WO2016127942A1 - 一种去除二沉池废水中PPCPs类微污染物的方法 - Google Patents
一种去除二沉池废水中PPCPs类微污染物的方法 Download PDFInfo
- Publication number
- WO2016127942A1 WO2016127942A1 PCT/CN2016/073749 CN2016073749W WO2016127942A1 WO 2016127942 A1 WO2016127942 A1 WO 2016127942A1 CN 2016073749 W CN2016073749 W CN 2016073749W WO 2016127942 A1 WO2016127942 A1 WO 2016127942A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- ppcps
- water
- treated
- micro
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
Definitions
- the invention relates to the field of water treatment, in particular to a method for removing PPCPs-like micro-pollutants from waste water in a secondary sedimentation tank.
- PPCPs Pharmaceutical and personal care products
- PPCPs are emerging micro-organic pollutants in recent years, specifically the general term for a large class of chemicals used in medical veterinary drugs, agricultural production, personal care, etc. These include: antibiotics, tranquilizers, anti-epileptic drugs, natural or synthetic hormones, X-ray contrast agents, fragrances, insecticides, skin care products, sunscreens, and a variety of cosmetics. It is widely found in the environment and can be detected in surface water, groundwater, sludge, urban sewage treatment drainage, and even drinking water. The mass concentration of PPCPs is usually low, the structure is complex, and it is difficult to degrade. The environmental health risks to organisms and humans remain to be explored.
- PPCPs pharmaceuticals and personal care products
- sewage has become a hot research topic at home and abroad.
- PPCPs are low in water, only ng/L ⁇ ⁇ g / L level, but even such a small amount of PPCPs can cause serious damage to aquatic plants and humans.
- the present invention provides a method for effectively removing PPCPs-like micro-pollutants in a secondary settling tank wastewater; the method combines ozone oxidation with an electrochemical method, has the characteristics of not requiring an organic carbon source, and having strong redox power. It is a method for efficiently treating organic micro-pollutants.
- the principle utilized by the invention is: in the direct current electric field, the dissolved O 2 in the water body electrochemically generates the H 2 O 2 reaction at the bottom of the ozone contactor, and the reaction equation is: O 2 + 2H + + 2e - ⁇ H 2 O 2 ;
- the generated H 2 O 2 can further react with the dissolved O 3 in the solution to form a strong oxidizing hydroxyl radical ( ⁇ OH), thereby oxidatively degrading PPCPs-like micro-pollutants.
- the present invention provides a method of removing PPCPs-like micro-pollutants in a secondary settling tank wastewater, the method comprising the following operations:
- a bottom microporous aeration method Using a bottom microporous aeration method, a mixture of O 2 and O 3 having a volume ratio of 5 to 10% of O 3 is introduced into an ozone contactor having cathodes and anode electrodes at the bottom, and direct current is applied to both ends of the electrode; At the same time of gas, the water to be treated containing PPCPs-like micro-pollutants is injected into the ozone contactor, and the hydraulic retention time is 3 to 15 minutes, and the water body can be immediately output.
- the micro-pollutants of the PPCPs according to the present invention include clofibrate, bezafibrate, diclofenac, ibuprofen, gemfibrozil and the like.
- concentration of the PPCPs-like micro-pollutants can be measured by any method in the prior art before or after the treatment, for example, by solid phase extraction-high performance liquid chromatography-electrospray ionization tandem mass spectrometry ( SPE-HPLC-MS/MS) was used to detect the concentration of PPCPs-like micro-pollutants.
- the secondary sedimentation tank wastewater according to the present invention is urban sewage treated by the secondary sedimentation tank of the sewage treatment plant.
- the secondary settling tank is treated as the end of the sewage treatment plant to treat urban sewage, and the secondary settling tank is treated as a conventional operation when the sewage treatment plant treats sewage.
- the concentration of PPCPs micro-pollutants is 0.01 ng/L to 20 mg/L, and the total organic carbon content
- the amount (TOC) is 0 to 15 mg/L, the pH is 7 to 9, and the conductivity is greater than 700 ⁇ S/m.
- the parameters are preferably: PPCPs micro pollutant concentration 350-450 ⁇ g / L, TOC 3.4 ⁇ 14.4 mg / L, pH 7.9 ⁇ 8.1, conductivity 800 ⁇ 1100 ⁇ S / m.
- the dissolved O 2 in the water is electrochemically in-situ reacted at the bottom of the ozone contactor to produce H 2 O 2 . Therefore, by adjusting the current density of the electrochemical in-situ reaction, the amount of H 2 O 2 can be adjusted. Further, the ratio of the concentration of H 2 O 2 in the water to the concentration of O 3 is adjusted.
- the invention optimizes the gas inlet amount and current density according to the characteristics of the wastewater to be treated and various index parameters, so that the ratio of the concentration of H 2 O 2 and O 3 in the water body reaches a reasonable range, thereby effectively removing the target effectively.
- the PPCPs-like micro-pollutants in the secondary sedimentation tank wastewater are examples of the concentration of H 2 O 2 and O 3 in the water body reaches a reasonable range, thereby effectively removing the target effectively.
- the ratio of the mass of the O 3 to the volume of the water to be treated is 8 to 25 mg/L, preferably 10 to 15 mg/L, further preferably 12 mg/L; and the two ends of the electrode are DC, the cathode end.
