WO2019150868A1 - 磁極位置推定方法及び制御装置 - Google Patents

磁極位置推定方法及び制御装置 Download PDF

Info

Publication number
WO2019150868A1
WO2019150868A1 PCT/JP2018/048073 JP2018048073W WO2019150868A1 WO 2019150868 A1 WO2019150868 A1 WO 2019150868A1 JP 2018048073 W JP2018048073 W JP 2018048073W WO 2019150868 A1 WO2019150868 A1 WO 2019150868A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
pole position
current command
axis current
mover
Prior art date
Application number
PCT/JP2018/048073
Other languages
English (en)
French (fr)
Inventor
雄介 上井
裕理 高野
哲男 梁田
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to KR1020207021393A priority Critical patent/KR102459776B1/ko
Priority to CN201880088148.1A priority patent/CN111656675B/zh
Priority to EP18904453.0A priority patent/EP3748840B1/en
Publication of WO2019150868A1 publication Critical patent/WO2019150868A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/34Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/02Details of starting control
    • H02P1/04Means for controlling progress of starting sequence in dependence upon time or upon current, speed, or other motor parameter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/32Determining the initial rotor position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Definitions

  • the present invention relates to a magnetic pole position estimation method and apparatus for an electric motor.
  • the motor In the motor control, the motor is driven when a current flows in the q-axis direction (current phase 90 degrees), and the d-axis positive direction (current phase 0 degrees) deviated 90 ° from the q-axis direction, or the d-axis negative direction (current)
  • the electric motor is not driven even if a current is continuously supplied at a phase of 180 degrees.
  • the magnetic pole position recognized by the control device is different from the actual magnetic pole position of the electric motor, the electric motor is driven in a direction opposite to the direction to be driven or moved more than the movement amount to be driven. , Accurate control is not possible. Therefore, when starting control of the electric motor, it is necessary to match the magnetic pole position recognized on the control device side with the actual magnetic pole position of the electric motor.
  • Patent Document 1 discloses such a magnetic pole position estimation method.
  • Japanese Patent Laid-Open No. 2004-133867 describes that, in a magnetic pole position estimation method for a synchronous motor that determines a current phase to be applied based on a temporary magnetic pole position that is a starting position, a phase obtained by dividing an electrical angular reciprocal period into N phases based on the temporary magnetic pole position.
  • the current phase is determined by applying a current and determining the moving method (+, 0, ⁇ ) at that time ”.
  • a magnetic pole position estimation method a first step of setting an initial position of a magnetic pole, a second step of gradually increasing a q-axis current command value and detecting an operation direction and a movement amount of the mover, A third step of rotating the magnetic pole position in the positive direction toward 180 degrees when the direction is positive, and rotating the magnetic pole position in the negative direction toward 180 degrees when the operation direction is negative; and the third step In step 4, the magnetic pole position when the amount of movement of the mover becomes zero is stored as the measured magnetic pole position, and the magnetic pole position obtained by rotating the measured magnetic pole position by -90 degrees is stored as the control start position. And a fifth step.
  • the motor When driving the motor in motor control, the motor is driven when a current is passed in the q-axis direction, and the motor is not driven even if a current is continuously passed in the d-axis direction that is 90 ° off the q-axis direction.
  • the magnetic pole position error angle ⁇ err with the motor is adjusted, and the direction of the q-axis current applied to the motor is the actual d-axis. Adjust to the opposite direction. This is a method of adjusting the q-axis direction recognized on the control device side to coincide with the q-axis direction of the motor by shifting the magnetic pole position recognized on the control device 101 side by 90 ° after the current application is completed.
  • FIG. 1 is a control block diagram for estimating a magnetic pole position of an electric motor according to an embodiment of the present invention and estimating a magnetic pole position error angle ⁇ err, which is an error between the magnetic pole position of the electric motor and the actual magnetic pole position of the electric motor. It is.
  • FIG. 1 is an overall schematic configuration diagram of a synchronous motor control apparatus according to an embodiment of the present invention.
  • the synchronous motor 1 includes a stator and a mover (not shown), and the load 2 is a drive target load driven by the motor 1.
  • the control device 101 is a device that supplies electric power to the electric motor 1 and controls the electric motor. Examples of the control device 101 include an inverter and a servo amplifier.
  • a three-phase AC voltage is applied from the power converter 4 to the synchronous motor 1.
  • a three-phase alternating current I1 flowing through the synchronous motor 1 is detected by a current detector 7.
  • the position detector 5 generates a pulse train corresponding to the movement amount posfb of the motor mover. Therefore, when the output pulse of the position detector 5 is counted by the electrical angle calculation unit 12, the magnetic pole position ⁇ E of the motor mover can be known.
  • the magnetic pole position adjuster 10 Based on the detected electrical angle ⁇ E, the magnetic pole position adjuster 10 outputs a corrected (estimated) electrical angle ⁇ ⁇ by a magnetic pole position estimation method described later.
  • the estimated electrical angle ⁇ ⁇ is calculated by adding the magnetic pole position ⁇ E of the motor mover and the magnetic pole position error angle ⁇ err. Based on this estimated electrical angle ⁇ ⁇ , the dq converter 8 converts the three-phase detection current I1 into the two-phase detection currents iq and id.
  • the q-axis current command generator 6 calculates the q-axis current command value iqref based on the q-axis current command value iqref.
  • the current controller 9 matches the q-axis current detection value iq and the d-axis current detection value id, which are output values of the dq converter 8, with the q-axis current command value iqref and the d-axis current command value idref, respectively.
  • the two-phase command voltages vqref and vdref are output.
  • the three-phase conversion unit 11 converts the two-phase command voltages vqref and vdref into the three-phase command voltage V1ref using the estimated electrical angle ⁇ ⁇ .
  • the magnetic pole position adjuster 10 calculates the current position posfb of the mover from the position detector 5, the q-axis current command iqref from the q-axis current command generator 6, and the magnetic pole position ⁇ E of the motor mover during the magnetic pole position estimation process.
  • the magnetic pole position error angle ⁇ err is adjusted in accordance with the moving direction and moving amount of the mover received from the electrical angle calculation unit 12.
  • the magnetic pole position adjuster 10 uses the current position posfb obtained by the position detector 5 to adjust the magnetic pole position error angle ⁇ err so that the q-axis direction recognized by the motor control device becomes the q-axis direction of the motor.
  • the adjustment result is reflected in the current controller 9 to perform motor control.
  • FIG. 2 shows the adjustment of the magnetic pole position error angle ⁇ err with the motor.
  • the horizontal axis of the graph is the actual d axis
  • the vertical axis is the actual q axis.
  • ⁇ init is an error angle between the magnetic pole position of the motor and the magnetic pole position recognized by the control device at the start of estimation of the magnetic pole position
  • ⁇ A to ⁇ D are the motor angles at the time of q-axis current commands iqref_A to iqref_D shown in the waveform 100, respectively.
  • It is an error angle between the magnetic pole position and the magnetic pole position recognized by the control device when estimating the magnetic pole position.
  • the magnetic pole position error angle ⁇ err is adjusted, and the error angle ⁇ D at the time of magnetic pole position estimation D with the motor whose q axis direction recognized by the control device is opposite to the actual d axis is adjusted as the target magnetic pole position.
  • the actually measured magnetic pole position ⁇ D is rotated by ⁇ 90 °, and the magnetic pole position on the q-axis (position of 90 °) is stored as the control start magnetic pole position. Specific description will be described later.
  • FIG. 3 shows a q-axis current command waveform at the time of estimation of the magnetic pole position of the motor, and a reference serving as a reference position for changing the current position posfb and the magnetic pole position of the motor using the control block of the motor control device shown in FIG. 4 is a graph showing a current position posfb_init and its deviation amount posfb_err, and a magnetic pole position error angle ⁇ err with respect to the motor.
  • the top waveform is the waveform of the q-axis current command iqref output from the q-axis current command generator 6.
  • the q-axis current command iqref is applied to the q-axis current command maximum value iqref_max by gradually increasing the q-axis current command application amount after starting the magnetic pole position estimation process.
  • the current position waveform of the mover at this time is shown as posfb.
  • Posfb_init is a graph showing the reference position posfb_init for determining the movement amount.
  • the determination reference position is a value updated every time the magnetic pole position error angle ⁇ err changes.
  • the waveform below is the waveform of the difference posfb_err between the current position posfb of the mover and the reference current position posfb_init. Based on this movement amount and movement direction (+ direction or-direction), the magnetic pole position adjuster 10 determines whether the current magnetic pole position is located in the q-axis direction (the upper half of the circle in FIG. 2). It is determined whether it is located in the lower half of the circle in FIG.
