TW201935842A - 磁極位置推定方法及控制裝置 - Google Patents
磁極位置推定方法及控制裝置 Download PDFInfo
- Publication number
- TW201935842A TW201935842A TW108102505A TW108102505A TW201935842A TW 201935842 A TW201935842 A TW 201935842A TW 108102505 A TW108102505 A TW 108102505A TW 108102505 A TW108102505 A TW 108102505A TW 201935842 A TW201935842 A TW 201935842A
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetic pole
- pole position
- axis current
- current command
- motor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 112
- 238000005259 measurement Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 83
- 230000008859 change Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/34—Arrangements for starting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P1/00—Arrangements for starting electric motors or dynamo-electric converters
- H02P1/02—Details of starting control
- H02P1/04—Means for controlling progress of starting sequence in dependence upon time or upon current, speed, or other motor parameter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P1/00—Arrangements for starting electric motors or dynamo-electric converters
- H02P1/16—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
- H02P1/46—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/24—Vector control not involving the use of rotor position or rotor speed sensors
- H02P21/32—Determining the initial rotor position
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/06—Linear motors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
於本發明之電動機之磁極位置推定中,可抑制動子之移動量。本發明之磁極位置推定方法具備:第1步驟,其設定磁極之初始位置;第2步驟,其逐漸提高q軸電流指令值,並檢測動子之動作方向及移動量;第3步驟,其於上述動作方向為正之情形時使磁極位置朝正方向旋轉180度,於上述動作方向為負之情形時使磁極位置朝負方向旋轉180度;第4步驟,其將上述第3步驟中上述動子之移動量為0時之磁極位置記憶為實測磁極位置;及第5步驟,其將使上述實測磁極位置旋轉-90度之磁極位置記憶為控制開始位置。
Description
本發明關於一種電動機之磁極位置推定方法及裝置。
於電動機控制中,若於q軸方向(電流相位90度)流通電流,則驅動電動機,且即便於與q軸方向偏移90°之d軸正方向(電流相位0度)、或d軸負方向(電流相位180度)繼續流通電流,電動機亦不受驅動。因此,當控制裝置側辨識到之磁極位置、與實際之電動機之磁極位置不同時,無法進行正確之控制而朝與欲驅動之方向相反之方向驅動電動機、或使其移動大於欲驅動之移動量等。因此,於開始電動機之控制時,必須使控制裝置側辨識到之磁極位置與電動機之實際磁極位置一致。
作為此種磁極位置推定方法例如有專利文獻1。於專利文獻1,記載有「於基於起始位置即假定之磁極位置決定施加之電流相位之同步電動機之磁極位置推定方法中,對以假定之磁極位置為基準將電角度半週期分割成N個之相位施加電流,判定此時之移動方法(+、0、-)並決定電流相位」。
[先前技術文獻]
[專利文獻]
[先前技術文獻]
[專利文獻]
[專利文獻1]日本專利特開2014-36450號公報
[發明所欲解決之問題]
於專利文獻1之方法中,對以假定之磁極位置為基準將電角度半週期分割成N個之相位施加電流,並分別檢測此時之移動方向D(+、0、-)。接著,記憶移動方向反轉之二個相位Dn+與Dn-,並檢測中間相位之移動方向。若中間相位之移動方向Dn1為+,則接下來檢測Dn1與Dn-中間之移動方向,藉由重複此而探索移動方向為0之相位資訊。記載有可藉由對該磁極位置推定動作所用之電流指令值使用其前一級之q軸電流指令之絕對值與用於磁極位置推定而預先設定之電流指令值中較小者,而控制電動機之移動速度不超過速度限制指令。