- the current density is 4 to 30 mA/cm 2 , preferably 6 to 10 mA/cm 2 , and more preferably 8 mA/cm 2 .
- the ratio of the amount of O 3 to the volume of the water to be treated can be measured and monitored by conventional techniques in the art, which is not limited in the present invention.
- the amount of O 3 can be detected by the KI absorption method.
- the specific steps are as follows: the mixture of the same composition as the invention is introduced into the KI solution in the same amount as the present invention, and the color of the solution is changed. After the O 3 is absorbed by the KI solution, the solution is reversely titrated with sodium thiosulfate, and the color of the solution is reversely converted.
- the amount of O 3 can be indirectly obtained by calculating the amount of sodium thiosulfate.
- the mixed gas of the present invention may be obtained by directly mixing O 2 and O 3 , or may be prepared by other methods, preferably by an ozone generator.
- the specific steps prepared by using the ozone generator are: passing O 2 into the ozone generator, converting part of O 2 to O 3 , and outputting gas, that is, a mixture of O 2 and O 3 having a volume percentage of O 3 of 5 to 10%.
- the aeration method is a bottom microporous aeration while magnetic stirring is performed, and the aeration flow rate of the microporous aeration is 0.01 to 10 L/min.
- This aeration method disperses the gas entering the ozone contactor into microbubbles, which can be in better contact with the water body in the ozone contactor, and the H 2 O 2 generated at the bottom diffuses to the top of the ozone contactor under the entrainment of the gas. , able to react better with O 3 .
- the anode area is 5-20 cm 2 , and is selected from the group consisting of a Pt electrode, a graphite electrode, a boron doped diamond electrode, a Pt/C electrode, a titanium rhodium plating electrode, a titanium rhodium plating electrode, a titanium platinum plating electrode, and titanium.
- the anode is preferably a Pt sheet electrode having an area of 6 to 10 cm 2 .
- the anode used in the invention can reduce the overpotential of the reaction, facilitates the precipitation of O 2 and the formation of H + , thereby reducing the applied voltage and reducing the energy consumption.
- the cathode area is 5-20 cm 2 , which is selected from a graphite electrode, a glass carbon electrode, an activated carbon fiber electrode or a gas diffusion electrode; and the gas diffusion electrode is a carbon paper/cloth/felt-polytetrafluoroethylene electrode.
- activated carbon-polytetrafluoroethylene electrode activated carbon-polytetrafluoroethylene electrode, carbon black-polytetrafluoroethylene electrode, carbon nanotube-polytetrafluoroethylene electrode or graphene-polytetrafluoroethylene electrode, among which, carbon paper/cloth/felt-polytetrafluoroethylene
- the electrode is a carbon paper-polytetrafluoroethylene electrode or a cloth-polytetrafluoroethylene electrode or a felt-polytetrafluoroethylene electrode.
- the cathode is preferably a carbon black-polytetrafluoroethylene gas diffusion electrode having an area of 6 to 10 cm 2 .
- the cathode employed in the present invention is capable of selectively reacting O 2 with H + to produce H 2 O 2 instead of H 2 O.
- the electrodes used in the present invention can be self-made or purchased directly from the market.
- the power supply used for powering the invention is an ordinary DC stabilized power supply.
- the hydraulic retention time (HRT) of the present invention refers to the average residence time of the water to be treated in the reactor.
- the water to be treated only needs a short residence time in the reactor to achieve efficient removal of PPCPs-like micro-pollutants.
- the hydraulic retention time is 3 to 15 minutes; combined with the factors such as the removal effect of PPCPs micro-pollutants, time cost and the like, the hydraulic retention time is preferably 5 to 10 minutes.
- the unique advantages and beneficial effects of the present invention are as follows: (1) No It is necessary to add chemicals to greatly reduce the treatment cost; (2) H 2 O 2 is continuously generated in situ by the cathode to improve safety performance; (3) H 2 O 2 continuously generated in situ can fully react with O 3 and improve Reaction efficiency; (4) Wide range of pH for treating wastewater, no need to adjust pH; (5) Clean process, no sludge and other secondary pollution; (6) Only need to control DC current and aeration flow rate during treatment Easy to control; (7) can be combined with other wastewater treatment technologies to improve treatment efficiency. It can be seen that the present invention is a method for efficiently removing PPCPs-like micro-pollutants in drinking water, and has good development and application prospects.
- FIG. 1 is a schematic view of an apparatus used in various embodiments of the present invention; in the figure: 1. an ozone generator; 2. a gas phase ozone concentration detector; 3. an ozone gas flow meter; 4. an ozone contactor; Microporous aeration head; 7, anode; 8, magnetic stirrer; 9, magnetic stirrer; 10, DC power supply; 11, KI ozone quencher.
- Example 2 is a diagram showing the instantaneous removal effect of PPCPs-like micro-pollutants in Example 1; wherein, the ordinate is the ratio of the concentration of PPCPs-like micro-pollutants in the water body to be treated; and the abscissa is the hydraulic retention time.
- Example 3 is a diagram showing the instantaneous removal effect of PPCPs-like micro-pollutants in Example 2; wherein, the ordinate is the ratio of the concentration of PPCPs-like micro-pollutants in the water body to be treated; and the abscissa is the hydraulic retention time.
- Example 4 is a diagram showing the immediate removal effect of PPCPs-like micro-pollutants in Example 2; wherein, the ordinate is the ratio of the concentration of PPCPs-like micro-pollutants in the water body to be treated; and the abscissa is the hydraulic retention time.
