WO2019146776A1 - 基板乾燥装置、基板乾燥方法および記憶媒体 - Google Patents

基板乾燥装置、基板乾燥方法および記憶媒体 Download PDF

Info

Publication number
WO2019146776A1
WO2019146776A1 PCT/JP2019/002630 JP2019002630W WO2019146776A1 WO 2019146776 A1 WO2019146776 A1 WO 2019146776A1 JP 2019002630 W JP2019002630 W JP 2019002630W WO 2019146776 A1 WO2019146776 A1 WO 2019146776A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
temperature
liquid
unit
sublimable substance
Prior art date
Application number
PCT/JP2019/002630
Other languages
English (en)
French (fr)
Inventor
洋介 川渕
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2019567199A priority Critical patent/JP6946474B2/ja
Priority to US16/962,742 priority patent/US11854815B2/en
Priority to CN201980008874.2A priority patent/CN111630636B/zh
Priority to KR1020207023961A priority patent/KR20200111739A/ko
Publication of WO2019146776A1 publication Critical patent/WO2019146776A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/14Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/18Machines or apparatus for drying solid materials or objects with movement which is non-progressive on or in moving dishes, trays, pans, or other mainly-open receptacles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • F26B3/22Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source and the materials or objects to be dried being in relative motion, e.g. of vibration
    • F26B3/24Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source and the materials or objects to be dried being in relative motion, e.g. of vibration the movement being rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/08Drying solid materials or objects by processes not involving the application of heat by centrifugal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel

Definitions

  • the present invention relates to a technique for drying a substrate by sublimating a sublimation substance filled in a recess of a pattern formed on the substrate.
  • a step of replacing the liquid such as IPA in the pattern recess with a sublimation substance solution a step of filling the pattern recess with the sublimation substance solidified by evaporating the solvent contained in the sublimation substance solution, and solidification
  • the steps of subliming the sublimable substance are sequentially performed. According to the drying process using such a sublimable substance, pattern collapse due to the surface tension of the liquid can be prevented.
  • An object of the present invention is to provide a technique capable of sublimating a sublimable substance filled in a concave portion of a pattern formed on a substrate while preventing pattern collapse.
  • One embodiment of the present invention is a substrate drying apparatus for drying a substrate having a treated surface subjected to a liquid treatment using a treatment liquid, which is a first unit for forming a solid film of a sublimation substance on the treated surface; A second unit for sublimating a solid film and removing it from the treated surface, wherein the first unit comprises a solution supply unit for supplying a sublimation material solution containing a sublimation material and a solvent to the treated surface; And removing the solvent and the processing liquid from the processing surface to which the solution is supplied, and forming a solid film of the sublimable substance on the processing surface.
  • the second liquid removing portion for evaporating the solvent and the processing liquid remaining in the solid film by heating the substrate and maintaining the substrate at a temperature within a first temperature range lower than the sublimation temperature of the sublimation substance
  • the second liquid removing unit maintains the substrate at a temperature within the first temperature range
  • By heating the substrate to a second temperature range of the temperature indicating the above sublimation temperature of the sublimable substance has a solid film removing section for removing the solid film from the treated surface, and relates to apparatus for drying a substrate.
  • Another aspect of the present invention is a substrate drying method for drying a substrate having a treated surface subjected to a liquid treatment using a treatment liquid, which is a first treatment step for forming a solid film of a sublimation substance on the treated surface And a second treatment step of sublimating the solid film and removing it from the treated surface, wherein the first treatment step supplies a sublimation material solution containing the sublimation material and the solvent to the treated surface; Removing the solvent and the treatment liquid from the treated surface supplied with the volatile substance solution, and forming a solid film of the sublimable substance on the treated surface; in the second treatment step, the solid film is formed Heating the substrate and maintaining the substrate at a temperature within a first temperature range lower than the sublimation temperature of the sublimable substance to vaporize the solvent and the treatment liquid remaining in the solid film; After maintaining the temperature within the temperature range, the sublimation temperature of the sublimable substance By heating to a second temperature range of the temperature shown on, and a step of removing the solid film from the treated
  • a program for causing a substrate drying apparatus to execute the above-mentioned substrate drying method when the computer is executed by a computer for controlling the operation of the substrate drying apparatus causes the substrate drying apparatus to execute the method.
  • the present invention it is possible to sublimate the sublimable substance filled in the concave portion of the pattern formed on the substrate while preventing pattern collapse.
  • FIG. 1 is a view showing a schematic configuration of a substrate processing system.
  • FIG. 2 is a view showing a schematic configuration of the cleaning unit.
  • FIG. 3 is a view showing a schematic configuration of the bake unit.
  • FIG. 4A is a schematic cross-sectional view of the surface portion of the wafer for illustrating steps performed in the cleaning unit.
  • FIG. 4B is a schematic cross-sectional view of the surface portion of the wafer for illustrating steps performed in the cleaning unit.
  • FIG. 4C is a schematic cross-sectional view of the surface portion of the wafer for illustrating steps performed in the cleaning unit.
  • FIG. 4D is a schematic cross-sectional view of the surface portion of the wafer for illustrating steps performed in the cleaning unit.
  • FIG. 4A is a schematic cross-sectional view of the surface portion of the wafer for illustrating steps performed in the cleaning unit.
  • FIG. 4B is a schematic cross-sectional view of the surface portion of the wafer for illustrating steps performed in the cleaning unit
  • FIG. 5 shows an enlarged sectional view, an enlarged perspective view and an enlarged plan view showing a state image of the sublimable substance film according to the heating temperature.
  • FIG. 6A is a conceptual diagram for explaining the state of the remaining liquid in the sublimable substance film formed on the processing surface of the wafer (the state before heating the sublimable substance film).
  • FIG. 6B is a conceptual diagram for explaining the state of the remaining liquid in the sublimation substance film formed on the processing surface of the wafer (the state before heating the sublimation substance film).
  • FIG. 7A illustrates the state of the remaining liquid in the sublimable substance film formed on the processing surface of the wafer (the state in which the sublimable substance film is heated but before the sublimable substance film reaches the sublimation temperature).
  • FIG. 7B illustrates the state of the remaining liquid in the sublimable substance film formed on the processing surface of the wafer (the state in which the sublimable substance film is heated but before the sublimable substance film reaches the sublimation temperature).
  • FIG. 8A is a schematic view showing a projecting state of the support pin.
  • FIG. 8B is a schematic view showing a projecting state of the support pin.
  • FIG. 1 is a view showing a schematic configuration of a substrate processing system according to the present embodiment.
  • the X axis, the Y axis, and the Z axis orthogonal to one another are defined, and the positive direction of the Z axis is the vertically upward direction.
  • the substrate processing system 1 includes a loading / unloading station 2 and a processing station 3.
  • the loading / unloading station 2 and the processing station 3 are provided adjacent to each other.
  • the loading / unloading station 2 includes a carrier placement unit 11 and a transport unit 12.
  • a plurality of carriers C accommodating a plurality of wafers W in a horizontal state are mounted on the carrier mounting unit 11.
  • the transport unit 12 is provided adjacent to the carrier placement unit 11 and includes a substrate transport device 13 and a delivery unit 14 inside.
  • the substrate transfer apparatus 13 includes a substrate holding mechanism for holding the wafer W.
  • the substrate transfer device 13 can move in the horizontal and vertical directions and can pivot about the vertical axis, and transfer the wafer W between the carrier C and the delivery unit 14 using the substrate holding mechanism. Do.
  • the processing station 3 is provided adjacent to the transport unit 12.
  • the processing station 3 includes a transport unit 15 and a plurality of processing units 16.
