WO2019149181A1 - 减速器、驱动装置和电动汽车 - Google Patents

减速器、驱动装置和电动汽车 Download PDF

Info

Publication number
WO2019149181A1
WO2019149181A1 PCT/CN2019/073588 CN2019073588W WO2019149181A1 WO 2019149181 A1 WO2019149181 A1 WO 2019149181A1 CN 2019073588 W CN2019073588 W CN 2019073588W WO 2019149181 A1 WO2019149181 A1 WO 2019149181A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling bearing
shaft
transmission shaft
motor
housing
Prior art date
Application number
PCT/CN2019/073588
Other languages
English (en)
French (fr)
Inventor
夏公川
李晶晶
洪健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019149181A1 publication Critical patent/WO2019149181A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/0018Shaft assemblies for gearings
    • F16H57/0037Special features of coaxial shafts, e.g. relative support thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02034Gearboxes combined or connected with electric machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications
    • F16H2057/02043Gearboxes for particular applications for vehicle transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02086Measures for reducing size of gearbox, e.g. for creating a more compact transmission casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02091Measures for reducing weight of gearbox

Definitions

  • the present application relates to the field of machinery, and in particular to a speed reducer, a driving device and an electric vehicle.
  • An electric vehicle is a vehicle that is powered by a vehicle power source and that uses a motor to drive wheels. Since electric vehicles use electric power to drive vehicles, electric vehicles are more environmentally friendly than fuel vehicles; in addition, the energy utilization of electric motors is higher than that of fuel engines.
  • the length of the cruising range of an electric vehicle is related to the size of the battery capacity.
  • the larger the battery capacity the longer the cruising range of the electric vehicle.
  • increasing the battery life by increasing the battery capacity will increase the size of the battery and the weight of the electric vehicle. Therefore, how to reduce the weight and volume of other devices on the electric vehicle is currently improved.
  • the cruising range of electric vehicles needs to be solved.
  • the present application provides a reducer and a drive device having a small weight and volume.
  • the present application also provides an electric vehicle having a smaller weight than the existing electric motor vehicle.
  • a speed reducer including an intermediate housing, a first transmission shaft, a second transmission shaft, a third transmission shaft, a fourth transmission shaft, a first rolling bearing, a second rolling bearing, a third rolling bearing, and a fourth a rolling bearing, a first transmission assembly, a second transmission assembly, a first reducer housing and a second reducer housing,
  • a first end surface of the intermediate casing is coupled to the first reducer housing, and a second end surface of the intermediate casing is coupled to the second reducer housing, an outer ring of the first rolling bearing and the middle
  • the outer ring of the third rolling bearing is fixedly connected to the first reducer housing, and the outer ring of the fourth rolling bearing is fixedly connected with the second reducer housing;
  • a first end of the first transmission shaft is nested in an inner ring of the first rolling bearing, and a second end of the first transmission shaft is nested in an inner ring of the third rolling bearing;
  • An end surface of the first end of the first transmission shaft is provided with a first groove, and the first groove is provided with the second rolling bearing;
  • a first end of the second transmission shaft is nested in an inner ring of the second rolling bearing, and a second end of the second transmission shaft is nested in an inner ring of the fourth rolling bearing, the second The transmission shaft is coaxial with the first transmission shaft and axially constrained to each other;
  • the first transmission shaft is rotatably coupled to the third transmission shaft through the first transmission assembly, and the first transmission assembly is configured to communicate power transmission between the first transmission shaft and the third transmission shaft ;
  • the second transmission shaft is rotatably coupled to the fourth transmission shaft through the second transmission assembly, and the second transmission assembly is configured to communicate power transmission between the second transmission shaft and the fourth transmission shaft .
  • the fixed connection may be an interference fit, or may be a transition fit, or may be integrally formed, or may be other fixed connection manners, which is not limited in this application.
  • the first transmission shaft and the second transmission shaft are two different shafts in the speed reducer.
  • the end faces of the two shafts are nested by the rolling bearing and connected to the intermediate casing through another rolling bearing without using the pad.
  • the plate or shoulder reduces the weight of the reducer and, in addition, reduces the size of the reducer due to the nesting of the end faces of the two shafts.
  • the above structure improves the electric vehicle's cruising range by reducing the size of the speed reducer, so that the electric vehicle has more space to install the battery, and the above structure can reduce the weight of the speed reducer, and also improve the cruising range of the electric vehicle. .
  • the speed reducer further includes a fifth rolling bearing, a sixth rolling bearing, a seventh rolling bearing, and an eighth rolling bearing.
  • An outer ring of the fifth rolling bearing is fixedly connected to the intermediate casing, an outer ring of the seventh rolling bearing is fixedly connected with the first reducer housing, and an outer ring of the eighth rolling bearing and the second The reducer housing is fixedly connected;
  • a first end of the third transmission shaft is nested in an inner ring of the fifth rolling bearing, and a second end of the third transmission shaft is nested in an inner ring of the seventh rolling bearing;
  • the end surface of the first end of the third transmission shaft is provided with a second groove, and the second groove is provided with the sixth rolling bearing;
  • a first end of the fourth drive shaft is nested in an inner ring of the sixth rolling bearing, and a second end of the fourth drive shaft is nested in an inner ring of the eighth rolling bearing, the third The drive shaft is coaxial with the fourth drive shaft and axially constrained from each other.
  • the above embodiment further reduces the size and weight of the reducer and improves the cruising range of the electric vehicle.
  • the first transmission component comprises:
  • a first gear sleeve is sleeved on the first transmission shaft and fixedly connected to the first transmission shaft;
  • a third gear sleeve is sleeved on the third transmission shaft and fixedly connected to the third transmission shaft;
  • the first gear is located between the first rolling bearing and the third rolling bearing, and the first gear is meshed with the third gear
  • the second transmission component includes:
  • a second gear sleeve is sleeved on the second transmission shaft and fixedly connected to the second transmission shaft;
  • a fourth gear sleeve is sleeved on the fourth transmission shaft and fixedly connected to the fourth transmission shaft;
  • the second gear is located between the first rolling bearing and the fourth rolling bearing, and the second gear is meshed with the fourth gear.
  • the second rolling bearing is a needle bearing.
  • the needle bearing is a rolling bearing with a small cross section and high load bearing capacity.
  • the first transmission shaft and the second are connected by a needle bearing without reducing the load bearing capacity of the second rolling bearing.
  • the drive shaft can further reduce the weight of the reducer, thereby increasing the cruising range of the electric vehicle.
  • the present application provides a driving device, including the speed reducer of the first aspect, the driving device further comprising:
  • a first integrated housing including a first motor housing, the first motor housing being coupled to the first reducer housing by casting or welding, the first reducer housing and the first An input shaft shaft hole is respectively disposed on the first motor housing, and an input shaft shaft hole on the first speed reducer housing is adjacent to the first motor housing;
  • a first motor located in the first motor housing and rotatably coupled to the first transmission shaft by a third transmission assembly;
  • a second integrated housing including a second motor housing, the second motor housing being coupled to the second reducer housing by casting or welding, the second reducer housing and the An input shaft shaft hole is respectively disposed on the second motor housing, and an input shaft shaft hole on the second speed reducer housing is adjacent to the second motor housing;
  • a second motor is located in the second motor housing and is rotatably coupled to the second drive shaft by a fourth transmission assembly.
  • the two bearings supporting the rotor shaft of the motor are respectively located in the motor housing and the reducer housing.
  • the rotor shaft of the motor needs to pass through the motor housing and enter the reducer housing.
  • the synchronous motor contains permanent magnets, it is easy to It is attractive to the motor housing, so it is easy to run off when installing the synchronous motor.
  • This embodiment reduces the two rotor shafts supporting the synchronous motor by placing the bearing located in the reducer housing closer to the motor housing. The distance of the bearings reduces the assembly difficulty of the permanent magnet motor rotor shaft, which is beneficial to system assembly and debugging, and improves the yield.
  • the motor housing and the reducer housing share an end face without using a connecting bolt connection, which reduces the size and weight of the driving device, thereby improving the cruising range of the electric vehicle.
  • the first motor comprises:
  • a first motor stator is fixedly connected to the first motor housing, wherein the first motor stator is provided with a convex pressing mounting port, and an inner wall of the first motor housing is disposed with the first a concave pressing and fitting mouth matched with a convex pressing seat on a stator of the motor;
  • a first motor rotor shaft that is in interference fit with the first motor rotor, and a shoulder of the first motor rotor shaft is in contact with a rotor shoulder of the first motor rotor;
  • a ninth rolling bearing wherein an inner ring of the ninth rolling bearing is fixedly coupled to the first motor rotor shaft, and an outer ring of the ninth rolling bearing is fixedly coupled to an input shaft hole of the first reducer housing, a first end surface of the ninth rolling bearing is in contact with a bearing shoulder of the first motor rotor shaft, and a first end surface of the ninth rolling bearing and a rotor shoulder of the first motor rotor are common to the first motor rotor shaft Perform axial limit;
  • the inner ring of the tenth rolling bearing is fixedly connected to the first motor rotor shaft, and the outer ring of the tenth rolling bearing is fixedly connected with the input shaft shaft hole of the first motor housing;
  • the first motor rotor shaft is rotatably coupled to the first transmission shaft through a third transmission assembly, and the third transmission assembly is configured to communicate power transmission between the first motor rotor shaft and the first transmission shaft ;
  • the second motor includes:
  • a second motor stator is fixedly connected to the second motor housing, wherein the second motor stator is provided with a convex pressing mounting port, and an inner wall of the second motor housing is provided with the first a concave pressing and fitting mouth matched by a convex pressing and mounting opening on the stator of the second motor;
  • a second motor rotor shaft fixedly coupled to the second motor rotor, and a shoulder of the second motor rotor shaft is in contact with a rotor shoulder of the second motor rotor;
  • An eleventh rolling bearing wherein an inner ring of the eleventh rolling bearing is fixedly connected to the second motor rotor shaft, and an outer ring of the eleventh rolling bearing is fixedly connected with an input shaft hole of the second reducer housing a first end surface of the eleventh rolling bearing is in contact with a bearing shoulder of the second motor rotor shaft, and a first end surface of the eleventh rolling bearing and a rotor shoulder of the second motor rotor are collectively The second motor rotor shaft is axially constrained;
  • a twelfth rolling bearing an inner ring of the twelfth rolling bearing is fixedly connected to the second motor rotor shaft, and an outer ring of the twelfth rolling bearing is fixedly connected with an input shaft hole of the second motor housing ;
  • the second motor rotor shaft is rotatably coupled to the second transmission shaft through a fourth transmission assembly, and the fourth transmission assembly is configured to communicate power transmission between the second motor rotor shaft and the second transmission shaft .
  • the third transmission component comprises:
  • a fifth gear is sleeved on the first motor rotor shaft and fixedly connected to the first motor rotor shaft;
  • a seventh gear sleeve is sleeved on the first transmission shaft and fixedly connected to the first transmission shaft;
  • the fifth gear is meshed with the seventh gear
  • the fourth transmission component includes:
  • a sixth gear sleeve is sleeved on the second motor rotor shaft and fixedly connected to the second motor rotor shaft;
  • An eighth gear is sleeved on the second transmission shaft and fixedly connected to the second transmission shaft;
  • the sixth gear is meshed with the eighth gear.
  • the first motor rotor is copper strip or cast copper; and the second motor rotor is copper strip or cast copper.
  • the first integrated housing and the second integrated housing are both oil-cooled housings, and the intermediate housing is provided with an oil passage hole.
  • the motor is cooled by the oil cooling method through the oil passage hole disposed inside the casing, the waterless casing and the water tank structure of the motor casing, and the external interface of the cooling circuit is not provided, thereby reducing the size of the driving device, thereby improving the electric power.
  • the cruising range of the car The cruising range of the car.
  • the present application provides an electric vehicle comprising the speed reducer of the first aspect and/or the driving apparatus of the second aspect.
  • the application provides a driving device comprising:
  • a first integrated housing including a first motor housing, the first motor housing being coupled to the first reducer housing by casting or welding, the first reducer housing and the first An input shaft shaft hole is respectively disposed on the first motor housing, and an input shaft shaft hole on the first speed reducer housing is adjacent to the first motor housing;
  • a first motor is located within the first motor housing and is rotatably coupled to the first drive shaft by a third transmission assembly.