- Treatment target The water to be treated is urban sewage treated by the secondary sedimentation tank of Beijing A Wastewater Treatment Plant; the initial TOC value of the water body is 3.4mg/L, the initial pH value is 7.96, and the conductivity is The initial concentration of PPCPs-like micro-contaminants is 818 ⁇ S/m as shown in Table 1.
- the device used in this embodiment is shown in Figure 1.
- the anode is made of Pt electrode, the electrode area is 6cm 2 , the anode is purchased from Tianjin Aida Hengyi Technology Development Co., Ltd.;
- the cathode is homemade carbon black-poly A tetrafluoroethylene (carbon-PTFE) gas diffusion electrode having an electrode area of 10 cm 2 , wherein the carbon black is XC-72 type carbon black, and the preparation process is as follows:
- a carbon black-polytetrafluoroethylene gas diffusion electrode can be obtained by placing the electrode formed by pressing into a muffle furnace and calcining at 350 ° C for 1 hour.
- the ozone generator into O 2, O 3 prepared volume percentage of 5 to 10% O 2 and O 3 gas mixture, using the bottom of the microwell aeration gas mixture continuously, at a constant rate into the bottom thereof
- the ozone contactor of the cathode and the anode electrode continuously supplies direct current to both ends of the electrode; while the mixture gas is introduced, the water body to be treated is continuously and uniformly injected into the ozone contactor, and the hydraulic retention time is 0 to 15 minutes, and the water body is immediately outputted. Yes;
- the ratio of the amount of O 3 introduced to the volume of water to be treated is 12 mg / L;
- the cathode terminal current density was 8 mA/cm 2 .
- the degradation rate of PPCPs-like micro-pollutants reached 95% when the hydraulic retention time was 5 min, and the degradation of PPCPs-like micro-pollutants when the hydraulic retention time was 7 min. The rate is approaching 100%.
- the water to be treated is urban sewage treated by the secondary sedimentation tank of Beijing B Wastewater Treatment Plant; the initial TOC value of the water body is 7.5 mg/L, the initial pH value is 8.06, the conductivity is 818 ⁇ S/m, and the concentration of PPCPs-like micro-pollutants is shown in the table. 2 is shown.
- the water to be treated is urban sewage treated by the secondary sedimentation tank of Beijing B sewage treatment plant; the initial TOC value of the water body is 14.4 mg/L, the initial pH value is 8.0, the conductivity is 1003 ⁇ S/m, and the concentration of PPCPs-like micro-pollutants is shown in the table. 3 is shown.
- the solution provided by the invention can remove the refractory PPCPs-like micro-pollutants in the secondary sedimentation tank wastewater in a short time, and is easy to operate, high-efficiency and environmentally friendly, and has great economic and social value.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