  • ⁇ err is the magnetic pole position error angle ⁇ err with the motor.
  • ⁇ err indicates that the magnetic pole position error angle ⁇ err at the start of magnetic pole position estimation is 0, the magnetic pole is rotated counterclockwise as a positive direction, and the magnetic pole is rotated clockwise as a negative direction. .
  • the current position posfb of the mover of the motor changes according to the q-axis current command that generates the q-axis current command iqref applied to the current controller of the motor control device 101.
  • the q-axis current command is small, the force applied to the motor is small and the current position posfb of the motor does not change.
  • the application amount of the q-axis current command is gradually increased, the torque applied to the motor gradually increases, so that the motor starts to move at the point of posfb_A.
  • the magnetic pole position adjuster 10 determines that the magnetic pole position direction ⁇ A of the electric motor is in the positive q-axis direction.
  • the magnetic pole position adjuster 10 Is adjusted by 30 degrees in the + direction. That is, the current magnetic pole position is rotated by 30 ° in the positive direction.
  • the magnetic pole position error angle ⁇ with respect to the motor is adjusted by 30 ° in the + direction as in the posfb_A point. That is, the current magnetic pole position is rotated by 30 ° in the positive direction.
  • the magnetic pole position error angle ⁇ err with respect to the motor is adjusted by 20 ° in the negative direction in the opposite direction to the posfb_A point. That is, the current magnetic pole position is rotated by 20 ° in the negative direction.
  • the magnetic pole position error angle ⁇ err with the motor was shifted in the-direction at the posfb_C point, so that the positive q-axis direction was obtained again. Therefore, similarly to the posfb_A point, the magnetic pole position error angle ⁇ err with the motor is adjusted in the + direction.
  • the movement deviation posfb_err of the mover remains 0, so that the magnetic pole position adjuster 10 has the current magnetic pole position ⁇ D on the d-axis. And ⁇ D is stored as the measured magnetic pole position.
  • the magnetic pole position obtained by further rotating the magnetic pole position by ⁇ 90 ° as shown in the posfb_E point is stored as the control start magnetic pole position, and the magnetic pole position estimation process is terminated.
  • the relationship between the magnetic pole position error angle ⁇ err at the posfb_D point and the magnetic pole position error angle ⁇ init at the start of magnetic pole position estimation is expressed by Equation (1).
  • ⁇ err at the posfb_D point is 50 °
  • the magnetic poles are rotated by 30 ° each time, and after the sign is reversed, the magnetic poles are rotated by 20 °.
  • the intervals are not necessarily 30 °.
  • it can be rotated by 210 °, rotated at a different angle each time, or set at an arbitrary angle.
  • FIG. 4 is a flowchart showing the procedure of the magnetic pole position estimation process of the electric motor using the control block of the electric motor control device shown in FIG.
  • the magnetic pole position estimation method is started in processing 150.
  • an operating condition for operating the electric motor is set in the control device 101. What is the operating condition? What is the process for obtaining the maximum value iqre_max of the q-axis current command iqref output from the q-axis current command generator 6, the gradient of the q-axis current command during the increase of the q-axis current command iqref, and the measured magnetic pole position? Or a condition necessary for magnetic pole position estimation such as the magnetic pole position adjustment determination value poserr_jdg is set, and the process proceeds to processing 152.
  • control device 101 actually operates the electric motor in accordance with the q-axis current command iqref output from the q-axis current command generator 6.
  • the position detector 5 measures the current position posfb of the mover, and the magnetic pole position adjuster 10 determines whether or not the mover has moved more than the change determination value poserr_jdg in the positive direction or the negative direction from the reference current position posfb_init. Determine.
  • the process proceeds to processing 154, and the magnetic pole position adjuster 10 rotates the magnetic pole position in the same direction as the moving direction to adjust the magnetic pole position error angle ⁇ err with the motor.
  • the magnetic pole position direction of the current flowing through the electric motor is adjusted to be the d-axis direction.
  • process 155 it is determined whether or not the magnetic pole position estimation is continued under the operation conditions set in process 151. For example, since the moving amount of the mover is less than or equal to poserr_jdg, it may be determined that the magnetic pole position direction of the electric motor is on the d axis. As another example, when the q-axis current command iqref is continuously applied for a certain period of time with the q-axis current command maximum value iqref_max, the magnetic pole position direction of the motor is determined to be on the d-axis when the mover movement amount is less than or equal to poserr_jdg.
  • process 155 proceeds to process 153, and the magnetic pole position estimation under the same condition is continued. If the end condition is satisfied, the process proceeds to process 156. In process 156, the magnetic pole position adjuster 10 stores the magnetic pole position as the actually measured magnetic pole position.
  • process 157 it is determined whether the magnetic pole position estimation process has been performed the number of times set in process 151.
  • the magnetic pole position adjuster 10 determines whether or not the actually measured magnetic pole position is stored for each initial position. When the number of the actually measured magnetic pole positions is less than the set value, the process returns to the process 151, the setting of the initial position of the magnetic pole is changed, and the process proceeds to the process of storing the actually measured magnetic pole positions again.
  • the process proceeds to process 158, where the magnetic pole position adjuster 10 determines that the measurement for the number of times set in process 151 has been completed, and the average value of all the actually measured magnetic pole positions. Is stored as the final measured magnetic pole position, and a value obtained by shifting the average value by ⁇ 90 ° is stored as the control start magnetic pole position. Thereafter, the process proceeds to processing 159 to finish the magnetic pole position estimation.
  • the magnetic pole position information used for calculating the average value is then deleted.
  • the deletion timing may be deleted every time the average value is calculated, or may be deleted at a predetermined timing such as once a month.
  • the position where the actually measured magnetic pole position is shifted by ⁇ 90 ° is set as the control start magnetic pole position.
  • 5 (a) and 5 (b) are flowcharts showing detailed procedures for the operations of processing 153 to processing 156 shown in FIG.
  • the electric motor at the time of magnetic pole position estimation starts an operation by processing 152, applies a q-axis current command from q-axis current command generator 6, and shifts to processing 201.
  • the q-axis current command generator 6 determines whether the q-axis current command value is increased.
  • the process proceeds to the process 202.
  • the q-axis current command value iqref is increased and the process transitions to process 203. If the q-axis current command value is equal to or greater than the q-axis current command maximum value iqref_max, the process proceeds to processing 203 without increasing the q-axis current command value iqref.
  • a process 204 is a process of reducing the magnetic pole position change amount ⁇ chg to a certain threshold value when it is determined that the change amount at the time of changing the magnetic pole position is large when the value is greater than an arbitrary q-axis current command value. This is because if the magnetic pole position error angle ⁇ err with the motor changes greatly when the q-axis current command iqref increases, the amount of movement of the motor may increase due to a sudden change in the magnetic pole position error angle ⁇ err with the motor. is there.
  • the magnetic pole position change amount ⁇ chg is reduced to reduce a sudden change in the magnetic pole position.
  • the amount of change may be narrowed by setting each threshold value for a plurality of q-axis current commands. For example, if the q-axis current command value is 0 to 30 [%] of the maximum q-axis current command value, the maximum value of the magnetic pole position change amount is 30 °, and the q-axis current command value is the maximum q-axis current command value.
  • the process 204 ends, the process transitions to the process 205.
  • process 205 when the magnetic pole position adjuster 10 determines that the number of times the magnetic pole position has been changed is equal to or less than the number of times specified in advance in process 151, the process transitions to process 206.
  • Process 206 is a process of changing the starting magnetic pole position and starting the magnetic pole position estimation from the beginning. For example, when the starting position of the magnetic pole position estimation is the reverse of the d-axis direction (position of 0 °) from the beginning, the motor does not operate once and the magnetic pole position estimation ends. In this case, since the magnetic pole position is recognized as a correct position at a position opposite to the original target magnetic pole position, if the magnetic pole position is rotated by ⁇ 90 °, the control start magnetic pole position becomes negative q-axis direction (270 °) may be set. In order to avoid this, the magnetic pole position estimation is set to perform the magnetic pole position estimation a specified number of times.