  • the plurality of processing units 16 are provided side by side on both sides of the transport unit 15.
  • the transport unit 15 includes a substrate transport device 17 inside.
  • the substrate transfer apparatus 17 includes a substrate holding mechanism for holding the wafer W.
  • the substrate transfer device 17 is capable of horizontal and vertical movement and pivoting about the vertical axis, and transfers the wafer W between the delivery unit 14 and the processing unit 16 using the substrate holding mechanism. I do.
  • the processing unit 16 performs predetermined substrate processing on the wafer W transferred by the substrate transfer device 17.
  • the substrate processing system 1 further includes a control device 4.
  • Control device 4 is, for example, a computer, and includes control unit 18 and storage unit 19.
  • the storage unit 19 stores programs for controlling various processes performed in the substrate processing system 1.
  • the control unit 18 controls the operation of the substrate processing system 1 by reading and executing the program stored in the storage unit 19.
  • the program may be recorded in a storage medium readable by a computer, and may be installed in the storage unit 19 of the control device 4 from the storage medium.
  • Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical disk (MO), and a memory card.
  • the substrate transfer device 13 of the loading / unloading station 2 takes out the wafer W from the carrier C placed on the carrier placement unit 11 and receives the taken-out wafer W Place it on the crossing section 14.
  • the wafer W placed on the delivery unit 14 is taken out of the delivery unit 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16.
  • the wafer W carried into the processing unit 16 is processed by the processing unit 16, then carried out of the processing unit 16 by the substrate transfer device 17, and placed on the delivery unit 14. Then, the processed wafer W placed on the delivery unit 14 is returned to the carrier C of the carrier placement unit 11 by the substrate transfer device 13.
  • the processing unit 16 included in the substrate processing system 1 shown in FIG. 1 includes a cleaning unit 16A and a bake unit 16B.
  • the cleaning unit 16A and the bake unit 16B are not shown separately in FIG. 1, for example, the processing unit 16 at the upper side of the processing station 3 in FIG. 1 is the cleaning unit 16A and the processing unit at the lower side in FIG. 16 can be the bake unit 16B.
  • the cleaning unit 16A includes a chamber (unit housing) 20A.
  • a substrate holding mechanism 30 is provided in the chamber 20A.
  • the substrate holding mechanism 30 includes a holding unit 31, a support unit 32, and a drive unit 33.
  • the substrate holding mechanism 30 rotates the holding unit 31 supported by the support unit 32 by rotating the support unit 32 using the driving unit 33, and thereby rotates the wafer W held by the holding unit 31. .
  • the processing liquid is supplied from the processing liquid supply unit 40 to the wafer W held by the substrate holding mechanism 30.
  • the treatment liquid supply unit 40 includes a chemical solution nozzle 41 for supplying a chemical solution (eg, DHF, SC-1 etc.), a rinse nozzle 42 for supplying a rinse solution (eg, pure water (DIW)),
  • a sublimation substance solution nozzle 44 for supplying a sublimation substance solution (for example, ammonium fluorosilicate dissolved in a solvent (here, IPA)) are provided. .
  • the nozzles 41 to 44 described above are connected to corresponding processing solution supply sources (liquid storage tanks or factory powers) (not shown) via corresponding supply lines (not shown). Each supply line is provided with a flow control device (not shown) such as an on-off valve or a flow control valve.
  • the nozzles 41 to 44 are attached to the tip of the nozzle arm 45. By operating the nozzle arm 45, the nozzles 41 to 44 can be moved between the processing position immediately above the center of the wafer W and the standby position outside the wafer W.
  • An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20A.
  • a flow control valve such as a fan 23 and a damper 24 is interposed in the duct 22 of the FFU 21.
  • the air is filtered by a filter such as a ULPA filter 25 provided below the outlet 22b of the duct 22, and then flows downward into the internal space of the chamber 20A.
  • An FFU 21 and a gas supply unit 27 are provided as a gas supply mechanism for supplying a gas into the chamber 20A.
  • a baffle plate 26 in the form of a punching plate is provided.
  • the baffle plate 26 regulates the distribution of clean air discharged downward from the FFU 21 into the chamber 20A.
  • the gas supply unit 27 supplies a gas to the space between the FFU 21 and the rectifying plate 26.
  • the gas supply unit 27 has a gas supply nozzle 27a.
  • a clean low humidity gas such as nitrogen gas or dry air is supplied to the gas supply nozzle 27a from a gas supply source 27b via a gas supply line 27d in which a flow control device 27c such as an on-off valve or a flow control valve is interposed. Be done.
  • the gas supply unit 27 may be provided to supply a gas into the duct 22 of the FFU 21 (downstream of the damper 24).
  • the FFU 21 and the gas supply unit 27 are an example of a gas supply mechanism, and the installation position, shape, gas supply amount, etc. of the gas supply mechanism may have various forms corresponding to the device structure. .
  • a recovery cup 50 is disposed to surround the holding portion 31 of the substrate holding mechanism 30.
  • the recovery cup 50 collects the processing liquid scattering from the wafer W.
  • a drainage port 51 is formed at the bottom of the recovery cup 50, and the treatment liquid collected by the recovery cup 50 is drained from the drainage port 51 to the outside of the processing unit 16.
  • an exhaust port 52 for discharging the atmosphere inside the recovery cup 50 to the outside of the processing unit 16 is formed.
  • the exhaust through the exhaust port 52 is described as “cup exhaust (C-EXH)”.
  • An exhaust passage 53 is connected to the exhaust port 52 as an exhaust mechanism for exhausting the atmosphere in the chamber 20A.
  • the atmosphere in the collection cup 50 is always sucked through the exhaust passage 53 and the exhaust port 52, and the inside of the collection cup 50 has a negative pressure. Therefore, after being supplied from the FFU 21, it flows downward through the rectifying plate 26 and reaches the space in the vicinity of the wafer W above the wafer W (hereinafter referred to as “the space above the wafer vicinity for the sake of simplicity). Air is drawn into the collection cup 50 through between the peripheral wall of the upper opening of the collection cup 50 and the outer peripheral edge of the wafer W (see arrow F in FIG. 2). The air flow described above prevents the atmosphere (chemical solution atmosphere, solvent atmosphere) derived from the processing liquid supplied to the wafer W from staying in the upper space near the wafer.
  • the exhaust passage 53 branches into two branch passages 53 a and 53 b and merges into one exhaust passage 53 again.
  • the downstream end of the exhaust passage 53 is connected to a reduced pressure of a factory exhaust system (not shown).
  • a normally open on-off valve 54a is provided in one branch passage 53a, and a normally-closed on-off valve 54b is provided in the other branch passage 53b.
  • the single exhaust passage 53 is provided with a flow adjustment valve such as a damper or a butterfly valve, and the exhaust passage 53 is adjusted by adjusting the opening of the flow adjustment valve.
  • the flow rate of the exhaust flowing through may be adjusted.
  • the flow rate (or flow rate) of the gas (clean air) flowing in the space above the vicinity of the wafer can be changed.
  • a flow control valve may be provided on the exhaust passage 53 on the upstream side or downstream side of the branch passages 53 a and 53 b.
  • the installation position, shape, gas supply amount, and the like of the exhaust mechanism may have various forms corresponding to the apparatus structure.
  • a solvent concentration sensor 46 is attached to the tip of the nozzle arm 45.
  • the solvent concentration sensor 46 can measure the solvent concentration (IPA concentration) in the upper space near the wafer.
  • the recovery cup 50 is configured by combining a plurality of cups (not shown), and different fluid passages are formed in the recovery cup 50 by changing the relative positional relationship of the plurality of cups. It is also good.
