚葉、中胚葉および外胚葉の全てに分化することができる細胞である、(2)または(3)に記載の方法。
(5)上記特定の分化細胞が、中胚葉細胞または外胚葉細胞である、(1)に記載の方法。
(6)上記特定の分化細胞が、血球細胞、心筋細胞または神経細胞である、(1)に記載の方法。
(7)第二工程で得られる細胞におけるSTELLAの発現量が、第一工程で得られる細胞におけるSTELLAの発現量よりも高い、(1)から(6)の何れか一に記載の方法。
(8)第二工程で得られる細胞におけるKLF17の発現量が、第一工程で得られる細胞におけるKLF17の発現量よりも高い、(1)から(7)の何れか一に記載の方法。
(9)上記第二工程が、上記細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程である、(1)から(8)の何れか一に記載の方法。
(10)上記第二工程が、上記細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤および塩基性線維芽細胞増殖因子で処理する工程である、(9)に記載の方法。
(11)第二工程が、細胞を、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、および白血病阻止因子を含む培地で培養した後に、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、およびWntシグナル阻害剤、および白血病阻止因子を含む培地で培養する工程を含む、(9)または(10)に記載の方法。
(12)ヒストン脱アセチル化酵素阻害剤が、バルプロ酸又はその塩である、(9)から(11)の何れか一に記載の方法。
(13)上記第二工程における培地が、アスコルビン酸を含まない、(1)から(12)の何れか一に記載の方法。
(14)上記体細胞が、成人由来の体細胞である、(1)から(13)の何れか一に記載の方法。
(15)第二工程で得られた細胞を分化させる第三工程をさらに含む、(1)から(14)の何れか一に記載の方法。
(16)プライム型多能性幹細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程を含む、プライム型多能性幹細胞と比べて三胚葉分化能が向上している多能性幹細胞を製造する方法。
(17)プライム型多能性幹細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程を含む、プライム型多能性幹細胞と比べて特定の分化細胞への分化能が向上している多能性幹細胞を製造する方法。
(18)特定の分化細胞が、血球細胞、心筋細胞または神経細胞である、(17)に記載の方法。
(19)未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程が、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、および白血病阻止因子を含む培地で培養した後に、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、およびWntシグナル阻害剤、および白血病阻止因子を含む培地で培養する工程を含む、(16)から(18)の何れか一に記載の方法。
(20)ヒストン脱アセチル化酵素阻害剤が、バルプロ酸又はその塩である、(16)から(19)の何れか一に記載の方法。
(21)未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程における培地が、アスコルビン酸を含まない、(16)から(20)の何れか一に記載の方法。
 本発明によれば、目的とする分化細胞へと効率よく分化させることができる多能性幹細胞を製造することができる。
図1は、未処理および処理を施したヒトiPS細胞株(253G1株)における未分化性を定義する遺伝子の発現を定量的RT-PCRにて測定した結果を示す。 図2は、三胚葉系譜に分化させた細胞(253G1株)における各胚葉特異的遺伝子発現を定量的RT-PCRにて測定した結果を示す。 図3は、三胚葉系譜に分化させた別のiPS細胞株(201B7株およびA株)における各胚葉特異的遺伝子発現を定量的RT-PCRにて測定した結果を示す。 図4は、未処理および処理後のiPS細胞をそれぞれ血液細胞に分化させ、血液細胞のマーカーであるCD34とKDRの発現細胞の割合をフローサイトメーターにて解析した結果を示す。 図5は、iPS細胞の定量的RT-PCRによる三胚葉分化能の評価の結果を示す。 図6は、iPS細胞の三胚葉分化能の評価の結果のまとめを示す。 図7は、MEK阻害剤の濃度を変化させた場合についてフローサイトメトリーによる処理効率を評価した結果を示す。 図8は、MEK阻害剤の濃度を変化させた場合について染色体の特定領域のコピー数を評価した結果を示す。 図9は、未処理及び処理後のiPS細胞をそれぞれ心筋細胞に誘導させ、フローサイトメトリーにて生細胞中のcTnT陽性率を比較した結果を示す。 図10は、iPS細胞株を心筋細胞へ誘導した場合のcTnTの陽性率を測定した結果を示す。 図11は、神経幹細胞への分化誘導で得られた細胞を蛍光顕微鏡で観察した画像を示す。 図12は、神経幹細胞への分化誘導で得られた細胞を蛍光顕微鏡で観察した画像の輝度を定量化した結果を示す。
 以下、本発明を実施するための形態を、詳細に説明する。
 本明細書における略号は以下の意味を有する。
Klf:Kruppel-like factor
LIF:Leukemia inhibitory factor
MEK:MAPK/ERKキナーゼ(MAPK:mitogen-activated protein kinase;ERK: extracellular signal-regulated kinase)
GSK3:glycogen syn-thase kinase-3
TGF:Transforming growth factor
PKC:Protein kinase C
RT-PCR:Reverse Transcription polymerase chain reaction
PCR:polymerase chain reaction
KDR:kinase insert domain-containing receptor
Tert:Telomerase Reverse Transcriptase
Fbx15:F-Box Protein 15
ECAT:ES cell associated transcripts
Dnmt3L:DNA Methyltransferase 3 Like
Gdf3:Growth differentiation factor-3
Fthl17:Ferritin heavy polypeptide-like 17
Sall4:Sal-like protein 4
Rex1:Reduced-expression 1
UTF1:Undifferentiated Embryonic Cell Transcription Factor 1
Stat3:Signal Transducer and Activator of Transcription 3
Grb2:Growth factor receptor-bound protein 2
Prdm14:PR/SET domain family 14
Nr5a1:nuclear receptor subfamily 5,group A,member 1
Nr5a2:nuclear receptor subfamily 5,group A,member 2
bFGF:basic Fibroblast Growth Factor
POU5F1:POU domain, class 5, transcription factor 1
DNMT3B:DNA(cytosine-5-)-methyltransferase 3 beta
GAPDH:Glyceraldehyde 3-phosphate dehydrogenase
FOXA2:forkhead box protein A2
T:Brachyury
PDGFRA:platelet-derived growth factor receptor alpha
PAX6:paired box 6
MAP:mitogen-activated protein
BMP:Bone Morphogenetic Protein
VEGF:vascular endothelial growth factor
IL:interleukin
IGF:Insulin-like growth factor
SCF:Stem cell factor
ROCK:Rho-associated coiled-coil forming kinase/Rho結合キナーゼ
ALK5:TGF-beta type I receptor
CD34:Cluster of differentiation 34
Sox:SRY-boxes
ERas:ES cell expressed Ras
Tcl1:T-cell leukemia/lymphoma 1A
 多能性幹細胞には、ナイーブ型多能性幹細胞およびプライム型多能性幹細胞という2つの異なる状態の細胞が知られている。ナイーブ型多能性幹細胞およびプライム型多能性幹細胞は、分子特徴および細胞特徴により区別することができる。
 ナイーブ型多能性幹細胞は、典型的には、高レベルの多能性因子Oct4、Nanog、Sox2、Klf2およびKlf4を発現し、Lif/Stat3または2i(ERKi/GSKi)のいずれかに応答して自己再生し、Fgf/Erkに応答して分化し、XaXaのX染色体状態を呈するという特徴を有する。プライム型多能性幹細胞は、典型的には、高レベルの多能性因子Oct4、Sox2およびNanogを発現し、Lif/Stat3に応答せず、Fgf/Erkに応答して自己再生し、XaXiのX染色体活性化状態を呈するという特徴を有する(Nichols  et  al.,(2009)Cell  Stem  Cell  4(6):487-492)。なお、Xaは活性型X染色体を示し、Xiは不活性型X染色体を示す。