  • the specified number of times may be set for a plurality of q-axis current commands. For example, if the motor has not moved once before the q-axis current command value reaches 30% of the maximum q-axis current command value, the q-axis current command value becomes 70 [ %], When the motor has moved only twice, and when the q-axis current command value has moved only five times before the q-axis current command value 100% of the maximum value of the q-axis current command value, processing 206 It means that it will transition to. When the process 206 ends, the process transitions to the process 250 through the process 207.
  • process 205 If it is determined in process 205 that the number of magnetic pole position changes is equal to or greater than the specified number set in process 151, the process proceeds to process 251 in FIG.
  • Process 251 is a process in which the magnetic pole position adjuster 10 determines whether the difference between the current position posfb of the electric motor and the reference current position posfb_init is greater than the magnetic pole position change determination value poser_jdg set in the process 151 in advance. By this process, it is determined whether or not the mover has moved in the forward direction. When the difference between the two satisfies the following expression (2), it is determined that the mover has moved in the positive direction, and the process proceeds to processing 252. When Expression (2) is not satisfied, it is determined that the mover has not moved in the positive direction, and the process proceeds to processing 261.
  • the magnetic pole position is gradually narrowed down by decreasing the amount of change in the magnetic pole position, so that the magnetic pole position is decreased.
  • the magnetic pole position is 105 °
  • the target magnetic pole position is 180 °
  • the amount of change in the magnetic pole position is 30 °
  • the first magnetic pole position change is 135 °
  • the first magnetic pole position change is 164 °. , 192 °, 165 °, 191 °, 166 °, and so on, and can be adjusted up to 180 °.
  • the amount of decrease in the position change amount may be set to an arbitrary value.
  • Processing 261 is processing for determining whether the difference between the current position posfb of the mover and the reference current position posfb_init is smaller than the magnetic pole position change determination value poser_jdg ⁇ ⁇ 1 set in advance in processing 151. This process determines whether the mover has moved in the negative direction. When Expression (3) is satisfied, it is determined that the mover has moved in the negative direction, and the process proceeds to processing 262. When Expression (3) is not satisfied, it is determined that the mover has not moved in the negative direction, and the process proceeds to processing 270.
  • process 209 it is determined whether the q-axis current command application time specified in advance in process 151 has elapsed. If the specified time has elapsed, the process proceeds to process 210, and the motor operation at the time of magnetic pole position estimation is terminated. . If the specified time has not elapsed, the process returns to process 201.
  • the movement amount of the mover can be suppressed to a minute.
  • the direct acting motor mentioned in this embodiment if the mover moves greatly, there is a risk of collision with the motor housing or the like, and the movement of the housing or the like is hindered so that the magnetic pole position can be accurately estimated.
  • the present invention is particularly effective because there is a risk of disappearance.
  • the mover When applied to a cylindrical motor, the mover corresponds to a rotor.
  • the second embodiment is an example in which the application of the q-axis current command iq_ref applied during the magnetic pole position estimation operation shown in the first embodiment is adjusted to the magnetic pole position adjustment, and the motor is a radial gap type motor including a stator and a rotor. It is.
  • FIG. 6 is a graph showing the passage of time of the q-axis current command iqref, the current position posfb, the reference current position posfb_init, etc., as in FIG.
  • the procedure during the stay operation of this embodiment will be described with reference to FIG.
  • the q-axis current command value is applied for a certain period of time with that value (iqref_A1), and the magnetic pole position error angle ⁇ err is adjusted. Since the rotor continues to move even after the magnetic pole position error angle ⁇ err is rotated by 30 °, it is further rotated by 30 ° by pstfb_B1. Thereafter, the q-axis current command value is increased until the movement of the rotor is detected by the position detector 5.
  • the q-axis current command value When the q-axis current command value is increased to iqref_C1, the movement of the mover is detected, and the q-axis current command generator 6 generates a signal for applying the q-axis current command value while maintaining the iqref_C1 for a certain period of time. At this time, since the magnetic pole position adjuster 10 determines that the moving direction is negative, the magnetic pole position is rotated by 20 ° in the negative direction. After a certain time has elapsed, the q-axis current command value is increased again.
  • the q-axis current command generator 6 keeps the q-axis current command value constant. Since the moving direction at this time is determined to be the positive direction, the magnetic pole position adjuster rotates the magnetic pole position by 10 ° in the positive direction.
  • the magnetic pole position adjuster 10 determines that the magnetic pole has reached the position of 180 ° on the d-axis.
  • the current magnetic pole position error angle ⁇ err is stored as the actually measured magnetic pole position.
  • the q-axis current command application method can be expected to adjust the magnetic pole position in the state of a small q-axis current command, so that the effect of suppressing the movement amount of the rotor (mover) can be expected. Since the configurations and methods other than those described above are the same as those in the first embodiment, description thereof will be omitted.
  • Example 3 describes an example in which the magnetic pole position change amount ⁇ chg is 180 ° or more when adjusting the magnetic pole position error angle ⁇ err shown in Example 1, with reference to FIGS.
  • the q-axis current command When the q-axis current command is small, the electric power applied to the motor is small and the current position posfb of the mover does not change.
  • the application amount of the q-axis current command is gradually increased, the torque applied to the electric motor is gradually increased and the mover starts to move in the vicinity of posfb_A.
  • the mover moves to the posfb_A point, the moving direction is the positive direction and the q-axis current command is the positive direction, so the magnetic pole position adjuster 10 determines that the magnetic pole position direction of the motor is in the actual q-axis direction. .
  • the magnetic pole position error angle ⁇ err is adjusted by 210 ° in the + direction.
  • the magnetic pole position adjuster 10 determines that the magnetic pole position direction of the motor is in the negative direction with respect to the actual q axis.
  • the magnetic pole position adjuster 10 adjusts the magnetic pole position error angle ⁇ err with the electric motor by 200 ° in the ⁇ direction.
  • the magnetic pole position error angle ⁇ err with respect to the motor is adjusted by 190 ° in the + direction in the same direction as the posfb_A point.
  • the magnetic pole position error angle ⁇ err with the motor was shifted in the positive direction at the posfb_C point, so that the negative q-axis direction was obtained again. Therefore, similarly to the posfb_B point, the magnetic pole position error angle ⁇ err with respect to the electric motor is adjusted by 170 ° in the ⁇ direction.
  • the movement deviation posfb_err of the mover remains 0, so that the magnetic pole position adjuster 10 has the current magnetic pole position ⁇ D on the d-axis. And ⁇ D is stored as the measured magnetic pole position.
  • the magnetic pole position obtained by further rotating the magnetic pole position by ⁇ 90 ° as shown in the posfb_E point is stored as the control start magnetic pole position, and the magnetic pole position estimation process is terminated.
  • the temporary q-axis direction (q-axis direction recognized by the control device 101) is near the d-axis direction of the actual motor, it can be moved using an adjustment value of 180 ° or less. Since the child continues to move in the positive direction, the amount of movement of the mover during the magnetic pole position adjustment may increase.
  • the magnetic pole position estimation method of the present embodiment since the magnetic pole position error angle ⁇ err is shifted by 180 ° or more, the magnetic pole position direction is directed in the opposite direction, the moving direction of the mover is not constant, and the magnetic pole position is being adjusted. The effect of suppressing the amount of movement can be expected.
  • the magnetic pole position direction may be the reverse d-axis direction or the positive d-axis direction. Therefore, after shifting the magnetic pole position by -90 °, a small q-axis current command is issued. Apply and check the motor drive method. While the q-axis current command is a positive value, the magnetic pole position direction recognized by the control device side is the actual q-axis direction when the motor moves in the positive direction, and the control device side recognizes when the motor moves in the negative direction. Since the magnetic pole position direction is opposite to the actual q-axis, the control start magnetic pole position is stored after being shifted by 180 °. As a result, the magnetic pole position can be estimated more accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電動機の磁極位置推定において、可動子の移動量を抑える。磁極位置推定方法であって、磁極の初期位置を設定する第1ステップと、q軸電流指令値を徐々に上げ、可動子の動作方向及び移動量を検出する第2ステップと、前記動作方向が正の場合に磁極位置を180度に向けて正方向に回転させ、前記動作方向が負の場合に磁極位置を180度に向けて負方向に回転させる第3ステップと、前記第3ステップにおいて、前記可動子の移動量が0となったときの磁極位置を、実測磁極位置として記憶する第4ステップと、前記実測磁極位置を-90度回転させた磁極位置を、制御開始位置として記憶する第5ステップと、を備えるものである。

