WO2019149141A1 - 一种含Sn悬浮液的制备方法及其应用 - Google Patents

一种含Sn悬浮液的制备方法及其应用 Download PDF

Info

Publication number
WO2019149141A1
WO2019149141A1 PCT/CN2019/073091 CN2019073091W WO2019149141A1 WO 2019149141 A1 WO2019149141 A1 WO 2019149141A1 CN 2019073091 W CN2019073091 W CN 2019073091W WO 2019149141 A1 WO2019149141 A1 WO 2019149141A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
preparation
reaction vessel
heating
Prior art date
Application number
PCT/CN2019/073091
Other languages
English (en)
French (fr)
Inventor
赵爱珍
宋兴余
Original Assignee
苏州庚泽新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州庚泽新材料科技有限公司 filed Critical 苏州庚泽新材料科技有限公司
Publication of WO2019149141A1 publication Critical patent/WO2019149141A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment

Definitions

  • the invention relates to the field of material preparation, in particular to a preparation method of a suspension containing Sn and its application as a catalyst for preparing ozone.
  • Ozone O 3 is also known as superoxide and belongs to the allotrope of oxygen O 2 .
  • the half-life of ozone is 15 to 30 minutes (minutes), resulting in difficulty in conventional storage of ozone and high cost.
  • ozone is highly oxidizing and easily decomposable, and can be used as a sewage purifying agent, a decolorizing agent, a disinfectant, and the like.
  • Ozone sterilization is fast and effective, and ozone itself reduces oxygen. Therefore, the use of ozone has been widely recognized and is recognized as a green disinfectant in the world.
  • the commonly used methods for producing ozone are corona method, electrolysis method, ultraviolet method, and nuclear radiation method.
  • the corona method has high equipment investment, high operating cost, low ozone concentration produced by the ultraviolet method, high energy consumption by ultraviolet method, low concentration of ozone generation, and is not suitable for the production of large amount of ozone; the nuclear radiation method has large investment and is unsafe.
  • the frequency of use is very low.
  • the production of ozone by electrolysis mainly includes electrolytic air and electrolytic pure water.
  • Electrolytic production of ozone air can NO x production process and other toxic substances, the desired high AC voltage, the electrolysis efficiency is low, the ozone and water is difficult, a large floor space, high cost; the most efficient ozone generated by water electrolysis unit
  • the electrolysis process uses a solid noble metal polymer as an electrolyte, and combines a cation exchange mode to obtain ozone by means of low-pressure electrolysis.
  • the control system is relatively complicated, the electrolysis efficiency is low, ozone is difficult to enter the water, and the use cost is high.
  • the present invention is directed to a method for preparing a Sn-containing suspension which can be used as a catalyst for generating ozone, and the preparation process of the Sn-containing suspension is simple and easy. Operation, when used to produce ozone, saves energy and produces no toxic or hazardous substances.
  • the invention provides a preparation method of a Sn-containing suspension, comprising the following steps:
  • step C adding Sb 2 O 3 to the reaction vessel described in step B, stirring and heating to make the mixture uniform, to obtain a mixture;
  • the SnC 2 O 4 is 550 to 900 parts by weight
  • the Sb 2 O 3 is 5 to 8 parts by weight
  • the Ni(CH 3 COO) 2 ⁇ 4H 2 O is 1 to 1 3 parts by weight.
  • the Ni(CH 3 COO) 2 ⁇ 4H 2 O is another positive divalent compound containing Ni; the Sb 2 O 3 is another positive trivalent compound containing Sb; the SnC 2 O 4 is another normal divalent compound containing Sn.
  • step B deionized water is added to the reactor.
  • step B 150 to 450 parts by weight of water is added to the reaction vessel; and the stirring process is controlled for 3 to 5 minutes.
  • the flow rate of the oxygen gas introduced is 8 to 12 L/min.
  • the temperature of the heating process is controlled to be 50 to 60 °C.
  • the temperature of the heating process is controlled to be 50 to 60 ° C, and the heating time is 1 to 2 h (hour).
  • the reaction time of the reactor is 6 to 8 hours.
  • the invention also proposes the use of a Sn-containing suspension as a catalyst for the preparation of an ozone process, which is prepared by the above preparation method.
  • the Sn-containing suspension prepared by the method of the invention has a simple preparation process and is easy to operate without complicated equipment.
  • the Sn-containing suspension of the present invention is used as a catalyst for producing an ozone process, ozone generation can be effectively promoted, and no toxic and harmful substances are generated in the process.
  • the ozone generating apparatus of the present invention uses a Sn-containing suspension to form a catalyst film layer on the anode plate for promoting the generation of ozone.
  • the electrolyzing device can be directly used for treating industrial sewage, energy saving and environmental protection, high processing efficiency, easy operation and low cost of equipment operation.
  • FIG. 1 is a schematic flow chart of a preparation method of a Sn-containing suspension proposed by the present invention.
  • the present invention prepares a suspension containing Sn by a specific method, and the preparation steps are as shown in FIG. 1:
  • the Sn-containing suspension prepared by the present invention mainly includes a Sn element, an Sb element, and a Ni element, and the existence form of the Sn element, the Sb element, and the Ni element is not limited to the three compounds taken in the production method of the present invention.
  • Ni(CH 3 COO) 2 ⁇ 4H 2 O can also be selected from other positive divalent compounds containing Ni;
  • Sb 2 O 3 can also be selected from other positive trivalent compounds containing Sb; SnC 2 O 4 It is also possible to use other positive divalent compounds containing Sn.
  • SnC 2 O 4 is weighed 550 to 900 parts by weight
  • Sb 2 O 3 is weighed 5 to 8 parts by weight
  • Ni(CH 3 COO) 2 ⁇ 4H 2 O is weighed 1 to 3 Parts by weight.
  • the prepared SnC 2 O 4 was placed in the reaction vessel, and at least 150 parts by weight of water was added to the reaction vessel and stirred well.
  • the amount of water added is from 150 to 450 parts by weight.