 本発明の第一の態様による細胞の製造方法は、
体細胞に初期化因子を導入して得られる未分化細胞であって、特定の分化細胞に分化する能力が相対的に低い細胞を得る第一工程;および
上記細胞を、未分化状態を維持しながら処理して、上記特定の分化細胞に分化する能力が相対的に高い細胞を得る第二工程、
を含む。同じ培養条件で同一の操作をした細胞は、個体として別であっても同一の性質を持つ細胞とみなす。
 本発明の第二の態様による細胞の製造方法は、プライム型多能性幹細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程を含む、プライム型多能性幹細胞と比べて三胚葉分化能または特定の分化細胞への分化能が向上している多能性幹細胞を製造する方法である。
 特許文献1および2には、非多能性細胞から多能性細胞に誘導する際に、細胞をヒストン脱アセチル化酵素阻害剤と接触させることが記載されている。特許文献3には、プライム型多能性幹細胞を所定の条件下において培養することによりナイーブ型多能性幹細胞を製造することが記載されている。しかしながら、体細胞に初期化因子を導入することにより作製されたiPS細胞について、iPS細胞としてのマーカーが発現している場合であっても、三胚葉全てに分化できないiPS細胞が存在することについての知見はない。特許文献4には、ヒト幹細胞をよりナイーブな状態にリセットする方法が記載され、得られた幹細胞が神経細胞、内胚葉および平滑筋細胞に分化することが記載されているが、ナイーブな状態にリセットすることにより、分化能が向上することは記載されていない。また、特許文献4における培地はアスコルビン酸を含む培地である。
 本発明においては、体細胞に初期化因子を導入して得られる未分化細胞の中には、特定の分化細胞に分化する能力が相対的に低い細胞が存在することを同定した。その上で、上記細胞を、未分化状態を維持しながら処理することによって、上記特定の分化細胞に分化する能力が相対的に高い細胞を得ることに成功したものである。
[第一工程について]
 本発明における第一工程は、体細胞に初期化因子を導入して得られる未分化細胞であって、特定の分化細胞に分化する能力が相対的に低い細胞を得る工程である。
 体細胞としては、特に限定されず、任意の体細胞を利用することができる。例えば、胎児期の体細胞のほか、成人由来の体細胞(即ち、成熟した体細胞)を用いてもよい。体細胞としては、例えば、(1) 神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2) 組織前駆細胞、(3)線維芽細胞(皮膚細胞等)、上皮細胞、肝細胞、リンパ球(T細胞、B細胞)、内皮細胞、筋肉細胞、毛細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞、皮膚細胞等の分化した細胞が挙げられる。
  体細胞の由来となる生体としては、特に限定されないが、例えば、ヒト、非ヒト動物(例えば、サル、ヒツジ、ウシ、ウマ、イヌ、ネコ、ウサギ、ラット、マウス)が挙げられる。好ましくは、ヒトである。
 体細胞に導入される初期化因子としては特に限定されないが、例えば、Oct3/4、Klf4、c-Myc、Sox2、Nanog、Klf2、L-Myc、N-Myc、Klf5、Lin28、Tert、Fbx15、ERas、ECAT15-1、ECAT15-2、Tcl1、β-カテニン、ECAT1、Esg1、Dnmt3L、ECAT8、Gdf3、Sox15、Fthl17、Sall4、Rex1、UTF1、Stella、Stat3、Grb2、Prdm14、Nr5a1、Nr5a2、E-cadherinが挙げられる。ここで、これらの遺伝子群の中から2以上の遺伝子を選択して任意に組み合わせて導入することができる。なかでも、Oct3/4、Sox2、Klf4およびc-Mycを少なくとも有する組み合わせ、Oct3/4、Sox2、Klf4およびL-Mycを少なくとも有する組み合わせ、またはOct3/4、Sox2、NanogおよびLin28を少なくとも有する組み合わせが好ましい。
 また、導入する遺伝子の種は、導入先の細胞の種と同一であることが好ましい。例えば、ヒト由来の細胞へ導入される遺伝子はヒト遺伝子であることが好ましい。例えば、ヒト由来の体細胞へ導入される遺伝子としては、ヒトOct3/4、ヒトSox2、ヒトKlf4およびヒトc-Mycを少なくとも有する組み合わせ、Oct3/4、Sox2、Klf4およびL-Mycを少なくとも有する組み合わせ、またはヒトOct3/4、ヒトSox2、ヒトNanogおよびヒトLin28を少なくとも有する組み合わせが好ましい。
 初期化因子の遺伝子は、遺伝子発現ベクターを用いて体細胞に導入することができる。遺伝子発現ベクターとしては、特に限定されないが、例えば、ウイルスベクター、プラスミドベクター、人工染色体ベクター、トランスポゾンベクターが挙げられる。ウイルスベクターとしては、レトロウイルスベクター、アデノウイルスベクター、センダイウイルスベクター、レンチウイルスベクター、アデノ随伴ウイルスベクターが挙げられる。
 体細胞に初期化因子を導入して得られる未分化細胞であって、特定の分化細胞に分化する能力が相対的に低い細胞は、体細胞に初期化因子を導入することによって自ら作製してもよいが、研究機関や企業から提供または販売されている細胞を入手してもよい。即ち、本発明における第一の工程は、人工多能性幹細胞バンクから人工多能性幹細胞を得る工程でもよい。
 例えば、京都大学iPS細胞研究所から提供されている201B7、253G1、253G4、1201C1、1205D1、1210B2、1231A3、1383D2、1383D6、iPS-TIG120-3f7、iPS-TIG120-4f1、iPS-TIG114-4f1、CiRA086Ai-m1、CiRA188Ai-M1、またはiRA188Ai-W1を入手して、使用することができる。
 また、NIH(National Institutes of Health)やCalifornia Institute of Regenerative Medicine、New York Stem Cell Foundation、European Bank for induced Pluripotent Stem Cells等が作成しているiPS細胞バンクから入手することもできる。
 「体細胞に初期化因子を導入して得られる未分化細胞」における未分化細胞とは、最終分化していない細胞を意味し、好ましくは内胚葉、中胚葉および外胚葉の何れか一つ以上に分化する能力を有する細胞である。「特定の分化細胞に分化する能力が相対的に低い細胞」における「特定の分化細胞」とは内胚葉、中胚葉および外胚葉の何れか、又は、内胚葉、中胚葉および外胚葉の何れかに由来する、任意の特定の分化した細胞、例えば血球細胞、心筋細胞、または神経細胞である。「特定の分化細胞に分化する能力が相対的に低い」とは、本発明における後記する第二工程において得られる、「特定の分化細胞に分化する能力が相対的に高い細胞」と比較して、特定の分化細胞に分化する能力が低いことを意味する。
 第一工程で得られる「体細胞に初期化因子を導入して得られる未分化細胞であって、特定の分化細胞に分化する能力が相対的に低い細胞」は、フィーダー細胞をコートしたプレートまたはマトリゲル(Matrigel)(登録商標)などの足場をコートしたプレート上で、適当な培地にて維持培養することができる。フィーダー細胞としては、特に限定されないが、マウス胚性線維芽細胞(MEF細胞)、マウス胎児繊維芽細胞(STO細胞)が挙げられる。
 維持培養の際の培地としては、mTeSR(登録商標)1(Stemcell Technologies)またはStemFlex(登録商標)などの市販の培地を使用することができる。あるいはまた、例えば、基礎培地として、DMEM(Dulbecco Modified Eagle medium)、DMEMとF12の混合培地(DMEM/F12=1:1)、KnockoutTM D-MEM(Invitrogen社)などが挙げられ、代替血清(KSR;KnockoutTM Serum Replacement(Invitrogen社))、ウシ胎児血清(FBS)、非必須アミノ酸(NEAA)、L-グルタミン、2-メルカプトエタノール、抗生物質(例えば、ストレプトマイシン、ペニシリン、ピューロマイシン、マイトマイシン)、bFGF等の添加成分を任意に組み合わせて、上記いずれかの基礎培地に添加して調製したものが挙げられる。
 維持培養の際の培地は、アスコルビン酸を含まないことは好ましい。
 維持培養の培養条件は、37℃、5%CO、10%O条件下などが好ましいが、特に限定されない。
[第二工程について]
 本発明における第二工程は、第一工程で得られた細胞を、未分化状態を維持しながら処理して、特定の分化細胞に分化する能力が相対的に高い細胞を得る工程である。以下、第二工程と称する場合には、本発明の第二の態様における「未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程」を包含するものとする。
 「特定の分化細胞に分化する能力が相対的に高い細胞」における「特定の分化細胞」とは、内胚葉、中胚葉および外胚葉の何れかに属する、任意の特定の分化した細胞を意味する。「特定の分化細胞に分化する能力が相対的に高い」とは、本発明における第一工程において得られる、「特定の分化細胞に分化する能力が相対的に低い細胞」と比較して、特定の分化細胞に分化する能力が高いことを意味する。
 第二工程における「未分化状態を維持しながら処理する」とは、第一工程で得られた細胞を、未分化状態を維持できる培地において、特定の分化細胞に分化する能力が相対的に高い細胞が得られる条件下において培養することを意味する。
 第二工程は、第一工程で得られた細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程であることが好ましい。即ち、第二工程は、第一工程で得られた細胞を、ヒストン脱アセチル化酵素阻害剤を含む培地で培養することを含む工程であることが好ましい。