Description

磁極位置推定方法及び制御装置 参照による取り込み
 本出願は、2018年2月1日に出願された日本特許出願第2018-016143号の優先権を主張し、その内容を参照することにより本出願に取り込む。
 本発明は、電動機の磁極位置推定方法および装置に関する。
 電動機制御においては、q軸方向(電流位相90度)に電流を流すと電動機は駆動し、q軸方向と90°ずれたd軸正方向(電流位相0度)、またはd軸負方向(電流位相180度)に電流を流し続けても電動機は駆動しない。そのため、制御装置側が認識している磁極位置と、実際の電動機の磁極位置とが異なると、電動機が駆動させたい方向とは逆方向に駆動したり、駆動させたい移動量よりも大きく移動するなど、正確な制御が行えない。そのため、電動機の制御を開始する際には、制御装置側で認識している磁極位置を電動機の実際の磁極位置に合致させる必要がある。
 このような磁極位置推定の方法として例えば特許文献1がある。特許文献1には、「始動位置である仮の磁極位置に基づき印加する電流位相を決定する同期電動機の磁極位置推定方法において、仮の磁極位置を基準に電気角反周期をN分割した位相に電流を印加し、その時の移動方法(+、0、-)を判定して電流位相を決定する」と記載されている。
特開2014-36450号公報
 特許文献1の方法では、仮の磁極位置を基準に電気角半周期をN分割した位相に電流を印加し、そのときの移動方向D(+、0、-)をそれぞれ検出する。次に、移動方向が反転する二つの位相Dn+とDn-を記憶し、中間の位相における移動方向を検出する。中間の位相における移動方向Dn1が+であれば、次はDn1とDn-の中間の移動方向を検出し、これを繰り返すことで移動方向が0となる位相情報を探しだすものである。この磁極位置推定動作に使用する電流指令値を、その前段にあるq軸電流指令の絶対値と磁極位置推定用にあらかじめ設定されている電流指令値とのうち小さい方を使用することで、電動機の移動速度が速度制限指令を超えないよう制御できる、と記載されている。
 しかしながら、特許文献1のように電流指令がステップ状の信号では、磁極位置が想定と180度ずれていた場合、電動機の移動量が大きくなりすぎる虞がある。また、電流指令のステップ信号が大きく、速度制御器の制御ゲインが正しく設定されていない場合、速度制限指令が正しく制限できない虞がある。
 上述した課題を解決するため、特許請求の範囲に記載の発明を適用する。即ち、磁極位置推定方法であって、磁極の初期位置を設定する第1ステップと、q軸電流指令値を徐々に上げ、可動子の動作方向及び移動量を検出する第2ステップと、前記動作方向が正の場合に磁極位置を180度に向けて正方向に回転させ、前記動作方向が負の場合に磁極位置を180度に向けて負方向に回転させる第3ステップと、前記第3ステップにおいて、前記可動子の移動量が0となったときの磁極位置を、実測磁極位置として記憶する第4ステップと、前記実測磁極位置を-90度回転させた磁極位置を、制御開始位置として記憶する第5ステップと、を備えるものである。
 本発明の一側面によれば、電動機の移動量を抑えて高精度な磁極位置の推定とこれに基づく電動機制御が可能となる。本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
本発明を適用した第1の実施例による磁極位置推定装置を取り付けた電動機制御装置の制御ブロック図である。 本発明を適用した第1の実施例による電動機の磁極位置変化を示す図である。 本発明を適用した第1の実施例によるq軸電流指令波形と、電動機の現在位置、及び電動機の移動判定となる位置の波形図である。 本発明を適用した第1の実施例による磁極位置推定手順のフローチャートである。 本発明を適用した第1の実施例による磁極位置推定時の電動機動作中の磁極位置調整手順フローチャートである。 本発明を適用した第1の実施例による磁極位置推定時の電動機動作中の磁極位置調整手順フローチャートである。 本発明を適用した第2の実施例によるq軸電流指令波形と、電動機の現在位置、及び電動機の移動判定となる位置の波形図である。 本発明を適用した第3の実施例による電動機の磁極位置変化を示す図である。 本発明を適用した第3の実施例によるq軸電流指令波形と、電動機の現在位置、及び電動機の移動判定となる位置の波形図である。
 電動機制御において電動機を駆動するとき、q軸方向に電流を流すと電動機は駆動し、q軸方向と90°ずれたd軸方向に電流を流し続けても電動機は駆動しない。
 本発明では、電動機に電流を印加しながら、可動子が移動したと判定する度に、電動機との磁極位置誤差角θerrを調整し、電動機に印加するq軸電流の方向が実際のd軸と反対方向になるよう調整する。電流印加終了後に制御装置101側が認識している磁極位置を90°ずらすことにより、制御装置側の認識しているq軸方向が電動機のq軸方向と一致するよう調整する手法である。
 以下、電動機の磁極位置推定法及び装置について説明し、電動機を駆動しながら磁極位置を変化させ、電流値によらず電動機が移動しないd軸方向に磁極位置を調整し、調整終了後、q軸方向にずらす手段について実施例を示す。
 本実施例では、直動型電動機(リニアモータ)に本発明を適用した例を説明する。q軸電流指令生成器により生成されるq軸電流指令(「トルク指令」とも言う)により電動機を駆動しつつ、可動子の移動方向及び移動量により、電動機との磁極位置誤差角θerrを調整するための第1の手段、第2の手段、及び第3の手段について実施例を示す。
 まず初めに、制御装置101を用いて磁極位置推定機能を実行する制御ブロックの例を示す。図1は本発明の実施形態による電動機の磁極位置を推定し、電動機制御装置内に持つ電動機の磁極位置と実際の電動機の磁極位置との誤差である磁極位置誤差角θerrを推定する制御ブロック図である。
 図1は、本発明の実施例による同期電動機の制御装置の全体概略構成図である。同期電動機1は固定子と可動子(図示せず)からなり、負荷2は電動機1により駆動される駆動対象負荷である。制御装置101は電動機1に電力を供給し電動機を制御する装置である。制御装置101としては例えばインバータやサーボアンプ等があげられる。同期電動機1に対して、電力変換器4から3相交流電圧を印加する。同期電動機1に流れる3相交流電流I1は電流検出器7で検出する。位置検出器5は、電動機可動子の移動量posfbに応じたパルス列を発生する。したがって、この位置検出器5の出力パルスを電気角演算部12でカウントすれば、電動機可動子の磁極位置θEを知ることができる。
 この検出電気角θEを基に、磁極位置調整器10では、後述する磁極位置推定法により、補正後(推定)電気角θ^を出力する。推定電気角θ^は、電動機可動子の磁極位置θEと、磁極位置誤差角θerrを加算することにより算出される。この推定電気角θ^を基に、dq変換部8では、3相検出電流I1を2相検出電流iq及びidへ変換する。
 q軸電流指令生成器6はq軸電流指令値iqrefを基に、q軸電流指令値iqrefを演算する。電流制御器9は、q軸電流指令値iqref及びd軸電流指令値idrefに対して、dq変換部8の出力値であるq軸電流検出値iq及びd軸電流検出値idをそれぞれ一致させるための演算を行い、2相指令電圧vqref及びvdrefを出力する。3相変換部11は、推定電気角θ^を用いて、2相指令電圧vqref及びvdrefを3相指令電圧V1refへと変換する。
 磁極位置調整器10は磁極位置推定処理を実行中に可動子の現在位置posfbを位置検出器5から、q軸電流指令iqrefをq軸電流指令生成器6から、電動機可動子の磁極位置θEを電気角演算部12からそれぞれ受け取り、可動子の移動方向及び移動量に応じて磁極位置誤差角θerrを調整する。磁極位置調整器10では、位置検出器5により得られた現在位置posfbを用いて、電動機制御装置が認識するq軸方向が電動機のq軸方向になるよう磁極位置誤差角θerrを調整し、その調整結果を電流制御器9に反映して電動機制御を行う。
 図2は、電動機との磁極位置誤差角θerrの調整について示す。グラフの横軸が実際のd軸、縦軸が実際のq軸である。θinitは、電動機の磁極位置と磁極位置推定開始時に制御装置が認識する磁極位置との誤差角であり、θA~θDは、それぞれ、波形100に示すq軸電流指令iqref_A~iqref_Dのときの電動機の磁極位置と磁極位置推定時に制御装置が認識する磁極位置との誤差角である。電動機との磁極位置誤差角θerrは、磁極位置推定開始前に電動機との誤差角を認識できないためθerr=0として磁極位置推定を開始する。
 本発明では、磁極位置誤差角θerrを調整し、制御装置が認識するq軸方向が実際のd軸と反対方向となる電動機との磁極位置推定D時誤差角θDを目標の磁極位置として調整する。すなわち制御装置101は初期の磁極位置θinitの地点から磁極位置誤差角θerr=0として磁極位置推定を開始し、徐々に制御装置が認識する磁極を回転させθDとなった磁極位置を実測磁極位置として記憶する。その後制御開始するにあたり、実測磁極位置θDを-90°回転させ、q軸上(90°の位置)の磁極位置を制御開始磁極位置として記憶する。具体的な説明は後述する。
 図3は、図1に示す電動機制御装置の制御ブロックを用いて、電動機の磁極位置推定時のq軸電流指令波形、及び電動機の現在位置posfbと磁極位置を変更するための基準位置となる基準現在位置posfb_initとその偏差量posfb_err、電動機との磁極位置誤差角θerrをそれぞれ示したグラフである。
 一番上の波形はq軸電流指令生成器6から出力されるq軸電流指令iqrefの波形である。q軸電流指令iqrefは磁極位置推定処理を開始後、q軸電流指令印加量を徐々に増加させ、q軸電流指令最大値iqref_maxまで印加する。このときの可動子の現在位置波形をposfbに示す。
 posfb_initは移動量を判定する基準位置posfb_initを示すグラフである。判定基準位置は磁極位置誤差角θerrが変わるたびに更新される値である。