然而,如專利文獻1,於電流指令為步進狀之信號時,於磁極位置與設想偏移180°之情形時,有電動機之移動量過大之虞。又,於電流指令之步進信號較大,且未正確地設定速度控制器之控制增益之情形時,有無法正確地限制速度限制指令之虞。
[解決問題之技術手段]
[解決問題之技術手段]
為了解決上述之問題,應用申請專利範圍記載之發明。即,一種磁極位置推定方法,其具備:第1步驟,其設定磁極之初始位置;第2步驟,其逐漸提高q軸電流指令值,並檢測動子之動作方向及移動量;第3步驟,其於上述動作方向為正之情形時使磁極位置朝正方向旋轉180度,於上述動作方向為負之情形時使磁極位置朝負方向旋轉180度;第4步驟,其將上述第3步驟中上述動子之移動量為0時之磁極位置記憶為實測磁極位置;及第5步驟,其將使上述實測磁極位置旋轉-90度之磁極位置記憶為控制開始位置。
[發明之效果]
[發明之效果]
根據本發明之一態樣,可抑制電動機之移動量並推定高精度之磁極位置,及基於此而進行電動機控制。本發明之其他目的、特徵及優點可自與隨附圖式相關之以下本發明之實施例之記載而明瞭。
[參照引用]
本申請案主張2018年2月1日申請之日本專利申請案第2018-016143號之優先權,並藉由參照其內容而併入於本申請案。
本申請案主張2018年2月1日申請之日本專利申請案第2018-016143號之優先權,並藉由參照其內容而併入於本申請案。
於電動機控制中,在驅動電動機時,若於q軸方向流通電流,則驅動電動機,且即便於與q軸方向偏移90°之d軸方向繼續流通電流,電動機亦不受驅動。
於本發明中,每當一面將電流施加至電動機,一面判定動子已移動時,調整與電動機之磁極位置誤差角度θerr,並以施加至電動機之q軸電流之方向變為與實際之d軸相反方向之方式調整。即,如下調整之方法:於電流施加結束後將控制裝置101側辨識到之磁極位置偏移90°,藉此使控制裝置側辨識到之q軸方向與電動機之q軸方向一致。
以下,對電動機之磁極位置推定法及裝置進行說明,顯示實施例之方法:一面驅動電動機一面使磁極位置變化,將磁極位置調整為電動機不依電流值移動之d軸方向,調整結束後,偏移到q軸方向。
[實施例1]
[實施例1]
於本實施例中,說明將本發明應用於直動型電動機(線性馬達)之例。顯示實施例之第1機構、第2機構、及第3機構,其等用以藉由q軸電流指令產生器產生之q軸電流指令(亦被稱為「轉矩指令」)驅動電動機,且根據動子之移動方向及移動量,調整與電動機之磁極位置誤差角度θerr。
首先,顯示使用控制裝置101執行磁極位置推定功能之控制塊之例。圖1係推定本發明之實施形態之電動機之磁極位置,並推定電動機控制裝置內具備之電動機之磁極位置與實際之電動機之磁極位置之誤差即磁極位置誤差角度θerr的控制方塊圖。
圖1係本發明實施例之同步電動機之控制裝置之整體概略構成圖。同步電動機1包含定子與動子(未圖示),負載2為由電動機1驅動之驅動對象負載。控制裝置101為將電力供給至電動機1並控制電動機之裝置。作為控制裝置101列舉例如反相器或伺服放大器等。對同步電動機1自電力轉換器4施加3相交流電壓。以電流檢測器7檢測流通於同步電動機1之3相交流電流I1。位置檢測器5產生對應於電動機動子之移動量posfb之脈衝行。因此,若以電角度運算部12計算該位置檢測器5之輸出脈衝,則可知曉電動機動子之磁極位置θE。
於磁極位置調整器10中,藉由稍後敘述之磁極位置推定法,基於該檢測電角度θE,輸出修正後(推定)電角度θ^。推定電角度θ^藉由將電動機動子之磁極位置θE、與磁極位置誤差角度θerr相加而算出。於dq轉換部8中,基於該推定電角度θ^,將3相檢測電流I1向2相檢測電流iq及id轉換。
q軸電流指令產生器6基於q軸電流指令值iqref,運算q軸電流指令值iqref。電流控制器9對q軸電流指令值iqref及d軸電流指令值idref,進行用以使dq轉換部8之輸出值即q軸電流檢測值iq及d軸電流檢測值id分別一致之運算,並輸出2相指令電壓vqref及vdref。3相轉換部11使用推定電角度θ^將2相指令電壓vqref及vdref轉換成3相指令電壓V1ref。
磁極位置調整器10於執行磁極位置推定處理時,分別自位置檢測器5接收動子之當前位置posfb,自q軸電流指令產生器6接收q軸電流指令iqref,自電角度運算部12接收電動機動子之磁極位置θE,並根據動子之移動方向及移動量調整磁極位置誤差角度θerr。於磁極位置調整器10中,使用由位置檢測器5獲得之當前位置posfb,調整磁極位置誤差角度θerr以使電動機控制裝置辨識到之q軸方向變為電動機之q軸方向,並將該調整結果反映至電流控制器9而進行電動機控制。
圖2係就與電動機之磁極位置誤差角度θerr之調整進行顯示。曲線圖之橫軸為實際之d軸,縱軸為實際之q軸。θinit為電動機之磁極位置與磁極位置推定開始時控制裝置辨識到之磁極位置的誤差角度,θA~θD分別為波形100所示之q軸電流指令iqref_A~iqref_D時之電動機之磁極位置與磁極位置推定時控制裝置辨識到之磁極位置的誤差角度。與電動機之磁極位置誤差角度θerr係由於無法在磁極位置推定開始前辨識與電動機之誤差角度,故設為θerr=0而開始磁極位置推定。
於本發明中,調整磁極位置誤差角度θerr,將與控制裝置辨識到之q軸方向為實際之d軸之相反方向之電動機的磁極位置推定D時誤差角度θD調整為目標之磁極位置。即,控制裝置101自初始之磁極位置θinit之地點設為磁極位置誤差角度θerr=0而開始磁極位置推定,使控制裝置辨識到之磁極逐漸旋轉,並將到達θD之磁極位置記憶為實測磁極位置。隨後,當控制開始時,使實測磁極位置θD旋轉-90°,並將q軸上(90°之位置)之磁極位置記憶為控制開始磁極位置。具體之說明稍後敘述。