  • the two bearings supporting the rotor shaft of the motor are respectively located in the motor housing and the reducer housing.
  • the rotor shaft of the motor needs to pass through the motor housing and enter the reducer housing.
  • the synchronous motor contains permanent magnets, it is easy to It is attractive to the motor housing, so it is easy to run off when installing the synchronous motor.
  • This embodiment reduces the two rotor shafts supporting the synchronous motor by placing the bearing located in the reducer housing closer to the motor housing. The distance of the bearings reduces the assembly difficulty of the permanent magnet motor rotor shaft, which is beneficial to system assembly and debugging, and improves the yield.
  • the motor housing and the reducer housing share an end face without using a connecting bolt connection, which reduces the size and weight of the driving device, thereby improving the cruising range of the electric vehicle.
  • the first motor comprises:
  • a first motor stator is fixedly connected to the first motor housing, wherein the first motor stator is provided with a convex pressing mounting port, and an inner wall of the first motor housing is disposed with the first a concave pressing and fitting mouth matched with a convex pressing seat on a stator of the motor;
  • a first motor rotor shaft that is in interference fit with the first motor rotor, and a shoulder of the first motor rotor shaft is in contact with a rotor shoulder of the first motor rotor;
  • a ninth rolling bearing wherein an inner ring of the ninth rolling bearing is fixedly coupled to the first motor rotor shaft, and an outer ring of the ninth rolling bearing is fixedly coupled to an input shaft hole of the first reducer housing, a first end surface of the ninth rolling bearing is in contact with a bearing shoulder of the first motor rotor shaft, and a first end surface of the ninth rolling bearing and a rotor shoulder of the first motor rotor are common to the first motor rotor shaft Perform axial limit;
  • the inner ring of the tenth rolling bearing is fixedly connected to the first motor rotor shaft, and the outer ring of the tenth rolling bearing is fixedly connected with the input shaft shaft hole of the first motor housing;
  • the first motor rotor shaft is rotatably coupled to the first transmission shaft through a third transmission assembly, and the third transmission assembly is configured to communicate power transmission between the first motor rotor shaft and the first transmission shaft .
  • the third transmission component comprises:
  • a fifth gear is sleeved on the first motor rotor shaft and fixedly connected to the first motor rotor shaft;
  • a seventh gear sleeve is sleeved on the first transmission shaft and fixedly connected to the first transmission shaft;
  • the fifth gear is meshed with the seventh gear.
  • the first motor rotor is a copper strip or cast copper.
  • the first integrated housing is an oil-cooled housing.
  • the motor is cooled by the oil cooling method through the oil passage hole disposed inside the casing, the waterless casing and the water tank structure of the motor casing, and the external interface of the cooling circuit is not provided, thereby reducing the size of the driving device, thereby improving the electric power.
  • the cruising range of the car The cruising range of the car.
  • the present application provides an electric vehicle comprising the driving device of the fourth aspect.
  • the present application provides a method of assembling a speed reducer, comprising: fixing an outer ring of a first rolling bearing to a first hole position inside the intermediate casing; inserting a first end of the first transmission shaft into the An inner ring of the first rolling bearing; a second rolling bearing is placed in the groove of the end surface of the first end of the first transmission shaft; a first end of the second transmission shaft is inserted into the inner ring of the second rolling bearing, so that The second transmission shaft is coaxial with the first transmission shaft and axially constrained from each other.
  • the first transmission shaft and the second transmission shaft are two different shafts in the speed reducer.
  • the method provided by the embodiment is that the end faces of the two shafts are nested together by a rolling bearing and connected to the intermediate casing through another rolling bearing. Without the use of spacers or shoulders, the weight of the reducer is reduced, and in addition, since the end faces of the two shafts are nested together, the volume of the reducer is reduced.
  • the above structure improves the electric vehicle's cruising range by reducing the size of the speed reducer, so that the electric vehicle has more space to install the battery, and the above structure can reduce the weight of the speed reducer, and also improve the cruising range of the electric vehicle. .
  • the method of assembling the speed reducer further includes: fixing an outer ring of the fifth rolling bearing to a second hole position inside the intermediate casing; inserting the first end of the third transmission shaft into the fifth rolling bearing An inner ring; a sixth rolling bearing is placed in a groove of an end surface of the first end of the third transmission shaft; a first end of the fourth transmission shaft is inserted into an inner ring of the sixth rolling bearing, so that the fourth The drive shaft is coaxial with the third drive shaft and axially constrained from each other.
  • the above embodiment further reduces the size and weight of the reducer and improves the cruising range of the electric vehicle.
  • the method of assembling the speed reducer further comprises: sleeveing the seventh gear on the first transmission shaft, And a fixed connection with the first transmission shaft; a third gear sleeve is disposed on the third transmission shaft, and is fixedly connected with the third transmission shaft; and an eighth gear sleeve is sleeved on the second transmission shaft And fixedly connected to the second transmission shaft; the fourth gear sleeve is sleeved on the fourth transmission shaft, and is fixedly connected with the fourth transmission shaft.
  • a seventh aspect a method of assembling a driving device, comprising the method of the sixth aspect, further comprising:
  • a fifth gear sleeve is disposed on the first motor rotor shaft, and is fixedly connected to the first motor rotor shaft;
  • a sixth gear sleeve is disposed on the second motor rotor shaft, and is fixedly connected to the second motor rotor shaft;
  • a twelfth rolling bearing is sleeved on the second motor rotor shaft.
  • the installation method provided by the embodiment enables the first motor rotor shaft and the second motor rotor shaft to be jointly limited by the rotor shoulder and the rolling bearing, and no other limiting device is needed, thereby reducing the volume and weight of the driving device, thereby improving The cruising range of the electric vehicle, in addition, because the integrated manufacturing is not required, the manufacturing cost of the motor is reduced.
  • FIG. 1 is a schematic diagram of three different electric vehicle drive systems provided by the present application.
  • FIG. 2 is a schematic three-dimensional structure diagram of a driving device provided by the present application.
  • FIG. 3 is a schematic two-dimensional structure diagram of a driving device provided by the present application.
  • FIG. 4 is a schematic view showing the structure of an assembly of a reducer intermediate shaft of the driving device provided by the present application
  • FIG. 5 is a schematic view showing an assembly structure of a reducer output shaft of a driving device provided by the present application
  • FIG. 6 is a schematic view of a left integrated housing of the driving device provided by the present application.
  • FIG. 7 is a schematic view of a right integrated housing of the driving device provided by the present application.
  • FIG. 8 is a schematic diagram of a system power transfer path of a driving device provided by the present application.
  • the drive system of an electric vehicle mainly consists of a motor, a controller and a gearbox. Compared with a conventional fuel vehicle, the powertrain structure and arrangement of the electric vehicle are very flexible.
  • Figure 1 shows three different electric vehicle drive systems.
  • the driving system of the electric vehicle can be divided into a dual motor system, a three-motor system and a four-motor system according to the number of motors, each of which corresponds to a gearbox (for example, a speed reducer) and passes through the shifting gear.
  • the box outputs power to the wheels.
  • FIG. 1 is only a driving system for illustrating an electric vehicle.
  • the two motors for driving the front wheel may be a split structure as shown in the figure, or may be an integrated structure. That is, the two motors for driving the front wheels are located in one housing, and the two motors for driving the rear wheels are located in the other housing.
  • the electric vehicle drive system suitable for the present application is not limited to that shown in FIG. 1, and the number of motors may be other numbers, such as a single motor system and a drive system including more than four motors, and the position of the motor is not limited to FIG. The location shown.
  • FIG. 2 is a schematic view showing the three-dimensional structure of a driving device provided by the present application.
  • the driving device 200 includes: a left motor stator 1, a left motor rotor 2, a left motor rotor shaft 3, a left integrated housing 6, a left retarder input gear 5, a left retarder input bearing 4, and a left retarder intermediate shaft large gear 9
  • the right reducer output large gear 16 the right reducer output shaft 17, the right motor stator 21, the right motor rotor 22, and the right motor rotor shaft 23.
  • the various parts of the driving device 200 may be one of various parts that satisfy the basic function.
  • the left and right motors may be synchronous motors or asynchronous motors, and accordingly, the left motor rotor 2 and the right motor rotor 22 It may be a permanent magnet, or may be a copper strip or cast copper; for example, the intermediate housing intermediate shaft rolling bearing 10 may be a deep groove ball bearing or a cylindrical roller bearing.
  • FIG. 3 is a schematic diagram of a two-dimensional structure of the driving device 200.
  • first transmission shaft and the second transmission shaft described in the claims of the present application may be any two coaxially arranged shafts in the driving device 200.
  • first transmission shaft may be a right reducer.
  • the intermediate gear shaft 15 and the second transmission shaft may be the left reducer intermediate gear shaft 7; alternatively, the first transmission shaft may be the right retarder output shaft 17, and the second transmission shaft may be the left reducer output shaft 12.
  • the third transmission shaft is the right retarder output shaft 17, and the fourth transmission shaft is the left reducer
  • the output shaft 12 the first rolling bearing is a rolling bearing 10
  • the second rolling bearing is a rolling bearing 24
  • the third rolling bearing is a rolling bearing 26
  • the fourth rolling bearing is a rolling bearing 27
  • the first integrated housing is a right integrated housing 18, and the second integrated housing is
  • the left integrated housing 6 the fifth rolling bearing is a rolling bearing 11, the sixth rolling bearing is a rolling bearing 25, the seventh rolling bearing is a rolling bearing 32, the eighth rolling bearing is a rolling bearing 33
  • the first gear is a gear 28, the third gear is a gear 16, and the second
  • the gear is a gear 29, the fourth gear is a gear 8
  • the first motor stator is a right motor stator 21, the first motor rotor is a right motor rotor 22,
  • the first motor rotor shaft is a right motor rotor shaft 23, and
  • the ninth rolling bearing is a rolling bearing 20
  • the reduction gear, the driving device and the electric vehicle provided by the present application will be described below by taking the first transmission shaft as the right retarder intermediate gear shaft 15 and the second transmission shaft as the left retarder intermediate gear shaft 7 as an example.
  • FIG 4 is a schematic view showing the structure of an assembly of a reducer intermediate shaft of the driving device 200 provided by the present application.
  • the inner ring of the right reducer intermediate gear shaft 15 and the intermediate case intermediate shaft rolling bearing 10 are assembled by an interference fit press-fit method, and the outer ring of the intermediate case intermediate shaft rolling bearing 10 and the intermediate case 13 are excessively used corresponding to the intermediate shaft hole.
  • the intermediate casing intermediate shaft rolling bearing 10 has no axial limiting structure at the intermediate shaft 13 corresponding to the intermediate shaft hole.
  • the inner ring of the intermediate case intermediate shaft needle roller bearing 24 is fitted with the shaft end of the left reducer intermediate gear shaft 7, and at the same time, the outer ring of the intermediate case intermediate shaft needle roller bearing 24 and the right reducer intermediate gear shaft 15 The inner end of the shaft end is fitted together.
  • the axial end of the right reducer intermediate gear shaft 15 and the left reducer intermediate gear shaft 7 are axially constrained from each other, and the axial direction of the intermediate shaft intermediate shaft needle bearing 24 is restricted by the inner shaft of the right reducer intermediate gear shaft 15 Displacement. Thereby, the right reducer intermediate gear shaft 15 and the left reducer intermediate gear shaft 7 are integrated, and the two can rotate independently of each other.
  • an axial contact bearing can be added between the right reducer intermediate gear shaft 15 and the left reducer intermediate gear shaft 7, so that the right reducer intermediate gear shaft 15 and the left reducer intermediate gear shaft 7 can Rotate independently of each other.
  • FIG. 4 is only an exemplary illustration.
  • the assembly structure of the reducer intermediate shaft of the driving device 200 provided by the present application may also be the following structure:
  • the inner ring of the left reducer intermediate gear shaft 7 and the intermediate case intermediate shaft rolling bearing 10 are assembled by an interference fit press-fit method, and the outer ring of the intermediate case intermediate shaft rolling bearing 10 and the intermediate case 13 are excessively used corresponding to the intermediate shaft hole.
  • the intermediate casing intermediate shaft rolling bearing 10 has no axial limiting structure at the intermediate shaft 13 corresponding to the intermediate shaft hole.
  • the inner ring of the intermediate case intermediate shaft needle roller bearing 24 is fitted with the shaft end of the right reducer intermediate gear shaft 15, and the outer ring of the intermediate case intermediate shaft needle roller bearing 24 and the left reducer intermediate gear shaft 7 The inner end of the shaft end is fitted together.