 第二工程は、第一工程で得られた細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤および塩基性線維芽細胞増殖因子で処理する工程であることがより好ましい。
 第二工程(または、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程)における培地は、アスコルビン酸を含まないことが好ましい。
 ヒストン脱アセチル化酵素阻害剤としては、バルプロ酸又はその塩(バルプロ酸ナトリウムなど)、酪酸またはその塩(酪酸ナトリウムなど)、トリコスタチンA、およびアピシジンなどを使用することができるが、特に限定されない。
 培地におけるヒストン脱アセチル化酵素阻害剤の濃度は、ヒストン脱アセチル化酵素阻害剤の種類などに応じて適宜設定することができる。例えば、バルプロ酸の場合には、好ましくは0.1mmol/L~10mmol/Lであり、より好ましくは0.2mmol/L~5mmol/Lであり、さらに好ましくは0.5mmol/L~2mmol/Lである。
 第一工程で得られた細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程において使用する培地を調製するために使用する基礎培地としては、DMEM(Dulbecco Modified Eagle medium)、DMEMとF12の混合培地(DMEM/F12=1:1)、KnockoutTM D-MEM(Invitrogen社)などが挙げられる。第二工程で使用する培地としては、Neurobasal(登録商標)(Thermo Fisher Scientific社)、B27(登録商標)(Thermo Fisher Scientific社)、N2(Thermo Fisher Scientific社)、1-チオグリセロール、およびGlutaMAX(登録商標)(Thermo Fisher Scientific社)またはL-Glutamin (Thermo Fisher Scientific社)などの添加成分を任意に組み合わせて(好ましは上記の添加成分の全てを)、上記の基礎培地に添加し、さらに、LIF、およびMEK阻害剤を添加した培地であることが好ましい。
 MEK阻害剤としては、特に限定されないが、例えば、PD0325901(N-[(2R)-2,3-ジヒドロキシプロポキシ]-3,4-ジフルオロ-2-[(2-フルオロ-4-ヨードフェニル)アミノ]-ベンズアミド;CAS登録番号:391210-10-9)、U0126(1,4-ジアミノ-2,3-ジシアノ-1,4-ビス[2-アミノフェニルチオ]ブタジエン;CAS登録番号:109511-58-2)、PD98059(2-(2-アミノ-3-メトキシフェニル)-4H-1-ベンゾピラン-4-オン;CAS登録番号:167869-21-8)、PD184352(2-(2-クロロ-4-ヨードフェニルアミノ)-N-シクロプロピルメトキシ-3,4-ジフルオロベンズアミド;CAS登録番号:212631-79-3が挙げられる。なかでも、PD0325901が好ましい。
 第二工程は、第一工程で得られた細胞を、ヒストン脱アセチル化酵素阻害剤を含む培地で培養した後に、ヒストン脱アセチル化酵素阻害剤を含まない培地で培養することを含んでいてもよい。ヒストン脱アセチル化酵素阻害剤を含まない培地としては、Neurobasal(登録商標)(Thermo Fisher Scientific社)、B27(登録商標)(Thermo Fisher Scientific社)、N2(Thermo Fisher Scientific社)、1-チオグリセロール、およびGlutaMAX(登録商標)(Thermo Fisher Scientific社)またはL-Glutamin (Thermo Fisher Scientific社)などの添加成分を任意に組み合わせて(好ましくは上記の添加成分の全てを)、上記の基礎培地に添加し、さらに、LIF、MEK阻害剤(具体例は上記の通り)、PKC阻害剤、GSK3-β阻害剤、およびWntシグナル阻害剤を添加した培地を使用することができる。
 好ましくは、第二工程(または、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程)は、細胞を、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、および白血病阻止因子を含む培地で培養した後に、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、およびWntシグナル阻害剤、および白血病阻止因子を含む培地で培養する工程を含む。
 PKC阻害剤としては、特に限定されないが、例えば、Go6983(3-[1-[3-(ジメチルアミノ)プロピル]-5-メトキシ-1H-インドール-3-イル]-4-(1H-インドール-3-イル)-1H-ピロール-2,5-ジオン;CAS登録番号:133053-19-7)、GF109203X(3-(1-(3-ジメチルアミノ)プロピル)-1H-インドール-3-イル)-4-(1H-インドール-3-イル)-1H-ピロール-2,5-ジオン;CAS登録番号:133052-90-1)が挙げられる。なかでも、Go6983が好ましい。
 GSK3-β阻害剤としては、特に限定されないが、CHIR99021(CAS登録番号:252927-06-9)が好ましい。
 Wntシグナル阻害剤としては、特に限定されないが、XAV939(tankyrase阻害剤)(CAS登録番号:284028-89-3)、IWP-1、IWP-2、IWP-3、IWP-4、IWR-1、53AH(以上porcupine阻害剤)、KY02111などの低分子化合物およびそれらの誘導体や、IGFBP4、DKK1、Wnt-C59などのタンパク質が挙げられる。なかでも、XAV939が好ましい。
 LIFの培地中の濃度は特に限定されないが、例えば、0.1ng/mL~100ng/mLであり、好ましくは0.2ng/mL~10ng/mLである。
 MEK阻害剤の培地中の濃度は特に限定されないが、例えば、50nmol/L~100μmol/Lであり、好ましくは100nmol/L~10μmol/Lであり、より好ましくは200nmol/L~5μmol/Lであり、さらに好ましくは500nmol/L~2μmol/Lであり、特に好ましくは800nmol/L~1.2μmol/Lである。
 PKC阻害剤の培地中の濃度は特に限定されないが、例えば、50nmol/L~100μmol/Lであり、好ましくは100nmol/L~10μmol/Lである。
 GSK3-β阻害剤の培地中の濃度は特に限定されないが、好ましくは0nmon/L~0.3nmol/Lである。
 Wntシグナル阻害剤の培地中の濃度は特に限定されないが、例えば、50nmol/L~100μmol/Lであり、好ましくは100nmol/L~10μmol/Lである。
 第二工程における培養条件は、当業者には自明であり、一例としては、37℃、5%CO条件下を挙げることができる、低酸素(5%O)の条件下で培養することが好ましい。
 第二工程における培養期間は特に限定されないが、例えば、1日~14日、好ましくは2日~14日培養することができる。
 ナイーブ化効率をみる指標として、特異的な細胞表面マーカーであるCD75(ST6GAL1)が一般的に知られている。従って、第二工程の処理が完了したことは、細胞表面マーカーCD75の陽性率で評価することができる。第二工程の処理を行った細胞を培養容器から回収し、蛍光標識抗CD75抗体(例えば、Alexa Fluor 647 Mouse Anti-Human CD75抗体)で染色し、フローサイトメトリーによりCD75の陽性率を解析することができる。CD75の陽性率は、例えば、20%以上、30%以上、40%以上、50%以上、60%以上、または70%以上であればよい。
 また、第二工程の処理後に得られる細胞は、DNA変異の発生率が低いことが好ましい。DNA変異の発生率が低いことは、例えば、20番染色体長腕領域のコピー数を、常法(例えば、リアルタイムPCRなど)により測定することにより評価することができる。第二工程の処理後に得られる細胞における20番染色体長腕領域のコピー数は、好ましくは1.5~4.5であり、より好ましくは1.5~3.5であり、さらに好ましくは1.5~2.5である。
 第一工程で得られる細胞、および第二工程で得られる細胞の未分化性は、特に限定されないが、未分化性を定義する遺伝子の発現を測定することにより評価することができる。未分化性を定義する遺伝子の発現の測定方法は特に限定されないが、例えば、定量的RT-PCRにより測定を行うことができる。RT-PCRは、測定対象となるmRNAを鋳型としてcDNAを合成し、このcDNAを鋳型としてPCRにより増幅する方法である。定量的RT-PCRとしては、例えば、クエンチャー蛍光色素とレポーター蛍光色素が結合されたプライマーを用いてPCRを行って各サイクル毎に増幅産物量を定量し、検出される蛍光強度が急激に増大するサイクル数から、試料中の鋳型DNA量を測定する方法(リアルタイムPCR)等を挙げることができる。定量的RT-PCRの手法は本技術分野において周知であり、市販のキットを使用して実施することもできる。定量的RT-PCRによれば、遺伝子の発現量またはコピー数を、対照となるハウスキーピング遺伝子(例えば、GAPDH遺伝子)の発現量またはコピー数に対する相対値として測定することができる。なお、遺伝子のmRNAの測定は、通常のRT-PCRなどによりmRNAの増幅を行うことにより得た増幅産物をゲル電気泳動にかけ、染色後、バンド強度を測定することによっても行うことができる。あるいは、DNAチップを用いて遺伝子のmRNA又はcDNAを検出又は定量することもできる。
 未分化性を定義する遺伝子としては、特に限定されないが、NANOG、POU5F1、LIN28、SOX2、DNMT3B、STELLAおよびKLF17などを挙げることができる。