圖3係分別顯示以下內容之曲線圖,即,使用圖1所示之電動機控制裝置之控制塊推定電動機之磁極位置時之q軸電流指令波形、及成為用以變更電動機之當前位置posfb與磁極位置之基準位置的基準當前位置posfb_init與其偏差值posfb_err、與電動機之磁極位置誤差角度θerr。
最上方之波形為自q軸電流指令產生器6輸出之q軸電流指令iqref之波形。q軸電流指令iqref在開始磁極位置推定處理後,逐漸地增加q軸電流指令施加量,直至施加至q軸電流指令最大值iqref_max。將此時之動子之當前位置波形顯示為posfb。
posfb_init為表示判定移動量之基準位置posfb_init之曲線圖。判定基準位置為每當磁極位置誤差角度θerr改變時更新之值。
其下方之波形為動子之當前位置posfb與基準當前位置posfb_init之差值posfb_err之波形。基於該移動量及移動方向(+方向或-方向),磁極位置調整器10判定當前之磁極位置位於q軸方向(圖2之圓之上半部分)還是位於-q軸方向(圖2之圓之下半部分)。
θerr為與電動機之磁極位置誤差角度θerr。圖中θerr表示將磁極位置推定開始時之磁極位置誤差角度θerr設為0,且將磁極逆時針旋轉之情形顯示為正方向,將磁極順時針旋轉之情形顯示為負方向。
接著,使用圖2、圖3說明本實施例之磁極位置推定之順序。
電動機之動子根據產生施加於電動機控制裝置101之電流控制器之q軸電流指令iqref之q軸電流指令,當前位置posfb變化。於q軸電流指令較小之階段,施加於電動機之力較小而電動機之當前位置posfb不改變。當逐漸地增大q軸電流指令之施加量時,由於施加於電動機之轉矩逐漸增大,故在posfb_A之地點,電動機開始移動。由於電動機在posfb_A之地點朝正方向移動且q軸電流指令為正方向,故磁極位置調整器10判定電動機之磁極位置方向θA為正的q軸方向。
又,於當前位置posfb與基準當前位置posfb_init之差值posfb_err大於磁極位置變更判定值poserr_jdg之情形時,判斷為必須調整與電動機之磁極位置誤差角度θerr,磁極位置調整器10將與電動機之磁極位置誤差角度θerr朝+方向調整30度。即,進行使當前之磁極位置朝正方向旋轉30°之處理。
由於電動機在posfb_B地點亦繼續朝正方向移動,故與posfb_A地點同樣地,將與電動機之磁極位置誤差角度θerr朝+方向調整30°。即,進行使當前之磁極位置朝正方向旋轉30°之處理。
由於電動機在posfb_C地點朝負方向移動,故與posfb_A地點反向地,將與電動機之磁極位置誤差角度θerr朝-方向調整20°。即,進行使當前之磁極位置朝負方向旋轉20°之處理。
由於電動機在posfb_D地點朝正方向移動,故藉由在posfb_C地點,使與電動機之磁極位置誤差角度θerr朝一方向偏移,而再次成為正的q軸方向。因此,與posfb_A地點同樣地,將與電動機之磁極位置誤差角度θerr朝+方向調整。
隨後,即便將q軸電流指令提高至磁極位置推定處理之最大值(iqref_max),動子之移動偏差posfb_err仍保持為0,因此磁極位置調整器10判定當前之磁極位置θD在d軸上,並將θD記憶為實測磁極位置。
記憶實測磁極位置後,如posfb_E地點所示,將使磁極位置進而旋轉-90°之磁極位置記憶為控制開始磁極位置,並結束磁極位置推定處理。posfb_D地點之磁極位置誤差角度θerr與磁極位置推定開始時之磁極位置誤差角度θinit之關係滿足式(1)。
(數1)
θD=θerr+θinit+90……式(1)
於本實施例中,由於posfb_D地點之θerr為50°,posfb_D地點之θD為180°,故算出磁極位置推定開始時之磁極位置誤差角度θinit=40°。因此,於將磁極位置推定開始時之磁極位置誤差角度θerr設為0時,與實際之q軸方向一致之磁極位置誤差角度θerr為-40°。
θD=θerr+θinit+90……式(1)
於本實施例中,由於posfb_D地點之θerr為50°,posfb_D地點之θD為180°,故算出磁極位置推定開始時之磁極位置誤差角度θinit=40°。因此,於將磁極位置推定開始時之磁極位置誤差角度θerr設為0時,與實際之q軸方向一致之磁極位置誤差角度θerr為-40°。
另,圖3之說明中使磁極每次旋轉30°,符號反轉後每次旋轉20°,但無須一定為30°之間隔。亦可為例如每次旋轉210°,或每次以不同之角度旋轉而設定為任意之角度。
圖4係顯示使用圖1所示之電動機控制裝置之控制塊,推定電動機之磁極位置之處理之順序的流程圖。
首先,為了實施電動機之磁極位置推定法,於處理150中開始磁極位置推定法。
於處理151中,將用以使電動機動作之運轉條件設定於控制裝置101。運轉條件指設定自q軸電流指令產生器6輸出之q軸電流指令iqref之最大值iqref_max、或q軸電流指令iqref增加中之q軸電流指令之斜率、或進行幾次求出實測磁極位置之處理、磁極位置調整判定值poserr_jdg等磁極位置推定所需之條件,並移至處理152。
於處理152中,控制裝置101根據自q軸電流指令產生器6輸出之q軸電流指令iqref使電動機實際動作。
於處理153中,位置檢測器5測定動子之當前位置posfb,磁極位置調整器10判定動子是否自基準當前位置posfb_init朝正方向或負方向移動了變更判定值poserr_jdg以上。於判定為移動了poserr_jdg以上之情形時,推進至處理154,磁極位置調整器10使磁極位置朝與移動方向相同之方向旋轉,而調整與電動機之磁極位置誤差角度θerr。藉由重複處理153與處理154而調整於電動機流通之電流之磁極位置方向使其變為d軸方向。