 その下の波形は可動子の現在位置posfbと基準現在位置posfb_initの差分posfb_errの波形である。この移動量および移動方向(+方向か-方向か)に基づいて、磁極位置調整器10は、現在の磁極位置がq軸方向(図2の円の上半分)に位置するのか-q軸方向(図2の円の下半分)に位置するのかを判定する。
 θerrは電動機との磁極位置誤差角θerrである。図中ではθerrは磁極位置推定開始時の磁極位置誤差角θerrを0とし、反時計回りに磁極を回転させた場合を正方向、時計回りに磁極を回転させた場合を負方向として示している。
 次に、図2、図3を用いて本実施例における磁極位置推定の手順を説明する。
 電動機の可動子は、電動機制御装置101の電流制御器に印加されたq軸電流指令iqrefを生成するq軸電流指令に従って現在位置posfbが変化する。q軸電流指令が小さい段階では、電動機に加わる力が小さく電動機の現在位置posfbが変化しない。q軸電流指令の印加量を徐々に大きくすると、電動機に加わるトルクが徐々に大きくなるため、posfb_Aの地点で電動機が動き始める。posfb_A地点では電動機は正方向に動き且つq軸電流指令が正方向であるため、磁極位置調整器10は電動機の磁極位置方向θAが正のq軸方向であると判定する。
 また、現在位置posfbと基準現在位置posfb_initの差分posfb_errが磁極位置変更判定値poserr_jdgより大きくなった場合、電動機との磁極位置誤差角θerrを調整する必要ありと判断し、磁極位置調整器10は電動機との磁極位置誤差角θerrを+方向に30度だけ調整する。すなわち、現在の磁極位置を正方向に30°回転させる処理を行う。
 posfb_B地点でも電動機は正方向に動き続けているため、posfb_A地点と同様に電動機との磁極位置誤差角θを+方向に30°調整する。すなわち、現在の磁極位置を正方向に30°回転させる処理を行う。
 posfb_C地点では電動機は負方向に動いたため、posfb_A地点とは逆向きに電動機との磁極位置誤差角θerrを-方向に20°調整する。すなわち、現在の磁極位置を負方向に20°回転させる処理を行う。
 posfb_D地点では電動機が正方向に動いたため、posfb_C地点で電動機との磁極位置誤差角θerrを-方向にずらしたことにより、再び正のq軸方向となった。そのため、posfb_A地点と同様に電動機との磁極位置誤差角θerrを+方向に調整する。
 その後q軸電流指令を磁極位置推定処理における最大値(iqref_max)まで上げても可動子の移動偏差posfb_errは0のままのため、磁極位置調整器10は現在の磁極位置θDがd軸上であると判定し、θDを実測磁極位置として記憶する。
 実測磁極位置が記憶された後はposfb_E地点に示す通り磁極位置をさらに-90°回転させた磁極位置を制御開始磁極位置として記憶し、磁極位置推定処理を終了する。posfb_D地点での磁極位置誤差角θerrと磁極位置推定開始時の磁極位置誤差角θinitの関係は式(1)となる。
 (数1)
  θD = θerr + θinit + 90…式(1)
本実施例において、posfb_D地点でのθerrは50°であり、posfb_D地点でのθDは180°であることから、磁極位置推定開始時の極位置推定開始時の磁極位置誤差角θinit=40°が算出される。よって、磁極位置推定開始時の磁極位置誤差角θerrを0としたとき、実際のq軸方向と一致する磁極位置誤差角θerrは-40°となる。
 なお、図3の説明では磁極を30°ずつ回転させ、符号が反転した後は20°ずつとしたが、必ずしも30°間隔である必要はない。例えば210°ずつ回転させたり、毎回異なる角度で回転させたり任意の角度に設定することが可能である。
 図4は、図1に示す電動機制御装置の制御ブロックを用いて、電動機の磁極位置推定処理の手順を示すフローチャートである。
 まず電動機の磁極位置推定法を実施するため、処理150で磁極位置推定法を開始する。
 処理151では、電動機を動作させるための運転条件を制御装置101に設定する。運転条件とは、q軸電流指令生成器6から出力するq軸電流指令iqrefの最大値iqre_maxや、q軸電流指令iqref増加中のq軸電流指令の傾きや、実測磁極位置を求める処理を何回行うか、磁極位置調整判定値poserr_jdgなど、磁極位置推定に必要な条件を設定し、処理152へ遷移する。
 処理152で、制御装置101が、q軸電流指令生成器6から出力されたq軸電流指令iqrefによって実際に電動機を動作させる。
 処理153では、位置検出器5が可動子の現在位置posfbを測定し、磁極位置調整器10が、可動子が基準現在位置posfb_initから正方向或いは負方向に、変更判定値poserr_jdg以上移動したかどうかを判定する。poserr_jdg以上移動したと判定された場合には処理154に進み、磁極位置調整器10は移動方向と同じ方向に磁極位置を回転させて、電動機との磁極位置誤差角θerrを調整する。処理153と処理154を繰り返すことにより、電動機に流れる電流の磁極位置方向がd軸方向になるよう調整する。
 可動子の移動量がposerr_jdg以下だった場合には、処理155に進む。処理155では処理151で設定した運転条件で、磁極位置推定を継続するか判定する。例えば、可動子の移動量poserr_jdg以下となったので、電動機の磁極位置方向がd軸上であると判断する場合もある。別例は、q軸電流指令iqrefがq軸電流指令最大値iqref_maxで一定時間印加し続けた状態で、可動子の移動量poserr_jdg以下の場合に電動機の磁極位置方向がd軸上であると判断する場合もある。処理155の判定により終了条件を満たさない場合は処理153に進み、同一条件での磁極位置推定を継続する。終了条件を満たす場合、処理156へ進む。処理156では磁極位置調整器10は当該磁極位置を実測磁極位置として記憶する。
 処理157では、処理151で設定した回数だけ磁極位置推定処理が行われたかを判定する。例えば、本発明では、q軸電流指令値を一方方向に印加しているため、1パターンの運転条件では電動機の静止摩擦、動摩擦の影響を受ける可能性がある。そのため、磁極位置推定開始時の磁極位置を0°、90°、180°、270°とずらして、合計4回駆動することで、一方向だけでなく、逆向きの方向にモータ駆動することが可能となる。そのため、磁極位置調整器10は、それぞれの初期位置ごとに実測磁極位置が記憶されたか否かを判定する。実測磁極位置の個数が設定値に満たない場合には処理151へ戻り、磁極の初期位置の設定を変更し、再度実測磁極位置を記憶する処理まで進む。
 実測磁極位置の個数が設定値を満たした場合には、処理158へ進み、磁極位置調整器10は処理151で設定された回数分の測定を終えたと判断し、全ての実測磁極位置の平均値を最終的な実測磁極位置として記憶し、平均値を-90°ずらした値を制御開始磁極位置として記憶する。その後処理159へ遷移して磁極位置推定を終了する。平均値を算出するために用いた磁極位置の情報はその後削除する。削除のタイミングは、平均値を算出するたびに削除してもよいし、月に1回等の決められたタイミングで削除してもよい。
 なお、実測磁極位置を求める回数が1回に設定した場合には、そのまま実測磁極位置を-90°ずらした位置を制御開始磁極位置とする。
 図5(a)(b)は、図4に示す処理153~処理156の動作について詳細な手順を示すフローチャートである。
 磁極位置推定時の電動機は処理152により動作を開始し、q軸電流指令生成器6からq軸電流指令を印加し処理201へ遷移する。処理201では、q軸電流指令生成器6がq軸電流指令値の増加判定を行う。現在のq軸電流指令値iqrefが、処理151で設定したq軸電流指令最大値iqref_max未満である場合、処理202へ遷移する。処理202ではq軸電流指令値iqrefを増加して処理203へ遷移する。q軸電流指令値がq軸電流指令最大値iqref_max以上である場合、q軸電流指令値iqrefを増加せず処理203へ遷移する。
 処理203では、q軸電流指令値がある任意の値以上である場合、処理204へ遷移する。処理204は、任意のq軸電流指令値以上のときに磁極位置変更時の変化量が大きいと判断した場合、ある閾値まで磁極位置変化量θchgを小さくする処理である。これは、q軸電流指令iqrefが大きくなった時に電動機との磁極位置誤差角θerrが大きく変化すると、急な電動機との磁極位置誤差角θerrの変化により、電動機の移動量が大きくなる可能性がある。そのため、一定のq軸電流指令値以上の場合は、磁極位置変化量θchgを小さくすることで、急な磁極位置の変化を小さくする処理である。なお、本処理は、複数のq軸電流指令に対し、各々の閾値を設定して変化量を絞ってもよい。例えば、q軸電流指令値がq軸電流指令値最大値の0~30[%]であれば、磁極位置変化量の最大値は30°とし、q軸電流指令値がq軸電流指令値最大値の30~70[%]であれば、磁極位置変化量の最大値は20°とし、q軸電流指令値がq軸電流指令値最大値の70~100[%]であれば、磁極位置変化量θchgの最大値は5°とするということである。処理204が終了すると処理205へ遷移する。
 処理205では磁極位置調整器10において、磁極位置変更回数が処理151で予め指定した規定回数以下であったと判定された場合に処理206へ遷移する。
 処理206は、開始する磁極位置を変更し磁極位置推定を初めからやり直す処理である。これは例えば、磁極位置推定の開始位置が最初からd軸方向と真逆(0°の位置)であった場合、電動機は一度も動作せず磁極位置推定を終了する。この場合、磁極位置は本来目標とする磁極位置と真逆の位置を正しい位置と認識してしまうため、磁極位置を-90°回転させてしまうと制御開始磁極位置が負のq軸方向(270°)に設定される虞がある。これを回避するため、磁極位置推定では規定値回数だけ磁極位置推定を実施するよう設定される。