  • the processing liquid and the gas accompanying the processing liquid are discharged from the recovery cup 50 through the fluid passage corresponding to the type of processing liquid (for example, acidic processing liquid, alkaline processing liquid, organic processing liquid).
  • the type of processing liquid for example, acidic processing liquid, alkaline processing liquid, organic processing liquid.
  • the flow rate of the exhaust gas at the time of performing the treatment using at least an organic treatment liquid for example, a solvent, a solution of a sublimation substance, etc.
  • an organic treatment liquid for example, a solvent, a solution of a sublimation substance, etc.
  • an exhaust port 56 for exhausting the atmosphere outside the recovery cup 50 is provided.
  • the exhaust passage 57 is provided with a flow control valve 58 such as a damper or a butterfly valve.
  • the bake unit 16B has a chamber 20B.
  • a heat plate 61 in which the resistance heater 62 is incorporated, and a plurality of support pins 63 provided so as to protrude from the upper surface of the heat plate 61 are provided.
  • the plurality of support pins 63 support the lower surface peripheral portion and the central portion of the wafer W, and a gap is formed between the lower surface of the wafer W and the upper surface of the heat plate 61.
  • These support pins 63 are provided so as to be able to advance and retract in the height direction (that is, the Z direction in FIG. 1) under the control of the control device 4 as described later. The size of the gap between them can be changed.
  • An exhaust hood (cover) 64 capable of moving up and down is provided above the heat plate 61.
  • An exhaust pipe 65 in which a sublimable substance recovery device 66 and a pump 67 are interposed is connected to an opening provided at the center of the exhaust hood 64.
  • the sublimable substance recovery device 66 recovers the sublimable substance by cooling the exhaust gas flowing into the sublimable substance recovery device 66 through the exhaust pipe 65 and depositing the sublimable substance.
  • the wafer W dry-etched to apply a pattern to a film (for example, a SiN film) forming a semiconductor device is carried into the cleaning unit 16 A by the substrate transfer device 17 and held horizontally by the substrate holding mechanism 30.
  • a film for example, a SiN film
  • the chemical solution nozzle 41 is positioned above the central portion of the wafer W rotated by the substrate holding mechanism 30, and the chemical solution for cleaning is supplied to the wafer W from the chemical solution nozzle 41, resulting in the previous process. Unnecessary substances such as etching residues and particles are removed from the surface of the wafer W (chemical solution cleaning step).
  • the rinse nozzle 42 is positioned above the central portion of the wafer W, and a rinse liquid (for example, DIW) is supplied to the wafer W from the rinse nozzle 42. Solution and the reaction product generated in the previous step are removed (rinse step).
  • a rinse liquid for example, DIW
  • the solvent nozzle 43 is positioned above the central portion of the wafer W, and IPA (that is, the sublimation substance is not included) is dissolved from the solvent nozzle 43 (that is, the sublimation substance is dissolved).
  • Solvent is supplied to the wafer W, and DIW on the wafer W is replaced with IPA (solvent supply process).
  • FIG. 4A The state at this time is shown in FIG. 4A. That is, the entire pattern 100 (having the convex portion 101 and the concave portion 102 between the adjacent convex portions 101) formed on the surface of the wafer W is covered with the liquid film of IPA.
  • the sublimable substance solution nozzle 44 is positioned above the central portion of the wafer W, and the sublimable substance solution SL from the sublimable substance solution nozzle 44 (that is, the sublimable substance is A solution in which a sublimable substance is dissolved in IPA, which is a soluble solvent, is supplied to the wafer W, and the IPA on the wafer W is replaced with the sublimable substance solution SL (sublimable substance solution supply step) .
  • the state at this time is shown in FIG. 4B. That is, the recess 102 is filled with the sublimable substance solution SL, and the entire pattern 100 formed on the surface of the wafer W is covered with the liquid film of the sublimable substance solution SL.
  • the thickness of the liquid film of the sublimation substance solution SL (thereby, the film thickness “t” of the sublimation substance film SS is determined) is adjusted.
  • the deposition step can be performed, for example, by spin dry drying in which the solvent is naturally evaporated while rotating the wafer W (without supplying the liquid to the wafer W).
  • the deposition process can be performed by warming the wafer W by a heating means (for example, a resistance heater or an LED heating lamp) or the like (not shown) which is built in the holding portion 31 of the substrate holding mechanism 30 or disposed near the wafer W. It is also possible to promote.
  • the state at the end of the precipitation step is shown in FIG. 4C.
  • the concave portion 102 is filled with the solid sublimable substance film SS.
  • the film thickness "t" of the sublimable substance film SS is a value such that the pattern 100 is not exposed (that is, "t" is larger than the height "h” of the convex portion 101 of the pattern 100) and as much as possible. It is desirable to be small.
  • the solvent concentration sensor 46 attached to the tip of the nozzle arm 45 Solvent (IPA) concentration is being measured.
  • IPA Solvent
  • the controller 4 increases the flow rate of the exhaust gas passing through the exhaust passage 53.
  • the increase of the exhaust gas flow rate can be realized by opening the normally closed on / off valve 54b.
  • the flow rate of the gas drawn into the recovery cup 50 from the space near the wafer increases, and the flow rate of the gas flowing in the space near the wafer (or the flow rate) As a result, the solvent vapor (IPA vapor) floating in the upper space near the wafer is drawn more strongly into the recovery cup 50. As a result, the solvent concentration (IPA concentration) in the upper space near the wafer can be reduced.
  • the increased exhaust flow rate of the exhaust passage 53 may be maintained until the deposition step is completed. By doing so, the solvent concentration in the upper space near the wafer can be more reliably maintained low. Instead of this, when the IPA concentration detected by the solvent concentration sensor 46 becomes less than a predetermined threshold (second threshold), the increased exhaust flow rate of the exhaust passage 53 may be returned to the original. By doing so, it is possible to effectively use the factory power (plant exhaust system).
  • the first threshold and the second threshold may be the same value, but it is preferable from the viewpoint of control stability to make the second threshold smaller than the first threshold.
  • the exhaust flow rate of the exhaust passage 53 (the exhaust flow rate of the cup exhaust) is increased, the pressure in the chamber 20A is decreased, and the atmosphere outside the chamber 20A may flow into the chamber 20A.
  • the exhaust flow rate (exhaust flow rate of the module exhaust) of the exhaust passage 57 is decreased, (2) the gas is supplied from the gas supply nozzle 27a of the gas supply unit 27 and into the chamber 20A.
  • the FFU 21 can individually control the gas supply flow rate to each chamber 20A, increase the total flow rate of the supplied gas (for example, by control of the fan 23 or the damper 24) to supply from the FFU 21 into the chamber 20A It is possible to implement at least one of measures such as increasing the total gas flow rate. If measures (2) or (3) for increasing the gas supply flow rate into the chamber 20A are employed, the downflow of the gas flowing into the space above the wafer increases, so the solvent concentration in the space above the wafer is increased. Can be lowered more efficiently.
  • the wafer W is unloaded from the cleaning unit 16A by the substrate transfer apparatus 17 and loaded into the bake unit 16B. Then, the exhaust hood 64 is lowered to cover the upper side of the wafer W. The temperature above the sublimation temperature of the sublimable substance or the sublimation temperature by the heating plate 61 heated up while suctioning the space above the wafer W by the pump 67 provided in the exhaust pipe 65 connected to the exhaust hood 64 The wafer W is heated to a high temperature. Thereby, the sublimable substance on the wafer W is sublimated and removed from the wafer W (sublimable substance removing step).
  • the state at the end of the sublimation material removal step is shown in FIG. 4D.
  • the wafer W is carried out of the bake unit 16B by the substrate transfer device 17 and transferred to the original carrier C.