  • the stirring time is preferably controlled to 3 to 5 minutes. More preferably, deionized water is added to the kettle.
  • the suspension means that the solid particles are dispersed in the liquid and cannot sink quickly due to Brownian motion, and the mixture of the solid dispersed phase and the liquid at this time is called a suspension.
  • the flow rate of oxygen into the reactor is 8 to 12 L/min.
  • the temperature at which the heat treatment is carried out is 50 to 60 ° C, and the temperature in the reaction vessel is maintained at 50 to 60 ° C, and oxygen gas is continuously supplied and stirred.
  • the heating time is controlled to be 1 to 2 hours.
  • the time of the precipitation process is controlled to 6-8 hours, which can completely precipitate the material in the reactor.
  • the Sn-containing suspension prepared by the present invention can be stored for 30 days in an environment of 0-8 °C.
  • the invention also proposes the use of the above Sn-containing suspension, which can be used as a catalyst for the preparation of ozone to promote the formation of ozone.
  • ozone is prepared by catalytic electrolysis (Catalysis and Electrolysis).
  • the catalytic electrolysis method is a process which effectively promotes the progress of the electrolysis reaction by adding a suitable catalyst to the electrolysis device.
  • the catalytic electrolysis process of the present invention is carried out in an electrolysis apparatus which mainly comprises a power source, a wire, an anode plate, a cathode plate, and an electrolyte.
  • the anode plate is made of a conductive material resistant to high temperature and corrosion.
  • the cathode plate is made of a corrosion-resistant conductive material.
  • the assembly step of the electrolysis device is carried out: the positive electrode of the power source is connected to the anode plate through a wire, the negative electrode is connected to the cathode plate through a wire, and the anode plate and the cathode plate are both inserted into the electrolyte.
  • the anode plate and the cathode plate are separated by an insulating material.
  • the electrolyte can be electrolyzed by using various non-strong acid and non-strong alkali water bodies.
  • ozone generated by the oxidation reaction electrolysis on the anode plate can directly act on the electrolyte water body, and the strong oxidizing property of ozone can be used to remove the contamination in the water body.
  • the electrolysis process of the present invention can realize the process of electrolyzing ozone by introducing direct current into the electrolysis device.
  • the cations in the water move toward the cathode, absorb electrons, and reduce and generate new substances; the anions in the water move toward the anode, emit electrons, generate oxidation, and generate new substances.
  • the oxidation reaction occurring in the vicinity of the anode plate and the reduction reaction occurring in the vicinity of the cathode plate are mainly:
  • the oxygen required for the cathodic reaction is derived from the constantly dissolved oxygen in the water.
  • the H + required for the cathodic reaction comes from the H + produced by the reaction of the sewage and the anode.
  • no harmful gas is generated during the electrolysis.
  • the hydrogen peroxide (H 2 O 2 ) produced by the electrolysis reaction is easily decomposed into water and oxygen as a green oxidant, and does not cause any harm to the environment and the human body.
  • the ozone generated by the electrolysis of the anode plate can not only decompose various aromatic hydrocarbons and unsaturated chain hydrocarbons such as polychlorinated biphenyls, phenols and naphthalenes which are not easily degraded, but also has obvious decolorization effect on hydrophilic dyes, and can be used for treating industrial sewage.
  • the anode plate material is made of titanium metal
  • the cathode plate material is made of stainless steel
  • Oxygen gas was introduced into the reaction vessel at a flow rate of 10 L/min, and the temperature in the reactor was maintained at 50 ° C by heating, and oxygen was continuously supplied and stirred. After 1.5 h, the reaction vessel was stopped to be heated, the reaction vessel was naturally cooled, and precipitated for 6 hours, and the precipitated upper suspension was taken to obtain a Sn-containing suspension.
  • the above Sn-containing suspension was coated on a titanium plate and pyrolyzed at 500 ° C.
  • the coating-pyrolysis process was repeated 8 times, and then the titanium plate to which the coating film was attached was sintered and sintered at 600 ° C. At 80 min, a uniform catalyst film layer was formed on the obtained titanium plate.
  • the titanium plate coated with the catalyst film layer described above serves as an anode
  • the stainless steel plate serves as a cathode.
  • the titanium plate is connected to the positive electrode of the power source through a wire
  • the stainless steel is connected to the negative electrode of the power source through a wire
  • the titanium plate and the stainless steel plate are placed in the phenol wastewater to be treated, the power source is energized, and oxidation and reduction reactions respectively occur near the anode and the cathode to realize the wastewater. Purification and sewage treatment.
  • the method for detecting the ozone concentration is a chemical iodometric method.
  • the method for detecting the concentration of phenol is the bromate method.
  • Oxygen gas was introduced into the reaction vessel at a flow rate of 8 L/min, and the temperature in the reaction vessel was maintained at 50 ° C by heating, and oxygen was continuously supplied and stirred. After 1.5 h, the reaction vessel was stopped to be heated, the reaction vessel was naturally cooled, and precipitated for 6 hours, and the precipitated upper suspension was taken to obtain a Sn-containing suspension.
  • the above Sn-containing suspension was coated on a titanium plate and pyrolyzed at 550 ° C.
  • the coating-pyrolysis process was repeated 8 times, and then the titanium plate to which the coating film was attached was sintered and sintered at 650 ° C. At 80 min, a uniform catalyst film layer was formed on the obtained titanium plate.
  • the titanium plate coated with the catalyst film layer described above serves as an anode
  • the stainless steel plate serves as a cathode.