 なお、処理205において、複数のq軸電流指令に対し、各々の規定値回数を設定してもよい。例えば、q軸電流指令値がq軸電流指令値最大値の30[%]までに、1度も電動機が移動しなかった場合、q軸電流指令値がq軸電流指令値最大値の70[%]までに、2度しか電動機が移動しなかった場合、q軸電流指令値がq軸電流指令値最大値の100[%]までに、5度しか電動機が移動しなかった場合、処理206に遷移するということである。処理206が終了すると処理207を通して処理250へ遷移する。
 また処理205において、磁極位置変更回数が処理151で設定した規定回数以上であったと判定された場合には図5(b)の処理251へ遷移する。
 処理251は、電動機の現在位置posfbと基準現在位置posfb_initの差が、予め処理151で設定される磁極位置変更判定値poser_jdgより大きいかを磁極位置調整器10が判断する処理である。本処理によって、可動子が正方向に移動したか否かを判定する。両者の差が以下の式(2)を満たす場合、可動子が正方向に移動したと判断し、処理252へ遷移する。式(2)を満たさない場合には可動子は正方向に移動していないと判断し、処理261へ遷移する。
 (数2)
  posfb - posfb_init > poser_jdg…式(2)
 処理252では、可動子が正方向に移動し且つq軸電流指令が正方向であるため、磁極位置は正のq軸方向にあると判断する。よって磁極位置をθerr+θchgとして、磁極を+方向に変化させる。また、処理253では、磁極位置変更後、新たに磁極位置が変化したことを判定するための基準位置である、基準現在位置posfb_initを現在位置posfbで更新する。更新後、処理254へ遷移する。
 処理254では、磁極位置の変化量を小さくすることで、磁極位置を徐々に絞り込んでいくため減少させる。例えば、磁極位置が105°の位置にあり、目標磁極位置が180°、磁極位置変化量が30°である場合、1度目の磁極位置変更により135°となり、1度目の磁極位置変更により164°、以下192°、165°191°、166°…と調整し180°まで調整可能となる。なお、位置変化量の減少量は任意の値に設定して構わない。処理254終了後、処理261へ遷移する。
 処理261では可動子の現在位置posfbと基準現在位置posfb_initの差が、予め処理151で設定される磁極位置変更判定値poser_jdg×-1より小さいかを判断する処理である。本処理によって、可動子が負方向に移動したかを判定する。式(3)を満たす場合、可動子が負方向に移動したと判断し、処理262へ遷移する。なお、式(3)を満たさない場合、可動子は負方向に移動していないと判断し、処理270へ遷移する。
 (数3)
  posfb - posfb_init < (poser_jdg × -1)…式(3)
処理262では電動機が負方向に動作し、且つq軸電流指令が正方向であるため、磁極位置は負のq軸方向にあると判断する。よって磁極位置をθerr-θchgとして、磁極を-方向に回転させる。また、処理263と処理264は、それぞれ処理253と処理254と同様である。更新後、処理270を通して処理209へ遷移する。
 処理209では、処理151で予め指定したq軸電流指令印加時間だけ経過したかを判定し、指定した時間経過していた場合には処理210へ遷移し、磁極位置推定時の電動機動作を終了する。指定時間経過していなかった場合には、処理201へ戻る。
 以上述べたように、q軸電流指令を徐々に上げつつ移動量および移動方向に応じて磁極位置を回転させることで、可動子の移動量を微小に抑えることができる。特に、本実施例で挙げた直動型電動機の場合には、可動子が大きく動いてしまうと電動機筐体等に衝突する虞や筐体等に移動を阻まれて正確に磁極位置推定ができなくなる虞があるため、本発明が特に有効である。
 なお、本実施例では直動型電動機を用いて説明したが、円筒型の電動機にも適用できることは言うまでもない。円筒型の電動機に適用した場合には、可動子が回転子に相当する。
 実施例2は、実施例1で示した磁極位置推定動作時に印加するq軸電流指令iq_refの印加を磁極位置調整に合わせ、電動機を固定子と回転子とからなるラジアルギャップ型の電動機とした例である。
 図6は、図3と同様にq軸電流指令iqrefや現在位置posfb、基準現在位置posfb_init等の時間経過を示したグラフである。以下、図6を用いて本実施例のステイ動作時の手順を説明する。
 初めにq軸電流指令iqrefを定トルクで一定時間印加する。一定時間印加しても回転子(可動子)が移動しない場合には、さらにq軸電流指令値を上げて一定時間印加する。
 可動子の移動が検出された場合にはq軸電流指令値をその値(iqref_A1)のまま一定時間印加し、磁極位置誤差角θerrを調整する。磁極位置誤差角θerrを30°回転させた後も回転子は移動を続けているため、さらにpstfb_B1で30°回転させる。その後、位置検出器5により回転子の移動が検出されるまで、q軸電流指令値を上げる。
 q軸電流指令値をiqref_C1まで上げたときに可動子の移動が検出され、q軸電流指令生成器6はq軸電流指令値をiqref_C1のまま一定時間印加する信号を生成する。このとき移動方向が負であると磁極位置調整器10が判断したため、磁極位置は負方向に20°回転させる。一定時間経過後はふたたびq軸電流指令値を上げる。
 q軸電流指令値がiqref_D1に到達したとき、回転子の移動が検出されたためq軸電流指令生成器6はq軸電流指令値を一定に保つ。このときの移動方向は正方向であると判定されたため、磁極位置調整器は磁極位置を正方向へ10°回転させる。
 これ以降はq軸電流指令値を磁極位置推定処理における最大値iqref_maxまで上げたが回転子の移動が検出されなかったため、磁極位置調整器10は磁極がd軸上180°の位置まで来たと判断し、現在の磁極位置誤差角θerrを実測磁極位置として記憶する。
 本実施例でのq軸電流指令印加方法は、小さなq軸電流指令の状態で磁極位置を調整することが期待できるため、回転子(可動子)の移動量を抑える効果が期待できる。上記で説明した以外の構成・方法については実施例1と同様であるため、説明を省略する。
 実施例3は、実施例1で示した磁極位置誤差角θerrの調整時、磁極位置変化量θchgを180°以上とした例について図7,8を用いて説明する。
 q軸電流指令が小さい段階では電動機に加わる電力が小さく、可動子の現在位置posfbは変化しない。q軸電流指令の印加量を徐々に大きくすると、電動機に加わるトルクが徐々に大きくなりposfb_A付近で可動子が移動し始める。可動子がposfb_A地点まで移動した段階では、移動方向が正方向かつq軸電流指令が正方向であるため、磁極位置調整器10は電動機の磁極位置方向が実際のq軸方向にあると判定する。
 現在位置posfbと基準現在位置posfb_initの差分posfb_errが磁極位置変更判定値poserr_jdgより大きくなった場合、電動機との磁極位置誤差角θerrを調整する必要ありと判断し、磁極位置調整器10は電動機との磁極位置誤差角θerrを+方向に210°調整する。
 その後、posfb_B地点で可動子は負方向に動いたため、磁極位置調整器10は電動機の磁極位置方向が実際のq軸に対して負方向にあると判定する。磁極位置調整器10は電動機との磁極位置誤差角θerrを-方向に200°調整する。
 posfb_C地点では電動機は正方向に動いたため、posfb_A地点と同じ向きに電動機との磁極位置誤差角θerrを+方向に190°調整する。
 posfb_D地点では電動機が負方向に動いたため、posfb_C地点で電動機との磁極位置誤差角θerrを正方向にずらしたことにより、再び負のq軸方向となった。そのため、posfb_B地点と同様に電動機との磁極位置誤差角θerrを-方向に170°調整する。
 その後q軸電流指令を磁極位置推定処理における最大値(iqref_max)まで上げても可動子の移動偏差posfb_errは0のままのため、磁極位置調整器10は現在の磁極位置θDがd軸上であると判定し、θDを実測磁極位置として記憶する。
 実測磁極位置が記憶された後はposfb_E地点に示す通り磁極位置をさらに-90°回転させた磁極位置を制御開始磁極位置として記憶し、磁極位置推定処理を終了する。
 磁極位置推定処理を開始する際に仮q軸方向(制御装置101が認識しているq軸方向)が実際の電動機のd軸方向付近であった場合、180°以下の調整値を用いると可動子は正方向に動作し続けるため、磁極位置調整中の可動子の移動量が大きくなる可能性がある。
 本実施例の磁極位置推定方法によれば、磁極位置誤差角θerrを180°以上ずらすため、磁極位置方向が反対方向に向かうこととなり、可動子の移動方向が一定でなくなり、磁極位置調整中の移動量を抑える効果が期待できる。
 なお、d軸方向に磁極位置調整後は、磁極位置方向がd軸逆方向、又はd軸正方向である可能性があるため、磁極位置を-90°ずらした後に、小さなq軸電流指令を印加し、モータ駆動方法を確認する。q軸電流指令が正の値であるのに対し、電動機が正方向に移動すれば制御装置側が認識する磁極位置方向が実際のq軸方向であり、負方向に移動すれば制御装置側が認識する磁極位置方向が実際のq軸と逆方向であるため180°ずらして制御開始磁極位置を記憶する。これにより、より正確に磁極位置推定を行うことが可能となる。
 上記で説明した以外の構成・方法については実施例1と同様であるため、説明を省略する。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
 1 電動機
 2 …駆動対象負荷
 3 連結軸
 4 電力変換器
 5 位置検出器
 6 q軸電流指令生成器
 7 電流検出器
 8 dq変換部
 9 電流制御器
 10 磁極位置調整器
 11 3相変換部
 12 電気角演算部
 101 制御装置
 