 好ましくは、第二工程で得られる細胞におけるSTELLAの発現量は、第一工程で得られる細胞におけるSTELLAの発現量よりも高い。
 好ましくは、第二工程で得られる細胞におけるKLF17の発現量は、第一工程で得られる細胞におけるKLF17の発現量よりも高い。
 好ましくは、第二工程で得られる細胞におけるSOX2の発現量は、第一工程で得られる細胞におけるSOX2の発現量よりも高い。
 第二工程で得られる細胞におけるSTELLAの発現コピー数は、GAPDHの発現コピー数に対する比率として、好ましくは0.001以上であり、より好ましくは0.002以上であり、さらに好ましくは0.003以上であり、特に好ましくは0.004以上である。
 第二工程で得られる細胞におけるKLF17の発現コピー数は、GAPDHの発現コピー数に対する比率として、好ましくは5.0×10-5以上であり、より好ましくは1.0×10-4以上であり、さらに好ましくは1.1×10-4以上であり、特に好ましくは1.2×10-4以上である。
 好ましくは、第二工程で得られる細胞におけるSOX2の発現コピー数は、GAPDHの発現コピー数に対する比率として、好ましくは5.0×10-5以上であり、より好ましくは6.0×10-5以上であり、さらに好ましくは7.0×10-5以上であり、特に好ましくは8.0×10-5以上である。
 第二工程で得られる細胞が有する、内胚葉、中胚葉および外胚葉の何れか一つ以上に分化する能力は、第一工程で得られる細胞が有する、内胚葉、中胚葉および外胚葉の何れか一つ以上に分化する能力よりも向上している。
 より好ましくは、第二工程で得られる細胞が有する内胚葉および外胚葉に分化する能力は、第一工程で得られる細胞が有する内胚葉および外胚葉に分化する能力よりもそれぞれ向上しているか、または第二工程で得られる細胞が有する内胚葉および中胚葉に分化する能力は、第一工程で得られる細胞が有する内胚葉および中胚葉に分化する能力よりもそれぞれ向上している。
 さらに好ましくは、第二工程で得られる細胞は、内胚葉、中胚葉および外胚葉の全てに分化することができる細胞である。
 本発明における特定の分化細胞は、好ましくは、中胚葉細胞または外胚葉細胞であり、より好ましくは、血球細胞、心筋細胞または神経細胞である。
 また、本発明における三胚葉分化能の向上とは、内胚葉、中胚葉および外胚葉の何れか一つ以上への分化能が向上していればよいが、好ましくは、中胚葉および外胚葉のうちの一以上への分化能の向上であり、より好ましくは、中胚葉および外胚葉への分化能の向上である。
  本発明において、細胞が有する内胚葉に分化する能力、細胞が有する中胚葉に分化する能力、および細胞が有する外胚葉に分化する能力は、細胞を内胚葉、中胚葉または外胚葉に分化させ、上記の三胚葉系譜に分化させた細胞における各胚葉特異的遺伝子の発現を測定することにより評価することができる。
 各胚葉特異的遺伝子の発現の測定方法は特に限定されないが、例えば、定量的RT-PCR法により測定を行うことができる。
 内胚葉特異的遺伝子としては、特に限定されないが、SOX17およびFOXA2などを挙げることができる。
 中胚葉特異的遺伝子としては、特に限定されないが、TおよびPDGFRAなどを挙げることができる。
 外胚葉特異的遺伝子としては、特に限定されないが、PAX6およびMAP2などを挙げることができる。
 第二工程で得られる細胞が有する、内胚葉に分化する能力が、第一工程で得られる細胞が有する内胚葉に分化する能力よりも向上している場合としては、第一工程で得られた細胞を内胚葉に分化させた細胞におけるSOX17の発現量に対する、第二工程で得られた細胞を内胚葉に分化させた細胞におけるSOX17の相対発現量が、好ましくは2以上であり、より好ましくは4以上、6以上、8以上、10以上、12以上、または15以上である場合を挙げることができる。
 第二工程で得られる細胞が有する、内胚葉に分化する能力が、第一工程で得られる細胞が有する内胚葉に分化する能力よりも向上している場合としては、第一工程で得られた細胞を内胚葉に分化させた細胞におけるFOXA2の発現量に対する、第二工程で得られた細胞を内胚葉に分化させた細胞におけるFOXA2の相対発現量が、好ましくは3以上であり、より好ましくは5以上、10以上、15以上、18以上、20以上、または22以上である場合を挙げることができる。
 第二工程で得られる細胞が有する、中胚葉に分化する能力が、第一工程で得られる細胞が有する中胚葉に分化する能力よりも向上している場合としては、第一工程で得られた細胞を中胚葉に分化させた細胞におけるTの発現量に対する、第二工程で得られた細胞を内胚葉に分化させた細胞におけるTの相対発現量が、好ましくは2以上であり、より好ましくは3以上、5以上、8以上、9以上、または10以上である場合を挙げることができる。
 第二工程で得られる細胞が有する、中胚葉に分化する能力が、第一工程で得られる細胞が有する中胚葉に分化する能力よりも向上している場合としては、第一工程で得られた細胞を中胚葉に分化させた細胞におけるPDGFRAの発現量に対する、第二工程で得られた細胞を内胚葉に分化させた細胞におけるPDGFRAの相対発現量が、好ましくは1.1以上であり、より好ましくは1.2以上、1.3以上または1.4以上である場合を挙げることができる。
 第二工程で得られる細胞が有する、外胚葉に分化する能力が、第一工程で得られる細胞が有する外胚葉に分化する能力よりも向上している場合としては、第一工程で得られた細胞を外胚葉に分化させた細胞におけるPAX6の発現量に対する、第二工程で得られた細胞を外胚葉に分化させた細胞におけるPAX6の相対発現量が、好ましくは1.1以上であり、より好ましくは1.2以上、1.3以上、1.4以上または1.5以上である場合を挙げることができる。
 第二工程で得られる細胞が有する、外胚葉に分化する能力が、第一工程で得られる細胞が有する外胚葉に分化する能力よりも向上している場合としては、第一工程で得られた細胞を外胚葉に分化させた細胞におけるMAP2の発現量に対する、第二工程で得られた細胞を外胚葉に分化させた細胞におけるMAP2の相対発現量が、好ましくは1.1以上であり、より好ましくは1.2以上、または1.3以上である場合を挙げることができる。
[第三工程について]
 本発明による細胞の製造方法は、第二工程で得られた細胞を分化させる第三工程をさらに含んでいてもよい。但し、本発明による細胞の製造方法は、上記した第三工程を含んでいなくてもよい。
 本発明において、第二工程で得られた細胞を分化誘導することにより得られる細胞の種類は、特に限定されない。所望により、内胚葉系細胞、中胚葉系細胞、または外胚葉系細胞に分化誘導することができる。
 第二工程で得られた細胞を分化誘導する方法は、特に限定されない。例えば、市販のStemDiff(登録商標)Trilineage Differentiation Kit(Stemcell Technologies)を用いて、内胚葉、中胚葉および外胚葉のそれぞれに分化誘導することができる。
 また、血液細胞への分化誘導は、後記する実施例2に記載の条件で細胞を培養することにより行うことができる。具体的には、1日目は、BMP4およびY27634(ROCK阻害剤)を含む培地で培養し、2日目にbFGFおよびBMP4を添加し、3日目に細胞がスフェロイド状のコロニーを形成していることを確認して、SB431542(TGF-β受容体阻害剤)、CHIR99021(GSK3阻害剤)、bFGFおよびBMP4を含む培地で培養し(3日目および4日目)、5日目~6日目は、VEGFおよびbFGFを含む培地で培養し、7日目~10日目はVEGF、bFGF、IL-6、IGF-1、IL-11およびSCFを含む培地で培養することにより、血液細胞に分化誘導することができる。なお、血液細胞への分化誘導は、血液細胞のマーカーであるCD34とKDRの発現をフローサイトメーターにて解析することにより確認することができる。
 心筋細胞への分化誘導は、例えば、後記する実施例5に記載の条件で細胞を培養することにより行うことができる。具体的には、細胞を、PSC Cardiomyocyte Differentiation Kit(ThermoFisher Scientific)を用いて手順書に従い、心筋細胞に分化誘導することができる。心筋細胞への分化導は、心筋細胞マーカーであるCardiac Troponin T(cTnT)の発現をフローサイトメトリーで測定することにより確認することができる。後記する実施例5の手順に準じて、分化誘導後14日目の細胞について、Alexa Fluor647 Mouse Anti-Cardiac Troponin T抗体(BD Pharmingen)にて細胞内を染色し、フローサイトメトリーAttune NxT(ThermoFisher Scientific)にてcTnTの陽性率を解析すればよい。上記方法で解析したcTnTの陽性率は、好ましくは5%以上であり、より好ましくは10%以上であり、さらに好ましくは20%以上であり、さらに一層好ましくは30%以上であり、特に好ましくは40%以上であり、最も好ましくは45%以上である。本発明の処理(即ち、細胞を、未分化状態を維持しながら処理して、特定の分化細胞に分化する能力が相対的に高い細胞を得る第二工程)を行うことにより、上記の処理を行わない場合と比べて、cTnTの陽性率が1.1~100倍上昇することが好ましく、1.2~100倍上昇することがさらに好ましく、2~50倍上昇することが最も好ましい。
 神経幹細胞への分化誘導は、例えば、後記する実施例6に記載の条件で細胞を培養することにより行うことができる。具体的には、細胞をPSC Neural Induction Medium(Thermo Fisher Sciecntific)を用いて手順書に従い、神経幹細胞に分化誘導することができる。神経幹細胞への分化誘導は、例えば、神経幹細胞のMarkerであるSOX1蛋白質を免疫染色することにより確認することができる。SOX1蛋白質を免疫染色して輝度を定量化した場合、本発明の処理(即ち、細胞を、未分化状態を維持しながら処理して、特定の分化細胞に分化する能力が相対的に高い細胞を得る第二工程)を行うことにより、上記の処理を行わない場合と比べて、輝度が1.1~10倍上昇することが好ましく、1.5~5倍上昇することがさらに好ましい。