  • the titanium plate is connected to the positive electrode of the power source through a wire
  • the stainless steel is connected to the negative electrode of the power source through a wire
  • the titanium plate and the stainless steel plate are placed in the phenol wastewater to be treated, the power source is energized, and oxidation and reduction reactions respectively occur near the anode and the cathode to realize the wastewater. Purification and sewage treatment.
  • the method for detecting the ozone concentration is a chemical iodometric method.
  • the method for detecting the concentration of phenol is the bromate method.
  • Oxygen gas was introduced into the reaction vessel at a flow rate of 12 L/min, and the temperature in the reaction vessel was maintained at 50 ° C by heating, and oxygen was continuously supplied and stirred. After 1.5 h, the reaction vessel was stopped to be heated, the reaction vessel was naturally cooled, and precipitated for 6 hours, and the precipitated upper suspension was taken to obtain a Sn-containing suspension.
  • the above Sn-containing suspension was coated on a titanium plate and pyrolyzed at 500 ° C, the coating-pyrolysis process was repeated 8 times, and then the titanium plate to which the coated film was attached was sintered and sintered at 650 ° C. At 80 min, a uniform catalyst film layer was formed on the obtained titanium plate.
  • the titanium plate coated with the catalyst film layer described above serves as an anode
  • the stainless steel plate serves as a cathode.
  • the titanium plate is connected to the positive electrode of the power source through a wire
  • the stainless steel is connected to the negative electrode of the power source through a wire
  • the titanium plate and the stainless steel plate are placed in the phenol wastewater to be treated, the power source is energized, and oxidation and reduction reactions respectively occur near the anode and the cathode to realize the wastewater. Purification and sewage treatment.
  • the method for detecting the ozone concentration is a chemical iodometric method.
  • the method for detecting the concentration of phenol is the bromate method.
  • Oxygen gas was introduced into the reaction vessel at a flow rate of 9 L/min, and the temperature in the reaction vessel was maintained at 60 ° C by heating, and oxygen was continuously supplied and stirred. After 1 h, the reaction vessel was stopped to be heated, the reaction vessel was naturally cooled, and precipitated for 7 hours, and the precipitated upper suspension was taken to obtain a Sn-containing suspension.
  • the above Sn-containing suspension was coated on a platinum sheet and pyrolyzed at 400 ° C.
  • the coating-pyrolysis process was repeated 9 times, and then the platinum film to which the coating film was attached was sintered and sintered at 500 ° C for 90 minutes. Forming a uniform catalyst film layer.
  • the platinum plate coated with the catalyst film layer described above serves as an anode
  • the stainless steel plate serves as a cathode.
  • the platinum plate is connected to the positive electrode of the power source through a wire
  • the stainless steel is connected to the negative electrode of the power source through a wire
  • the platinum plate and the stainless steel plate are placed in the naphthalene-containing waste water to be treated, the power source is energized, and the oxidation and reduction reactions respectively occur near the anode and the cathode, thereby realizing Wastewater purification and sewage treatment.
  • the method for detecting the ozone concentration is a chemical iodometric method.
  • the method for detecting the concentration of naphthalene is gas chromatography.
  • Oxygen gas was introduced into the reaction vessel at a flow rate of 10 L/min, and the temperature in the reaction vessel was maintained at 55 ° C by heating, and oxygen was continuously supplied and stirred. After 2 h, the reaction vessel was stopped to be heated, the reaction vessel was naturally cooled, and precipitated for 6 hours, and the precipitated upper suspension was taken to obtain a Sn-containing suspension.
  • the above Sn-containing suspension was coated on a titanium plate and pyrolyzed at 450 ° C.
  • the coating-pyrolysis process was repeated 7 times, and then the titanium plate to which the coating film was attached was sintered and sintered at 650 ° C. At 60 min, a uniform catalyst film layer was formed on the obtained titanium plate.
  • the titanium plate coated with the catalyst film layer described above serves as an anode
  • the stainless steel plate serves as a cathode.
  • the titanium plate is connected to the positive electrode of the power source through a wire
  • the stainless steel is connected to the negative electrode of the power source through a wire
  • the titanium plate and the stainless steel plate are placed in the naphthalene-containing waste water to be treated, the power source is energized, and oxidation and reduction reactions occur respectively near the anode and the cathode to realize Wastewater purification and sewage treatment.
  • the method for detecting the ozone concentration is a chemical iodometric method.
  • the method for detecting the concentration of naphthalene is gas chromatography.
  • the stainless steel plate is used as the cathode, the titanium plate is connected to the positive electrode of the power source through the wire, the stainless steel is connected to the negative electrode of the power source through the wire, and the titanium plate and the stainless steel plate are placed in the waste water containing naphthalene or phenol to be treated, the power source
  • the electricity was electrolyzed, and the electrolysis conditions were the same as in Example 1, and electrolytic treatment of the sewage was performed.
  • the Sn-containing suspension prepared by the invention can promote the generation of ozone in the electrolysis process well, and has a considerable effect on the purification treatment of the sewage, and is advantageous for industrial application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种含Sn悬浮液的制备方法及其应用,方法包括如下步骤:A、准备原料SnC 2O 4500~1500重量份、Sb 2O 35~8重量份、Ni(CH 3COO) 2·4H 2O1~3重量份;B、将SnC 2O 4加入到反应釜中,向反应釜中加入至少150重量份的水并搅拌均匀;C、将Sb 2O 3加入到反应釜中,搅拌并进行加热使得混合均匀,得到混合料;D、将Ni(CH 3COO) 2·4H 2O加入混合料中,然后向反应釜中通入氧气,并进行加热、搅拌,直至反应釜中物料呈悬浮状态后停止加热,反应釜内的物料沉淀,待沉淀完全后,取上层悬浮液,即得到含Sn悬浮液。