於動子之移動量為poserr_jdg以下之情形時,推進至處理155。於處理155中,判定是否以處理151中設定之運轉條件繼續磁極位置推定。例如,由於動子之移動量為poserr_jdg以下,故有判斷為電動機之磁極位置方向在d軸上之情形。於另一例中,於q軸電流指令iqref以q軸電流指令最大值iqref_max持續施加固定時間之狀態下,於動子之移動量為poserr_jdg以下時有判斷為電動機之磁極位置方向在d軸上之情形。根據處理155之判定,於不滿足結束條件之情形時推進至處理153,並繼續同一條件下之磁極位置推定。於滿足結束條件之情形時,推進至處理156。於處理156中,磁極位置調整器10將該磁極位置記憶為實測磁極位置。
於處理157中,判定磁極位置推定處理是否進行了處理151中設定之次數。例如,於本發明中,由於朝一方向施加q軸電流指令值,故在1種方式之運轉條件下,可能受到電動機之靜止摩擦、動摩擦之影響。因此,可藉由將磁極位置推定開始時之磁極位置偏移0°、90°、180°、270°,進行合計4次驅動,而除一方向外,還朝相反之方向驅動馬達。因此,磁極位置調整器10判定是否就各個初始位置之每一位置記憶了實測磁極位置。於實測磁極位置之個數不滿足設定值之情形時返回至處理151,變更磁極初始位置之設定,並再度推進至記憶實測磁極位置之處理為止。
於實測磁極位置之個數滿足設定值之情形時,推進至處理158,磁極位置調整器10判斷為完成了處理151中設定之次數之測定,並將所有實測磁極位置之平均值記憶為最終之實測磁極位置,將平均值偏移-90°而得之值記憶為控制開始磁極位置。隨後移至處理159並結束磁極位置推定。隨後刪除用於算出平均值之磁極位置之資訊。刪除之時序可於每次算出平均值時刪除,亦可於每月1次等既定之時序刪除。
另,於求出實測磁極位置之次數設定為1次之情形時,直接將實測磁極位置偏移-90°而得之位置設為控制開始磁極位置。
圖5(a)、(b)係顯示圖4所示之處理153~處理156之動作之詳細順序的流程圖。
磁極位置推定時之電動機根據處理152開始動作,自q軸電流指令產生器6施加q軸電流指令並移至處理201。於處理201中,q軸電流指令產生器6進行q軸電流指令值之增加判定。於當前之q軸電流指令值iqref未達處理151中設定之q軸電流指令最大值iqref_max之情形時,移至處理202。於處理202中增加q軸電流指令值iqref並移至處理203。於q軸電流指令值為q軸電流指令最大值iqref_max以上之情形時,不增加q軸電流指令值iqref並移至處理203。
於處理203中,於q軸電流指令值為某任意值以上之情形時,移至處理204。處理204係判斷為在任意之q軸電流指令值以上時磁極位置變更時之變化量較大之情形時,將磁極位置變化量θchg減小至某閾值之處理。其係由於若在q軸電流指令iqref增大時與電動機之磁極位置誤差角度θerr大幅變化,則因與電動機之磁極位置誤差角度θerr之劇烈變化,而電動機之移動量有可能增大。因此,即為於固定之q軸電流指令值以上之情形時,藉由減小磁極位置變化量θchg而減小磁極位置之劇烈變化的處理。另,本處理可對複數個q軸電流指令設定各個閾值而縮小變化量。例如,若q軸電流指令值為q軸電流指令值最大值之0~30[%],則將磁極位置變化量之最大值設為30°,若q軸電流指令值為q軸電流指令值最大值之30~70[%],則將磁極位置變化量之最大值設為20°,若q軸電流指令值為q軸電流指令值最大值之70~100[%],則將磁極位置變化量θchg之最大值設為5°。處理204結束後移至處理205。
於處理205中,磁極位置調整器10判定為磁極位置變更次數為處理151中預先指定之規定次數以下之情形時,移至處理206。
處理206為變更開始之磁極位置而重新開始磁極位置推定之處理。其係於例如磁極位置推定之開始位置自一開始便為與d軸方向正相反(0°之位置)之情形時,電動機根本未動作而結束磁極位置推定。於該情形時,由於磁極位置係將與本來目標之磁極位置正相反之位置辨識為正確之位置,故使磁極位置旋轉-90°,而有將控制開始磁極位置設定為負的q軸方向(270°)之虞。為了避免於此,設定為於磁極位置推定時實施規定值次數之磁極位置推定。
另,於處理205中,可對複數個q軸電流指令,設定各自之規定值次數。例如,於q軸電流指令值達到q軸電流指令值最大值之30[%],電動機仍一次都未移動之情形,q軸電流指令值達到q軸電流指令值最大值之70[%],電動機僅移動2次之情形,q軸電流指令值達到q軸電流指令值最大值之100[%],電動機僅移動5次之情形時,移至處理206。於處理206結束後通過處理207移至處理250。
又,於處理205中,於判定為磁極位置變更次數為處理151中設定之規定次數以上之情形時,移至圖5(b)之處理251。
處理251為磁極位置調整器10判斷電動機之當前位置posfb與基準當前位置posfb_init之差是否大於預先在處理151中設定之磁極位置變更判定值poser_jdg的處理。根據本處理,判定動子是否已朝正方向移動。於兩者之差滿足以下式(2)之情形時,判斷為動子已朝正方向移動,並移至處理252。於不滿足式(2)之情形時,判斷為動子未朝正方向移動,並移至處理261。
(數2)
posfb-posfb_init>poser_jdg……式(2)
於處理252中,由於動子朝正方向移動且q軸電流指令為正方向,故判斷為磁極位置位於正的q軸方向。因此,將磁極位置設為θerr+θchg,使磁極朝+方向變化。又,於處理253中,磁極位置變更後,以當前位置posfb更新用以判定磁極位置發生了新變化之基準位置即基準當前位置posfb_init。更新後移至處理254。
posfb-posfb_init>poser_jdg……式(2)
於處理252中,由於動子朝正方向移動且q軸電流指令為正方向,故判斷為磁極位置位於正的q軸方向。因此,將磁極位置設為θerr+θchg,使磁極朝+方向變化。又,於處理253中,磁極位置變更後,以當前位置posfb更新用以判定磁極位置發生了新變化之基準位置即基準當前位置posfb_init。更新後移至處理254。