 第二工程で得られた細胞は、内胚葉系細胞分化条件にて培養することにより、内胚葉系細胞へ分化することができる。内胚葉系細胞としては、特に限定されないが、例えば、消化器系細胞(肝細胞、胆管細胞、膵内分泌細胞、腺房細胞、導管細胞、吸収細胞、杯細胞、パネート細胞、腸内分泌細胞等)、肺、甲状腺等の組織の細胞が挙げられる。
 第二工程で得られた細胞は、上記以外の中胚葉系細胞分化条件にて培養することにより、中胚葉系細胞へ分化することができる。中胚葉系細胞としては、特に限定されないが、血球・リンパ球系細胞(造血幹細胞、赤血球、血小板、マクロファージ、顆粒球、ヘルパーT細胞、キラーT細胞、Bリンパ球等)、脈管系細胞(血管内皮細胞等)、心筋細胞(例えば心房筋細胞、心室筋細胞等)、骨芽細胞、骨細胞,軟骨細胞,腱細胞,脂肪細胞、骨格筋細胞、平滑筋細胞等が挙げられる。
 第二工程で得られた細胞は、上記以外の外胚葉系細胞分化条件にて培養することにより、外胚葉系細胞へ分化することができる。外胚葉系細胞としては、特に限定されないが、神経系細胞、感覚器細胞(水晶体、網膜、内耳など)、皮膚表皮細胞、毛包などが挙げられる。
 本発明において、第二工程で得られた細胞を用いて分化誘導した細胞は、各種疾患の治療用医薬品候補化合物のスクリーニングに用いることができる。例えば、単独でまたは他の薬剤と組み合わせて、医薬品候補化合物を、分化誘導した細胞に添加することによって、細胞の形態または機能的な変化、各種因子の増減、遺伝子発現プロファイリング等を検出することにより、評価を行うことができる。ここで、細胞は、治療対象となる疾患と同様の表現型を有する細胞が好ましく、より好ましくは、疾患に罹患した患者に由来する体細胞を用いて本発明の方法により製造した細胞から分化誘導した細胞である。
 本発明において、第二工程で得られた細胞を用いて分化誘導した細胞から組織を作製して、再生医療の分野で使用することができる。作製した組織の患者への移植方法としては、当業者であれば自明である。
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
実施例1
 ヒトiPS細胞の三胚葉分化能を改善および向上させるために以下の実験を行った。
[方法]
<細胞>
 ヒトiPS細胞株について、253G1株および201B7株はiPSポータル株式会社より購入した(Takahashi K,et al.Cell.2007,Nakagawa M,et al.Nat Miotechnol.2008)。A株はCellular Dynamics International(CDI)より分譲を受けた。
<細胞培養および化合物処理>
 ヒトiPS細胞は、Matrigel(マトリゲル)(登録商標)(Corning)をコートした6ウェルプレート上でStemFlex(登録商標)(Thermo Fisher Scientific)培地にて37℃、5%CO、10%O条件下で維持培養した。ここで得られた細胞は、プライム型多能性幹細胞であり、特定の分化細胞に分化する能力が相対的に低い細胞である。
0日目:分化能改善効果を検討するために、培養中のヒトiPS細胞をTrpLETM Select(Invitrogen)で37℃、5分処理により剥離し、シングルセル化した。マウス胎仔由来線維芽細胞(MEF、Lonza)を0.5x10cells/well(6well plate)で播種済またはマトリゲルコート済のウェルに、ヒトiPS細胞を、mTeSR(登録商標)1(Stemcell Technologies)またはStemFlex(登録商標)にY-27684(10μmol/L、Wako)を添加した培地で1x10cells/well播種した。以降9日目まで37℃、5%CO、5%O条件下で培養した。
1日目:表1の培地1に培地を交換した。
2~3日目:新たな培地1に半量交換した。
4~8日目:表1の培地2に培地を交換し、8日目まで1日おきに同培地に交換した。
9日目:TrypLETM Selectで37℃で5分処理して細胞を剥離し、培地2にY-27684(10μmol/L、Wako)を添加した培地でMEFを播種済またはマトリゲル(登録商標)コートしたプレートに継代した。以降、培地2により細胞を維持培養した。
Figure JPOXMLDOC01-appb-T000001
<三胚葉分化>
 三胚葉への分化能を検討するために、上記の処理を施した細胞をマトリゲルコート済プレート上でStemFlex(登録商標)にて必要細胞数に増殖するまで4~7日間培養した。三胚葉分化には、未処理あるいは上記の処理を施したヒトiPS細胞をStemDiff(登録商標)Trilineage Differentiation Kit(Stemcell Technologies)を用いて手順書に従い分化させた。
1日目:TrypLETMSelect(Thermo Fisher Sciecntific)を用いて37℃で5分処理して細胞を剥離した。マトリゲルコートした24ウェルプレートに表2の培地を0.5mL/well入れ、iPS細胞を播種し、37℃、5%CO、10%O条件下で培養した。
2日目:新たなStemDiff(登録商標)Trilineage Differentiation Kitの各分化用培地に培地交換した。以降、内胚葉および中胚葉は5日目まで、外胚葉は7日目まで同操作を毎日繰り返した。
Figure JPOXMLDOC01-appb-T000002
<定量的RT-PCRによる未分化性および三胚葉分化能の評価>
 iPS細胞および三胚葉系譜に分化させた細胞からRNeasy(登録商標)Mini Kit(QIAGEN)を用いてtotal RNAを抽出し、High-Capacity RNA-to-cDNATM Kit(Applied Biosystems)を用いて逆転写反応を行いcDNAを合成した。合成したcDNAに、表3に示す未分化性の指標となる遺伝子または各胚葉に特異的な遺伝子のTaqMan(登録商標)gene expression assay(Applied Biosystems)とTaqMan(登録商標)Fast Advanced Master Mix(Applied Biosystems)を添加し、Viia7TM(Applied Biosystems)によりPCR反応を行った。表3のProbe primer setに示すものは、Thermo Fisher社のTaqman(登録商標)Gene expression assayにてある遺伝子のPCRを行うためのProbe primer setのコード名である。
Figure JPOXMLDOC01-appb-T000003
[結果]
 未処理および上記処理を施したヒトiPS細胞株(253G1株)における未分化性を定義する遺伝子の発現を定量的RT-PCRにて測定した結果を図1に示す。
 図1に示す通り、NANOG、POU5F1、LIN28、DNMT3Bの発現は未処理と処理後の細胞とで有意な変化はなかった。一方、図1から分かる通り、SOX2およびナイーブES/iPS細胞に特異的に発現するSTELLAおよびKLF17の発現は処理後iPS細胞において有意に上昇していた。
 三胚葉系譜に分化させた細胞(253G1株)における各胚葉特異的遺伝子発現を定量的RT-PCRにて測定した結果を図2に示す。
 図2に示す通り、未処理の細胞と比較して処理を施した細胞では内胚葉特異的遺伝子(SOX17およびFOXA2)および外胚葉特異的遺伝子(PAX6およびMAP2)の発現が顕著に上昇した。
 三胚葉系譜に分化させた別のiPS細胞株(201B7株およびA株)における各胚葉特異的遺伝子発現を定量的RT-PCRにて測定した結果を図3に示す。
 図3に示す通り、別のiPS細胞株(201B7およびA)において、未処理の細胞と比較して処理を施した細胞では、内胚葉特異的遺伝子(SOX17およびFOXA2)および中胚葉特異的遺伝子(TおよびPDGFRA)の発現が有意に上昇した。
 上記の結果から、iPS細胞に上記処理を施すことにより三胚葉分化能が改善したことが示唆された。今回、評価検討を行ったiPS細胞株は、従来の培養法では一部分化能が低下していたが、上記処理を施すことで低下した分化能を改善させることが明らかになった。
実施例2
 実施例1で行った処理が中胚葉系譜の1種である血液細胞への分化能に及ぼす影響を検証した。
[方法]
<細胞>
 使用したiPS細胞B株はCDIより分譲を受けた。
<細胞培養および化合物処理>
 実施例1と同様に行った。
<血液細胞への分化>
 1日目:TrypLETMSelectを用いて37℃で5分処理して細胞を剥離した。表4のDay1培地に懸濁し、スフェロイド形成用のEZSPHERE(登録商標)(AGC)6ウェルプレートの1ウェルへiPS細胞を2x10cells播種した。以降細胞は、37℃、5%CO、5%O条件下で培養した。
2日目:bFGF(5ng/mL)とBMP4(10ng/mL)を添加した。
3日目:細胞がスフェロイド状のコロニーを形成していることを確認し、Day3培地に培地交換した。
5日目:Day5培地に培地交換した。
7日目~:Day7培地に交換し、以降8~10日目まで1日おきにDay7培地に交換した。
Figure JPOXMLDOC01-appb-T000004
<フローサイトメトリーによる血液細胞の検出>
 スフェロイド状の細胞を回収し、TrypLETMSelectを用いて37℃、5分の処理で細胞をシングルセル化した。細胞をPhycoerythrin(PE)-Cy7anti-human CD34(BioLegend)(Cyは登録商標)およびPEanti-humanCD309(KDR)(BioLegend)にて染色し、フローサイトメーター(Attune(登録商標)Nxt;Thermo Fisher Scientific、FACSAria(登録商標)III;BD Bioscience)にて解析した。