Description

一种含Sn悬浮液的制备方法及其应用 技术领域
本发明涉及材料制备领域,具体涉及一种含Sn悬浮液的制备方法,及其作为制备臭氧的催化剂的应用。
背景技术
臭氧O 3又被称为超氧,属于氧气O 2的同素异形体。在常温下,臭氧的半衰期为15~30min(分钟),导致臭氧的常规储存困难并且成本较高。同时,臭氧具有极强的氧化性和易分解性,能够作为污水净化剂、脱色剂、消毒剂等使用。臭氧杀菌消毒的速度快、效果好,臭氧本身还原生成氧气。因此,臭氧的使用已被广泛认可,是世界公认的绿色消毒剂。
目前,生产臭氧常用的方法有电晕法、电解法、紫外线法、核辐射法。其中,电晕法的设备投资较高,运行费用高,所生产的臭氧浓度低;紫外线法耗能高,生成臭氧的浓度低,不适用于大量臭氧的生产;核辐射法投资大、不安全,使用频率很低。
电解法生产臭氧主要包括电解空气和电解纯水。电解空气生产臭氧的过程会产生NO x等有毒物质,所需交流电压较高,电解效率低,且臭氧入水困难,设备占地面积大,使用成本极高;电解纯水单位产生的臭氧效率最高,电解过程是以固态的贵金属聚合物为电解质,结合阳离子交换模式,通过低压电解的方式获得臭氧,但是该工艺中,控制系统比较复杂,电解效率低,臭氧入水困难,使用成本较高。
因此,臭氧的制备和应用已受到国内外学者的广泛关注。
发明内容
鉴于上述现有技术中存在的问题,本发明旨在提供一种含Sn悬浮液的制备方法,该悬浮液能够用来作为产生臭氧的催化剂,并且,该含Sn悬浮液的制备过程简单,易操作,将其用于生产臭氧时,节省能源,且无有毒有害物质产生。
本发明提供了一种含Sn悬浮液的制备方法,包括如下步骤:
A、准备原料:SnC 2O 4500~1500重量份、Sb 2O 35~8重量份、Ni(CH 3COO) 2·4H 2O1~3重量份;
B、将SnC 2O 4加入到反应釜中,向所述反应釜中加入至少150重量份的水并搅拌均匀;
C、将Sb 2O 3加入到步骤B所述的反应釜中,搅拌并进行加热使得混合均匀,得到混合料;
D、将Ni(CH 3COO) 2·4H 2O加入所述混合料中,然后向所述反应釜中通入氧气,并进行加热、搅拌,直至所述反应釜中物料呈悬浮状态后停止加热,所述反应釜内的物料沉淀,待沉淀完全后,取上层悬浮液,即得到所述含Sn悬浮液。
作为本发明优选的实施方案,所述SnC 2O 4取550~900重量份,所述Sb 2O 3取5~8重量份,所述Ni(CH 3COO) 2·4H 2O取1~3重量份。
作为本发明的其中一些实施方案,所述Ni(CH 3COO) 2·4H 2O为其它含Ni的正二价化合物;所述Sb 2O 3为其它含Sb的正三价化合物;所述SnC 2O 4为其它含Sn的正二价化合物。
作为本发明优选的实施方案,步骤B中,向所述反应釜中加入去离子水。
作为本发明优选的实施方案,步骤B中,向所述反应釜中加入150~450重量份的水;控制所述搅拌过程的时间为3~5min。
作为本发明优选的实施方案,通入的所述氧气的流量为8~12L/min。
进一步地,步骤C中,控制所述加热过程的温度为50~60℃。
更进一步地,步骤D中,控制所述加热过程的温度为50~60℃,所述加热的时间为1~2h(小时)。
作为本发明优选的实施方案,步骤D中,所述反应釜沉淀的时间为6~8h。
本发明还提出了一种含Sn悬浮液作为制备臭氧过程的催化剂的应用,所述含Sn悬浮液由上述制备方法制备得到。
通过本发明的方法制备的含Sn悬浮液,制备工艺简单、易操作,无需复杂的设备。当本发明的含Sn悬浮液作为生产臭氧过程的催化剂使用时,可有效促进臭氧的产生,且过程中无有毒有害物质产生。
并且,本发明提出的产生臭氧的电解装置,利用含Sn悬浮液在阳极板上形成催化剂膜层,用于促进臭氧的产生。该电解装置可直接用于处理工业污水,节能环保,处理效率高,设备运行易操控,成本低。
附图说明
图1为本发明提出的含Sn悬浮液的制备方法流程示意图。
具体实施方式
以下结合附图和实施例,对本发明的具体实施方式进行更加详细的说明,以便能够更好地理解本发明的方案以及其各个方面的优点。然而,以下描述的具体实施方式和实施例仅是说明的目的,而不是对本发明的限制。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要 素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
本发明通过特定方法制备了一种含Sn悬浮液,制备步骤如图1所示:
(1)准备原料:SnC 2O 4500~1500重量份、Sb 2O 35~8重量份、Ni(CH 3COO) 2·4H 2O1~3重量份。
本发明制备的含Sn悬浮液主要包括Sn元素、Sb元素、Ni元素,并且,Sn元素、Sb元素、Ni元素的存在形式并不限于本发明的制备方法中采取的三种化合物。在本发明的其它一些实施方案中,Ni(CH 3COO) 2·4H 2O还能够选用其它含Ni的正二价化合物;Sb 2O 3还能够选用其它含Sb的正三价化合物;SnC 2O 4还能够选用其它含Sn的正二价化合物。
并且,作为本发明优选的实施方案,SnC 2O 4称取550~900重量份,Sb 2O 3称取5~8重量份,Ni(CH 3COO) 2·4H 2O称取1~3重量份。
(2)将准备好的SnC 2O 4加入到反应釜中,向反应釜中加入至少150重量份的水并搅拌均匀。优选的,加入水的量为150~450重量份。其中,搅拌的时间优选控制为3~5min。更优选的,向反应釜中加入去离子水。