  • the axial end of the right reducer intermediate gear shaft 15 and the left reducer intermediate gear shaft 7 are axially constrained from each other, and the axial direction of the intermediate shaft intermediate shaft needle bearing 24 is restricted by the inner shaft of the right reducer intermediate gear shaft 15 Displacement. Thereby, the left reducer intermediate gear shaft 7 and the right reducer intermediate gear shaft 15 are integrated, and the two can rotate independently of each other.
  • an axial contact bearing can be added between the right reducer intermediate gear shaft 15 and the left reducer intermediate gear shaft 7, so that the right reducer intermediate gear shaft 15 and the left reducer intermediate gear shaft 7 can Rotate independently of each other.
  • FIG. 5 is a schematic diagram showing the structure of an assembly of a reducer output shaft of the driving device 200 provided by the present application.
  • the inner ring of the right reducer output shaft 17 and the intermediate casing output shaft rolling bearing 11 are assembled by an interference fit press-fit method, and the outer ring of the intermediate casing output shaft rolling bearing 11 and the intermediate casing 13 are over-matched at the output shaft hole.
  • the intermediate housing output shaft rolling bearing 11 has no axial limiting structure at the corresponding output shaft hole of the intermediate housing 13.
  • the inner ring of the intermediate casing output shaft needle roller bearing 25 is fitted with the shaft end position of the left reducer output shaft 12, and the intermediate casing outputs the outer ring of the shaft needle roller bearing 25 and the shaft of the right retarder output shaft 17 The inner hole of the end is fitted together.
  • the axial end of the right reducer output shaft 17 and the left reducer output shaft 12 are axially constrained from each other, and the inner casing output shaft is restricted by the right reducer output shaft 17 inner bore shoulder.
  • the axial displacement of the needle bearing 25 thereby, the right reducer output shaft 17 and the left reducer output shaft 12 are integrated, and the two can rotate independently of each other.
  • an axial contact bearing can be added between the right reducer output shaft 17 and the left reducer output shaft 12 to achieve the same effect.
  • FIG. 5 is only an exemplary illustration.
  • the assembly structure of the output shaft of the reducer of the driving device 200 provided by the present application may also be the following structure:
  • the left reducer output shaft 12 and the inner ring of the intermediate casing output shaft rolling bearing 11 are assembled by an interference fit press-fit method, and the outer ring of the intermediate casing output shaft rolling bearing 11 and the intermediate casing 13 are over-matched at the output shaft hole.
  • the intermediate housing output shaft rolling bearing 11 has no axial limiting structure at the corresponding output shaft hole of the intermediate housing 13.
  • the inner ring of the intermediate casing output shaft needle roller bearing 25 is fitted with the shaft end position of the right reducer output shaft 17, and the intermediate casing outputs the outer ring of the shaft needle roller bearing 25 and the shaft of the left reducer output shaft 12 The inner hole of the end is fitted together.
  • the axial end of the left reducer output shaft 12 and the right reducer output shaft 17 are axially constrained from each other, and the intermediate housing output shaft is restricted by the left reducer output shaft 12 inner bore shoulder.
  • the axial displacement of the needle bearing 25 thereby, the left reducer output shaft 12 and the right reducer output shaft 17 are integrated, and the two can rotate independently of each other.
  • an axial contact bearing can be added between the left reducer output shaft 12 and the right retarder output shaft 17, and the same effect can be achieved.
  • the above embodiments of the intermediate shaft and the output shaft reduce the axial dimension of the driving device 200 by nesting the shaft ends of the left and right shafts together, and the axial ends of the left and right shafts are axially restrained from each other. There is no need to use a washer to limit the two shafts, thereby reducing the weight of the driving device 200; in addition, only one needle bearing is required to be connected between the two shafts that are mutually constrained, without using a heavier The deep groove ball bearing further reduces the weight of the drive unit 200.
  • the above technical effect reduces the manufacturing cost of the driving device 200, improves the cruising range of the electric vehicle in which the driving device 200 is mounted, and the space saved by reducing the size of the driving device 200 can be used to install an additional battery, further improving the mounting drive.
  • the cruising range of the electric vehicle of the device 200 reduces the manufacturing cost of the driving device 200, improves the cruising range of the electric vehicle in which the driving device 200 is mounted, and the space saved by reducing the size of the driving device 200 can be used to install an additional battery, further improving the mounting drive.
  • the cruising range of the electric vehicle of the device 200 reduces the manufacturing cost of the driving device 200, improves the cruising range of the electric vehicle in which the driving device 200 is mounted, and the space saved by reducing the size of the driving device 200 can be used to install an additional battery, further improving the mounting drive.
  • the cruising range of the electric vehicle of the device 200 reduces the manufacturing cost of the driving device 200, improves the cruising range of the electric vehicle in which the driving device 200 is mounted, and
  • the driving device described in the above embodiments is merely an exemplary description, and the other two shafts in the driving device adopting the coaxial configuration may apply the technical solutions provided by the present application to reduce the axial dimension.
  • FIG. 6 is a schematic diagram of a left integrated housing of the driving device 200 provided by the present application.
  • the left integrated housing 6 includes a left reducer housing 6a and a left motor housing 6b.
  • the left reducer housing 6a and the left motor housing 6b are both high-strength aluminum alloy materials.
  • the high pressure cast aluminum process is integrally formed.
  • the left reducer housing 6a and the left motor housing 6b are of a split type structure, and the same effect can be achieved by end face welding.
  • FIG. 7 is a schematic diagram of a right integrated housing of the driving device 200 provided by the present application.
  • the right retarder integrated housing 18 includes a right retarder housing 18a and a right motor housing 18b, as an alternative embodiment, a right retarder housing 18a and a right motor housing 18b is a high-strength aluminum alloy material that is integrally molded by a high-pressure die-casting process. As another alternative embodiment, the right reducer housing 18a and the right motor housing 18b may also be of a split type structure, and the same effect can be achieved by end face welding.
  • the motor housing and the reducer housing share an end face without the use of a connecting bolt connection, which reduces the size and weight of the driving device, thereby improving the cruising range of the electric vehicle.
  • Both the left and right double motors are cooled by oil cooling, and the gear lubricating oil is shared with the reducer.
  • the left reducer integrated housing 6 and the right reducer integrated housing 18 and the intermediate housing 13 are provided with through holes to ensure lubrication.
  • the oil circulates through the system.
  • the integrated housing shown in FIG. 7 and FIG. 8 can be applied to the dual motor driving device shown in FIG. 2 and FIG. 3, and can also be applied to the single motor driving device.
  • the single motor driving device is driven by the dual motor as shown in FIG.
  • the dual motor drive system includes two motors that are respectively located in different housings.
  • the left motor stator 1 and the left integrated housing 6 are installed by interference fit, and the inner wall of the left integrated housing 6 is provided with a stator press-fit port to ensure the left motor stator 1 Press fit in place.
  • the left motor rotor 2 and the left motor rotor shaft 3 are connected by a key, and the left motor rotor 2 is press-fitted to the rotor shoulder position on the left motor rotor shaft 3 by an interference fit method to constitute a left motor rotor component.
  • the inner ring of the left reducer input bearing 4 and the left motor rotor shaft 3 are subjected to an interference fit, and the left reducer input bearing 4 is press-fitted to the bearing shoulder position on the left motor rotor shaft 3.
  • the left reducer input gear 5 and the left motor rotor shaft 3 are mounted with an interference fit and axially constrained.
  • the assembled components of the left motor rotor 2, the left motor rotor shaft 3, the left retarder input bearing 4, and the left retarder input gear 5 are passed through the left integrated housing 6 input shaft shaft hole, and the left reducer input bearing is passed. 4
  • the outer ring and the left integrated housing 6 input shaft hole are over-fitted. The above assembly method reduces the difficulty of motor assembly while ensuring that the motor performance is not affected.
  • the left reducer input gear 5 and the left motor rotor shaft 3 can be axially limited by adding a snap ring structure by means of an interference fit, or the left reducer can be input to the gear 5 by a spline fit. The same effect can be achieved by designing an integral shaft with the left motor rotor shaft 3.
  • the left motor rotor shaft 3 is on the motor side of the left integrated housing 6 (ie, the left motor housing 6b) adopts a simple bearing structure of two bearings, and on the side of the reducer of the left integrated housing 6 (ie, The left reducer housing 6a) adopts a cantilever structure, which reduces the distance of the rotor shaft of the synchronous motor into the bearing, thereby reducing the assembly difficulty of the permanent magnet motor rotor shaft, facilitating system assembly and debugging, and improving the yield.
  • One assembly mode of the right motor and the right reducer is: the right motor stator 21 and the right reducer integrated housing 18 are assembled by an interference fit, and the inner side of the right reducer integrated housing 18 is provided with a stator press-fit port to ensure The right motor stator 21 is press fitted into place.
  • the right motor rotor 22 and the right motor rotor shaft 23 are connected by a key, and the right motor rotor 22 is press-fitted to the rotor shoulder position on the right motor rotor shaft 23 by an interference fit method to constitute a right motor rotor component.
  • the inner ring of the right reducer input bearing 20 and the right motor rotor shaft 23 are subjected to an interference fit, and the right reducer input bearing 20 is press-fitted to the bearing shoulder position on the right motor rotor shaft 23. Subsequently, the right retarder input gear 19 and the right motor rotor shaft 23 are mounted with an interference fit and axially constrained. Finally, the components assembled by the right motor rotor 22, the right motor rotor shaft 23, the right retarder input bearing 20, and the right retarder input gear 19 are passed through the input shaft shaft hole of the right reducer integrated housing 18, and the right reducer The input bearing 20 outer ring and the right reducer integrated housing 18 have an over-coupling mode for the input shaft shaft hole. The above assembly method reduces the difficulty of motor assembly while ensuring that the motor performance is not affected.
  • the right reducer input gear 19 and the right motor rotor shaft 23 can be axially restrained by adding a snap ring structure by means of a spline fit, or the left reducer can be input to the gear 5 by means of a spline fit.
  • the same effect can be achieved by designing an integral shaft with the left motor rotor shaft 3.
  • the right motor rotor shaft 23 adopts a two-bearing simply supported beam structure on the motor side of the right retarder integrated housing 18 (ie, the right motor housing 18b), and is decelerated in the right retarder integrated housing 18.
  • the side of the device ie, the right reducer housing 18a
  • the above-mentioned simple supported beam structure using two bearings on the motor side of the integrated casing, and the cantilever structure on the reducer side of the integrated casing can be applied not only to the dual motor driving device shown in FIGS. 2 and 3. It can also be applied to a single motor drive device.
  • the single motor drive device is shown in the dual motor drive system of FIG. 1.
  • the dual motor drive system includes two motors, which are respectively located in different housings.
  • the electric vehicle provided by the present application may be, for example, an electric vehicle equipped with a three-motor system of the driving device 200 or an electric vehicle of a four-motor system (as shown in FIG. 1 ). After the driving device 200 is installed and completed by the above method, The drive unit 200 can operate to power the electric vehicle.
  • FIG. 8 shows a schematic diagram of a system power transfer path of the drive device 200.
  • the left reducer input gear 5 meshes with the left reducer intermediate shaft large gear 9
  • the left reducer intermediate gear shaft 7 meshes with the left reducer output shaft large gear 8 , and finally passes through the left reducer output shaft 12 spline output,
  • the left reducer intermediate shaft large gear 9 and the left reducer intermediate gear shaft 7 are cooperatively mounted by a key connection manner, and the left reducer intermediate shaft large gear 9 inner hole and the left reducer are intermediate
  • the outer shaft of the gear shaft 7 is compensated by means of interference compression to increase the reliability of the connection.
  • the left reducer output shaft large gear 8 and the left reducer output shaft 12 are fitted by a key connection manner, and the left reducer output shaft large gear 8 inner hole and the left reducer output shaft 12 outer shaft are subjected to interference compression The way to increase the reliability of the connection.
  • the right reducer input gear 19 meshes with the right reducer intermediate shaft large gear 14
  • the right reducer intermediate gear shaft 15 meshes with the right reducer output shaft large gear 16 , and finally passes through the right reducer output shaft 17 spline output,
  • the right reducer intermediate shaft large gear 14 and the right reducer intermediate gear shaft 15 are cooperatively mounted by a key connection manner, and the middle of the right reducer intermediate shaft large gear 14 and the right reducer
  • the outer shaft of the gear shaft 15 is connected by means of interference and pressurization to increase the reliability of the connection.
  • the right reducer output shaft large gear 16 and the right reducer output shaft 17 are fitted by a key connection manner, and the right reducer output shaft large gear 16 inner hole and the right reducer output shaft 17 outer shaft are used for interference compression The way to increase the reliability of the connection.