Claims (12)

  1.  可動子と固定子を備える電動機を制御する制御装置であって、
     磁極位置の初期位置を記憶し、磁極位置を回転させる磁極位置調整器と、
     前記電動機にq軸電流指令を出力するq軸電流指令生成器と、
     前記q軸電流指令に基づいて電力を前記コイルに供給する電力変換器と、
     電動機の可動子の移動量および移動方向を検出する位置検出器と、を有し、
     前記磁極位置調整器は、前記q軸電流指令が出力された後、前記位置検出器が検出した前記移動方向に応じて磁極位置を正方向或いは負方向に回転させ、
     前記磁極位置調整器は、前記可動子の移動量が0となった磁極位置を実測磁極位置として、前記実測磁極位置を-90度回転させた磁極位置を制御開始位置としてそれぞれ記憶するものである制御装置。
  2.  請求項1に記載の制御装置であって、
     前記q軸電流指令生成器は、前記可動子の移動量が0になるまで徐々にq軸電流指令値を増大させるものである制御装置。
  3.  請求項1に記載の制御装置であって、
     前記磁極位置調整器は、前記移動量が0となった複数の磁極位置を平均し、実測磁極位置として記憶するものである制御装置。
  4.  請求項1に記載の制御装置であって、
     前記q軸電流指令生成器は、前記移動量が0となったあとも徐々にq軸電流指令値を増大させ、前記可動子が再度移動した場合には、前記磁極位置調整器が磁極位置を再度回転させるものである制御装置。
  5.  請求項1に記載の制御装置であって、
     前記磁極位置調整器が、前記q軸電流指令値にの大きさに応じて磁極位置を回転させる量を小さくするものである制御装置。
  6.  請求項1に記載の制御装置であって、
     前記磁極位置調整器は、磁極位置を回転させた回数が閾値以下である場合に前記初期位置を変更するものである制御装置。
  7.  磁極の初期位置を設定する第1ステップと、
     q軸電流指令値を徐々に上げ、可動子の動作方向及び移動量を検出する第2ステップと、
     前記動作方向が正の場合に磁極位置を180度に向けて正方向に回転させ、前記動作方向が負の場合に磁極位置を180度に向けて負方向に回転させる第3ステップと、
     前記第3ステップにおいて、前記可動子の移動量が0となったときの磁極位置を、実測磁極位置として記憶する第4ステップと、
     前記実測磁極位置を-90度回転させた磁極位置を、制御開始位置として記憶する第5ステップと、を備える磁極位置推定方法。
  8.  請求項7に記載の磁極位置推定方法であって、
     前記第4ステップでは、可動子の移動量が0になるまで徐々にq軸電流指令値を増大させるものである磁極位置推定方法。
  9.  請求項7に記載の磁極位置推定方法であって、
     前記第4ステップでは、前記移動量が0となった複数の磁極位置を平均し、実測磁極位置として記憶するものである磁極位置推定方法。
  10.  請求項7に記載の磁極位置推定方法であって、
     前記第4ステップでは、前記移動量が0となったあとも徐々にq軸電流指令値を増大させ、前記可動子が再度移動した場合には、前記第3ステップにより磁極位置を再度回転させるものである磁極位置推定方法。
  11.  請求項7に記載の磁極位置推定方法であって、
     前記第3ステップでは、前記q軸電流指令値の大きさに応じて、磁極位置を回転させる量を小さくするものである磁極位置推定方法。
  12.  請求項7に記載の磁極位置推定方法であって
     前記第3ステップを実行した実行回数が閾値以下である場合に前記初期位置を変更する第6ステップを備えるものである磁極位置推定方法。
     