然后,将准备好的Sb 2O 3加入到上述的反应釜中,继续搅拌3~5min,并对反应釜中的物料进行缓慢加热至温度为50~60℃,使得SnC 2O 4和Sb 2O 3混合均匀,得到混合料。
(3)向上述混合料中加入准备好的Ni(CH 3COO) 2·4H 2O,并继续搅拌。然后,向反应釜中通入氧气,并进行加热、搅拌处理,加热至反应釜中物料呈悬浮状态后停止加热,使反应釜内物料自然冷却,并静置沉淀,待沉淀完全后,取上层悬浮液,即得到本发明的含Sn悬浮液。
其中,悬浮液是指固体颗粒分散于液体中,因布朗运动而不能很快下沉,此时固体分散相与液体的混合物称为悬浮液。
作为本发明优选的实施方案,向反应釜中通入氧气的流量为8~12L/min。反应釜中通入氧气后,进行加热处理的温度为50~60℃,并使反应釜内温度维持在50~60℃,持续通入氧气并搅拌。优选的,加热时间控 制为1~2h。
沉淀过程的时间控制为6~8h,能够使反应釜内的物料沉淀完全。
本发明制备的含Sn悬浮液在0~8℃的环境下可保存30天。
本发明同时提出了一种上述含Sn悬浮液的应用,该含Sn悬浮液可以作为制备臭氧过程的催化剂,用于促进臭氧的生成。
作为本发明的其中一种实施方式,利用催化电解法(Catalysis and Electrolysis)来制备臭氧。催化电解法是指,通过在电解装置中添加适宜的催化剂,有效促进电解反应进行的过程。
本发明的催化电解过程在电解装置中进行,该电解装置主要包括电源、导线、阳极板、阴极板、电解液。
其中,阳极板由耐高温、耐腐蚀的导电材料制备而成。阴极板由耐腐蚀的导电材料制备而成。
当利用上述电解装置制备臭氧时,首先包括对阳极板的处理步骤:
(1)热解处理:将本发明制备的含Sn悬浮液涂覆在阳极板上,在400~600℃下进行热解处理。并重复该涂覆-热解处理过程7~9次,使得含Sn悬浮液能够在阳极板上充分覆盖,形成均匀的涂覆膜。
(2)烧结处理:对上述涂覆膜进行烧结处理,使得阳极板上形成稳固、均匀的催化剂膜层。其中,本步骤的烧结温度控制为500~650℃,烧结时间控制为60~120min。
其次,包括电解装置的组装步骤:电源的正极通过导线连接阳极板,负极通过导线连接阴极板,阳极板和阴极板均插入电解液中。阳极板和阴极板之间用绝缘材料隔开。
该电解装置中,电解液可选用各种非强酸、非强碱的水体进行电解。作为本发明优选的实施方式,当该电解装置通电后,阳极板上发生氧化反应电解产生的臭氧,能够直接作用于电解液水体,利用臭氧的强氧化性,实现水体中污染的脱除。本发明的电解过程向电解装置通入直流电即可实现电解产生臭氧的过程。
当电源通电后,水体中的阳离子移向阴极,吸收电子,发生还原作用,生成新物质;水体中的阴离子移向阳极,放出电子,发生氧化作用,亦生成新物质。
具体的,由于水体中含有少量的氧气(O 2),所以本发明的电解装置中,在阳极板附近发生的氧化反应和阴极板附近发生的还原反应主要为:
阳极反应:
3H 2O-6e -=O 3+6H +
阴极反应:
3O 2+6H ++6e -=3H 2O 2
总的电解反应:3O 2+3H 2O=O 3+3H 2O 2
在此反应过程中,阴极反应所需的氧气来自于水体中不断溶解的氧。阴极反应所需的H +来自于污水和阳极反应产生的H +。在本发明制备的含Sn悬浮液的催化下,电解过程中不会产生有害气体。并且,电解反应产生的双氧水(H 2O 2)作为一种绿色氧化剂,易分解为水和氧气,对环境和人体无任何伤害。
阳极板电解产生的臭氧不但可以分解不易降解的聚氯联苯、苯酚、萘等多种芳烃和不饱和链烃,而且对亲水染料的脱色效果更明显,可用于处理工业污水。
作为本发明的其中一些实施方案,阳极板材料选用钛金属制备,阴极板材料选用不锈钢制备。
实施例1
称取900g SnC 2O 4放入反应釜中,加入200g去离子水搅拌3min,接着向反应釜中加入5gSb 2O 3,继续搅拌3min,然后对反应釜进行加热至釜内温度为50℃,再加入1gNi(CH 3COO) 2·4H 2O继续搅拌。
向上述反应釜内按照10L/min的流量通入氧气,加热维持反应釜内温 度为50℃,持续通氧并搅拌。1.5h后停止对反应釜进行加热,使反应釜自然冷却,并沉淀6h,取沉淀后的上层悬浮液,得到含Sn悬浮液。
将上述含Sn悬浮液涂覆在钛板上,并在500℃进行热解,重复该涂覆-热解过程8次,然后对附着有涂覆膜的钛板进行烧结,在600℃下烧结80min,得到的钛板上形成均匀的催化剂膜层。
上述涂覆有催化剂膜层的钛板作为阳极,不锈钢板作为阴极。钛板通过导线连接电源的正极,不锈钢通过导线连接电源的负极,并将钛板和不锈钢板均置于待处理的苯酚废水中,电源通电,阳极和阴极附近分别发生氧化和还原反应,实现废水的净化排污处理。
本实施例的处理效果见表1。
表1 实施例1电解装置处理苯酚废水的效果
项目 臭氧 处理前苯酚 处理后苯酚
浓度(mg/L) 3.5 10 <0.1
其中,臭氧浓度的检测方法采用的是化学碘量法。苯酚浓度的检测方法采用的是溴酸盐法。
实施例2
称取1200gSnC 2O 4放入反应釜中,加入400g去离子水搅拌3min,接着向反应釜中加入8gSb 2O 3,继续搅拌3min,然后对反应釜进行加热至釜内温度为50℃,再加入2gNi(CH 3COO) 2·4H 2O继续搅拌。