  • FIG. 5 shows an enlarged sectional view, an enlarged perspective view and an enlarged plan view showing a state image of the sublimable substance film SS in accordance with the heating temperature.
  • the sublimable substance film SS is not heated (generally placed under an environment of 20 ° C.)
  • the sublimable substance film SS is heated to 50 ° C.
  • the sublimable substance film SS is An enlarged cross-sectional view, an enlarged perspective view, and an enlarged plan view of the sublimable substance film SS are shown in FIG. 5 for each of the state heated to 100 ° C. and the state where the sublimable substance film SS is heated to 150 ° C. ing.
  • SEM scanning electron microscope
  • the sublimation temperature of ammonium fluorosilicate under atmospheric pressure is a temperature sufficiently higher than 150 ° C.
  • the sublimation phenomenon of solid ammonium fluorofluoride hardly occurs at temperatures of 150 ° C. or lower .
  • a slight amount of solid ammonium fluorosilicate that is, sublimation substance film SS
  • the sublimable substance film SS actually disappears at a temperature lower than the sublimation temperature, the water remaining in the sublimable substance film SS and the water remaining in the sublimable substance film SS are also obtained in the drying process of the wafer W using the sublimable substance.
  • the surface tension of a solvent such as IPA may induce collapse of the pattern 100.
  • FIGS. 6A to 7B are conceptual diagrams for explaining the state of the residual liquid 70 in the sublimable substance film SS formed on the processing surface Wa of the wafer W
  • FIGS. 6A and 7A are the wafer W and the sublimation.
  • 6B and 7B show enlarged cross sections of the processing surface Wa (especially the pattern 100) of the wafer W and the sublimable substance film SS.
  • 6A and 6B show the state before heating the sublimable substance film SS.
  • 7A and 7B show a state in which the sublimable substance film SS is heated but before the sublimable substance film SS reaches the sublimation temperature.
  • FIGS. 6A-7B may include portions that are exaggerated and illustrated, or may not correspond exactly to other figures, although one skilled in the art would understand that FIG. The situation shown in FIG. 7B can be easily understood.
  • the residual liquid 70 in the sublimable substance film SS may remain in a state of being contained in the solid sublimable substance and may be present in the recess 102 of the pattern 100.
  • the residual liquid 70 can usually include the treatment liquid (chemical solution, rinse liquid, etc.) used in the liquid treatment performed in advance, and the solvent contained in the sublimable substance solution SL.
  • the residual liquid 70 is constituted by IPA.
  • the sublimation temperature of the sublimation substance film SS is much higher than the boiling point of the residual liquid 70. Therefore, in the process of heating to sublime the sublimation substance film SS, it is considered that the remaining liquid 70 is vaporized before the sublimation substance film SS reaches the sublimation temperature and does not induce pattern collapse.
  • the sublimable substance film SS partially disappeared before reaching the sublimation temperature. Therefore, a part of the sublimable substance film SS disappears before the residual liquid 70 is completely vaporized, and as shown in FIGS. 7A and 7B, the surface of the sublimable substance film SS is a vertex of the convex portion 101 of the pattern 100.
  • the position is lower than the position where the residual liquid 70 may be exposed from the sublimable substance film SS in the concave portion 102 of the pattern 100.
  • the residual liquid 70 exposed from the sublimable substance film SS eventually evaporates, but the residual liquid 70 in the recess 102 is in a state where the adjacent convex portion 101 is not covered with the sublimable substance film SS.
  • the transition from the liquid state to the gas state and evaporation causes pattern collapse due to the surface tension of the remaining liquid 70 as in the case of ordinary liquid drying.
  • the substrate drying apparatus and substrate drying method described below are effective.
  • the substrate drying method in order to dry the wafer W having the processing surface Wa on which the liquid processing has been performed using the processing liquid (chemical solution, rinse liquid, etc.) It includes a first processing step of forming a sublimable substance film SS which is a solid film on the processing surface Wa, and a second processing step of sublimating the sublimable substance film SS and removing it from the processing surface Wa.
  • the first processing step is a step of supplying the sublimable substance solution SL containing the sublimable substance and the solvent to the treated surface Wa, and removing the solvent and the treatment liquid from the treated surface Wa to which the sublimable substance solution SL is supplied. Forming the sublimable substance film SS on the processing surface Wa.
  • a heat treatment for vaporizing the solvent and the treatment liquid remaining in the sublimation substance film SS is performed.
  • the sublimable substance is formed by heating the wafer W on which the sublimable substance film SS is formed, and maintaining the wafer W at a temperature within a first temperature range lower than the sublimation temperature of the sublimable substance.
  • a step (pre-vaporization treatment step) of vaporizing the solvent and the treatment liquid remaining in the film SS is performed. As a result, the residual liquid 70 contained in the sublimable substance film SS is heated to transition from the liquid state to the gas state.
  • the first temperature range in the present embodiment is a temperature range that indicates a higher temperature than the boiling point of the solvent that may remain on the wafer W (in particular, on the pattern 100 (in the recess 102)) and the boiling point of the processing liquid. Set to Thereby, the vaporization of both the solvent and the processing liquid contained in the residual liquid 70 can be promoted simultaneously.
  • the sublimable substance film SS is removed from the processing surface Wa by heating the wafer W to a temperature within a second temperature range which indicates a sublimation temperature of the sublimable substance or more (sublimation process Process) is performed.
  • the sublimable substance film SS is sublimated in a state in which the residual liquid 70 is vaporized in the above-described pre-vaporization process, so that the residual liquid 70 in a liquid state from the sublimable substance film SS in the recess 102 Exposure can be avoided, and pattern collapse due to the surface tension of the residual liquid 70 can be prevented.
  • the first processing step described above is performed by the cleaning unit 16A (first unit) shown in FIG. 2, and the second processing step described above is shown in FIG. It is performed by the unit 16B (second unit).
  • the solution supply unit for supplying the sublimable substance solution SL to the processing surface Wa of the wafer W includes the sublimable substance solution nozzle 44 and the nozzle arm 45.
  • the first liquid removing unit for forming the sublimable substance film SS on the processing surface Wa includes the substrate holding mechanism 30 configured as a rotating unit that rotates the wafer W, and the control device 4 controls the wafer via the substrate holding mechanism 30.
  • both the second liquid removing portion for evaporating the solvent and the processing solution remaining in the sublimable substance film SS and the solid film removing portion for removing the sublimable substance film SS from the processing surface Wa A heat plate 61 incorporating a resistance heater 62 and a support pin 63 capable of adjusting the amount of protrusion from the heat plate 61 are realized in combination.
  • FIGS. 8A and 8B are schematic views showing the protruding state of the support pin 63
  • FIG. 8A shows the state in the pre-vaporizing process for vaporizing the solvent and the processing liquid remaining in the sublimable substance film SS
  • FIGB shows the state in the sublimation process for removing the sublimable substance film SS from the processing surface Wa.
  • the heating device provided in the bake unit 16B of the present embodiment can change the amount of heat transferred to the wafer W when heating the wafer W, and the amount of heat transferred to the wafer W can be changed between the pre-vaporization process step and the sublimation process step.
  • the heating device shown in FIGS. 8A and 8B is provided as a heat plate 61 provided as a heater and a resistance heater 62, and a position adjustment mechanism for adjusting the distance between the heater and the wafer W. And a plurality of support pins 63. Under the control of the control device 4 (see FIG. 1), the plurality of support pins 63 are provided so as to be able to change the amount of protrusion from the heater unit (in particular, the heat plate 61). The specific number and shape of the plurality of support pins 63 are not limited.