[結果]
 未処理および処理後のiPS細胞B株をそれぞれ血液細胞に分化させ、血液細胞のマーカーであるCD34とKDRの発現細胞の割合をフローサイトメーターにて解析した結果を図4に示す。図4に示す通り、未処理と比較して処理済のiPS細胞から分化させた方が、CD34およびKDR陽性細胞の割合が約17.7倍増加した。
実施例3
 三胚葉分化能改善処理におけるValproic acid(VPA)およびbFGFの必要性を検証するために、以下の実験を行った。
[方法]
<細胞>
 使用したヒトiPS細胞253G1株はiPSポータル株式会社から購入した。
<細胞培養および化合物処理>
 ヒトiPS細胞はマトリゲルをコートした6ウェルプレート上でStemFlex(登録商標)培地にて37℃、5%CO、10%O条件下で維持した。
0日目:分化能改善効果を検討するために、培養中のヒトiPS細胞をTlypLETMSelectで37℃で5分処理することにより剥離し、シングルセル化した。マトリゲル(登録商標)コート済の6ウェルプレート中1ウェルにヒトiPS細胞をStemFlex(登録商標)にY-27684(10μmol/L、Wako)を添加した培地で1x10cells/well播種した。以降9日目まで37℃、5%CO、5%O条件下で培養した。
1日目:表5の培地1に培地を交換した。
2~3日目:新たな培地1に半量交換した。
4~8日目:表5の培地2に培地を交換し、8日目まで1日おきに同培地に交換した。
9日目:全条件の細胞をStemFlex(登録商標)に培地交換し、約4日間培養した。
Figure JPOXMLDOC01-appb-T000005
<三胚葉分化>
 実施例1と同様に行った。
<定量的RT-PCRによる三胚葉分化能の評価>
 実施例1と同様に行った。
[結果]
 定量的RT-PCRによる三胚葉分化能の評価の結果を図5に示す。
 253G1株の内胚葉分化について、条件(1)Valproic acid(VPA)+阻害剤(PD0325901、Go6983およびXAV939)処理により内胚葉特異的遺伝子(SOX17およびFOXA2)の発現が有意に上昇した。これらの遺伝子発現の上昇は、条件(1)にbFGFを添加した場合(条件(2))およびVPAを除去した場合(条件(3))では認められなかったことから、内胚葉分化の向上にはVPAの添加およびbFGFの除去が必要であることが示唆された。
 次に、中胚葉分化について、条件(1)VPA+阻害剤および条件(2)VPA+阻害剤+bFGFの処理により中胚葉特異的遺伝子(TおよびPDGFRA)の発現が顕著に上昇した。一方、条件(3)のVPAを除去した場合には遺伝子発現は低下したことから、中胚葉分化の向上にはVPAの添加が必要であることが示唆された。
 外胚葉分化については、条件(1)VPA+阻害剤処理では外胚葉特異的遺伝子(PAX6およびMAP2)の発現上昇は認められなかった一方、条件(2)VPA+阻害剤+bFGFおよび(3)阻害剤のみで顕著な発現上昇が認められた。従って、VPA処理したiPS細胞を外胚葉に分化させるには、bFGFの添加が必要であることが示唆された。
 図5の結果のまとめを図6に示す。
 上記の結果から、ヒトiPS細胞を、VPA処理かつbFGFを除去することにより内胚葉分化能が向上し、VPAおよびbFGFで処理すると外胚葉分化能が向上し、中胚葉分化能はどちらの処理によっても向上することが示された。
実施例4
 ヒトiPS細胞におけるMEK阻害剤PD0325901の濃度の違いが処理効果に及ぼす影響を検証した。
[方法]
<細胞>
 ヒトiPS細胞株について、253G1株、201B7株は京都大学iPS研究所(CiRA)より提供された(Takahashi K, et al. Cell. 2007,Nakagawa M,et al.Nat Biotechnol.2008)。C株とD株はCellular Dynamics International (CDI)より提供された。
<細胞培養および化合物処理>
 実施例1と同様であるが、PD0325901について0.3~1.0μmol/Lの濃度条件にて処理し9日目以降約2週間継代培養を行った。
<フローサイトメトリーによる処理効率の評価法>
 実施例1の処理が完了したことを細胞表面マーカーCD75の陽性率で評価した。培養したヒトiPS細胞をTrypLE Selectにて剥離し、Alexa Fluor 647 Mouse Anti-Human CD75抗体で染色した。フローサイトメトリーAttune NxTでCD75の陽性率を解析した。
<染色体の特定領域のコピー数評価>
 iPS細胞に添加するPD0325901の濃度の違いがDNA変異発生率に及ぼす影響を確認するためにヒト多能性幹細胞でDNA変異が起こりやすい領域のコピー数をリアルタイムPCR法にて評価した。iPS細胞からPureLink Genomic DNA Mini Kit(Thermo Fisher Scientific)を用いてゲノムDNAを抽出した。抽出したDNAをhPSC Genetic Analysis Kit(STEMCELL Technologies)を用い、ViiA7(Thermo Fisher Scientific)にてリアルタイムPCRを行い染色体領域のコピー数を算出した。
[結果]
 フローサイトメトリーによる処理効率の評価の結果を図7に示す。PD0325901の濃度を0.3~1.0μmol/Lで3株のヒトiPS細胞を処理した結果、3株ともPD0325901の濃度依存的に処理が完了したことの指標であるCD75の陽性率が上昇した(図7)。0.3~0.5μmol/Lの範囲ではどの細胞株においてもCD75が陽性にならなかったことから、PD0325901の濃度は0.6~1.0μmol/Lが望ましいことが示された。
 染色体の特定領域のコピー数評価の結果を図8に示す。20番染色体長腕領域のコピー数をリアルタイムPCRにて算出した結果、PD0325901の濃度依存的にコピー数が減少し正常コピー数1.5~2.5に近づいた(図8)。以上の結果から、DNA変異を最小限に抑えるためにはPD0325901を0.8~1.2μmol/Lで添加することが望ましいことが示された。
実施例5
 実施例1で行った処理がヒトiPS細胞の心筋細胞への分化能に及ぼす影響を検証した。
[方法]
<細胞>
 ヒトiPS細胞株について、253G1株は京都大学iPS研究所(CiRA)より提供された(Takahashi K,et al.Cell.2007,Nakagawa M,et al. Nat Miotechnol.2008)。D,E,G,H,I株はCellular Dynamics International(CDI)より提供された。
<細胞培養および化合物処理>
 ヒトiPS細胞に実施例1と同様の処理を行い、培地2にて約2週間継代培養を行った。その後に処理済の細胞をマトリゲルコートしたプレート上に継代し、StemFlexまたはmTeSR1培地で約2週間継代培養を行った。
<心筋細胞への分化>
 未処理または上記処理を行ったヒトiPS細胞をPSC Cardiomyocyte Differentiation Kit(ThermoFisher Scientific)を用いて手順書に従い分化させた。
<評価法>
 心筋細胞への誘導効率は心筋細胞マーカーであるCardiac Troponin T(cTnT)の発現をフローサイトメトリーにて評価した。分化誘導後14日目の細胞をTrypLE Selectにて剥離し、Ghost Dye Violet 510(TONBO Bioscience)にて死細胞を染色した。洗浄後、BD Cytofix Fixation bufferとPerm/Wash buffer(BD Bioscience)にて細胞を固定・透過した。Alexa Fluor647 Mouse Anti-Cardiac Troponin T抗体(BD Pharmingen)にて細胞内を染色し、フローサイトメトリーAttune NxT (ThermoFisher Scientific)にてcTnTの陽性率を解析した。
[結果]
 未処理及び処理後のiPS細胞をそれぞれ心筋細胞に誘導させ、フローサイトメトリーにて生細胞中のcTnT陽性率を比較した結果を図9に示す。未処理細胞では38.2%の陽性率が処理細胞では49.4%であり、1.29倍上昇した(図9)。また、その他5 iPS細胞株においても、同条件下で心筋細胞へ誘導した場合のcTnTの陽性率を測定した結果を図10に示す。5株でcTnTの陽性率が上昇した(図10)。
実施例6
 本発明の方法による神経幹細胞への分化改善効果を検証した。
[方法]
<細胞>
 Cellular Dynamics International(CDI)より分譲を受けた5株(J株,K株,L株,M株,N株)を実施例1の方法により処理して、細胞を入手した。
<神経幹細胞誘導>
 神経幹細胞への分化能を検討するために、上記の処理を施した細胞をGeltrex(Thermo Fisher Sciecntific)コート済プレート上でmTeSR(登録商標)にて必要細胞数に増殖するまで1~2日間培養した。神経幹細胞分化には、未処理あるいは上記の処理を施したヒトiPS細胞をPSC Neural Induction Medium(Thermo Fisher Sciecntific)を用いて手順書に従い分化させた。
<評価>
 誘導七日目にTrypLETMSelectまたはAccutase(Thermo Fisher Sciecntific)を用いて37℃で5分処理して細胞を剥離した。Geltrexした8Wellチャンバープレートに3×10細胞/wellを播種し、37℃、5%CO、10%O条件下で培養した。24時間後、Human Neural Stem Cell Immunocytochemistry Kit(Thermo Fisher Sciecntific)で神経幹細胞のMarkerであるSOX1蛋白質を免疫染色した。観察は蛍光顕微鏡(キーエンス)を用いた。