Abstract

一种减速器,包括中间壳体(13)、第一传动轴(15)以及第二传动轴(7),中间壳体(13)内部固定有第一滚动轴承(10);第一传动轴(15)的第一端嵌套在第一滚动轴承(10)的内圈中,且第一端的端面设置有凹槽,凹槽中固定有第二滚动轴承(24);第二传动轴(7)的第一端嵌套在第二滚动轴承(24)的内圈中;第一传动轴(15)和第二传动轴(7)为减速器中的两个不同的轴,两个轴的轴端通过第二滚动轴承(24)嵌套在一起,并通过第一滚动轴承(10)与中间壳体(13)连接,从而减小了减速器的重量和体积,使得电动汽车有更大的空间安装电池,提高了电动汽车的续航里程。

Description

减速器、驱动装置和电动汽车
本申请要求于2018年01月31日提交中国专利局、申请号为201810092754.2、申请名称为“减速器、驱动装置和电动汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及机械领域,尤其涉及一种减速器、驱动装置和电动汽车。
背景技术
电动汽车是指以车载电源为动力,并且使用电机驱动车轮行驶的车辆。由于电动汽车使用电力驱动车辆,因此,电动汽车比燃油汽车更加环保;此外,电机的能量利用率也比燃油发动机的能量利用率高。
电动汽车的续航里程的长短与电池容量的大小相关,电池容量越大,电动汽车的续航里程越长。在电池的能量密度不变的前提下,通过提升电池容量增加电动汽车的续航里程将增大电池的体积以及电动汽车的重量,因此,如何减小电动汽车上其它装置的重量和体积是当前提高电动汽车的续航里程需要解决的问题。
发明内容
本申请提供了一种减速器和驱动装置,具有较小的重量和体积,本申请还提供了一种电动汽车,相比于现有的电动机车具有较小的重量。
第一方面,提供了一种减速器,包括中间壳体、第一传动轴、第二传动轴、第三传动轴、第四传动轴、第一滚动轴承、第二滚动轴承、第三滚动轴承、第四滚动轴承、第一传动组件、第二传动组件、第一减速器壳体和第二减速器壳体,
所述中间壳体的第一端面与第一减速器壳体连接,所述中间壳体的第二端面与所述第二减速器壳体连接,所述第一滚动轴承的外圈与所述中间壳体固定连接,所述第三滚动轴承的外圈与所述第一减速器壳体固定连接,所述第四滚动轴承的外圈与所述第二减速器壳体固定连接;
所述第一传动轴的第一端嵌套在所述第一滚动轴承的内圈中,所述第一传动轴的第二端嵌套在所述第三滚动轴承的内圈中;
所述第一传动轴的第一端的端面设置有第一凹槽,所述第一凹槽中设置有所述第二滚动轴承;
所述第二传动轴的第一端嵌套在所述第二滚动轴承的内圈中,所述第二传动轴的第二端嵌套在所述第四滚动轴承的内圈中,所述第二传动轴与所述第一传动轴同轴且相互轴向限位;
所述第一传动轴通过所述第一传动组件与所述第三传动轴转动连接,所述第一传动组 件用于连通所述第一传动轴与所述第三传动轴之间的动力传递;
所述第二传动轴通过所述第二传动组件与所述第四传动轴转动连接,所述第二传动组件用于连通所述第二传动轴与所述第四传动轴之间的动力传递。
在本申请中,固定连接可以是过盈配合,也可以是过渡配合,还可以是一体成型,还可以是其它的固定连接方式,本申请对此不做限定。第一传动轴和第二传动轴为减速器中的两个不同的轴,本申请将该两个轴的端面通过滚动轴承嵌套在一起,并通过另一个滚动轴承与中间壳体连接,无需使用垫片或挡肩,减小了减速器的重量,此外,由于两个轴的端面嵌套在一起,从而减小了减速器的体积。上述结构通过减小减速器的尺寸,使得电动汽车有更大的空间安装电池,从而提高了电动汽车的续航里程;并且,上述结构能够减小减速器的重量,同样提高了电动汽车的续航里程。
可选地,所述减速器还包括第五滚动轴承、第六滚动轴承、第七滚动轴承、第八滚动轴承,
所述第五滚动轴承的外圈与所述中间壳体固定连接,所述第七滚动轴承的外圈与所述第一减速器壳体固定连接,所述第八滚动轴承的外圈与所述第二减速器壳体固定连接;
所述第三传动轴的第一端嵌套在所述第五滚动轴承的内圈中,所述第三传动轴的第二端嵌套在所述第七滚动轴承的内圈中;
所述第三传动轴的第一端的端面设置有第二凹槽,所述第二凹槽中设置有所述第六滚动轴承;
所述第四传动轴的第一端嵌套在所述第六滚动轴承的内圈中,所述第四传动轴的第二端嵌套在所述第八滚动轴承的内圈中,所述第三传动轴与所述第四传动轴同轴且相互轴向限位。
上述实施例进一步减小了减速器的尺寸和重量,提高了电动汽车的续航里程。
可选地,所述第一传动组件包括:
第一齿轮,套设在所述第一传动轴上,且与所述第一传动轴固定连接;
第三齿轮,套设在所述第三传动轴上,且与所述第三传动轴固定连接;
所述第一齿轮位于所述第一滚动轴承与所述第三滚动轴承之间,所述第一齿轮与所述第三齿轮啮合连接;
所述第二传动组件包括:
第二齿轮,套设在所述第二传动轴上,且与所述第二传动轴固定连接;
第四齿轮,套设在所述第四传动轴上,且与所述第四传动轴固定连接;
所述第二齿轮位于所述第一滚动轴承与所述第四滚动轴承之间,所述第二齿轮与所述第四齿轮啮合连接。
可选地,所述第二滚动轴承为滚针轴承。
滚针轴承是一种具有较小的截面,同时又具有较高的负荷承受能力的滚动轴承,在不降低第二滚动轴承的负荷承受能力的情况下,通过滚针轴承连接第一传动轴和第二传动轴能够进一步减小减速器的重量,从而可以提高电动汽车的续航里程。
第二方面,本申请提供了一种驱动装置,包括第一方面所述的减速器,该驱动装置还包括:
第一集成壳体,包括第一电机壳体,所述第一电机壳体与所述第一减速器壳体通过铸 造方式或焊接方式连接,所述第一减速器壳体和所述第一电机壳体上分别设置有输入轴轴孔,且所述第一减速器壳体上的输入轴轴孔靠近所述第一电机壳体;
第一电机,位于所述第一电机壳体内,且通过第三传动组件与所述第一传动轴转动连接;
第二集成壳体,包括第二电机壳体,所述第二电机壳体与所述第二减速器壳体通过铸造方式或焊接方式连接,所述第二减速器壳体和所述第二电机壳体上分别设置有输入轴轴孔,且所述第二减速器壳体上的输入轴轴孔靠近所述第二电机壳体;
第二电机,位于所述第二电机壳体内,且通过第四传动组件与所述第二传动轴转动连接。
支撑电机转子轴的两个轴承分别位于电机壳体和减速器壳体中,安装电机时需要将电机的转子轴穿过电机壳体进入减速器壳体,由于同步电机含有永磁体,容易与电机壳体产生吸引力,因此,安装同步电机时易跑偏,本实施通过将位于减速器壳体内的轴承设置的更加靠近电机壳体,减小了支撑同步电机的转子轴的两个轴承的距离,从而降低了永磁电机转子轴的装配难度,有利于系统装配和调试,提高成品率。此外,在本实施例中,电机壳体与减速器壳体共用端面,无需使用连接螺栓连接,减小了驱动装置的体积和重量,从而能够提高了电动汽车的续航里程。
可选地,所述第一电机包括:
第一电机定子,与所述第一电机壳体固定连接,其中,所述第一电机定子上设置有凸压装止口,所述第一电机壳体的内壁设置有与所述第一电机定子上的凸压装止口配合的凹压装止口;
第一电机转子,贯穿于所述第一电机定子且与所述第一电机定子间隙配合;
第一电机转子轴,与所述第一电机转子过盈配合,且所述第一电机转子轴的轴肩与所述第一电机转子的转子挡肩接触;
第九滚动轴承,所述第九滚动轴承的内圈与所述第一电机转子轴固定连接,所述第九滚动轴承的外圈与所述第一减速器壳体的输入轴轴孔固定连接,所述第九滚动轴承的第一端面与所述第一电机转子轴的轴承挡肩接触,所述第九滚动轴承的第一端面和所述第一电机转子的转子挡肩共同对所述第一电机转子轴进行轴向限位;
第十滚动轴承,所述第十滚动轴承的内圈与所述第一电机转子轴固定连接,所述第十滚动轴承的外圈与所述第一电机壳体的输入轴轴孔固定连接;
所述第一电机转子轴通过第三传动组件与所述第一传动轴转动连接,所述第三传动组件用于连通所述第一电机转子轴与所述第一传动轴之间的动力传递;
所述第二电机包括:
第二电机定子,与所述第二电机壳体固定连接,其中,所述第二电机定子上设置有凸压装止口,所述第二电机壳体的内壁设置有与所述第二电机定子上的凸压装止口配合的凹压装止口;
第二电机转子,贯穿于所述第二电机定子且与所述第二电机定子间隙配合;
第二电机转子轴,与所述第二电机转子固定连接,且所述第二电机转子轴的轴肩与所述第二电机转子的转子挡肩接触;
第十一滚动轴承,所述第十一滚动轴承的内圈与所述第二电机转子轴固定连接,所述 第十一滚动轴承的外圈与所述第二减速器壳体的输入轴轴孔固定连接,所述第十一滚动轴承的第一端面与所述第二电机转子轴的轴承挡肩接触,所述第十一滚动轴承的第一端面和所述第二电机转子的转子挡肩共同对所述第二电机转子轴进行轴向限位;
第十二滚动轴承,所述第十二滚动轴承的内圈与所述第二电机转子轴固定连接,所述第十二滚动轴承的外圈与所述第二电机壳体的输入轴轴孔固定连接;
所述第二电机转子轴通过第四传动组件与所述第二传动轴转动连接,所述第四传动组件用于连通所述第二电机转子轴与所述第二传动轴之间的动力传递。
可选地,所述第三传动组件包括:
第五齿轮,套设在所述第一电机转子轴上,且与所述第一电机转子轴固定连接;
第七齿轮,套设在所述第一传动轴上,且与所述第一传动轴固定连接;
所述第五齿轮与所述第七齿轮啮合连接;
所述第四传动组件包括:
第六齿轮,套设在所述第二电机转子轴上,且与所述第二电机转子轴固定连接;
第八齿轮,套设在所述第二传动轴上,且与所述第二传动轴固定连接;
所述第六齿轮与所述第八齿轮啮合连接。
可选地,所述第一电机转子为铜条或铸铜;所述第二电机转子为铜条或铸铜。
可选地,所述第一集成壳体和所述第二集成壳体均为油冷壳体,所述中间壳体设置有通油孔。
本实施例中,电机通过设置在壳体内部的通油孔采用油冷方式降温,电机壳体无水套和水槽结构,无冷却回路外接口,减小了驱动装置尺寸,从而能够提高电动汽车的续航里程。
第三方面,本申请提供了一种电动汽车,包括第一方面所述的减速器和/或第二方面所述的驱动装置。
第四方面,申请提供了一种驱动装置,包括:
第一集成壳体,包括第一电机壳体,所述第一电机壳体与所述第一减速器壳体通过铸造方式或焊接方式连接,所述第一减速器壳体和所述第一电机壳体上分别设置有输入轴轴孔,且所述第一减速器壳体上的输入轴轴孔靠近所述第一电机壳体;
第一电机,位于所述第一电机壳体内,且通过第三传动组件与所述第一传动轴转动连接。