  • the amount of protrusion of all the support pins 63 need not be changeable, and the amount of protrusion of only some of the support pins 63 among the plurality of support pins 63 can be changed, and the amount of protrusion of the other support pins 63 is It may be fixed.
  • the protruding amounts of the plurality of support pins 63 are set relatively large as shown in FIG. 8A, and the heater unit (heat plate 61) and wafer The distance between W and W is a first distance d1.
  • the protruding amounts of the plurality of support pins 63 are set relatively small as shown in FIG.
  • the second distance d2 is a distance between As described above, the distance (first distance d1) between the heater (heat plate 61) and the wafer W in the pre-vaporization process is equal to the distance between the heater (heat plate 61) and the wafer W in the sublimation process. (D1> d2) than the distance (second distance d2) of
  • the amount of heat transferred to the wafer W can be easily changed according to the distance between the heater unit and the wafer W, and the wafer W has a desired temperature range.
  • the pre-vaporization process step and the sublimation process step can be appropriately performed.
  • the residual liquid 70 contained in the sublimable substance film SS can be effectively heated and vaporized. That is, when the sublimable substance film SS is formed in the cleaning unit 16A, the liquid (solvent and processing liquid) is evaporated from the sublimable substance solution SL by spin dry drying.
  • the residual liquid 70 in the sublimable substance film SS is removed before the sublimation phenomenon of the sublimable substance film SS on the processing surface Wa (particularly, the pattern 100) of the wafer W is advanced.
  • the process of vaporizing it is possible to effectively prevent pattern collapse due to the residual liquid 70.
  • heat generation from the heater (resistance heater 62) in one unit is achieved by using the heater (heating plate 61 and resistance heater 62) and the position adjustment mechanism (support pin 63) in combination as a heating device. Even when the temperature is set constant, the heating temperature of the wafer W can be easily switched.
  • each of the heating and vaporization processing (pre-vaporization processing step) of the residual liquid 70 and the heating and sublimation processing (sublimation processing step) of the sublimable substance film SS is appropriate at desired timings. Can be performed, and the configuration and control of the device can be simplified.
  • the device of this modification has the same configuration as the device described in the above embodiment. However, in the above embodiment, the wafer W is heated to a temperature within a single temperature range (i.e., the first temperature range) in the pre-vaporization process step. However, in the pre-vaporization process step of this modification, a plurality of wafers W are provided. Stepwise heating to a temperature within the temperature range of
  • the pre-vaporization process step of this modification includes a first sub-vaporization process step and a second sub-vaporization process step performed after the first sub-vaporization process step.
  • the heating device (the heating plate 61, the resistance heating heater 62 and the support pin 63 (second liquid removing portion)) heats the wafer W on which the sublimable substance film SS is formed. W is maintained at a temperature within a first sub-temperature range within the above-described first temperature range for a first sub-temperature period.
  • the heating device maintains the wafer W on which the sublimable substance film SS is formed at a temperature within the second sub-temperature range within the first temperature range for the second sub-temperature period.
  • the first sub-temperature range is equal to or higher than the boiling point on one side (for example, the boiling point of the solvent) showing the lower temperature of the boiling point of the solvent of the sublimation substance solution SL and the boiling point of the treatment liquid, and the boiling point on the other side.
  • the temperature range is set lower than (e.g., the boiling point of the processing solution).
  • the second sub temperature range is set to a temperature range that indicates the boiling point on the other side or more.
  • the first sub temperature range is a temperature range lower than the second sub temperature range.
  • the first sub-vaporization treatment step can mainly promote the vaporization of the solvent or the treatment liquid which exhibits the lower boiling point, while In the sub-vaporizing treatment step, it is possible to promote the vaporization of the solvent or the treatment liquid which exhibits the higher boiling point.
  • the second sub-film in which the sublimable substance film SS is heated to a higher temperature The temperature time can be shortened, and the disappearance of the sublimable substance film SS can be effectively suppressed.
  • the degree of disappearance of the sublimable substance film SS at a temperature lower than the sublimation temperature shows a correlation with the heating temperature of the sublimable substance film SS. It is considered that the degree of disappearance of the sublimable substance film SS tends to increase as the temperature of SS is increased to a high temperature.
  • the time for maintaining the sublimation substance film SS at a higher temperature is shorter. Therefore, from the viewpoint of suppressing the disappearance of sublimation substance film SS, the above-mentioned second sub-temperature time (that is, the time for which wafer W is maintained at the temperature within the second sub-temperature range) It is preferable that the time for which W is maintained at the temperature within the first sub temperature range is shorter than
  • the heating temperature of the wafer W can be adjusted by adjusting the distance between the heater unit (the heat plate 61) and the wafer W, as in the above-described embodiment. Therefore, the distance between the heater (heating plate 61) and the wafer W in the first sub-vaporizing treatment process is represented by “d3" (not shown), and the heater (heating plate 61) and the wafer in the second drying treatment process When the distance between W and W is represented by "d4" (not shown), the distances d3 and d4 and the distance d2 between the heater unit (the heat plate 61) and the wafer W in the above sublimation process are " It has a relationship of d2 ⁇ d4 ⁇ d3 ".
  • Adjustment of the amount of heat transferred from the heater unit (the heat plate 61 and the resistance heater 62) to the wafer W is realized by a method other than adjusting the distance between the heater unit (the heat plate 61) and the wafer W
  • a method of adjusting the calorific value (for example, the amount of energization) of the heater unit (resistance heater 62) under the control of the control device 4 may be employed.
  • the heat amount transferred to the wafer W may be adjusted by installing a plurality of heater units in the bake unit 16B and adjusting the number of heater units that actually generate heat under the control of the control device 4. Also, two or more of these methods and other methods may be combined.
  • the amount of exhaust through the exhaust pipe 65 may be changed between the pre-vaporization process and the sublimation process, or between the first sub-vaporization process and the second sub-vaporization process.
  • the control device 4 may control the pump 67 (see FIG. 3) such that the displacement in the sublimation process is greater than the displacement in the pre-vaporization process.
  • the control device 4 controls the humidity in the chamber 20B (in particular, the space above the wafer W) to be a desired humidity in each process, and the solvent concentration detected by the solvent concentration sensor 46 to be a desired concentration.
  • the pump 67 may be controlled.
  • the application of the present invention is not limited to the apparatus and method.
  • the present invention may be embodied as (non-transitory computer readable recording medium).
  • the sublimable substance that can be used in the above-described apparatus and method is not particularly limited, and examples thereof include ammonium fluorosilicate ((NH 4 ) 2 SiF 6 ), camphor, naphthalene and the like.
  • ammonium fluorosilicate ((NH 4 ) 2 SiF 6 ) is used as the sublimable substance, for example, pure water (DIW), a mixed solution of DIW and isopropyl alcohol (IPA), etc. can be used as a solvent .
  • DIW pure water
  • IPA isopropyl alcohol
  • camphor or naphthalene for example, alcohols (eg, IPA) can be used as the solvent.
  • the sublimable substance is not limited to the above-mentioned example, and any substance which can maintain the solid state before the start of the heat treatment may be used.
  • Sublimable substances represented by (IIIa), (IIIb), (IVa) and (IVb) can be used (see JP-A-2015-106645). These sublimation substances are organic substances having a vapor pressure of 5 Pa or less at room temperature, and exhibit sublimation under reduced pressure and / or heating conditions.
  • R 1 , R 2 and R 3 are each independently a hydroxy group (—OH), a carboxyl group (—COOH), an amino group ( -NH 2 ), amido group (-CONH 2 ), nitro group (-NO 2 ) or methyl ester group (-COO-CH 3 ).