於處理254中,藉由減小磁極位置之變化量,而使磁極位置逐漸地縮小而減少。例如,於磁極位置位於105°之位置,目標磁極位置為180°,磁極位置變化量為30°之情形時,根據第1次之磁極位置變更變為135°,根據第1次之磁極位置變更變為164°,以下可調整為192°、165°、191°、166°……直至調整成180°為止。另,可將位置變化量之減少量設定為任意值。處理254結束後移至處理261。
處理261為判斷動子之當前位置posfb與基準當前位置posfb_init之差是否小於預先在處理151中設定之磁極位置變更判定值poser_jdg×-1的處理。根據本處理,判定動子是否已朝負方向移動。於滿足式(3)之情形時,判斷為動子已朝負方向移動,並移至處理262。另,於不滿足式(3)之情形時,判斷為動子未朝負方向移動,並移至處理270。
(數3)
posfb-posfb_init<(poser_jdg×-1)……(式3)
於處理262中,由於電動機朝負方向動作,且q軸電流指令為正方向,故判斷為磁極位置位於負的q軸方向。因此,將磁極位置設為θerr-θchg,使磁極朝-方向旋轉。又,處理263、處理264分別與處理253、處理254同樣。更新後通過處理270移至處理209。
posfb-posfb_init<(poser_jdg×-1)……(式3)
於處理262中,由於電動機朝負方向動作,且q軸電流指令為正方向,故判斷為磁極位置位於負的q軸方向。因此,將磁極位置設為θerr-θchg,使磁極朝-方向旋轉。又,處理263、處理264分別與處理253、處理254同樣。更新後通過處理270移至處理209。
於處理209中,判定是否經過了處理151中預先指定之q軸電流指令施加時間,於已經過指定之時間之情形時移至處理210,並結束磁極位置推定時之電動機動作。於未經過指定時間之情形時,返回至處理201。
如以上所述,可藉由逐漸地提高q軸電流指令且根據移動量及移動方向使磁極位置旋轉,而將動子之移動量抑制為微小。尤其,於本實施例中列舉之直動型電動機之情形時,若動子大幅移動則有與電動機殼體等碰撞之虞或被殼體等阻礙移動而無法正確地實現磁極位置推定之虞,故本發明尤其有效。
另,於本實施例中使用直動型電動機進行了說明,但當然亦可應用於圓筒型之電動機。於應用於圓筒型電動機之情形時,動子相當於轉子。
[實施例2]
[實施例2]
實施例2為配合磁極位置調整而施加實施例1所示之磁極位置推定動作時要施加之q軸電流指令iq_ref,並將電動機設為包含定子與轉子之徑向間隙型電動機的例。
圖6係與圖3同樣地顯示q軸電流指令iqref或當前位置posfb、基準當前位置posfb_init等之時間經過之曲線圖。以下,使用圖6說明本實施例之待機動作時之順序。
首先,以恒定轉矩施加固定時間之q軸電流指令iqref。於即便施加固定時間而轉子(動子)亦不移動之情形時,進而提高q軸電流指令值並施加固定時間。
於檢測到動子之移動之情形時,保持q軸電流指令值為該值(iqref_A1)不變而施加固定時間,並調整磁極位置誤差角度θerr。由於使磁極位置誤差角度θerr旋轉30°後,轉子仍繼續移動,故進而以pstfb_B1使其旋轉30°。隨後,提高q軸電流指令值直至由位置檢測器5檢測到轉子之移動為止。
於將q軸電流指令值提高至iqref_C1時檢測到動子之移動,q軸電流指令產生器6產生保持iqref_C1不變而施加固定時間之q軸電流指令值之信號。此時,由於磁極位置調整器10判斷移動方向為負,故使磁極位置朝負方向旋轉20°。經過固定時間後再次提高q軸電流指令值。
由於在q軸電流指令值達到iqref_D1時,檢測到轉子之移動,故q軸電流指令產生器6將q軸電流指令值保持固定。由於判定此時之移動方向為正方向,故磁極位置調整器使磁極位置朝正方向旋轉10°。
於此之後,雖將q軸電流指令值提高至磁極位置推定處理之最大值iqref_max,但未檢測出轉子之移動,因而磁極位置調整器10判斷磁極到達d軸上180°之位置,並將當前之磁極位置誤差角度θerr記憶為實測磁極位置。
本實施例中之q軸電流指令施加方法可期待以較小之q軸電流指令之狀態調整磁極位置,故可期待抑制轉子(動子)之移動量之效果。關於上述說明以外之構成、方法,由於與實施例1同樣,故省略說明。
[實施例3]
[實施例3]
使用圖7、8說明實施例3,該實施例3係於調整實施例1所示之磁極位置誤差角度θerr時,將磁極位置變化量θchg設為180°以上之例。
於q軸電流指令較小之階段施加於電動機之電力較小,動子之當前位置posfb不變化。當逐漸增大q軸電流指令之施加量時,施加於電動機之轉矩逐漸增大,動子在posfb_A附近開始移動。於動子移動至posfb_A地點之階段,由於移動方向為正方向且q軸電流指令為正方向,故磁極位置調整器10判定電動機之磁極位置方向位於實際之q軸方向。
於當前位置posfb與基準當前位置posfb_init之差值posfb_err大於磁極位置變更判定值poserr_jdg之情形時,判斷為必須調整與電動機之磁極位置誤差角度θerr,磁極位置調整器10將與電動機之磁極位置誤差角度θerr朝+方向調整210°。
隨後,由於動子在posfb_B地點朝負方向移動,故磁極位置調整器10判定電動機之磁極位置方向相對於實際之q軸為負方向。磁極位置調整器10將與電動機之磁極位置誤差角度θerr朝-方向調整200°。
由於在posfb_C地點電動機朝正方向移動,故將與電動機之磁極位置誤差角度θerr朝與posfb_A地點相同之方向即+方向調整190°。