PCT/JP2018/048073 2018-02-01 2018-12-27 磁極位置推定方法及び制御装置 WO2019150868A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207021393A KR102459776B1 (ko) 2018-02-01 2018-12-27 자극 위치 추정 방법 및 제어 장치
CN201880088148.1A CN111656675B (zh) 2018-02-01 2018-12-27 磁极位置推测方法和控制装置
EP18904453.0A EP3748840B1 (en) 2018-02-01 2018-12-27 Magnetic pole position estimation method and control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018016143A JP6966344B2 (ja) 2018-02-01 2018-02-01 磁極位置推定方法及び制御装置
JP2018-016143 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019150868A1 true WO2019150868A1 (ja) 2019-08-08

Family

ID=67478016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048073 WO2019150868A1 (ja) 2018-02-01 2018-12-27 磁極位置推定方法及び制御装置

Country Status (6)

Country Link
EP (1) EP3748840B1 (ja)
JP (1) JP6966344B2 (ja)
KR (1) KR102459776B1 (ja)
CN (1) CN111656675B (ja)
TW (1) TWI697199B (ja)
WO (1) WO2019150868A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460283A (zh) * 2019-08-14 2019-11-15 苏州汇川技术有限公司 电机磁极位置辨识方法、系统、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595870A (en) * 1984-08-07 1986-06-17 Anorad Corporation Linear motor
WO2007114058A1 (ja) * 2006-03-31 2007-10-11 Thk Co., Ltd. 永久磁石同期モータの磁極位置検出方法
WO2011115098A1 (ja) * 2010-03-17 2011-09-22 Thk株式会社 制御装置、及び制御方法
JP2014036450A (ja) 2012-08-07 2014-02-24 Panasonic Corp モータ駆動装置
WO2017022588A1 (ja) * 2015-08-04 2017-02-09 Thk株式会社 リニアアクチュエータの制御装置及び制御方法
JP2018016143A (ja) 2016-07-26 2018-02-01 トヨタ自動車株式会社 バッテリ冷却装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4239372B2 (ja) * 1999-09-17 2009-03-18 株式会社安川電機 Ac同期モータの初期磁極推定装置
JP4631514B2 (ja) * 2005-04-07 2011-02-16 パナソニック株式会社 磁極位置推定方法
CN101821942B (zh) * 2007-10-12 2012-08-08 株式会社安川电机 电动机控制装置与磁极位置估计方法
JP5194838B2 (ja) 2008-01-29 2013-05-08 三菱電機株式会社 交流同期モータの磁極位置推定方法
US8310182B2 (en) * 2008-08-28 2012-11-13 Thk Co., Ltd. Linear synchronous motor control method and control apparatus
WO2012056844A1 (ja) * 2010-10-26 2012-05-03 村田機械株式会社 リニアモータ制御装置
JP5976421B2 (ja) * 2012-06-27 2016-08-23 株式会社東芝 磁極極性判定装置、永久磁石同期電動機制御装置及び磁極極性判定方法
WO2015019495A1 (ja) * 2013-08-09 2015-02-12 株式会社安川電機 モータ駆動システムおよびモータ制御装置
JP5820446B2 (ja) * 2013-09-13 2015-11-24 Thk株式会社 リニアモータの制御装置、及び制御方法
FR3016256B1 (fr) * 2014-01-07 2016-01-22 Leroy Somer Moteurs Procede pour determiner la polarite d'un pole de rotor de machine electrique tournante
JP6675579B2 (ja) 2015-04-02 2020-04-01 富士電機株式会社 永久磁石形同期電動機の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595870A (en) * 1984-08-07 1986-06-17 Anorad Corporation Linear motor
WO2007114058A1 (ja) * 2006-03-31 2007-10-11 Thk Co., Ltd. 永久磁石同期モータの磁極位置検出方法
WO2011115098A1 (ja) * 2010-03-17 2011-09-22 Thk株式会社 制御装置、及び制御方法
JP2014036450A (ja) 2012-08-07 2014-02-24 Panasonic Corp モータ駆動装置
WO2017022588A1 (ja) * 2015-08-04 2017-02-09 Thk株式会社 リニアアクチュエータの制御装置及び制御方法
JP2018016143A (ja) 2016-07-26 2018-02-01 トヨタ自動車株式会社 バッテリ冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748840A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460283A (zh) * 2019-08-14 2019-11-15 苏州汇川技术有限公司 电机磁极位置辨识方法、系统、设备及存储介质
CN110460283B (zh) * 2019-08-14 2021-07-23 苏州汇川技术有限公司 电机磁极位置辨识方法、系统、设备及存储介质

Also Published As

Publication number Publication date
KR20200100804A (ko) 2020-08-26
CN111656675B (zh) 2023-04-28
TWI697199B (zh) 2020-06-21
EP3748840A1 (en) 2020-12-09
EP3748840B1 (en) 2022-11-23
KR102459776B1 (ko) 2022-10-28
TW201935842A (zh) 2019-09-01
EP3748840A4 (en) 2021-11-03
JP2019134620A (ja) 2019-08-08
JP6966344B2 (ja) 2021-11-17
CN111656675A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
JP6008264B2 (ja) 永久磁石型同期電動機の磁極位置検出装置
US8593087B2 (en) Magnetic pole position estimation method for AC synchronous motor
EP2251972B1 (en) Method and hardware system for driving a stepper motor in feed-forward voltage mode
JPWO2007034689A1 (ja) Ac同期モータの初期磁極位置推定装置およびその方法
JP6488626B2 (ja) モータ制御装置、モータシステム、モータ制御プログラム
JP5396906B2 (ja) 電動機の駆動制御装置
JP4979646B2 (ja) ステッピングモータ駆動制御装置
JP2005204406A (ja) 角度差検出方法及び同期電動機の制御装置
JP5403243B2 (ja) 永久磁石同期モータの制御装置
JP7361924B2 (ja) モータ制御装置、モータ制御方法
JP4631514B2 (ja) 磁極位置推定方法
KR102663611B1 (ko) 레졸버 옵셋 보정 방법 및 시스템
WO2019150868A1 (ja) 磁極位置推定方法及び制御装置
JP2018186640A (ja) モータ制御装置およびモータ制御装置の制御方法
JP2013141345A (ja) モータ制御装置及び空気調和機
US11303239B2 (en) Magnetic pole initial position detection device using direct-current excitation method and magnetic pole position detection device
JP2018085851A (ja) 可変磁束モータの電流制御方法、及び電流制御装置
WO2021200389A1 (ja) モータ制御装置、モータシステム及びモータ制御方法
JP5957696B2 (ja) モータ駆動装置
JP2017205017A (ja) 空気調和機のモータ制御装置及び空気調和機
US9806652B2 (en) System of controlling induction electric motor
JP2007082380A (ja) 同期モータ制御装置
JP2013042662A (ja) モータ磁極位相の調整方法
JP2007116759A (ja) 同期電動機の磁極検出方法
JP2008236971A (ja) モータ制御装置及び、モータ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207021393

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018904453

Country of ref document: EP

Effective date: 20200901