  • R 1 , R 2 , R 3 and R 4 are each independently a hydroxy group (—OH) or a carboxyl group ( -COOH), amino group (-NH 2 ), amido group (-CONH 2 ), nitro group (-NO 2 ), methyl ester group (-COO-CH 3 ), methoxy group (-OCH 3 ), ethoxy group ( -OCH 2 CH 3 ) or propoxy group (-OCH 2 CH 2 CH 3 ).
  • R 1 and R 2 are each independently a hydroxy group (—OH), a carboxyl group (—COOH), an amino group (—NH 2 ), an amido group (—CONH 2) ), Nitro group (-NO 2 ), methyl ester group (-COO-CH 3 ), methoxy group (-OCH 3 ), ethoxy group (-OCH 2 CH 3 ) or propoxy group (-OCH 2 CH 2 CH 3 ) Represents
  • R 1 , R 2 , R 3 and R 4 are each independently a hydroxy group (—OH), a carboxyl group (—COOH), an amino group (—NH 2 ), Amide group (-CONH 2 ), nitro group (-NO 2 ), methyl ester group (-COO-CH 3 ), methoxy group (-OCH 3 ), ethoxy group (-OCH 2 CH 3 ) or propoxy group (-OCH) 2 CH 2 CH 3) represents, R represents, a carbonyl group (-CO-), a peptide bond (-CONH-), an ester bond (-COO-), an ether bond (-O -), (- NHNHO- ) bond , A (-COCOO-) bond or a (-CHCH-) bond.
  • sublimable substances represented by the formulas (Ia) to (Id) for example, cyclohexane-1,2-dicarboxylic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, cyclohexane-1 And 2,4-tricarboxylic acid.
  • Examples of the sublimable substance represented by the formula (IIa) or (IIb) include phthalic acid and aminoacetophenone.
  • Examples of the sublimable substance represented by formula (IIc) include vanillin, 4-hydroxyphthalic acid, trimellitic acid, trimellitic anhydride, dimethoxyacetophenone and the like.
  • Examples of the sublimable substance represented by the formula (IId) include 5-hydroxyisophthalic acid and the like.
  • Examples of the sublimable substance represented by the formula (IIe) include gallic acid, methyl gallate and the like.
  • Examples of the sublimable substance represented by the formula (IIIa) or (IIIb) include 1,7-dihydronaphthalene and the like.
  • Examples of the sublimable substance represented by the formula (IVa) or (IVb) include 4,4'-dihydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone and the like.
  • the sublimable substance solution contains impurities in addition to the sublimable substance and the solvent.
  • the impurities are, for example, substances mixed into the sublimable substance in the production of the sublimable substance, substances mixed in the solvent in the production of the solvent, and the like.
  • Specific examples of the impurities are organic impurities (eg, hexamethylcyclotrisiloxane, methylamine, 1-bromooctadecane), polymers having a fluorine atom (eg, polyvinylidene fluoride), and the like. Since the sublimable substance and / or the solvent used as the raw material of the sublimable substance solution contain impurities, the sublimable substance solution will contain impurities in addition to the sublimable substance and the solvent.
  • Examples of the drug solution include DHF, BHF, SC-1, SC-2, APM, HPM, SPM and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

パターン倒壊を防ぎつつ、基板に形成されたパターンの凹部に満たされた昇華性物質を昇華させることができる基板乾燥装置、基板乾燥方法および記憶媒体を提供する。第1ユニットは、昇華性物質及び溶媒を含有する昇華性物質溶液を処理面Waに供給する溶液供給部と、昇華性物質溶液が供給された処理面Wa上から溶媒及び処理液を除去し、昇華性物質の固体膜SSを処理面Wa上に形成する第1液除去部とを有する。第2ユニットは、固体膜SSが形成された基板Wを加熱し、基板Wを昇華性物質の昇華温度よりも低い第1温度域内の温度で維持することで、固体膜SS内に残存する溶媒及び処理液70を気化する第2液除去部61、62、63と、昇華温度以上を示す第2温度域内の温度に基板Wを加熱することで、固体膜SSを処理面Wa上から除去する固体膜除去部61、62、63とを有する。

Description

基板乾燥装置、基板乾燥方法および記憶媒体
 本発明は、基板に形成されたパターンの凹部に満たされた昇華性物質を昇華させることにより基板を乾燥させる技術に関する。
 近年、半導体ウエハ等の基板に形成されるパターンが微細化され、パターンのアスペクト比(高さ/幅)が高くなってきている。パターンの微細化および高アスペクト化に伴い、液処理後の基板の乾燥処理において、パターン凹部内の液の表面張力に起因するパターン倒壊(パターンを構成する凸状部の倒壊)が生じやすくなっている。この問題に対処するため、昇華性物質を用いた乾燥処理が行われることがある(例えば特許文献1参照)。この乾燥処理では、パターン凹部内のIPA等の液を昇華性物質溶液で置換する工程、その昇華性物質溶液に含まれる溶剤を蒸発させて固化した昇華性物質によりパターン凹部を満たす工程、および固化した昇華性物質を昇華させる工程が、順次実行される。このような昇華性物質を用いた乾燥処理によれば、液の表面張力に起因するパターン倒壊を防ぐことができる。
 しかしながら、そのような昇華性物質を用いた乾燥処理においても、パターン倒壊がもたらされうることがある。
特開2012-243869号公報
 本発明は、パターン倒壊を防ぎつつ、基板に形成されたパターンの凹部に満たされた昇華性物質を昇華させることができる技術を提供することを目的としている。