由於在posfb_D地點電動機朝負方向移動,故藉由在posfb_C地點將與電動機之磁極位置誤差角度θerr朝正方向偏移,而再次成為負的q軸方向。因此,與posfb_B地點同樣地將與電動機之磁極位置誤差角度θerr朝-方向調整170°。
隨後,即便將q軸電流指令提高至磁極位置推定處理之最大值(iqref_max),動子之移動偏差posfb_err仍保持為0,故磁極位置調整器10判定當前之磁極位置θD在d軸上,並將θD記憶為實測磁極位置。
記憶實測磁極位置後,如posfb_E地點所示,將使磁極位置進而旋轉-90°之磁極位置記憶為控制開始磁極位置,並結束磁極位置推定處理。
於開始磁極位置推定處理時,假定q軸方向(控制裝置101辨識到之q軸方向)為實際之電動機之d軸方向附近之情形時,若使用180°以下之調整值,則動子繼續朝正方向動作,因而有磁極位置調整中之動子之移動量增大之可能性。
根據本實施例之磁極位置推定方法,由於使磁極位置誤差角度θerr偏移180°以上,故磁極位置方向變為朝向相反方向,且動子之移動方向不固定,可期待抑制磁極位置調整中之移動量之效果。
另,由於在d軸方向上調整磁極位置後,磁極位置方向有可能為d軸反方向、或d軸正方向,故使磁極位置偏移-90°後,施加較小之q軸電流指令,並確認馬達驅動方法。針對q軸電流指令為正值,若電動機朝正方向移動,則控制裝置側辨識到之磁極位置方向為實際之q軸方向,若朝負方向移動,則控制裝置側辨識到之磁極位置方向為與實際之q軸相反之方向,因此,偏移180°並記憶控制開始磁極位置。藉此,可更正確地進行磁極位置推定。
關於上述說明以外之構成、方法,由於與實施例1同樣,故省略說明。
上述記載係就實施例而進行,但本發明並不限定於此,業者應明瞭於本發明之精神與隨附之申請專利範圍之範圍內可有各種變更及修正。
1‧‧‧電動機
2‧‧‧驅動對象負載
3‧‧‧連結軸
4‧‧‧電力轉換器
5‧‧‧位置檢測器
6‧‧‧q軸電流指令產生器
7‧‧‧電流檢測器
8‧‧‧dq轉換部
9‧‧‧電流控制器
10‧‧‧磁極位置調整器
11‧‧‧3相轉換部
12‧‧‧電角度運算部
101‧‧‧控制裝置
150~159‧‧‧處理
200~210‧‧‧處理
250~254‧‧‧處理
261~264‧‧‧處理
270‧‧‧處理
id‧‧‧d軸電流檢測值
idref‧‧‧d軸電流指令值
iq‧‧‧q軸電流檢測值
iqref‧‧‧q軸電流指令值
iqref_A‧‧‧q軸電流指令
iqref_A1‧‧‧q軸電流指令值
iqref_B‧‧‧q軸電流指令
iqref_C‧‧‧q軸電流指令
iqref_C1‧‧‧q軸電流指令值
iqref_D‧‧‧q軸電流指令
iqref_D1‧‧‧q軸電流指令值
iqref_max‧‧‧q軸電流指令最大值
poserr_jdg‧‧‧磁極位置變更判定值
posfb‧‧‧當前位置
posfb_A‧‧‧地點
posfb_B‧‧‧地點
posfb_C‧‧‧地點
posfb_D‧‧‧地點
posfb_E‧‧‧地點
posfb_err‧‧‧偏差值
posfb_init‧‧‧基準當前位置
V1ref‧‧‧3相指令電壓
Vdref‧‧‧2相指令電壓
Vqref‧‧‧2相指令電壓
θ^‧‧‧推定電角度
θA‧‧‧誤差角度(磁極位置方向)
θB‧‧‧誤差角度(磁極位置方向)
θC‧‧‧誤差角度(磁極位置方向)
θD‧‧‧誤差角度(磁極位置方向)
θE‧‧‧磁極位置
θerr‧‧‧磁極位置誤差角度
θinit‧‧‧初始之磁極位置
圖1係安裝有應用本發明之第1實施例之磁極位置推定裝置之電動機控制裝置的控制方塊圖。
圖2係顯示應用本發明之第1實施例之電動機之磁極位置變化的圖。
圖3係應用本發明之第1實施例之q軸電流指令波形、與電動機之當前位置、及成為電動機之移動判定之位置的波形圖。
圖4係應用本發明之第1實施例之磁極位置推定順序之流程圖。
圖5A係應用本發明之第1實施例之磁極位置推定時,電動機動作中之磁極位置調整順序流程圖。
圖5B係應用本發明之第1實施例之磁極位置推定時,電動機動作中之磁極位置調整順序流程圖。
圖6係應用本發明之第2實施例之q軸電流指令波形、與電動機之當前位置、及成為電動機之移動判定之位置的波形圖。
圖7係顯示應用本發明之第3實施例之電動機之磁極位置變化的圖。
圖8係應用本發明之第3實施例之q軸電流指令波形、與電動機之當前位置、及成為電動機之移動判定之位置的波形圖。
Claims (12)
- 一種控制裝置,其係控制具備動子與定子之電動機者,且具有: 磁極位置調整器,其記憶磁極位置之初始位置,並使磁極位置旋轉; q軸電流指令產生器,其將q軸電流指令輸出至上述電動機; 電力轉換器,其基於上述q軸電流指令將電力供給至上述線圈;及 位置檢測器,其檢測電動機之動子之移動量及移動方向;且 上述磁極位置調整器於輸出上述q軸電流指令後,根據上述位置檢測器檢測出之上述移動方向使磁極位置朝正方向或負方向旋轉; 上述磁極位置調整器將上述動子之移動量為0之磁極位置設為實測磁極位置,將使上述實測磁極位置旋轉-90度之磁極位置設為控制開始位置並分別記憶。
- 如請求項1之控制裝置,其中 上述q軸電流指令產生器逐漸地增大q軸電流指令值直至上述動子之移動量變為0。
- 如請求項1之控制裝置,其中 上述磁極位置調整器將上述移動量為0之複數個磁極位置平均化,並記憶為實測磁極位置。
- 如請求項1之控制裝置,其中 上述q軸電流指令產生器在上述移動量為0後,亦逐漸地增大q軸電流指令值,並於上述動子再度移動之情形時,上述磁極位置調整器使磁極位置再度旋轉。
- 如請求項1之控制裝置,其中 上述磁極位置調整器根據上述q軸電流指令值之大小而減小使磁極位置旋轉之量。
- 如請求項1之控制裝置,其中 上述磁極位置調整器於使磁極位置旋轉之次數為閾值以下之情形時,變更上述初始位置。