一种二沉池废水中去除PPCPs类微污染物的方法。其中二沉池废水为经污水处理厂二沉池处理后的城市污水,该方法包括以下操作:采用底部微孔曝气方式,将O 3体积百分比为5~10%的O 2和O 3混合气通入底部设有阴极(5)、阳极(7)的臭氧接触器(4),电极两端连通有直流电源(10);通入混合气的同时,将含有PPCPs的待处理水体注入所述臭氧接触器(4),水力停留时间为10s~40min,即时输出水体即可。还公开了一种该方法在制备饮用水中的应用。与传统方法相比,该方法不需要外加化学药剂,因而不会产生絮状沉淀及二次污染,而且由于外加电场电压、电流密度低,不存在安全隐患,易于实际应用,可以高效去除水体中的PPCPs。
Description
本发明涉及水处理领域,特别涉及一种去二沉池除废水中PPCPs类微污染物的方法。
药品和个人护理用品(Pharmaceutical and personal care products,PPCPs)是近些年新兴的微量有机污染物,具体是指用于医药兽药、农业生产、个人护理等用途的一大类化学药品的总称,其中包括:抗生素、镇定剂、抗癫痫类药物,天然的或人工合成的激素,X射线造影剂,香料,杀虫剂,护肤品、防晒霜以及各种化妆品。在环境中广泛存在,在地表水、地下水、污泥、城市污水厂排水,甚至饮用水中均能被检测到。PPCPs类物质质量浓度通常很低,结构复杂,难降解,其对生物及人类存在的环境健康风险还有待探究。
近十余年针对水体中药品及个人护理品(PPCPs)的报道和研究越来越广泛,污水中PPCPs的去除已成为国内外研究的热点。PPCPs在水中含量很低,仅为ng/L~μg/L水平,但即便是如此微量的PPCPs也会对水生动植物及人类造成严重伤害。研究表明,水中微量的雌激素类物质会造成鱼类性别错乱,氟西汀、双氯芬酸等物质能够在鱼类肌肉、肝脏、大脑等处富集,造成生物累积效应。
特别,对于如此低浓度有毒有害的的微污染物,在水体中对水生生物的生存环境造成了巨大的威胁。而这些有机物由于具有低浓度、高危害且高稳定性等特征,不能被传统的常规工艺有效去除,如难于生物降解,一般城市污水处理厂传统的物化及生物处理方法都很难将其高效的去除。因此,对于PPCPs这类微量有机污染物去除方法的研
究将成为水污染控制领域的热点之一。在不断加重的威胁下,研究新型的可以有效去除水中微量难降解有机物的工艺从而有效地提高饮用水水质,对我国的可持续性发展就具有极其重要的战略意义。
发明内容
本发明为了解决上述问题,提供了一种有效去除二沉池废水中PPCPs类微污染物的方法;该方法将臭氧氧化与电化学法相结合,具有不需要有机碳源、氧化还原能力强等特点,是一种高效处理有机微污染物质的方法。
本发明利用的原理为:在直流电场中,水体中溶解的O2在臭氧接触器底部进行电化学原位产H2O2反应,反应方程式为:O2+2H++2e-→H2O2;生成的H2O2可以与溶液中溶解的O3进一步发生Peroxone反应,生成具有强氧化性的羟基自由基(·OH),从而氧化降解PPCPs类微污染物。
具体而言,本发明提供了一种去除二沉池废水中PPCPs类微污染物的方法,所述方法包括以下操作:
采用底部微孔曝气方式,将O3体积百分比为5~10%的O2和O3混合气通入底部设有阴、阳电极的臭氧接触器,电极两端通有直流电;通入混合气的同时,将含有PPCPs类微污染物的待处理水体注入所述臭氧接触器,水力停留时间为3~15min,即时输出水体,即可。
本发明所述PPCPs类微污染物包括氯贝酸、苯扎贝特、双氯芬酸、布洛芬、吉非罗齐等。本发明所述水体中,处理前或处理后,PPCPs类微污染物的浓度可通过现有技术中的任意方法来进行测定,例如可以通过固相萃取-高效液相色谱-电喷雾串联质谱(SPE-HPLC-MS/MS)检测PPCPs类微污染物的浓度。
本发明所述的二沉池废水为经污水处理厂二沉池处理后的城市污水。一般情况下,二沉池处理为污水处理厂处理城市污水的末尾步骤,所述二沉池处理为污水处理厂处理污水时的常规操作。所述待处理水体中,PPCPs类微污染物浓度为0.01ng/L~20mg/L,总有机碳含
量(TOC)为0~15mg/L,pH值为7~9,电导率大于700μS/m。
所述待处理水体中,各项参数优选为:PPCPs类微污染物浓度350~450μg/L,TOC为3.4~14.4mg/L,pH值为7.9~8.1,电导率为800~1100μS/m。
在直流电场中,水体中溶解的O2在臭氧接触器底部进行电化学原位反应产生H2O2,因此,通过调节电化学原位反应的电流密度,可以调整H2O2的生成量,进而调整水体中H2O2的浓度与O3的浓度的比值。本发明针对待处理废水的特性以及各项指标参数,对气体通入量和电流密度进行了优化,使水体中H2O2与O3的浓度之比达到合理范围,从而针对性地有效去除所述二沉池废水中的PPCPs类微污染物。具体而言,所述O3的通入质量与待处理水体体积之比为8~25mg/L,优选为10~15mg/L,进一步优选为12mg/L;在电极两段通直流电,阴极端电流密度为4~30mA/cm2,优选为6~10mA/cm2,进一步优选为8mA/cm2。
本发明中,O3的通入量与待处理水体体积之比可采用本领域现有的常规技术手段来进行测定、监控,本发明对此不作限定。作为一种优选方案,O3的通入量可以通过KI吸收法进行检测,具体步骤为:将与发明相同组成的混合气以与本发明相同的通入量通入KI溶液,溶液颜色发生转变,待O3被KI溶液吸收完毕后,用硫代硫酸钠反向滴定,溶液颜色发生逆向转变,通过计算硫代硫酸钠的量可间接得出O3的通入量。
本发明所述混合气可以由O2与O3直接混合得到,也可由其它方法制备而成,优选为由臭氧发生器制备而成。采用臭氧发生器制备的具体步骤为:将O2通入臭氧发生器,部分O2转化为O3,输出气体,即O3体积百分比为5~10%的O2和O3混合气。
向臭氧接触器中鼓入O3和O2混合气时,曝气方式为底部微孔曝气,同时进行磁力搅拌,所述微孔曝气的曝气流速为0.01~10L/min。这种曝气方式使进入臭氧接触器的气体分散为微气泡,与臭氧接触器中的水体能更好地接触,同时,底部产生的H2O2在气体的夹带下向臭氧接触器顶部扩散,能够与O3更好地反应。
本发明所述电极中:阳极面积为5~20cm2,选自Pt电极、石墨电极、掺硼金刚石电极、Pt/C电极、钛镀钌铱电极、钛镀钌电极、钛镀铂电极、钛基镀铱电极、钛基镀铑电极、钛基镀二氧化铱电极、不锈钢电极、镍电极或含两种以上过渡金属的合金电极;所述含两种以上过渡金属的合金电极为铝合金电极、钛合金电极、铜合金电极或锌合金电极。所述阳极优选为面积6~10cm2的Pt片电极。本发明采用的阳极能够减小反应的过电势,利于O2的析出及H+的生成,从而减小外加电压,降低能耗。