支撑电机转子轴的两个轴承分别位于电机壳体和减速器壳体中,安装电机时需要将电机的转子轴穿过电机壳体进入减速器壳体,由于同步电机含有永磁体,容易与电机壳体产生吸引力,因此,安装同步电机时易跑偏,本实施通过将位于减速器壳体内的轴承设置的更加靠近电机壳体,减小了支撑同步电机的转子轴的两个轴承的距离,从而降低了永磁电机转子轴的装配难度,有利于系统装配和调试,提高成品率。此外,在本实施例中,电机壳体与减速器壳体共用端面,无需使用连接螺栓连接,减小了驱动装置的体积和重量,从而能够提高了电动汽车的续航里程。
可选地,所述第一电机包括:
第一电机定子,与所述第一电机壳体固定连接,其中,所述第一电机定子上设置有凸压装止口,所述第一电机壳体的内壁设置有与所述第一电机定子上的凸压装止口配合的凹 压装止口;
第一电机转子,贯穿于所述第一电机定子且与所述第一电机定子间隙配合;
第一电机转子轴,与所述第一电机转子过盈配合,且所述第一电机转子轴的轴肩与所述第一电机转子的转子挡肩接触;
第九滚动轴承,所述第九滚动轴承的内圈与所述第一电机转子轴固定连接,所述第九滚动轴承的外圈与所述第一减速器壳体的输入轴轴孔固定连接,所述第九滚动轴承的第一端面与所述第一电机转子轴的轴承挡肩接触,所述第九滚动轴承的第一端面和所述第一电机转子的转子挡肩共同对所述第一电机转子轴进行轴向限位;
第十滚动轴承,所述第十滚动轴承的内圈与所述第一电机转子轴固定连接,所述第十滚动轴承的外圈与所述第一电机壳体的输入轴轴孔固定连接;
所述第一电机转子轴通过第三传动组件与所述第一传动轴转动连接,所述第三传动组件用于连通所述第一电机转子轴与所述第一传动轴之间的动力传递。
可选地,所述第三传动组件包括:
第五齿轮,套设在所述第一电机转子轴上,且与所述第一电机转子轴固定连接;
第七齿轮,套设在所述第一传动轴上,且与所述第一传动轴固定连接;
所述第五齿轮与所述第七齿轮啮合连接。
可选地,所述第一电机转子为铜条或铸铜。
可选地,所述第一集成壳体和为油冷壳体。
本实施例中,电机通过设置在壳体内部的通油孔采用油冷方式降温,电机壳体无水套和水槽结构,无冷却回路外接口,减小了驱动装置尺寸,从而能够提高电动汽车的续航里程。
第五方面,本申请提供了一种电动汽车,包括第四方面所述的驱动装置。
第六方面,本申请提供了一种组装减速器的方法,包括:将第一滚动轴承的外圈固定在中间壳体内部的第一孔位上;将第一传动轴的第一端插入所述第一滚动轴承的内圈;将第二滚动轴承放入所述第一传动轴的第一端的端面的凹槽中;将第二传动轴的第一端插入所述第二滚动轴承的内圈,使所述第二传动轴与所述第一传动轴同轴且相互轴向限位。
第一传动轴和第二传动轴为减速器中的两个不同的轴,本实施例提供的方法将该两个轴的端面通过滚动轴承嵌套在一起,并通过另一个滚动轴承与中间壳体连接,无需使用垫片或挡肩,减小了减速器的重量,此外,由于两个轴的端面嵌套在一起,从而减小了减速器的体积。上述结构通过减小减速器的尺寸,使得电动汽车有更大的空间安装电池,从而提高了电动汽车的续航里程;并且,上述结构能够减小减速器的重量,同样提高了电动汽车的续航里程。
可选地,组装减速器的方法还包括:将第五滚动轴承的外圈固定在所述中间壳体内部的第二孔位上;将第三传动轴的第一端插入所述第五滚动轴承的内圈;将第六滚动轴承放入所述第三传动轴的第一端的端面的凹槽中;将第四传动轴的第一端插入所述第六滚动轴承的内圈,使所述第四传动轴与所述第三传动轴同轴且相互轴向限位。
上述实施例进一步减小了减速器的尺寸和重量,提高了电动汽车的续航里程。
可选地,在所述将第一传动轴的第一端插入所述第一滚动轴承的内圈之前,组装减速器的方法还包括:将第七齿轮套设在所述第一传动轴上,且与所述第一传动轴固定连接; 将第三齿轮套设在所述第三传动轴上,且与所述第三传动轴固定连接;将第八齿轮套设在所述第二传动轴上,且与所述第二传动轴固定连接;将第四齿轮套设在所述第四传动轴上,且与所述第四传动轴固定连接。
第七方面,提供了一种组装驱动装置的方法,包括第六方面所述的方法,还包括:
将第一电机转子轴插入第九滚动轴承的内圈,所述第一电机转子轴的轴承挡肩与所述第九滚动轴承的第一端面接触,所述第九滚动轴承的第一端面和所述第一电机转子的转子挡肩共同对所述第一电机转子轴进行轴向限位;
将第五齿轮套设在所述第一电机转子轴上,且与所述第一电机转子轴固定连接;
将第十滚动轴承套设在所述第一电机转子轴上;
将第二电机转子轴插入第十一滚动轴承的内圈,所述第二电机转子轴的轴承挡肩与所述第十一滚动轴承的第一端面接触,所述第十一滚动轴承的第一端面和所述第二电机转子的转子挡肩共同对所述第二电机转子轴进行轴向限位;
将第六齿轮套设在所述第二电机转子轴上,且与所述第二电机转子轴固定连接;
将第十二滚动轴承套设在所述第二电机转子轴上。
本实施例提供的安装方法使得第一电机转子轴和第二电机转子轴能够被转子挡肩和滚动轴承共同限位,无需其它的限位装置,减小了驱动装置的体积和重量,从而能够提高了电动汽车的续航里程,此外,由于无需进行一体制造,减小了电机的制造成本。
附图说明
图1是本申请提供的三种不同的电动汽车驱动系统的示意图;
图2是本申请提供的驱动装置的三维结构示意图;
图3是本申请提供的驱动装置的二维结构示意图;
图4是本申请提供的驱动装置的减速器中间轴的总成结构的示意图;
图5是本申请提供的驱动装置的减速器输出轴的总成结构的示意图;
图6是本申请提供的驱动装置的左集成壳体的示意图;
图7是本申请提供的驱动装置的右集成壳体的示意图;
图8是本申请提供的驱动装置的系统功率传递路径的示意图。
具体实施方式
电动汽车的驱动系统主要有电机、控制器和变速箱组成,相对于传统燃油车辆,电动汽车的动力总成结构组成和布置方式非常灵活。图1示出了三种不同的电动汽车驱动系统。
如图1所示,电动汽车的驱动系统按照电机的数量划分可划分为双电机系统、三电机系统和四电机系统,每一个电机均对应一个变速箱(例如,减速器),并通过该变速箱将动力输出至车轮。
图1仅是示例性说明电动汽车的驱动系统,以四电机系统为例,用于驱动前轮(或后轮)的两个电机可以是图中所示的分体结构,也可以是集成结构,即,用于驱动前轮的两个电机位于一个壳体中,用于驱动后轮的两个电机位于另一个壳体中。
此外,适用于本申请的电动汽车驱动系统不限于图1所示,电机的数量还可以是其它 数量,例如单电机系统和包括多于四个电机的驱动系统,电机的位置也不限于图1所示的位置。
下面,以两个电机位于集成壳体为例对本申请提供的减速器、驱动装置和电动汽车进行详细介绍。
图2示出了本申请提供的一种驱动装置的三维结构示意图。
该驱动装置200包括:左电机定子1、左电机转子2、左电机转子轴3、左集成壳体6、左减速器输入齿轮5、左减速器输入轴承4、左减速器中间轴大齿轮9、左减速器中间齿轮轴7、左减速器输出大齿轮8、左减速器输出轴12、中间壳体13、中间壳体中间轴滚动轴承10、中间壳体中间轴滚针轴承24、中间壳体输出轴滚动轴承11、中间壳体输出轴滚针轴承25、右集成壳体18、右减速器输入齿轮19、右减速器输入轴承20、右减速器中间轴大齿轮14、右减速器中间齿轮轴15、右减速器输出大齿轮16、右减速器输出轴17、右电机定子21、右电机转子22、右电机转子轴23。
驱动装置200的各个零件可以是满足基础功能的多种零件中的一种,例如,左电机和右电机可以是同步电机,也可以是异步电机,相应地,左电机转子2和右电机转子22可以是永磁体,也可以是铜条或铸铜;又例如,中间壳体中间轴滚动轴承10可以是深沟球轴承,也可以是圆柱滚子轴承。
图3是驱动装置200的二维结构示意图。
图3中的各个部件的名称与图2中的相应部件的名称一致。下面,分别对驱动装置200的各个部分做详细说明。
需要说明的是,本申请的权利要求书中所述的第一传动轴和第二传动轴可以是驱动装置200中任意两个同轴配置的轴,例如,第一传动轴可以为右减速器中间齿轮轴15,第二传动轴可以为左减速器中间齿轮轴7;或者,第一传动轴可以为右减速器输出轴17,第二传动轴可以为左减速器输出轴12。其中,当第一传动轴为右减速器中间齿轮轴15且第二传动轴为左减速器中间齿轮轴7时,第三传动轴为右减速器输出轴17,第四传动轴为左减速器输出轴12,第一滚动轴承为滚动轴承10,第二滚动轴承为滚动轴承24,第三滚动轴承为滚动轴承26,第四滚动轴承为滚动轴承27,第一集成壳体为右集成壳体18,第二集成壳体为左集成壳体6,第五滚动轴承为滚动轴承11,第六滚动轴承为滚动轴承25,第七滚动轴承为滚动轴承32,第八滚动轴承为滚动轴承33,第一齿轮为齿轮28,第三齿轮为齿轮16,第二齿轮为齿轮29,第四齿轮为齿轮8,第一电机定子为右电机定子21,第一电机转子为右电机转子22,第一电机转子轴为右电机转子轴23,第九滚动轴承为滚动轴承20,第十滚动轴承为滚动轴承30,第二电机定子为左电机定子1,第二电机转子为左电机转子2,第二电机转子轴为左电机转子轴3,第十一滚动轴承为滚动轴承4,第十二滚动轴承为滚动轴承31,第五齿轮为齿轮19,第七齿轮为齿轮14,第六齿轮为齿轮5,第八齿轮为齿轮9。
为了简洁,下面以第一传动轴为右减速器中间齿轮轴15且第二传动轴为左减速器中间齿轮轴7为例对本申请提供的减速器、驱动装置和电动汽车进行说明。
图4是本申请提供的驱动装置200的减速器中间轴的总成结构的示意图。
右减速器中间齿轮轴15与中间壳体中间轴滚动轴承10的内圈采用过盈配合压装方式进行装配,中间壳体中间轴滚动轴承10的外圈与中间壳体13对应中间轴孔处采用过度配 合方式,且中间壳体中间轴滚动轴承10在中间壳体13对应中间轴孔处无轴向限位结构。中间壳体中间轴滚针轴承24的内圈与左减速器中间齿轮轴7的轴端进行配合安装,同时,中间壳体中间轴滚针轴承24的外圈与右减速器中间齿轮轴15的轴端内孔进行配合安装。右减速器中间齿轮轴15轴端与左减速器中间齿轮轴7轴肩相互轴向限位,通过右减速器中间齿轮轴15内孔轴肩限制中间壳体中间轴滚针轴承24的轴向位移。由此,右减速器中间齿轮轴15与左减速器中间齿轮轴7完成了集成,且两者之间可以相互独立转动。作为一个可选的实施方式,在右减速器中间齿轮轴15与左减速器中间齿轮轴7之间可以增加轴向接触轴承,使得右减速器中间齿轮轴15与左减速器中间齿轮轴7可以相互独立转动。