- 一種磁極位置推定方法,其具備: 第1步驟,其設定磁極之初始位置; 第2步驟,其逐漸提高q軸電流指令值,並檢測動子之動作方向及移動量; 第3步驟,其於上述動作方向為正之情形時使磁極位置朝正方向旋轉180度,於上述動作方向為負之情形時使磁極位置朝負方向旋轉180度; 第4步驟,其將上述第3步驟中上述動子之移動量為0時之磁極位置記憶為實測磁極位置;及 第5步驟,其將使上述實測磁極位置旋轉-90度之磁極位置記憶為控制開始位置。
- 如請求項7之磁極位置推定方法,其中 於上述第4步驟中,逐漸地增大q軸電流指令值直至動子之移動量變為0。
- 如請求項7之磁極位置推定方法,其中 於上述第4步驟中,將上述移動量為0之複數個磁極位置平均化,並記憶為實測磁極位置。
- 如請求項7之磁極位置推定方法,其中 於上述第4步驟中,於上述移動量為0後,亦逐漸地增大q軸電流指令值,並於上述動子再度移動之情形時,藉由上述第3步驟使磁極位置再度旋轉。
- 如請求項7之磁極位置推定方法,其中 於上述第3步驟中,根據上述q軸電流指令值之大小而減小使磁極位置旋轉之量。
- 如請求項7之磁極位置推定方法,其具備: 第6步驟,其於執行上述第3步驟之執行次數為閾值以下之情形時,變更上述初始位置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-016143 | 2018-02-01 | ||
JP2018016143A JP6966344B2 (ja) | 2018-02-01 | 2018-02-01 | 磁極位置推定方法及び制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201935842A true TW201935842A (zh) | 2019-09-01 |
TWI697199B TWI697199B (zh) | 2020-06-21 |
Family
ID=67478016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108102505A TWI697199B (zh) | 2018-02-01 | 2019-01-23 | 磁極位置推定方法及控制裝置 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3748840B1 (zh) |
JP (1) | JP6966344B2 (zh) |
KR (1) | KR102459776B1 (zh) |
CN (1) | CN111656675B (zh) |
TW (1) | TWI697199B (zh) |
WO (1) | WO2019150868A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110460283B (zh) * | 2019-08-14 | 2021-07-23 | 苏州汇川技术有限公司 | 电机磁极位置辨识方法、系统、设备及存储介质 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4595870A (en) * | 1984-08-07 | 1986-06-17 | Anorad Corporation | Linear motor |
JP4239372B2 (ja) * | 1999-09-17 | 2009-03-18 | 株式会社安川電機 | Ac同期モータの初期磁極推定装置 |
JP4631514B2 (ja) * | 2005-04-07 | 2011-02-16 | パナソニック株式会社 | 磁極位置推定方法 |
WO2007114058A1 (ja) * | 2006-03-31 | 2007-10-11 | Thk Co., Ltd. | 永久磁石同期モータの磁極位置検出方法 |
EP2200174A1 (en) * | 2007-10-12 | 2010-06-23 | Kabushiki Kaisha Yaskawa Denki | Motor control device and magnetic pole position estimation method |
JP5194838B2 (ja) * | 2008-01-29 | 2013-05-08 | 三菱電機株式会社 | 交流同期モータの磁極位置推定方法 |
JP5487105B2 (ja) * | 2008-08-28 | 2014-05-07 | Thk株式会社 | リニア同期モータ制御方法及び制御装置 |
WO2011115098A1 (ja) * | 2010-03-17 | 2011-09-22 | Thk株式会社 | 制御装置、及び制御方法 |
WO2012056844A1 (ja) * | 2010-10-26 | 2012-05-03 | 村田機械株式会社 | リニアモータ制御装置 |
JP5976421B2 (ja) * | 2012-06-27 | 2016-08-23 | 株式会社東芝 | 磁極極性判定装置、永久磁石同期電動機制御装置及び磁極極性判定方法 |
JP5957696B2 (ja) | 2012-08-07 | 2016-07-27 | パナソニックIpマネジメント株式会社 | モータ駆動装置 |
EP3032735A1 (en) * | 2013-08-09 | 2016-06-15 | Kabushiki Kaisha Yaskawa Denki | Motor drive system and motor control device |
JP5820446B2 (ja) * | 2013-09-13 | 2015-11-24 | Thk株式会社 | リニアモータの制御装置、及び制御方法 |