向上述反应釜内按照8L/min的流量通入氧气,加热维持反应釜内温度为50℃,持续通氧并搅拌。1.5h后停止对反应釜进行加热,使反应釜自然冷却,并沉淀6h,取沉淀后的上层悬浮液,得到含Sn悬浮液。
将上述含Sn悬浮液涂覆在钛板上,并在550℃进行热解,重复该涂覆-热解过程8次,然后对附着有涂覆膜的钛板进行烧结,在650℃下烧结80min,得到的钛板上形成均匀的催化剂膜层。
上述涂覆有催化剂膜层的钛板作为阳极,不锈钢板作为阴极。钛板通 过导线连接电源的正极,不锈钢通过导线连接电源的负极,并将钛板和不锈钢板均置于待处理的苯酚废水中,电源通电,阳极和阴极附近分别发生氧化和还原反应,实现废水的净化排污处理。
本实施例的处理效果见表2。
表2 实施例2电解装置处理苯酚废水的效果
项目 臭氧 处理前苯酚 处理后苯酚
浓度(mg/L) 4 8 <0.1
其中,臭氧浓度的检测方法采用的是化学碘量法。苯酚浓度的检测方法采用的是溴酸盐法。
实施例3
称取550g SnC 2O 4放入反应釜中,加入160g去离子水搅拌3min,接着向反应釜中加入5gSb 2O 3,继续搅拌3min,然后对反应釜进行加热至釜内温度为50℃,再加入3gNi(CH 3COO) 2·4H 2O继续搅拌。
向上述反应釜内按照12L/min的流量通入氧气,加热维持反应釜内温度为50℃,持续通氧并搅拌。1.5h后停止对反应釜进行加热,使反应釜自然冷却,并沉淀6h,取沉淀后的上层悬浮液,得到含Sn悬浮液。
将上述含Sn悬浮液涂覆在钛板上,并在500℃进行热解,重复该涂覆-热解过程8次,然后对附着有涂覆膜的钛板进行烧结,在650℃下烧结80min,得到的钛板上形成均匀的催化剂膜层。
上述涂覆有催化剂膜层的钛板作为阳极,不锈钢板作为阴极。钛板通过导线连接电源的正极,不锈钢通过导线连接电源的负极,并将钛板和不锈钢板均置于待处理的苯酚废水中,电源通电,阳极和阴极附近分别发生氧化和还原反应,实现废水的净化排污处理。
本实施例的处理效果见表3。
表3 实施例3电解装置处理苯酚废水的效果
项目 臭氧 处理前苯酚 处理后苯酚
浓度(mg/L) 4.5 10 0
其中,臭氧浓度的检测方法采用的是化学碘量法。苯酚浓度的检测方法采用的是溴酸盐法。
实施例4
称取1500g SnC 2O 4放入反应釜中,加入450g去离子水搅拌5min,接着向反应釜中加入5gSb 2O 3,继续搅拌3min,然后对反应釜进行加热至釜内温度为60℃,再加入1gNi(CH 3COO) 2·4H 2O继续搅拌。
向上述反应釜内按照9L/min的流量通入氧气,加热维持反应釜内温度为60℃,持续通氧并搅拌。1h后停止对反应釜进行加热,使反应釜自然冷却,并沉淀7h,取沉淀后的上层悬浮液,得到含Sn悬浮液。
将上述含Sn悬浮液涂覆在铂片上,并在400℃进行热解,重复该涂覆-热解过程9次,然后对附着有涂覆膜的铂片进行烧结,在500℃下烧结90min,形成均匀的催化剂膜层。
上述涂覆有催化剂膜层的铂片作为阳极,不锈钢板作为阴极。铂片通过导线连接电源的正极,不锈钢通过导线连接电源的负极,并将铂片和不锈钢板均置于待处理的含萘废水中,电源通电,阳极和阴极附近分别发生氧化和还原反应,实现废水的净化排污处理。
本实施例的处理效果见表4。
表4 实施例4电解装置处理含萘废水的效果
项目 臭氧 处理前萘 处理后萘
浓度(mg/L) 3.2 9.8 <0.2
其中,臭氧浓度的检测方法采用的是化学碘量法。萘浓度的检测方法采用的是气相色谱法。
实施例5
称取500g SnC 2O 4放入反应釜中,加入150g去离子水搅拌4min,接着向反应釜中加入6gSb 2O 3,继续搅拌3min,然后对反应釜进行加热至釜内温度为55℃,再加入1gNi(CH 3COO) 2·4H 2O继续搅拌。
向上述反应釜内按照10L/min的流量通入氧气,加热维持反应釜内温度为55℃,持续通氧并搅拌。2h后停止对反应釜进行加热,使反应釜自然冷却,并沉淀6h,取沉淀后的上层悬浮液,得到含Sn悬浮液。
将上述含Sn悬浮液涂覆在钛板上,并在450℃进行热解,重复该涂覆-热解过程7次,然后对附着有涂覆膜的钛板进行烧结,在650℃下烧结60min,得到的钛板上形成均匀的催化剂膜层。
上述涂覆有催化剂膜层的钛板作为阳极,不锈钢板作为阴极。钛板通过导线连接电源的正极,不锈钢通过导线连接电源的负极,并将钛板和不锈钢板均置于待处理的含萘废水中,电源通电,阳极和阴极附近分别发生氧化和还原反应,实现废水的净化排污处理。
本实施例的处理效果见表5。
表5 实施例5电解装置处理含萘废水的效果
项目 臭氧 处理前萘 处理后萘
浓度(mg/L) 4.2 9 <0.1
其中,臭氧浓度的检测方法采用的是化学碘量法。萘浓度的检测方法采用的是气相色谱法。
对照例
仅将钛板作为阳极,不锈钢板作为阴极,钛板通过导线连接电源的正极,不锈钢通过导线连接电源的负极,并将钛板和不锈钢板置于待处理的含萘废水或苯酚废水中,电源通电,电解条件与实施例1相同,进行污水的电解处理。
经检测,在该试验条件下,并未检测出有臭氧生成。含萘废水和苯酚 废水的处理效果如表6所示:
表6 对照例电解装置处理含萘废水或苯酚废水的效果
项目 处理前萘 处理后萘 处理前苯酚 处理后苯酚
浓度(mg/L) 8.9 8.2 9.3 8.7
综上,本发明制备的含Sn悬浮液能够很好的促进电解过程中臭氧的产生,对于污水的净化处理具有很可观的效果,有利于实现工业化应用。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (11)