图4仅是示例性说明,本申请提供的驱动装置200的减速器中间轴的总成结构还可以是下述结构:
左减速器中间齿轮轴7与中间壳体中间轴滚动轴承10的内圈采用过盈配合压装方式进行装配,中间壳体中间轴滚动轴承10的外圈与中间壳体13对应中间轴孔处采用过度配合方式,且中间壳体中间轴滚动轴承10在中间壳体13对应中间轴孔处无轴向限位结构。中间壳体中间轴滚针轴承24的内圈与右减速器中间齿轮轴15的轴端进行配合安装,同时,中间壳体中间轴滚针轴承24的外圈与左减速器中间齿轮轴7的轴端内孔进行配合安装。右减速器中间齿轮轴15轴端与左减速器中间齿轮轴7轴肩相互轴向限位,通过右减速器中间齿轮轴15内孔轴肩限制中间壳体中间轴滚针轴承24的轴向位移。由此,左减速器中间齿轮轴7与右减速器中间齿轮轴15完成了集成,且两者之间可以相互独立转动。作为一个可选的实施方式,在右减速器中间齿轮轴15与左减速器中间齿轮轴7之间可以增加轴向接触轴承,使得右减速器中间齿轮轴15与左减速器中间齿轮轴7可以相互独立转动。
图5是本申请提供的驱动装置200的减速器输出轴的总成结构的示意图。
右减速器输出轴17与中间壳体输出轴滚动轴承11的内圈采用过盈配合压装方式进行装配,中间壳体输出轴滚动轴承11的外圈与中间壳体13对应输出轴孔处采用过度配合方式,且中间壳体输出轴滚动轴承11在中间壳体13对应输出轴孔处无轴向限位结构。中间壳体输出轴滚针轴承25的内圈与左减速器输出轴12的轴端位置进行配合安装,同时,中间壳体输出轴滚针轴承25的外圈与右减速器输出轴17的轴端内孔进行配合安装。为进一步增加本发明的可实施性,右减速器输出轴17轴端与左减速器输出轴12轴肩相互轴向限位,通过右减速器输出轴17内孔轴肩限制中间壳体输出轴滚针轴承25的轴向位移。由此,右减速器输出轴17与左减速器输出轴12完成了集成,且两者之间可以相互独立转动。此外,在右减速器输出轴17与左减速器输出轴12之间可以增加轴向接触轴承,可达到相同的效果。
图5仅是示例性说明,本申请提供的驱动装置200的减速器输出轴的总成结构还可以是下述结构:
左减速器输出轴12与中间壳体输出轴滚动轴承11的内圈采用过盈配合压装方式进行装配,中间壳体输出轴滚动轴承11的外圈与中间壳体13对应输出轴孔处采用过度配合方式,且中间壳体输出轴滚动轴承11在中间壳体13对应输出轴孔处无轴向限位结构。中间壳体输出轴滚针轴承25的内圈与右减速器输出轴17的轴端位置进行配合安装,同时,中间壳体输出轴滚针轴承25的外圈与左减速器输出轴12的轴端内孔进行配合安装。为进一步增加本发明的可实施性,左减速器输出轴12轴端与右减速器输出轴17轴肩相互轴向限 位,通过左减速器输出轴12内孔轴肩限制中间壳体输出轴滚针轴承25的轴向位移。由此,左减速器输出轴12与右减速器输出轴17完成了集成,且两者之间可以相互独立转动。此外,在左减速器输出轴12与右减速器输出轴17之间可以增加轴向接触轴承,可达到相同的效果。
上述中间轴和输出轴的实施例通过将左右两个轴的轴端嵌套在一起,减小了驱动装置200的轴向尺寸,并且,由于左右两个轴的轴端在轴向互相限位,无需使用垫圈对该两个轴进行限位,从而减小了驱动装置200的重量;此外,互相限位的两个轴之间仅需使用一个滚针轴承连接在一起,无需使用较重的深沟球轴承,进一步减小了驱动装置200的重量。上述技术效果降低了驱动装置200的制造成本,提高了安装驱动装置200的电动汽车的续航里程,通过减小驱动装置200的尺寸节约出来的空间可以用于安装额外的电池,进一步提高了安装驱动装置200的电动汽车的续航里程。
应理解,上述实施例所述的驱动装置仅是示例性说明,驱动装置内其它采用同轴配置的两个轴均可以应用本申请提供的技术方案减小轴向尺寸。
图6是本申请提供的驱动装置200的左集成壳体的示意图。
左集成壳体6包括左减速器壳体6a和左电机壳体6b,作为一个可选的实施例,左减速器壳体6a和左电机壳体6b均为高强度铝合金材料,通过高压铸铝工艺整体成型。作为另一个可选的实施例,左减速器壳体6a和左电机壳体6b为分体式结构,通过端面焊接成型,可达到相同效果。
图7是本申请提供的驱动装置200的右集成壳体的示意图。
与左集成壳体6类似,右减速器集成壳体18包括右减速器壳体18a和右电机壳体18b,作为一个可选的实施例,右减速器壳体18a和右电机壳体18b均为高强度铝合金材料,通过高压铸铝工艺整体成型。作为另一个可选的实施例,右减速器壳体18a和右电机壳体18b也可以是分体式结构,通过端面焊接成型,可达到相同效果。
图7和图8所描述的实施例中,电机壳体与减速器壳体共用端面,无需使用连接螺栓连接,减小了驱动装置的体积和重量,从而能够提高了电动汽车的续航里程。
左右双电机均采用油冷方式进行冷却,且与减速器共用齿轮润滑油,左减速器集成壳体6和右减速器集成壳体18以及中间壳体13结构上均设有通孔,确保润滑油在系统内循环流动。
应理解,图7和图8所示的集成壳体可以应用于图2和图3所示的双电机驱动装置,也可以应用于单电机驱动装置,单电机驱动装置如图1中双电机驱动系统所示,该双电机驱动系统包括两个电机,该两个电机分别位于不同的壳体中。
下面描述驱动装置200的电机的组装方法。
左电机与左减速器的一种组装方式为:左电机定子1与左集成壳体6通过过盈压装配合安装,左集成壳体6内壁设有定子压装止口,确保左电机定子1压装到位。左电机转子2与左电机转子轴3通过键连接,并采用过盈压装方式将左电机转子2压装至左电机转子轴3上的转子挡肩位置,组成左电机转子部件。左减速器输入轴承4内圈与左电机转子轴3采用过盈配合,采用压装方式将左减速器输入轴承4压装至左电机转子轴3上的轴承挡肩位置。随后,左减速器输入齿轮5与左电机转子轴3采用过盈配合安装,并轴向限位。最终,将由左电机转子2、左电机转子轴3、左减速器输入轴承4、左减速器输入齿轮5 组装完成的部件从左集成壳体6输入轴轴孔处穿过,左减速器输入轴承4外圈与左集成壳体6输入轴轴孔采用过度配合方式,上述组装方式在确保电机性能不受影响的同时减小了电机装配难度。
左减速器输入齿轮5与左电机转子轴3除了采用过盈配合安装的方式,也可以通过花键配合的方式,同时增加卡环结构进行轴向限位,也可以将左减速器输入齿轮5与左电机转子轴3设计成一体轴,可达到相同效果。
如图3所示,左电机转子轴3在左集成壳体6电机侧(即,左电机壳体6b)采用两轴承的简支梁结构,而在左集成壳体6减速器侧(即,左减速器壳体6a)采用悬臂结构,减小了同步电机的转子轴进入轴承的距离,从而降低了永磁电机转子轴的装配难度,有利于系统装配和调试,提高了成品率。
右电机与右减速器的一种组装方式为:右电机定子21与右减速器集成壳体18通过过盈压装配合安装,右减速器集成壳体18内壁设有定子压装止口,确保右电机定子21压装到位。右电机转子22与右电机转子轴23通过键连接,并采用过盈压装方式将右电机转子22压装至右电机转子轴23上的转子挡肩位置,组成右电机转子部件。右减速器输入轴承20内圈与右电机转子轴23采用过盈配合,采用压装方式将右减速器输入轴承20压装至右电机转子轴23上的轴承挡肩位置。随后,右减速器输入齿轮19与右电机转子轴23采用过盈配合安装,并轴向限位。最终,将由右电机转子22、右电机转子轴23、右减速器输入轴承20、右减速器输入齿轮19组装完成的部件从右减速器集成壳体18输入轴轴孔处穿过,右减速器输入轴承20外圈与右减速器集成壳体18输入轴轴孔采用过度配合方式,上述组装方式在确保电机性能不受影响的同时减小了电机装配难度。
右减速器输入齿轮19与右电机转子轴23除了采用过盈配合安装的方式,也可以通过花键配合的方式,同时增加卡环结构进行轴向限位,也可以将左减速器输入齿轮5与左电机转子轴3设计成一体轴,可达到相同效果。
如图3所示,右电机转子轴23在右减速器集成壳体18电机侧(即,右电机壳体18b)采用两轴承的简支梁结构,而在右减速器集成壳体18减速器侧(即,右减速器壳体18a)采用悬臂结构,减小了同步电机的转子轴进入轴承的距离,从而降低了永磁电机转子轴的装配难度,有利于系统装配和调试,提高了成品率。
应理解,上述在集成壳体的电机侧采用两轴承的简支梁结构,以及在集成壳体的减速器侧采用悬臂结构的方案不仅可以应用于图2和图3所示的双电机驱动装置,也可以应用于单电机驱动装置,单电机驱动装置如图1中双电机驱动系统所示,该双电机驱动系统包括两个电机,该两个电机分别位于不同的壳体中。
本申请提供的电动汽车例如可以是安装有驱动装置200的三电机系统的电动汽车或者四电机系统的电动汽车(如图1所示),通过上述方法将驱动装置200安装完毕并完成调试后,驱动装置200即可正常运行为电动汽车提供动力。
图8示出了驱动装置200的系统功率传递路径的示意图。
左减速器输入齿轮5与左减速器中间轴大齿轮9啮合传动,左减速器中间齿轮轴7与左减速器输出轴大齿轮8啮合传动,最终通过左减速器输出轴12花键输出,由此组成完整的左减速器功率传递路径(如图8所示)。其中,作为一个可选的实施方式,左减速器中间轴大齿轮9与左减速器中间齿轮轴7采用键连接方式进行配合安装,且左减速器中间 轴大齿轮9内孔与左减速器中间齿轮轴7外轴采用过盈压装的方式增加连接的可靠性。同时,左减速器输出轴大齿轮8与左减速器输出轴12采用键连接方式进行配合安装,且左减速器输出轴大齿轮8内孔与左减速器输出轴12外轴采用过盈压装的方式增加连接的可靠性。
右减速器输入齿轮19与右减速器中间轴大齿轮14啮合传动,右减速器中间齿轮轴15与右减速器输出轴大齿轮16啮合传动,最终通过右减速器输出轴17花键输出,由此组成完整的右减速器功率传递路径(如图8所示)。其中,作为一个可选的实施方式,右减速器中间轴大齿轮14与右减速器中间齿轮轴15采用键连接方式进行配合安装,且右减速器中间轴大齿轮14内孔与右减速器中间齿轮轴15外轴采用过盈压装的方式增加连接的可靠性。同时,右减速器输出轴大齿轮16与右减速器输出轴17采用键连接方式进行配合安装,且右减速器输出轴大齿轮16内孔与右减速器输出轴17外轴采用过盈压装的方式增加连接的可靠性。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (14)