 本発明の一態様は、処理液を使って液処理が行われた処理面を有する基板を乾燥させる基板乾燥装置であって、昇華性物質の固体膜を処理面に形成する第1ユニットと、固体膜を昇華させて処理面から除去する第2ユニットと、を備え、第1ユニットは、昇華性物質および溶媒を含有する昇華性物質溶液を処理面に供給する溶液供給部と、昇華性物質溶液が供給された処理面上から溶媒および処理液を除去し、昇華性物質の固体膜を処理面上に形成する第1液除去部と、を有し、第2ユニットは、固体膜が形成された基板を加熱し、当該基板を昇華性物質の昇華温度よりも低い第1温度域内の温度で維持することで、固体膜内に残存する溶媒および処理液を気化する第2液除去部と、第2液除去部が基板を第1温度域内の温度で維持した後に、当該基板を昇華性物質の昇華温度以上を示す第2温度域内の温度に加熱することで、固体膜を処理面上から除去する固体膜除去部と、を有する、基板乾燥装置に関する。
 本発明の他の態様は、処理液を使って液処理が行われた処理面を有する基板を乾燥させる基板乾燥方法であって、昇華性物質の固体膜を処理面に形成する第1処理工程と、固体膜を昇華させて処理面から除去する第2処理工程と、を含み、第1処理工程は、昇華性物質および溶媒を含有する昇華性物質溶液を処理面に供給する工程と、昇華性物質溶液が供給された処理面上から溶媒および処理液を除去し、昇華性物質の固体膜を処理面上に形成する工程と、を有し、第2処理工程は、固体膜が形成された基板を加熱し、当該基板を昇華性物質の昇華温度よりも低い第1温度域内の温度で維持することで、固体膜内に残存する溶媒および処理液を気化する工程と、基板を第1温度域内の温度で維持した後に、当該基板を昇華性物質の昇華温度以上を示す第2温度域内の温度に加熱することで、固体膜を処理面上から除去する工程と、を有する、基板乾燥方法に関する。
 本発明の他の態様は、基板乾燥装置の動作を制御するためのコンピュータにより実行されたときに、コンピュータが基板乾燥装置を制御して上記の基板乾燥方法を基板乾燥装置に実行させるプログラムが記録された記憶媒体に関する。
 本発明によれば、パターン倒壊を防ぎつつ、基板に形成されたパターンの凹部に満たされた昇華性物質を昇華させることができる。
図1は、基板処理システムの概略構成を示す図である。 図2は、洗浄ユニットの概略構成を示す図である。 図3は、ベークユニットの概略構成を示す図である。 図4Aは、洗浄ユニットにて行われる工程を説明するためのウエハ表面部の概略断面図である。 図4Bは、洗浄ユニットにて行われる工程を説明するためのウエハ表面部の概略断面図である。 図4Cは、洗浄ユニットにて行われる工程を説明するためのウエハ表面部の概略断面図である。 図4Dは、洗浄ユニットにて行われる工程を説明するためのウエハ表面部の概略断面図である。 図5は、加熱温度に応じた昇華性物質膜の状態イメージを示す拡大断面図、拡大斜視図および拡大平面図を示す。 図6Aは、ウエハの処理面上に形成された昇華性物質膜中の残存液の状態(昇華性物質膜を加熱する前の状態)を説明するための概念図である。 図6Bは、ウエハの処理面上に形成された昇華性物質膜中の残存液の状態(昇華性物質膜を加熱する前の状態)を説明するための概念図である。 図7Aは、ウエハの処理面上に形成された昇華性物質膜中の残存液の状態(昇華性物質膜を加熱しているが、昇華性物質膜が昇華温度に達する前の状態)を説明するための概念図である。 図7Bは、ウエハの処理面上に形成された昇華性物質膜中の残存液の状態(昇華性物質膜を加熱しているが、昇華性物質膜が昇華温度に達する前の状態)を説明するための概念図である。 図8Aは、支持ピンの突出状態を示す概略図である。 図8Bは、支持ピンの突出状態を示す概略図である。
 図1は、本実施形態に係る基板処理システムの概略構成を示す図である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
 図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。
 搬入出ステーション2は、キャリア載置部11と、搬送部12とを備える。キャリア載置部11には、複数枚のウエハWを水平状態で収容する複数のキャリアCが載置される。
 搬送部12は、キャリア載置部11に隣接して設けられ、内部に基板搬送装置13と、受渡部14とを備える。基板搬送装置13は、ウエハWを保持する基板保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、基板保持機構を用いてキャリアCと受渡部14との間でウエハWの搬送を行う。
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。
 搬送部15は、内部に基板搬送装置17を備える。基板搬送装置17は、ウエハWを保持する基板保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、基板保持機構を用いて受渡部14と処理ユニット16との間でウエハWの搬送を行う。
 処理ユニット16は、基板搬送装置17によって搬送されるウエハWに対して所定の基板処理を行う。
 また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。
 上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、キャリア載置部11に載置されたキャリアCからウエハWを取り出し、取り出したウエハWを受渡部14に載置する。受渡部14に載置されたウエハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。
 処理ユニット16へ搬入されたウエハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。そして、受渡部14に載置された処理済のウエハWは、基板搬送装置13によってキャリア載置部11のキャリアCへ戻される。
 次に、処理ユニット16の構成について説明する。図1に示す基板処理システム1に含まれる処理ユニット16は、洗浄ユニット16Aと、ベークユニット16Bとを含む。図1では洗浄ユニット16Aとベークユニット16Bとが区別して示されていないが、例えば、処理ステーション3の図1中上側にある処理ユニット16を洗浄ユニット16Aとし、図1中下側にある処理ユニット16をベークユニット16Bとすることができる。
 図2に示すように、洗浄ユニット16Aは、チャンバ(ユニットハウジング)20Aを備えている。チャンバ20A内には、基板保持機構30が設けられている。基板保持機構30は、保持部31と、支柱部32と、駆動部33とを備える。かかる基板保持機構30は、駆動部33を用いて支柱部32を回転させることによって支柱部32に支持された保持部31を回転させ、これにより、保持部31に保持されたウエハWを回転させる。
 基板保持機構30により保持されたウエハWには処理液供給部40から処理液が供給される。処理液供給部40は、薬液(例えばDHF、SC-1等)を供給する薬液ノズル41、リンス液(例えば純水(DIW))を供給するリンスノズル42、昇華性物質を溶解しうる溶剤(例えばイソプロピルアルコール(IPA))を供給する溶剤ノズル43、および昇華性物質溶液(例えばケイフッ化アンモニウムを溶剤(ここではIPA)に溶解させたもの)を供給する昇華性物質溶液ノズル44を備えている。
 上記のノズル41~44は、対応する供給ライン(図示せず)を介して対応する処理液の供給源(液貯留タンクまたは工場用力)(図示せず)に接続されている。各供給ラインには、開閉弁、流量制御弁等の流量調節機器(図示せず)が介設されている。また、上記のノズル41~44は、ノズルアーム45の先端に取り付けられている。ノズルアーム45を動作させることにより、ノズル41~44をウエハW中心部の真上の処理位置と、ウエハWの外方の待機位置との間で移動させることができる。
 チャンバ20Aの天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21のダクト22には、ファン23、およびダンパ24等の流量調整弁が介設されている。ファン23を回転させることにより、ダクト22の吸引口22aからクリーンルーム内の空気がダクト22内に流入する。空気は、ダクト22の出口22bの下方に設けられたULPAフィルタ25等のフィルタにより濾過された後、チャンバ20Aの内部空間に下向きに流出する。
 チャンバ20Aの内部に気体を供給する気体供給機構としてFFU21と気体供給部27が設けられている。チャンバ20Aの上部には、パンチングプレートの形態の整流板26が設けられている。整流板26は、FFU21からチャンバ20A内に下向きに吐出された清浄空気の分布を調節する。気体供給部27は、FFU21と整流板26との間の空間に気体を供給する。気体供給部27は、気体供給ノズル27aを有する。気体供給ノズル27aには、気体供給源27bから、開閉弁、流量制御弁等の流量調節機器27cが介設された気体供給ライン27dを介して窒素ガスまたはドライエア等の清浄な低湿度気体が供給される。気体供給部27は、FFU21のダクト22内(ダンパ24の下流側)に気体を供給するように設けてもよい。なお、FFU21と気体供給部27は、気体供給機構の一例であって、気体供給機構の設置位置、形状、気体供給量等は、装置構造に対応して様々な形態を有していてもよい。