  1. 一种含Sn悬浮液的制备方法,其特征在于,所述方法包括如下步骤:
    A、准备原料:SnC 2O 4500~1500重量份、Sb 2O 35~8重量份、Ni(CH 3COO) 2·4H 2O1~3重量份;
    B、将SnC 2O 4加入到反应釜中,向所述反应釜中加入至少150重量份的水并搅拌均匀;
    C、将Sb 2O 3加入到步骤B所述的反应釜中,搅拌并进行加热使得混合均匀,得到混合料;
    D、将Ni(CH 3COO) 2·4H 2O加入所述混合料中,然后向所述反应釜中通入氧气,并进行加热、搅拌,直至所述反应釜中物料呈悬浮状态后停止加热,所述反应釜内的物料沉淀,待沉淀完全后,取上层悬浮液,即得到所述含Sn悬浮液。
  2. 根据权利要求1所述的制备方法,其特征在于,所述SnC 2O 4取500~735重量份,所述Sb 2O 3取5~8重量份,所述Ni(CH 3COO) 2·4H 2O取1~3重量份。
  3. 根据权利要求1所述的制备方法,其特征在于,所述SnC 2O 4取550~900重量份,所述Sb 2O 3取5~8重量份,所述Ni(CH 3COO) 2·4H 2O取1~3重量份。
  4. 根据权利要求1所述的制备方法,其特征在于,所述Ni(CH 3COO) 2·4H 2O为其它含Ni的正二价化合物;所述Sb 2O 3为其它含Sb的正三价化合物;所述SnC 2O 4为其它含Sn的正二价化合物。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤B中,向所述反应釜中加入去离子水。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤B中,向所述反应釜中加入150~450重量份的水;控制所述搅拌过程的时间为3~5min。
  7. 根据权利要求1所述的制备方法,其特征在于,通入的所述氧气的流量为8~12L/min。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤C中,控制所述加热过程的温度为50~60℃。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤D中,控制所述加热的温度为50~60℃,所述加热的时间为1~2h。
  10. 根据权利要求1所述的制备方法,其特征在于,步骤D中,控制所述反应釜沉淀的时间为6~8h。
  11. 一种含Sn悬浮液作为制备臭氧过程的催化剂的应用,其特征在于,所述含Sn悬浮液由权利要求1-10任一所述的制备方法制备得到。
PCT/CN2019/073091 2018-02-02 2019-01-25 一种含Sn悬浮液的制备方法及其应用 WO2019149141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810105054.2A CN108251857A (zh) 2018-02-02 2018-02-02 一种含Sn悬浮液的制备方法及其应用
CN201810105054.2 2018-02-02