  1. 一种减速器,其特征在于,包括中间壳体(13)、第一传动轴(15)、第二传动轴(7)、第三传动轴(17)、第四传动轴(12)、第一滚动轴承(10)、第二滚动轴承(24)、第三滚动轴承(26)、第四滚动轴承(27)、第一传动组件、第二传动组件、第一减速器壳体(18a)和第二减速器壳体(6a),
    所述中间壳体(13)的第一端面与第一减速器壳体(18a)连接,所述中间壳体(13)的第二端面与所述第二减速器壳体(6a)连接,所述第一滚动轴承(10)的外圈与所述中间壳体(13)固定连接,所述第三滚动轴承(26)的外圈与所述第一减速器壳体(18a)固定连接,所述第四滚动轴承(27)的外圈与所述第二减速器壳体(6a)固定连接;
    所述第一传动轴(15)的第一端嵌套在所述第一滚动轴承(10)的内圈中,所述第一传动轴(15)的第二端嵌套在所述第三滚动轴承(26)的内圈中;
    所述第一传动轴(15)的第一端的端面设置有第一凹槽,所述第一凹槽中设置有所述第二滚动轴承(24);
    所述第二传动轴(7)的第一端嵌套在所述第二滚动轴承(24)的内圈中,所述第二传动轴(7)的第二端嵌套在所述第四滚动轴承(27)的内圈中,所述第二传动轴(7)与所述第一传动轴(15)同轴且相互轴向限位;
    所述第一传动轴(15)通过所述第一传动组件与所述第三传动轴(17)转动连接,所述第一传动组件用于连通所述第一传动轴(15)与所述第三传动轴(17)之间的动力传递;
    所述第二传动轴(7)通过所述第二传动组件与所述第四传动轴(12)转动连接,所述第二传动组件用于连通所述第二传动轴(7)与所述第四传动轴(12)之间的动力传递。
  2. 根据权利要求1所述的减速器,其特征在于,所述减速器还包括第五滚动轴承(11)、第六滚动轴承(25)、第七滚动轴承(32)、第八滚动轴承(33);
    所述第五滚动轴承(11)的外圈与所述中间壳体(13)固定连接,所述第七滚动轴承(32)的外圈与所述第一减速器壳体(18a)固定连接,所述第八滚动轴承(33)的外圈与所述第二减速器壳体(6a)固定连接;
    所述第三传动轴(17)的第一端嵌套在所述第五滚动轴承(11)的内圈中,所述第三传动轴(17)的第二端嵌套在所述第七滚动轴承(32)的内圈中;
    所述第三传动轴(17)的第一端的端面设置有第二凹槽,所述第二凹槽中设置有所述第六滚动轴承(25);
    所述第四传动轴(12)的第一端嵌套在所述第六滚动轴承(25)的内圈中,所述第四传动轴(12)的第二端嵌套在所述第八滚动轴承(33)的内圈中,所述第三传动轴(17)与所述第四传动轴(12)同轴且相互轴向限位。
  3. 根据权利要求1或2所述的减速器,其特征在于,所述第一传动组件包括:
    第一齿轮(28),套设在所述第一传动轴(15)上,且与所述第一传动轴(15)固定连接;
    第三齿轮(16),套设在所述第三传动轴(17)上,且与所述第三传动轴(17)固定连接;
    所述第一齿轮(28)位于所述第一滚动轴承(10)与所述第三滚动轴承(26)之间,所述第一齿轮(28)与所述第三齿轮(16)啮合连接;
    所述第二传动组件包括:
    第二齿轮(29),套设在所述第二传动轴(7)上,且与所述第二传动轴(7)固定连接;
    第四齿轮(8),套设在所述第四传动轴(12)上,且与所述第四传动轴(12)固定连接;
    所述第二齿轮(29)位于所述第一滚动轴承(10)与所述第四滚动轴承(27)之间,所述第二齿轮(29)与所述第四齿轮(8)啮合连接。
  4. 根据权利要求1至3中任一项所述的减速器,其特征在于,所述第二滚动轴承(24)为滚针轴承(24)。
  5. 一种驱动装置,其特征在于,包括如权利要求1至4中任一项所述的减速器,还包括:
    第一集成壳体(18),包括第一电机壳体(18b),所述第一电机壳体(18b)与所述第一减速器壳体(18a)通过铸造方式或焊接方式连接,所述第一减速器壳体(18a)和所述第一电机壳体(18b)上分别设置有输入轴轴孔,且所述第一减速器壳体(18a)上的输入轴轴孔靠近所述第一电机壳体(18b);
    第一电机,位于所述第一电机壳体(18b)内,且通过第三传动组件与所述第一传动轴(15)转动连接;
    第二集成壳体(6),包括第二电机壳体(6b),所述第二电机壳体(6b)与所述第二减速器壳体(6a)通过铸造方式或焊接方式连接,所述第二减速器壳体(6a)和所述第二电机壳体(6b)上分别设置有输入轴轴孔,且所述第二减速器壳体(6a)上的输入轴轴孔靠近所述第二电机壳体(6b);
    第二电机,位于所述第二电机壳体(6b)内,且通过第四传动组件与所述第二传动轴(7)转动连接。
  6. 根据权利要求5所述的驱动装置,其特征在于,
    所述第一电机包括:
    第一电机定子(21),与所述第一电机壳体(18b)固定连接,其中,所述第一电机定子(21)上设置有凸压装止口,所述第一电机壳体(18b)的内壁设置有与所述第一电机定子(21)上的凸压装止口配合的凹压装止口;
    第一电机转子(22),贯穿于所述第一电机定子(21)且与所述第一电机定子(21)间隙配合;
    第一电机转子轴(23),与所述第一电机转子(22)过盈配合,且所述第一电机转子轴(23)的轴肩与所述第一电机转子(22)的转子挡肩接触;
    第九滚动轴承(20),所述第九滚动轴承(20)的内圈与所述第一电机转子轴(23)固定连接,所述第九滚动轴承(20)的外圈与所述第一减速器壳体(18a)的输入轴轴孔固定连接,所述第九滚动轴承(20)的第一端面与所述第一电机转子轴(23)的轴承挡肩接触,所述第九滚动轴承(20)的第一端面和所述第一电机转子(22)的转子挡肩共同对所述第一电机转子轴(23)进行轴向限位;
    第十滚动轴承(30),所述第十滚动轴承(30)的内圈与所述第一电机转子轴(23)固定连接,所述第十滚动轴承(30)的外圈与所述第一电机壳体(18b)的输入轴轴孔固定连接;
    所述第一电机转子轴(23)通过第三传动组件与所述第一传动轴(15)转动连接,所述第三传动组件用于连通所述第一电机转子轴(23)与所述第一传动轴(15)之间的动力传递;
    所述第二电机包括:
    第二电机定子(1),与所述第二电机壳体(6b)固定连接,其中,所述第二电机定子(1)上设置有凸压装止口,所述第二电机壳体(6b)的内壁设置有与所述第二电机定子(1)上的凸压装止口配合的凹压装止口;
    第二电机转子(2),贯穿于所述第二电机定子(1)且与所述第二电机定子(1)间隙配合;
    第二电机转子轴(3),与所述第二电机转子(2)固定连接,且所述第二电机转子轴(3)的轴肩与所述第二电机转子(2)的转子挡肩接触;
    第十一滚动轴承(4),所述第十一滚动轴承(4)的内圈与所述第二电机转子轴(3)固定连接,所述第十一滚动轴承(4)的外圈与所述第二减速器壳体(6a)的输入轴轴孔固定连接,所述第十一滚动轴承(4)的第一端面与所述第二电机转子轴(3)的轴承挡肩接触,所述第十一滚动轴承(4)的第一端面和所述第二电机转子(2)的转子挡肩共同对所述第二电机转子轴(3)进行轴向限位;
    第十二滚动轴承(31),所述第十二滚动轴承(31)的内圈与所述第二电机转子轴(3)固定连接,所述第十二滚动轴承(31)的外圈与所述第二电机壳体(6b)的输入轴轴孔固定连接;
    所述第二电机转子轴(3)通过第四传动组件与所述第二传动轴(7)转动连接,所述第四传动组件用于连通所述第二电机转子轴(3)与所述第二传动轴(7)之间的动力传递。
  7. 根据权利要求6所述的驱动装置,其特征在于,
    所述第三传动组件包括:
    第五齿轮(19),套设在所述第一电机转子轴(23)上,且与所述第一电机转子轴(23)固定连接;
    第七齿轮(14),套设在所述第一传动轴(15)上,且与所述第一传动轴(15)固定连接;
    所述第五齿轮(19)与所述第七齿轮(14)啮合连接;
    所述第四传动组件包括:
    第六齿轮(5),套设在所述第二电机转子轴(3)上,且与所述第二电机转子轴(3)固定连接;
    第八齿轮(9),套设在所述第二传动轴(7)上,且与所述第二传动轴(7)固定连接;
    所述第六齿轮(5)与所述第八齿轮(9)啮合连接。
  8. 根据权利要求6或7中所述的驱动装置,其特征在于,
    所述第一电机转子(22)为铜条或铸铜;
    所述第二电机转子(2)为铜条或铸铜。
  9. 根据权利要求5至8中任一项所述的驱动装置,其特征在于,所述第一集成壳体(18)和所述第二集成壳体(6)均为油冷壳体,所述中间壳体(13)设置有通油孔。
  10. 一种电动汽车,其特征在于,包括如权利要求1至4中任一项所述的减速器和/或如权利要求5至9中任一项所述的驱动装置。
  11. 一种组装减速器的方法,其特征在于,包括:
    将第一滚动轴承(10)的外圈固定在中间壳体(13)内部的第一孔位上;
    将第一传动轴(15)的第一端插入所述第一滚动轴承(10)的内圈;
    将第二滚动轴承(24)放入所述第一传动轴(15)的第一端的端面的凹槽中;
    将第二传动轴(7)的第一端插入所述第二滚动轴承(24)的内圈,使所述第二传动轴(7)与所述第一传动轴(15)同轴且相互轴向限位。
  12. 根据权利要求11所述的方法,其特征在于,还包括:
    将第五滚动轴承(11)的外圈固定在所述中间壳体(13)内部的第二孔位上;
    将第三传动轴(17)的第一端插入所述第五滚动轴承(11)的内圈;
    将第六滚动轴承(25)放入所述第三传动轴(17)的第一端的端面的凹槽中;
    将第四传动轴(12)的第一端插入所述第六滚动轴承(25)的内圈,使所述第四传动轴(12)与所述第三传动轴(17)同轴且相互轴向限位。
  13. 根据权利要求11或12所述的方法,其特征在于,在所述将第一传动轴(15)的第一端插入所述第一滚动轴承(10)的内圈之前,所述方法还包括:
    将第七齿轮(14)套设在所述第一传动轴(15)上,且与所述第一传动轴(15)固定连接;
    将第三齿轮(16)套设在所述第三传动轴(17)上,且与所述第三传动轴(17)固定连接;
    将第八齿轮(9)套设在所述第二传动轴(7)上,且与所述第二传动轴(7)固定连接;
    将第四齿轮(8)套设在所述第四传动轴(12)上,且与所述第四传动轴(12)固定连接。
  14. 一种组装驱动装置的方法,其特征在于,包括如权利要求11至13中任一项所述的方法,还包括:
    将第一电机转子轴(23)插入第九滚动轴承(20)的内圈,所述第一电机转子轴(23)的轴承挡肩与所述第九滚动轴承(20)的第一端面接触,所述第九滚动轴承(20)的第一端面和所述第一电机转子(22)的转子挡肩共同对所述第一电机转子轴(23)进行轴向限位;
    将第五齿轮(19)套设在所述第一电机转子轴(23)上,且与所述第一电机转子轴(23)固定连接;
    将第十滚动轴承(30)套设在所述第一电机转子轴(23)上;
    将第二电机转子轴(3)插入第十一滚动轴承(4)的内圈,所述第二电机转子轴(3)的轴承挡肩与所述第十一滚动轴承(4)的第一端面接触,所述第十一滚动轴承(4)的第一端面和所述第二电机转子(2)的转子挡肩共同对所述第二电机转子轴(3)进行轴向限 位;
    将第六齿轮(5)套设在所述第二电机转子轴(3)上,且与所述第二电机转子轴(3)固定连接;
    将第十二滚动轴承(31)套设在所述第二电机转子轴(3)上。
PCT/CN2019/073588 2018-01-31 2019-01-29 减速器、驱动装置和电动汽车 WO2019149181A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810092754.2A CN110091700B (zh) 2018-01-31 2018-01-31 减速器、驱动装置和电动汽车
CN201810092754.2 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019149181A1 true WO2019149181A1 (zh) 2019-08-08