<画像定量化>
 蛍光顕微鏡画像からランダムに20個細胞の輝度をImageJ(NIH)で定量化した。平均化したものをグラフで示す。
[結果]
 蛍光顕微鏡観察の結果を図11に示し、画像の輝度を定量化した結果を図12に示す。5細胞中5細胞にて処理前後において、SOX1の発現が増強・均一化された。5株において有意に改善することが示された。処理後において、輝度は平均して3倍増強した(図11および12)。

Claims (21)

  1. 体細胞に初期化因子を導入して得られる未分化細胞であって、特定の分化細胞に分化する能力が相対的に低い細胞を得る第一工程;および
    前記細胞を、未分化状態を維持しながら処理して、前記特定の分化細胞に分化する能力が相対的に高い細胞を得る第二工程、
    を含む、細胞の製造方法。
  2. 第二工程で得られる細胞が有する、内胚葉、中胚葉および外胚葉の何れか一つ以上に分化する能力が、第一工程で得られる細胞が有する、内胚葉、中胚葉および外胚葉の何れか一つ以上に分化する能力よりも向上している、請求項1に記載の方法。
  3. 第二工程で得られる細胞が有する内胚葉および外胚葉に分化する能力が、第一工程で得られる細胞が有する内胚葉および外胚葉に分化する能力よりもそれぞれ向上している;または
    第二工程で得られる細胞が有する内胚葉および中胚葉に分化する能力が、第一工程で得られる細胞が有する内胚葉および中胚葉に分化する能力よりもそれぞれ向上している;
    請求項1に記載の方法。
  4. 第二工程で得られる細胞が、内胚葉、中胚葉および外胚葉の全てに分化することができる細胞である、請求項2または3に記載の方法。
  5. 前記特定の分化細胞が、中胚葉細胞または外胚葉細胞である、請求項1に記載の方法。
  6. 前記特定の分化細胞が、血球細胞、心筋細胞または神経細胞である、請求項1に記載の方法。
  7. 第二工程で得られる細胞におけるSTELLAの発現量が、第一工程で得られる細胞におけるSTELLAの発現量よりも高い、請求項1から6の何れか一項に記載の方法。
  8. 第二工程で得られる細胞におけるKLF17の発現量が、第一工程で得られる細胞におけるKLF17の発現量よりも高い、請求項1から7の何れか一項に記載の方法。
  9. 前記第二工程が、前記細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程である、請求項1から8の何れか一項に記載の方法。
  10. 前記第二工程が、前記細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤および塩基性線維芽細胞増殖因子で処理する工程である、請求項9に記載の方法。
  11. 第二工程が、細胞を、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、および白血病阻止因子を含む培地で培養した後に、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、およびWntシグナル阻害剤、および白血病阻止因子を含む培地で培養する工程を含む、請求項9または10に記載の方法。
  12. ヒストン脱アセチル化酵素阻害剤が、バルプロ酸又はその塩である、請求項9から11の何れか一項に記載の方法。
  13. 前記第二工程における培地が、アスコルビン酸を含まない、請求項1から12の何れか一項に記載の方法。
  14. 前記体細胞が、成人由来の体細胞である、請求項1から13の何れか一項に記載の方法。
  15. 第二工程で得られた細胞を分化させる第三工程をさらに含む、請求項1から14の何れか一項に記載の方法。
  16. プライム型多能性幹細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程を含む、プライム型多能性幹細胞と比べて三胚葉分化能が向上している多能性幹細胞を製造する方法。
  17. プライム型多能性幹細胞を、未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程を含む、プライム型多能性幹細胞と比べて特定の分化細胞への分化能が向上している多能性幹細胞を製造する方法。
  18. 特定の分化細胞が、血球細胞、心筋細胞または神経細胞である、請求項17に記載の方法。
  19. 未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程が、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、および白血病阻止因子を含む培地で培養した後に、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、およびWntシグナル阻害剤、および白血病阻止因子を含む培地で培養する工程を含む、請求項16から18の何れか一項に記載の方法。
  20. ヒストン脱アセチル化酵素阻害剤が、バルプロ酸又はその塩である、請求項16から19の何れか一項に記載の方法。
  21. 未分化状態を維持しながらヒストン脱アセチル化酵素阻害剤で処理する工程における培地が、アスコルビン酸を含まない、請求項16から20の何れか一項に記載の方法。
PCT/JP2019/003336 2018-01-31 2019-01-31 細胞の製造方法 WO2019151386A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980011114.7A CN111684063A (zh) 2018-01-31 2019-01-31 细胞的制造方法
EP19748057.7A EP3747996A4 (en) 2018-01-31 2019-01-31 METHOD OF MANUFACTURING CELLS
JP2019569542A JPWO2019151386A1 (ja) 2018-01-31 2019-01-31 細胞の製造方法
US16/944,730 US20200362302A1 (en) 2018-01-31 2020-07-31 Method for producing cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-015008 2018-01-31
JP2018015008 2018-01-31
JP2019014484 2019-01-30
JP2019-014484 2019-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/944,730 Continuation US20200362302A1 (en) 2018-01-31 2020-07-31 Method for producing cell

Publications (1)

Publication Number Publication Date
WO2019151386A1 true WO2019151386A1 (ja) 2019-08-08

Family

ID=67479087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003336 WO2019151386A1 (ja) 2018-01-31 2019-01-31 細胞の製造方法

Country Status (5)

Country Link
US (1) US20200362302A1 (ja)
EP (1) EP3747996A4 (ja)
JP (1) JPWO2019151386A1 (ja)
CN (1) CN111684063A (ja)
WO (1) WO2019151386A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203712A1 (ja) 2019-03-29 2020-10-08 富士フイルム株式会社 特定細胞に分化する能力を有する多能性幹細胞の製造方法およびその応用
WO2021015228A1 (ja) * 2019-07-25 2021-01-28 富士フイルム株式会社 特定の分化細胞の製造方法
CN112626022A (zh) * 2021-01-12 2021-04-09 中国人民解放军海军军医大学 前脑神经干细胞体外诱导及长期培养体系、诱导培养方法及应用
WO2021162090A1 (ja) * 2020-02-12 2021-08-19 株式会社カネカ 多能性幹細胞の分化抑制方法
WO2022124298A1 (ja) 2020-12-07 2022-06-16 株式会社カネカ 多能性幹細胞集団を製造する製造方法
WO2022138964A1 (ja) * 2020-12-25 2022-06-30 国立大学法人京都大学 体細胞からのナイーブ型ヒトiPS細胞製造方法
WO2023017806A1 (ja) * 2021-08-10 2023-02-16 株式会社カネカ 多能性幹細胞の製造方法
WO2024101385A1 (ja) * 2022-11-09 2024-05-16 株式会社カネカ 多能性幹細胞の製造方法及び多能性幹細胞に対する分化誘導方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831461B (zh) * 2021-02-26 2023-08-08 澳门大学 一种诱导干细胞分化成中胚层谱系或滋养细胞谱系的方法及药物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501108A (ja) * 2010-12-22 2014-01-20 フェイト セラピューティクス,インコーポレイテッド 単細胞選別のための細胞培養プラットホームおよびiPSCの再プログラミングの増強
JP2016027808A (ja) 2009-10-16 2016-02-25 ザ スクリプス リサーチ インスティテュート 多能性細胞の誘導法