本发明所述电极中:阴极面积为5~20cm2,选自石墨电极、玻璃碳电极、活性炭纤维电极或气体扩散电极;所述气体扩散电极为炭纸/布/毡-聚四氟乙烯电极、活性炭-聚四氟乙烯电极、炭黑-聚四氟乙烯电极、碳纳米管-聚四氟乙烯电极或石墨烯-聚四氟乙烯电极,其中,炭纸/布/毡-聚四氟乙烯电极为炭纸-聚四氟乙烯电极或布-聚四氟乙烯电极或毡-聚四氟乙烯电极。所述阴极优选为面积6~10cm2的炭黑-聚四氟乙烯气体扩散电极。本发明采用的阴极能够使得O2与H+选择性反应产生H2O2,而非H2O。
本发明采用的电极可以自制,也可以从市场直接购买。
本发明通电所用电源为普通直流稳压电源。
本发明所述水力停留时间(Hydraulic Retention Time,HRT)是指待处理水体在反应器内的平均停留时间。本发明提供的方案中,待处理水体在反应器内仅需要很短的停留时间即可实现PPCPs类微污染物的高效去除。具体而言,水力停留时间为3~15min;结合PPCPs类微污染物去除效果、时间成本等诸多因素综合考虑,水力停留时间优选为5~10min。
在实际工业生产过程中,本发明所述各项操作均为连续进行。
与传统废水处理过程中去除PPCPs类微污染物方法,如生物膜法、电化学法、加·OH清除剂、催化臭氧氧化等相比,本发明的独特优点和有益效果如下:(1)不需要加入化学药剂,大幅降低处理成本;(2)H2O2由阴极持续原位产生,提高了安全性能;(3)持续原位产生的H2O2可与O3充分发生反应,提高反应效率;(4)处理废水的pH范围
广,无需调节pH;(5)处理过程清洁,不会产生污泥及其他二次污染;(6)处理过程中只需控制直流电流以及曝气流速,易于控制;(7)可与其他废水处理技术联用,提高处理效率。由此可见,本发明是一种高效去除饮用水体中PPCPs类微污染物的方法,具有良好的发展及应用前景。
图1,为本发明各实施例所用装置的示意图;图中:1、臭氧发生器;2、气相臭氧浓度检测器;3、臭氧气体流量计;4、臭氧接触器;5、阴极;6、微孔曝气头;7、阳极;8、磁力搅拌子;9、磁力搅拌器;10、直流电源;11、KI臭氧淬灭器。
图2,为实施例1中PPCPs类微污染物的即时去除效果图;其中,纵坐标为输出水体与待处理水体中PPCPs类微污染物浓度的比值;横坐标为水力停留时间。
图3,为实施例2中PPCPs类微污染物的即时去除效果图;其中,纵坐标为输出水体与待处理水体中PPCPs类微污染物浓度的比值;横坐标为水力停留时间。
图4,为实施例2中PPCPs类微污染物的即时去除效果图;其中,纵坐标为输出水体与待处理水体中PPCPs类微污染物浓度的比值;横坐标为水力停留时间。
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
实施例1
1、处理对象:待处理水体为经北京A污水处理厂二沉池处理后的城市污水;水体的初始TOC值3.4mg/L,初始pH值7.96,电导率
为818μS/m,PPCPs类微污染物的初始浓度如表1所示。
表1:待处理水体中PPCPs类微污染物的浓度
化合物 | 化合物浓度(ug/L) |
氯贝酸 | 390 |
苯扎贝特 | 375 |
双氯芬酸 | 382 |
布洛芬 | 297 |
吉非罗齐 | 343 |
2、装置:本实施例采用的装置如图1所示,其中阳极采用Pt片电极,电极面积为6cm2,阳极采购自天津市艾达恒晟科技发展有限公司;阴极为自制炭黑-聚四氟乙烯(carbon-PTFE)气体扩散电极,电极面积为10cm2,其中炭黑为XC-72型炭黑,制备过程如下:
(i)称取炭黑1.5g与20mL乙醇混合超声10min,后加入2mL60%聚四氟乙烯乳液,超声15min;
(ii)对(i)中悬浮液进行加热,80℃下不断搅拌至膏状;
(iii)将膏状物压成0.5mm的炭黑片,并将镍网夹在中间,在20MPa压力下压片成形;
(iv)将压片成形的电极放入马弗炉,350℃下煅烧1h即可制得炭黑-聚四氟乙烯气体扩散电极。
3、按照以下操作处理废水:
将O2通入臭氧发生器,制备得到O3体积百分比为5~10%的O2和O3混合气,采用底部微孔曝气方式将所述混合气连续、匀速地通入底部设有阴、阳电极的臭氧接触器,电极两端持续通直流电;通入混合气的同时,将待处理水体连续、匀速地注入所述臭氧接触器,水力停留时间为0~15min,即时输出水体,即可;
所述O3的通入量与待处理水体体积之比为12mg/L;
所述阴极端电流密度为8mA/cm2。
4、PPCPs类微污染物的即时去除效果如图2所示。
经检测,水力停留时间为5min时,PPCPs类微污染物的降解率达到95%以上;水力停留时间为7min时,PPCPs类微污染物的降解
率趋近100%。
实施例2
待处理水体为经北京B污水处理厂二沉池处理后的城市污水;水体的初始TOC值7.5mg/L,初始pH值8.06,电导率为818μS/m,PPCPs类微污染物的浓度如表2所示。
表2:待处理水体中PPCPs类微污染物的浓度
化合物 | 化合物浓度(ug/L) |
氯贝酸 | 405 |
苯扎贝特 | 374 |
双氯芬酸 | 406 |
布洛芬 | 422 |
吉非罗齐 | 388 |
本实施例采用的装置和处理步骤与实施例1相同。
PPCPs类微污染物的即时去除效果如图3所示。经检测,水力停留时间为7min时,PPCPs类微污染物的降解率均达到90%以上;水力停留时间为10min时,PPCPs类微污染物的降解率趋近100%。
实施例3
待处理水体为经北京B污水处理厂二沉池处理后的城市污水;水体的初始TOC值14.4mg/L,初始pH值8.0,电导率为1003μS/m,PPCPs类微污染物的浓度如表3所示。
表3:待处理水体中PPCPs类微污染物的浓度
化合物 | 化合物浓度(ug/L) |
氯贝酸 | 460 |
苯扎贝特 | 405 |
双氯芬酸 | 380 |
布洛芬 | 390 |
吉非罗齐 | 362 |
本实施例采用的装置和处理步骤与实施例1相同。
PPCPs类微污染物的即时去除效果如图4所示。经检测,水力停
留时间为10min时,PPCPs类微污染物的降解率趋近100%。
由以上结果可知,本发明提供的方案,可以在短时间内将二沉池废水中难处理的PPCPs类微污染物去除,操作简便,高效环保,具有极强的经济价值和社会价值。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神实质与原理基础上所做的改变、修饰、替代、组合、简化,均属于本发明要求保护的范围。