Publications (1)

Publication Number Publication Date
WO2019149141A1 true WO2019149141A1 (zh) 2019-08-08

Family

ID=62743730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073091 WO2019149141A1 (zh) 2018-02-02 2019-01-25 一种含Sn悬浮液的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN108251857A (zh)
WO (1) WO2019149141A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108456894A (zh) * 2018-02-02 2018-08-28 苏州庚泽新材料科技有限公司 一种新型的阳极材料及其制备方法、电解产生臭氧的装置
CN108251857A (zh) * 2018-02-02 2018-07-06 苏州庚泽新材料科技有限公司 一种含Sn悬浮液的制备方法及其应用
CN110499518B (zh) * 2018-05-18 2021-08-06 苏州庚泽新材料科技有限公司 电解装置
CN110565109A (zh) * 2018-06-05 2019-12-13 苏州庚泽新材料科技有限公司 含有Sn-Sb-过渡金属元素的活性材料、制备方法以及含有该活性材料的臭氧发生电极
CN111547820A (zh) * 2020-04-17 2020-08-18 昆山恒久润机电安装工程有限公司 阳极板及其制备方法和复合氧化剂生成单元
CN111389408A (zh) * 2020-04-17 2020-07-10 苏州庚泽新材料科技有限公司 催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1935679A (zh) * 2006-10-13 2007-03-28 扬州大学 一种电化学氧化处理含苯酚废水的工艺方法
WO2008146940A1 (en) * 2007-05-28 2008-12-04 Linxross, Inc. Ozone generators
CN101506406A (zh) * 2006-06-19 2009-08-12 克拉里宗有限公司 电极、其制备方法及用途
US20120223000A1 (en) * 2011-03-04 2012-09-06 Lih-Ren Shiue Vacuum assisted ozonization
CN105002517A (zh) * 2015-07-01 2015-10-28 苏州聪歌新能源科技有限公司 一种臭氧生成电极及其阳极的生产工艺和臭氧产生器
CN108251857A (zh) * 2018-02-02 2018-07-06 苏州庚泽新材料科技有限公司 一种含Sn悬浮液的制备方法及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608317A (zh) * 2008-06-19 2009-12-23 冠亚智财股份有限公司 臭氧产生器
CN101634035B (zh) * 2009-09-03 2010-11-10 西安交通大学 臭氧和过氧化氢在中性介质中协同电化学产生方法和装置
TW201130751A (en) * 2010-03-11 2011-09-16 Lih-Ren Shiue Compound apparatus for processing waste water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101506406A (zh) * 2006-06-19 2009-08-12 克拉里宗有限公司 电极、其制备方法及用途
CN1935679A (zh) * 2006-10-13 2007-03-28 扬州大学 一种电化学氧化处理含苯酚废水的工艺方法
WO2008146940A1 (en) * 2007-05-28 2008-12-04 Linxross, Inc. Ozone generators
US20120223000A1 (en) * 2011-03-04 2012-09-06 Lih-Ren Shiue Vacuum assisted ozonization
CN105002517A (zh) * 2015-07-01 2015-10-28 苏州聪歌新能源科技有限公司 一种臭氧生成电极及其阳极的生产工艺和臭氧产生器
CN108251857A (zh) * 2018-02-02 2018-07-06 苏州庚泽新材料科技有限公司 一种含Sn悬浮液的制备方法及其应用

Also Published As

Publication number Publication date
CN108251857A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
WO2019149141A1 (zh) 一种含Sn悬浮液的制备方法及其应用
WO2019149142A1 (zh) 一种新型的阳极材料及其制备方法、电解产生臭氧的装置
Zhou et al. Intimate coupling of an N-doped TiO2 photocatalyst and anode respiring bacteria for enhancing 4-chlorophenol degradation and current generation
Yang et al. Preparation and characterization of hydrophobic stearic acid-Yb-PbO2 anode and its application on the electrochemical degradation of naproxen sodium
WO2016127942A1 (zh) 一种去除二沉池废水中PPCPs类微污染物的方法
CN101693560A (zh) 一体化太阳能光电水处理装置
CN101187646A (zh) 一种具有光电催化功能的粒子电极及制备和应用
Sirés et al. Electro-Fenton process: fundamentals and reactivity
CN101531411A (zh) 气体扩散电极体系电化学消毒的方法
CN105236628B (zh) 光电协同催化降解污水装置
CN111097402B (zh) 一种纳米β-二氧化铅催化剂及其制备方法和应用
CN106395998A (zh) 一种含盐废水资源化处理方法
Liu et al. Enhanced degradation and mineralization of 4-chloro-3-methyl phenol by Zn-CNTs/O3 system
CN103523823A (zh) 一种钛酸铋-氧化钛异质结纳米材料的制备方法及其应用
CN109576732A (zh) 制造活性氧o3的产生器
Zhang et al. Photocatalytic removal organic matter and bacteria simultaneously from real WWTP effluent with power generation concomitantly: Using an ErAlZnO photo-anode
CN107512760B (zh) 同步电生臭氧与双氧水的电解池装置及其制备方法、应用
Ratiu et al. Electrochemical oxidation of p-aminophenol from water with boron-doped diamond anodes and assisted photocatalytically by TiO2-supported zeolite
CN107915210A (zh) 一种活性氧发生器装置
Zhang et al. Preparation of a ruthenium-modified composite electrode and evaluation of the degradation process and degradation mechanism of doxycycline at this electrode
CN109603844A (zh) FeMnC气凝胶电Fenton阴极及其制备方法和在降解全氟化合物的应用
CN113998758A (zh) 光电协同石墨相氮化碳活化过硫酸盐降解抗生素的方法
CN212198625U (zh) 一种太阳能电池-光电化学池一体化装置
KR101618757B1 (ko) Cod, 암모니아성 질소, 질산성 질소 및 질소를 제거하는 이리듐 합금 나노촉매의 제조방법
WO2019218935A1 (zh) 臭氧发生电极、电极的制备方法、含有该电极的电解装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746657

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19746657

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 23.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19746657

Country of ref document: EP

Kind code of ref document: A1