Family

ID=67442446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073588 WO2019149181A1 (zh) 2018-01-31 2019-01-29 减速器、驱动装置和电动汽车

Country Status (2)

Country Link
CN (1) CN110091700B (zh)
WO (1) WO2019149181A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113494585A (zh) * 2020-04-01 2021-10-12 浙江理工大学 一种平行轴分箱减速机
CN117254624A (zh) * 2023-11-14 2023-12-19 广汽埃安新能源汽车股份有限公司 电机集成壳体和电机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413947B2 (en) * 2019-12-18 2022-08-16 GM Global Technology Operations LLC Bearing and shaft arrangement for electric drive unit
CN114290884A (zh) * 2021-08-25 2022-04-08 华为数字能源技术有限公司 汽车驱动系统和汽车
CN114396472A (zh) 2021-10-12 2022-04-26 华为数字能源技术有限公司 一种动力总成及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528094A (en) * 1993-03-29 1996-06-18 Aisin Aw Co., Ltd. Drive system for electric cars
CN101519040A (zh) * 2008-05-23 2009-09-02 北京理工大学 电动汽车双电机防滑差速驱动桥
CN102112333A (zh) * 2008-08-22 2011-06-29 爱信艾达株式会社 车辆驱动装置
CN104377881A (zh) * 2014-11-14 2015-02-25 中国第一汽车股份有限公司 一种新能源车用一体化驱动装置
CN107339399A (zh) * 2016-04-28 2017-11-10 丰田自动车株式会社 驱动装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180424A (ja) * 2015-03-23 2016-10-13 Ntn株式会社 車両駆動装置
JP6621997B2 (ja) * 2015-04-17 2019-12-18 Ntn株式会社 自動車用減速機付きモータ駆動装置
JP2017133526A (ja) * 2016-01-25 2017-08-03 Ntn株式会社 車両用モータ駆動装置
JP2017133564A (ja) * 2016-01-26 2017-08-03 Ntn株式会社 車両用モータ駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528094A (en) * 1993-03-29 1996-06-18 Aisin Aw Co., Ltd. Drive system for electric cars
CN101519040A (zh) * 2008-05-23 2009-09-02 北京理工大学 电动汽车双电机防滑差速驱动桥
CN102112333A (zh) * 2008-08-22 2011-06-29 爱信艾达株式会社 车辆驱动装置
CN104377881A (zh) * 2014-11-14 2015-02-25 中国第一汽车股份有限公司 一种新能源车用一体化驱动装置
CN107339399A (zh) * 2016-04-28 2017-11-10 丰田自动车株式会社 驱动装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113494585A (zh) * 2020-04-01 2021-10-12 浙江理工大学 一种平行轴分箱减速机
CN117254624A (zh) * 2023-11-14 2023-12-19 广汽埃安新能源汽车股份有限公司 电机集成壳体和电机
CN117254624B (zh) * 2023-11-14 2024-02-27 广汽埃安新能源汽车股份有限公司 电机集成壳体和电机

Also Published As

Publication number Publication date
CN110091700A (zh) 2019-08-06
CN110091700B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2019149181A1 (zh) 减速器、驱动装置和电动汽车
US20180297401A1 (en) Electric drive axle assembly and vehicle having the electric drive axle assembly
WO2019238042A1 (zh) 一种一体化电驱动动力总成
CN106740043B (zh) 一种增程式电动车用动力总成装置
EP3778281A1 (en) Electric wheel assembly with integrated hub motor
CN103072476B (zh) 电动车的后桥电动力驱动装置
CN203078306U (zh) 电动车的后桥驱动减速装置
EP3778280B1 (en) Engine and electric motor assembly, and vehicle driving device
CN210970636U (zh) 一种共端盖电驱动总成传动系统
CN219312511U (zh) 电驱系统及车辆
CN110871776A (zh) 一种电子驻车式制动执行机构
CN102358157A (zh) 一种混合动力汽车电机集成结构
CN101267145A (zh) 差速器电动机
CN112319215A (zh) 动力传递装置
CN211565895U (zh) 一种机器人用关节模组
CN211655865U (zh) 一种双输出轴电动机永磁转子组装结构
CN102705469B (zh) 传动器
CN106114187A (zh) 一种车用双电机两档动力耦合箱
CN113335082A (zh) 车辆用驱动装置
CN209414584U (zh) 桥箱一体变速箱系统的润滑结构
KR101458949B1 (ko) 인휠 구동장치
CN201191795Y (zh) 差速器电动机
CN202167938U (zh) 电动车用半轴式无刷电动机
CN216128255U (zh) 齿轮传动系统及低地板有轨电车
KR20210058890A (ko) 댐퍼를 통합한 연결 슬리브가 구비된 회전 전기 기계

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747787

Country of ref document: EP

Kind code of ref document: A1