FR3016256B1 (fr) * | 2014-01-07 | 2016-01-22 | Leroy Somer Moteurs | Procede pour determiner la polarite d'un pole de rotor de machine electrique tournante |
JP6675579B2 (ja) * | 2015-04-02 | 2020-04-01 | 富士電機株式会社 | 永久磁石形同期電動機の制御装置 |
JP6191086B2 (ja) * | 2015-08-04 | 2017-09-06 | Thk株式会社 | リニアアクチュエータの制御装置及び制御方法 |
JP6780343B2 (ja) | 2016-07-26 | 2020-11-04 | トヨタ自動車株式会社 | バッテリ冷却装置 |
-
2018
- 2018-02-01 JP JP2018016143A patent/JP6966344B2/ja active Active
- 2018-12-27 WO PCT/JP2018/048073 patent/WO2019150868A1/ja unknown
- 2018-12-27 EP EP18904453.0A patent/EP3748840B1/en active Active
- 2018-12-27 KR KR1020207021393A patent/KR102459776B1/ko active IP Right Grant
- 2018-12-27 CN CN201880088148.1A patent/CN111656675B/zh active Active
-
2019
- 2019-01-23 TW TW108102505A patent/TWI697199B/zh active
Also Published As
Publication number | Publication date |
---|---|
KR102459776B1 (ko) | 2022-10-28 |
EP3748840B1 (en) | 2022-11-23 |
CN111656675B (zh) | 2023-04-28 |
JP2019134620A (ja) | 2019-08-08 |
EP3748840A4 (en) | 2021-11-03 |
CN111656675A (zh) | 2020-09-11 |
TWI697199B (zh) | 2020-06-21 |
EP3748840A1 (en) | 2020-12-09 |
KR20200100804A (ko) | 2020-08-26 |
WO2019150868A1 (ja) | 2019-08-08 |
JP6966344B2 (ja) | 2021-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9263979B2 (en) | Method for smooth motor startup | |
US7944163B2 (en) | Sensorless controlling apparatus of brushless motor | |
US8593087B2 (en) | Magnetic pole position estimation method for AC synchronous motor | |
WO2016121751A1 (ja) | インバータ制御装置及びモータ駆動システム | |
JP5396906B2 (ja) | 電動機の駆動制御装置 | |
JP6488626B2 (ja) | モータ制御装置、モータシステム、モータ制御プログラム | |
JPWO2007034689A1 (ja) | Ac同期モータの初期磁極位置推定装置およびその方法 | |
JPWO2014192467A1 (ja) | 永久磁石型同期電動機の磁極位置検出装置 | |
JP5403243B2 (ja) | 永久磁石同期モータの制御装置 | |
JP2005204406A (ja) | 角度差検出方法及び同期電動機の制御装置 | |
JP5164025B2 (ja) | 誘導電動機制御装置とその制御方法 | |
JP7361924B2 (ja) | モータ制御装置、モータ制御方法 | |
JP2013078214A (ja) | 永久磁石同期電動機の制御装置 | |
JP5493546B2 (ja) | リニア型永久磁石同期モータの制御装置 | |
TWI697199B (zh) | 磁極位置推定方法及控制裝置 | |
CN110445439A (zh) | 永磁同步电机的控制方法和装置 | |
JP5078676B2 (ja) | ステッピングモータ駆動制御装置及びステッピングモータ駆動制御方法 | |
CN111865163B (zh) | 电机零位检测装置、方法及矢量控制系统和存储介质 | |
JP5957696B2 (ja) | モータ駆動装置 | |
JP7567532B2 (ja) | 永久磁石同期電動機の高効率運転制御装置および高効率運転制御方法 | |
JP5962194B2 (ja) | リバース圧延用電動機の駆動システム | |
JP2024106512A (ja) | 磁極位置推定装置および磁極位置推定方法 | |
JP6015647B2 (ja) | 電動機駆動装置の制御装置及び電動機駆動システム | |
JP2020096503A (ja) | モータ制御装置 | |
JP2018098978A (ja) | モータ制御装置 |