WO2016027099A2 (en) 2014-08-22 2016-02-25 Cambridge Enterprise Limited Resetting pluripotent stem cells
WO2016148253A1 (ja) 2015-03-18 2016-09-22 小野薬品工業株式会社 ナイーブ型多能性幹細胞の製造方法
JP2016171798A (ja) 2010-03-31 2016-09-29 ザ スクリプス リサーチ インスティテュート 細胞の再プログラム
WO2017170849A1 (ja) * 2016-03-30 2017-10-05 国立研究開発法人医薬基盤・健康・栄養研究所 ナイーブ型多能性幹細胞培養用培地および多能性幹細胞の培養方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312269A1 (en) * 2008-12-17 2018-04-25 The Scripps Research Institute Generation and maintenance of stem cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027808A (ja) 2009-10-16 2016-02-25 ザ スクリプス リサーチ インスティテュート 多能性細胞の誘導法
JP2016171798A (ja) 2010-03-31 2016-09-29 ザ スクリプス リサーチ インスティテュート 細胞の再プログラム
JP2014501108A (ja) * 2010-12-22 2014-01-20 フェイト セラピューティクス,インコーポレイテッド 単細胞選別のための細胞培養プラットホームおよびiPSCの再プログラミングの増強
WO2016027099A2 (en) 2014-08-22 2016-02-25 Cambridge Enterprise Limited Resetting pluripotent stem cells
WO2016148253A1 (ja) 2015-03-18 2016-09-22 小野薬品工業株式会社 ナイーブ型多能性幹細胞の製造方法
WO2017170849A1 (ja) * 2016-03-30 2017-10-05 国立研究開発法人医薬基盤・健康・栄養研究所 ナイーブ型多能性幹細胞培養用培地および多能性幹細胞の培養方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GE GUO; FERDINAND VON MEYENN; MARIA ROSTOVSKAYA; JAMES CLARKE; SABINE DIETMANN; DUNCAN BAKER; ANNA SAHAKYAN; SAMUEL MYERS; PAUL BE: "Epigenetic resetting of human pluripotency", DEVELOPMENT, vol. 144, no. 15, 31 August 2017 (2017-08-31), pages 2748 - 2763, XP055456607, ISSN: 0950-1991, DOI: 10.1242/dev.146811 *
GUO G. ET AL., DEVELOPMENT, vol. 144, no. 15, 1 August 2017 (2017-08-01), pages 2748 - 2763
NAKAGAWA M ET AL., NAT BIOTECHNOL., 2008
NICHOLS ET AL., CELL STEM CELL, vol. 4, no. 6, 2009, pages 487 - 492
See also references of EP3747996A4
TAKAHASHI K ET AL., CELL, 2007
WAKO PURE CHEMICAL INDUSTRIES, LTD.: "[Release of "bFGF Solution, MF" by Wako Pure Chemical Industries, Ltd.]", NEWS RELEASE, 27 June 2016 (2016-06-27), pages 1 - 2, XP009522306, Retrieved from the Internet <URL:http://www.kaken.co.jp/nr/release/nr20160627.pdf> [retrieved on 20190410] *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203712A1 (ja) 2019-03-29 2020-10-08 富士フイルム株式会社 特定細胞に分化する能力を有する多能性幹細胞の製造方法およびその応用
WO2021015228A1 (ja) * 2019-07-25 2021-01-28 富士フイルム株式会社 特定の分化細胞の製造方法
WO2021162090A1 (ja) * 2020-02-12 2021-08-19 株式会社カネカ 多能性幹細胞の分化抑制方法
CN115135755A (zh) * 2020-02-12 2022-09-30 株式会社钟化 多能干细胞分化的抑制方法
WO2022124298A1 (ja) 2020-12-07 2022-06-16 株式会社カネカ 多能性幹細胞集団を製造する製造方法
WO2022138964A1 (ja) * 2020-12-25 2022-06-30 国立大学法人京都大学 体細胞からのナイーブ型ヒトiPS細胞製造方法
CN112626022A (zh) * 2021-01-12 2021-04-09 中国人民解放军海军军医大学 前脑神经干细胞体外诱导及长期培养体系、诱导培养方法及应用
WO2023017806A1 (ja) * 2021-08-10 2023-02-16 株式会社カネカ 多能性幹細胞の製造方法
WO2024101385A1 (ja) * 2022-11-09 2024-05-16 株式会社カネカ 多能性幹細胞の製造方法及び多能性幹細胞に対する分化誘導方法

Also Published As

Publication number Publication date
EP3747996A1 (en) 2020-12-09
EP3747996A4 (en) 2021-03-17
CN111684063A (zh) 2020-09-18
JPWO2019151386A1 (ja) 2021-01-07
US20200362302A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2019151386A1 (ja) 細胞の製造方法
JP7356658B2 (ja) ドーパミン産生神経前駆細胞の製造方法
JP7016088B2 (ja) 網膜色素上皮細胞の製造方法
KR102500914B1 (ko) 신경 조직의 제조 방법
JP6979946B2 (ja) ヒト内耳感覚上皮および感覚ニューロンを生成する方法
JP5761816B2 (ja) 多能性幹細胞から神経前駆細胞への分化誘導法
JP5936134B2 (ja) ヒト人工多能性幹細胞の選択方法
EP3348631B1 (en) Method for producing retinal tissue
EP3064577A1 (en) Novel chondrocyte induction method
EP3613848A1 (en) Method for producing dopaminergic neurons
WO2020022261A1 (ja) 新規腎前駆細胞マーカーおよびそれを利用した腎前駆細胞の濃縮方法
WO2019103125A1 (ja) 神経系細胞又は神経組織と非神経上皮組織とを含む細胞塊の製造方法及びその細胞塊
JP7094567B2 (ja) 神経堤細胞および交感神経細胞の製造方法
EP3950933A1 (en) Cell population including pluripotent stem cells and production method thereof
JP2018183137A (ja) 多能性幹細胞から樹状分岐した集合管を伴う腎臓構造を作製する方法
WO2021015228A1 (ja) 特定の分化細胞の製造方法
JP7273141B2 (ja) 特定細胞に分化する能力を有する多能性幹細胞の製造方法およびその応用
EP3882342A1 (en) Method for producing brain organoids
WO2021020267A1 (ja) ナイーブ型多能性幹細胞の増殖能亢進用培地および多能性幹細胞の製造方法
US20220396765A1 (en) Method for producing pluripotent stem cell capable of differentiating into specific cell and application thereof
JP7306667B2 (ja) 分化促進型多能性幹細胞及びその使用
WO2015178496A1 (ja) 肺前駆細胞の作製方法
JP2021019528A (ja) ナイーブ型多能性幹細胞の増殖能亢進用培地および多能性幹細胞の製造方法
WO2020130147A1 (ja) ルブリシン局在軟骨様組織、その製造方法及びそれを含む関節軟骨損傷治療用組成物
WO2020095423A1 (ja) 多能性幹細胞から樹状分岐した集合管を伴う腎臓構造を作製する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569542

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019748057

Country of ref document: EP

Effective date: 20200831