Claims (10)
- 一种去除二沉池废水中PPCPs类微污染物的方法,其特征在于,所述二沉池废水为经污水处理厂二沉池处理后的城市污水,所述方法包括以下操作:采用底部微孔曝气方式,将O3体积百分比为5~10%的O2和O3混合气通入底部设有阴、阳电极的臭氧接触器,电极两端通有直流电;通入混合气的同时,将含有PPCPs类微污染物的待处理水体注入所述臭氧接触器,水力停留时间为3~15min,即时输出水体,即可;所述O3的通入量与待处理水体体积之比为8~25mg/L;所述阴极端电流密度为4~30mA/cm2。
- 根据权利要求1所述的方法,其特征在于,所述PPCPs类微污染物包括氯贝酸、苯扎贝特、双氯芬酸、布洛芬或吉非罗齐的一种或多种。
- 根据权利要求1所述的方法,其特征在于,所述待处理水体中:PPCPs类微污染物浓度0.01ng/L~20mg/L,TOC为0~15mg/L,pH值为7~9,电导率大于700μS/m。
- 根据权利要求3所述的方法,其特征在于,所述待处理水体中:PPCPs类微污染物浓度350~450μg/L,TOC为3.4~14.4mg/L,pH值为7.9~8.1,电导率为800~1100μS/m。
- 根据权利要求1所述的方法,其特征在于,所述混合气由以下方法制备而成:将O2通入臭氧发生器,制备得到O3体积百分比为5~10%的O2和O3混合气。
- 根据权利要求1所述的方法,其特征在于,所述电极中:阳极面积为5~20cm2;阳极选自Pt电极、石墨电极、掺硼金刚石电极、Pt/C电极、钛镀钌铱电极、钛镀钌电极、钛镀铂电极、钛基镀铱电极、钛基镀铑电极、钛基镀二氧化铱电极、不锈钢电极、镍电极或含两种以上过渡金属的合金电极;所述含两种以上过渡金属的合金电极为铝合金电极、钛合金电极、铜合金电极或锌合金电极;阴极面积为5~20cm2;阴极选自石墨电极、玻璃碳电极、活性炭 纤维电极或气体扩散电极;所述气体扩散电极为炭纸/布/毡-聚四氟乙烯电极、活性炭-聚四氟乙烯电极、炭黑-聚四氟乙烯电极、碳纳米管-聚四氟乙烯电极或石墨烯-聚四氟乙烯电极。
- 根据权利要求6所述的方法,其特征在于,所述阳极为面积6~10cm2的Pt片电极;所述阴极为面积6~10cm2的炭黑-聚四氟乙烯气体扩散电极。
- 根据权利要求1~7任意一项所述的方法,其特征在于,所述方法包括以下操作:将O2通入臭氧发生器,制备得到O3体积百分比为5~10%的O2和O3混合气,采用底部微孔曝气方式将所述混合气连续、匀速地通入底部设有阴、阳电极的臭氧接触器,电极两端持续通直流电;通入混合气的同时,将含有PPCPs类微污染物的待处理水体连续、匀速地注入所述臭氧接触器,水力停留时间为3~15min,即时输出水体,即可;所述O3的通入量与待处理水体体积之比为8~25mg/L;所述阳极为面积6~10cm2的Pt片电极;所述阴极为面积6~10cm2的炭黑-聚四氟乙烯气体扩散电极;阴极端电流密度为4~30mA/cm2。
- 根据权利要求8所述的方法,其特征在于,所述方法包括以下操作:将O2通入臭氧发生器,制备得到O3体积百分比为5~10%的O2和O3混合气,采用底部微孔曝气方式将所述混合气连续、匀速地通入底部设有阴、阳电极的臭氧接触器,电极两端持续通直流电;通入混合气的同时,将含有PPCPs类微污染物的待处理水体连续、匀速地注入所述臭氧接触器,水力停留时间为5~10min,即时输出水体,即可;所述O3的通入量与待处理水体体积之比为10~15mg/L;所述阳极为面积6~10cm2的Pt片电极;所述阴极为面积6~10cm2的炭黑-聚四氟乙烯气体扩散电极;所述阴极端电流密度为6~10mA/cm2。
- 权利要求1~9任意一项所述方法在城市污水处理中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510072467.1A CN104671361B (zh) | 2015-02-11 | 2015-02-11 | 一种去除二沉池废水中PPCPs类微污染物的方法 |
CN201510072467.1 | 2015-02-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016127942A1 true WO2016127942A1 (zh) | 2016-08-18 |
Family
ID=53307024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/073749 WO2016127942A1 (zh) | 2015-02-11 | 2016-02-14 | 一种去除二沉池废水中PPCPs类微污染物的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104671361B (zh) |
WO (1) | WO2016127942A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109734156A (zh) * | 2019-02-27 | 2019-05-10 | 清华大学深圳研究生院 | 一种抗生素废水的处理装置和处理方法 |
CN111646547A (zh) * | 2020-05-21 | 2020-09-11 | 中南民族大学 | 一种市政污泥衍生自掺杂铁、氮物种碳材料电极的制备方法和应用 |
CN113030361A (zh) * | 2021-03-10 | 2021-06-25 | 薛伟锋 | 基于UHPLC-MS/MS技术的固相萃取柱处理水相PPCPs的代谢组学分析方法 |
CN115738637A (zh) * | 2022-12-20 | 2023-03-07 | 昆明理工大学 | 一种三维粒子电极系统净化堆肥恶臭气体的技术方法及其装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104671361B (zh) * | 2015-02-11 | 2017-05-24 | 清华大学 | 一种去除二沉池废水中PPCPs类微污染物的方法 |
CN104609532B (zh) * | 2015-02-11 | 2017-05-24 | 清华大学 | 一种饮用水处理过程中去除PPCPs的方法 |
CN105152429B (zh) * | 2015-09-07 | 2018-02-09 | 清华大学 | 一种高效去除工业废水中有机污染物的方法 |
CN105692982B (zh) * | 2016-01-19 | 2018-08-03 | 湖北省农业科学院农产品加工与核农技术研究所 | 一种协同处理九种环境雌激素的降解及其评价方法 |
CN105923931B (zh) * | 2016-07-12 | 2019-03-08 | 郑州大学综合设计研究院有限公司 | 一种抗生素废水深度处理工艺 |
CN106477824A (zh) * | 2016-11-28 | 2017-03-08 | 清华大学深圳研究生院 | 一种去除水中残留抗生素的方法及系统 |
CN107244729B (zh) * | 2017-05-23 | 2021-01-26 | 清华大学 | 一种饮用水处理中控制含卤副产物产生的方法 |
CN107512760B (zh) * | 2017-08-14 | 2021-03-02 | 深圳大学 | 同步电生臭氧与双氧水的电解池装置及其制备方法、应用 |
CN107879430A (zh) * | 2017-11-27 | 2018-04-06 | 浙江沁园水处理科技有限公司 | 一种旋转式bdd电极应用于去除水中的污染物的方法 |
CN108483586B (zh) * | 2018-05-03 | 2021-06-08 | 河海大学 | 一种去除污水厂尾水中雌激素的装置及方法 |
CN111592193A (zh) * | 2020-06-03 | 2020-08-28 | 王文富 | 一种污水净化环保处理系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2011101664A4 (en) * | 2011-02-04 | 2012-02-02 | Waterco Limited | Water Treatment System |
US20120241387A1 (en) * | 2011-03-23 | 2012-09-27 | Conocophillips Company | Advanced oxidation of kinetic hydrate inhibitors |
CN103601258A (zh) * | 2008-03-21 | 2014-02-26 | Apt水公司 | 用于水处理的装置和方法 |
CN103739162A (zh) * | 2013-12-30 | 2014-04-23 | 江南大学 | 一种臭氧-活性炭联用去除饮用水中PPCPs的方法 |
CN104609532A (zh) * | 2015-02-11 | 2015-05-13 | 清华大学 | 一种饮用水处理过程中去除PPCPs的方法 |
CN104671361A (zh) * | 2015-02-11 | 2015-06-03 | 清华大学 | 一种去除二沉池废水中PPCPs类微污染物的方法 |
CN105152429A (zh) * | 2015-09-07 | 2015-12-16 | 清华大学 | 一种高效去除工业废水中有机污染物的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06296992A (ja) * | 1993-04-13 | 1994-10-25 | Mitsubishi Heavy Ind Ltd | 有機酸含有廃液の分解法 |
CN1107443A (zh) * | 1994-02-26 | 1995-08-30 | 印度国家研究发展公司 | 涉及电解-氧化法的废水处理方法 |
US6551518B2 (en) * | 1999-07-12 | 2003-04-22 | Joseph Gargas | Combined ozonation and electrolytic chlorination water purification method |
CN102976451A (zh) * | 2012-12-17 | 2013-03-20 | 清华大学 | 一种原位电产生h2o2协同o3氧化的废水处理装置及方法 |
CN104129872B (zh) * | 2014-07-02 | 2016-02-24 | 清华大学 | 饮用水处理过程中溴酸根生成量的控制方法 |
-
2015
- 2015-02-11 CN CN201510072467.1A patent/CN104671361B/zh active Active
-
2016
- 2016-02-14 WO PCT/CN2016/073749 patent/WO2016127942A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103601258A (zh) * | 2008-03-21 | 2014-02-26 | Apt水公司 | 用于水处理的装置和方法 |
AU2011101664A4 (en) * | 2011-02-04 | 2012-02-02 | Waterco Limited | Water Treatment System |
US20120241387A1 (en) * | 2011-03-23 | 2012-09-27 | Conocophillips Company | Advanced oxidation of kinetic hydrate inhibitors |
CN103739162A (zh) * | 2013-12-30 | 2014-04-23 | 江南大学 | 一种臭氧-活性炭联用去除饮用水中PPCPs的方法 |
CN104609532A (zh) * | 2015-02-11 | 2015-05-13 | 清华大学 | 一种饮用水处理过程中去除PPCPs的方法 |
CN104671361A (zh) * | 2015-02-11 | 2015-06-03 | 清华大学 | 一种去除二沉池废水中PPCPs类微污染物的方法 |
CN105152429A (zh) * | 2015-09-07 | 2015-12-16 | 清华大学 | 一种高效去除工业废水中有机污染物的方法 |
Non-Patent Citations (1)
Title |
---|
XIANG, LI ET AL.: "Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process", WATER RESEARCH, vol. 63, 18 June 2014 (2014-06-18), ISSN: 0043-1354 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109734156A (zh) * | 2019-02-27 | 2019-05-10 | 清华大学深圳研究生院 | 一种抗生素废水的处理装置和处理方法 |
CN109734156B (zh) * | 2019-02-27 | 2024-01-12 | 清华大学深圳研究生院 | 一种抗生素废水的处理装置和处理方法 |
CN111646547A (zh) * | 2020-05-21 | 2020-09-11 | 中南民族大学 | 一种市政污泥衍生自掺杂铁、氮物种碳材料电极的制备方法和应用 |
CN111646547B (zh) * | 2020-05-21 | 2022-08-09 | 中南民族大学 | 一种市政污泥衍生自掺杂铁、氮物种碳材料电极的制备方法和应用 |
CN113030361A (zh) * | 2021-03-10 | 2021-06-25 | 薛伟锋 | 基于UHPLC-MS/MS技术的固相萃取柱处理水相PPCPs的代谢组学分析方法 |
CN113030361B (zh) * | 2021-03-10 | 2024-04-19 | 薛伟锋 | 基于UHPLC-MS/MS技术的固相萃取柱处理水相PPCPs的代谢组学分析方法 |
CN115738637A (zh) * | 2022-12-20 | 2023-03-07 | 昆明理工大学 | 一种三维粒子电极系统净化堆肥恶臭气体的技术方法及其装置 |
Also Published As
Publication number | Publication date |
---|---|
CN104671361A (zh) | 2015-06-03 |
CN104671361B (zh) | 2017-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016127942A1 (zh) | 一种去除二沉池废水中PPCPs类微污染物的方法 | |
CN101838074B (zh) | 多相电催化氧化-Fenton耦合法降解硝基苯类废水的方法及其反应器 | |
Gamarra-Güere et al. | Application of Fenton, photo-Fenton and electro-Fenton processes for the methylparaben degradation: A comparative study | |
Shi et al. | Highly efficient removal of amoxicillin from water by three-dimensional electrode system within granular activated carbon as particle electrode | |
WO2016127945A1 (zh) | 一种饮用水处理过程中去除PPCPs的方法 | |
Khataee et al. | Photoassisted electrochemical degradation of an azo dye using Ti/RuO2 anode and carbon nanotubes containing gas-diffusion cathode | |
Yang et al. | Ibuprofen removal from drinking water by electro-peroxone in carbon cloth filter | |
CN105152429B (zh) | 一种高效去除工业废水中有机污染物的方法 | |
Köktaş et al. | Removal of salicylic acid by electrochemical processes using stainless steel and platinum anodes | |
CN101531411A (zh) | 气体扩散电极体系电化学消毒的方法 | |
CN102276023A (zh) | 处理废水中有机染料的方法 | |
CN106865896A (zh) | 一种锂电池生产废水处理系统 | |
Cañizares et al. | A comparison between conductive-diamond electrochemical oxidation and other advanced oxidation processes for the treatment of synthetic melanoidins | |
CN103130307A (zh) | 一种臭氧、光电化学耦合氧化的水处理装置及方法 | |
CN108706693A (zh) | 处理悬浮物和难降解有机污染物的可切换三电极反应器 | |
CN113957460A (zh) | 一种基于交流电解合成双氧水的方法及其装置与应用 | |
CN208136018U (zh) | 微电解协同光催化芬顿法废水处理系统 | |
Zou et al. | Crystal facet controlled stable PbO2 electrode for efficient degradation of tetracycline | |
CN106745675B (zh) | 一种处理抗生素废水的生物电化学装置及工作方法 | |
Pang et al. | Dynamic model of organic pollutant degradation in three dimensional packed bed electrode reactor | |
Li et al. | Highly cost-effective removal of 2, 4-dichlorophenoxiacetic acid by peroxi-coagulation using natural air diffusion electrode | |
CN105884011A (zh) | 高浓度、难降解有机废水的膜电生物处理装置及方法 | |
CN102020384B (zh) | 一种基于芬顿反应的有机废水的处理方法 | |
CN107244729B (zh) | 一种饮用水处理中控制含卤副产物产生的方法 | |
CN214031842U (zh) | 纳米石墨掺杂氧化钌电极电催化氧化反应装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16748743 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16748743 Country of ref document: EP Kind code of ref document: A1 |