 基板保持機構30の保持部31を取り囲むように回収カップ50が配置されている。回収カップ50は、ウエハWから飛散する処理液を捕集する。回収カップ50の底部には、排液口51が形成されており、回収カップ50によって捕集された処理液は、かかる排液口51から処理ユニット16の外部へ排出される。また、回収カップ50の底部には、回収カップ50内部の雰囲気を処理ユニット16の外部へ排出する排気口52が形成されている。ここでは、排気口52を介した排気は「カップ排気(C-EXH)」と記載する。
 チャンバ20Aの内部の雰囲気を排気する排気機構として、排気口52には、排気路53が接続されている。回収カップ50内の雰囲気は、常時、排気路53および排気口52を介して吸引され、回収カップ50内は負圧となっている。このため、FFU21から供給された後に整流板26を通って下向きに流れ、ウエハWの上方のウエハWの近傍の空間(以下、簡便のため、「ウエハ近傍上方空間」と呼ぶ)に到達した清浄空気が、回収カップ50の上部開口部の周壁とウエハWの外周縁との間を通って回収カップ50内に引き込まれる(図2の矢印Fを参照)。上記の気流により、ウエハWに供給された処理液由来の雰囲気(薬液雰囲気、溶剤雰囲気)がウエハ近傍上方空間に滞留することが抑制されている。
 排気路53は2つの分岐路53a、53bに分岐し、再び1つの排気路53に合流している。排気路53の下流端は減圧された工場排気系のダクト(図示せず)に接続されている。一方の分岐路53aにノーマルオープンの開閉弁54aが設けられ、他方の分岐路53bにノーマルクローズの開閉弁54bが設けられている。開閉弁54bを開くことにより、排気路53を流れる排気(カップ排気)の流量が増大し、回収カップ50内の圧力が下がる。その結果、回収カップ50内に引き込まれる気体の流量が増え、ウエハ近傍上方空間を流れる気体(清浄空気)の流量(または流速)を増大させることができる。
 なお2つの分岐路53a、53bを設けることに代えて、単一の排気路53に、ダンパまたはバタフライ弁等の流量調整弁を設け、流量調整弁の開度を調節することにより、排気路53を流れる排気の流量を調節してもよい。この場合も、ウエハ近傍上方空間を流れる気体(清浄空気)の流量(または流速)を変化させることができる。図2の構成において、分岐路53a、53bの上流側または下流側の排気路53に流量調整弁を設けてもよい。なお、上記の排気路53の構造に限らず、排気機構の設置位置、形状、気体供給量等は、装置構造に対応して様々な形態を有していてもよい。
 ノズルアーム45の先端部には、溶剤濃度センサ46が取り付けられている。溶剤濃度センサ46により、ウエハ近傍上方空間内の溶剤濃度(IPA濃度)を測定することができる。
 回収カップ50を、複数のカップ体(図示せず)を組み合わせて構成し、これら複数のカップ体の相対的位置関係を変更することによって回収カップ50内に異なる流体通路が形成されるようにしてもよい。この場合、処理液(例えば酸性処理液、アルカリ性処理液、有機系処理液)の種類に応じた流体通路を通って、処理液および当該処理液に随伴する気体が回収カップ50から排出される。このような構成は当業者において周知であるので、図示および説明は省略する。この場合、少なくとも有機系処理液(例えば溶剤、昇華性物質溶液等)を用いた処理を行うときの排気流量が、上記のように調節可能であればよい。
 チャンバ20Aの下部であって回収カップ50の外側には、回収カップ50の外側の雰囲気を排気する排気口56が設けられている。排気口56には、図示しない工場排気系のダクトに接続された排気路57が接続されている。排気路57には、ダンパまたはバタフライ弁等の流量調整弁58が設けられている。排気口56からチャンバ20Aの内部空間の雰囲気を排出することにより、回収カップ50の外側に薬液雰囲気または有機雰囲気が滞留することを防止することができる。ここでは、排気口56を介した排気は、「モジュール排気(M-EXH)」と記載する。
 次にベークユニット16Bについて図3を参照して簡単に説明する。ベークユニット16Bは、チャンバ20Bを有する。チャンバ20B内には、抵抗加熱ヒーター62が内蔵された熱板61と、熱板61の上面から突出するように設けられた複数の支持ピン63とが設けられている。複数の支持ピン63はウエハWの下面周縁部および中央部を支持し、ウエハWの下面と熱板61の上面との間には隙間が形成される。これらの支持ピン63は、後述のように制御装置4の制御下で高さ方向(すなわち図1のZ方向)に関して進退可能に設けられており、ウエハWの下面と熱板61の上面との間の隙間の大きさを変えることができる。熱板61の上方には、昇降移動可能な排気用フード(覆い)64が設けられている。排気用フード64の中心に設けられた開口部に、昇華性物質回収装置66およびポンプ67が介設された排気管65が接続されている。昇華性物質回収装置66は、排気管65を経て昇華性物質回収装置66に流入してきた排気を冷却して昇華性物質を析出させることにより、昇華性物質を回収する。
 次に、上述の洗浄ユニット16Aおよびベークユニット16Bを備えた基板処理システム1により実行される一連の処理について説明する。以下の一連の処理は、制御装置4(図1参照)の制御の下で自動的に実行される。
 半導体装置を形成する膜(例えばSiN膜)にパターンを付与するためにドライエッチングを施したウエハWが、基板搬送装置17により洗浄ユニット16Aに搬入され、基板保持機構30により水平に保持される。
 まず、基板保持機構30により回転させられているウエハWの中心部の上方に薬液ノズル41を位置させ、この薬液ノズル41から洗浄用の薬液をウエハWに供給することにより、前工程で生じたエッチング残渣、パーティクル等の不要物質をウエハW表面から除去する(薬液洗浄工程)。
 次に、引き続きウエハWを回転させたまま、ウエハWの中心部の上方にリンスノズル42を位置させ、このリンスノズル42からリンス液(例えばDIW)をウエハWに供給することにより、ウエハW上の薬液および前工程で生じた反応生成物が除去される(リンス工程)。
 次に、引き続きウエハWを回転させたまま、ウエハWの中心部の上方に溶剤ノズル43を位置させて、この溶剤ノズル43から(昇華性物質を含まない)IPA(つまり昇華性物質を溶解することができる溶剤)がウエハWに供給されて、ウエハW上のDIWがIPAに置換される(溶剤供給工程)。このときの状態が図4Aに示されている。つまり、ウエハWの表面に形成されたパターン100(凸部101と、隣接する凸部101間の凹部102とを有する)の全体が、IPAの液膜に覆われる。
 次に、引き続きウエハWを回転させたまま、ウエハWの中心部の上方に昇華性物質溶液ノズル44を位置させて、この昇華性物質溶液ノズル44から昇華性物質溶液SL(つまり昇華性物質を溶解することができる溶剤であるIPAに昇華性物質を溶解させた溶液)がウエハWに供給されて、ウエハW上にあるIPAを昇華性物質溶液SLで置換する(昇華性物質溶液供給工程)。このときの状態が図4Bに示されている。つまり、凹部102には昇華性物質溶液SLが充填され、ウエハWの表面に形成されたパターン100の全体が、昇華性物質溶液SLの液膜に覆われている。その後、ウエハWの回転を調整することにより、昇華性物質溶液SLの液膜の厚さ(これにより昇華性物質膜SSの膜厚「t」が決まる)を調節する。
 次に、昇華性物質溶液中の溶剤を蒸発させて、昇華性物質を析出(固化)させ、固体の昇華性物質膜SSを形成する(析出工程)。析出工程は、例えば、(ウエハWに対する液の供給を行わないで)ウエハWを回転させながら溶剤を自然に蒸発させるスピンドライ乾燥により行うことができる。基板保持機構30の保持部31に内蔵されるか、あるいは、ウエハW近傍に配置された図示しない加熱手段(例えば抵抗加熱ヒーターまたはLED加熱ランプ)等により、ウエハWを暖めることにより、析出工程を促進することも可能である。析出工程の終了時の状態が図4Cに示されている。つまり、凹部102に固体の昇華性物質膜SSが充填されている。昇華性物質膜SSの膜厚「t」は、パターン100が露出しないような値であって(つまり、「t」がパターン100の凸部101の高さ「h」より大きい)、且つ、なるべく小さいことが望ましい。
 上述した薬液洗浄工程とリンス工程との間、リンス工程と溶剤供給工程との間、溶剤供給工程と昇華性物質溶液供給工程との間で液切れによりパターン100が周囲雰囲気中に露出しないように、前工程で用いる処理液の吐出期間の終期と、後工程で用いる処理液の吐出期間の始期とをオーバーラップさせることが好ましい。
 上述した薬液洗浄工程、リンス工程、溶剤供給工程、昇華性物質溶液供給工程および析出工程を実施している間、ノズルアーム45の先端部に取り付けられた溶剤濃度センサ46により、ウエハ近傍上方空間内の溶剤(IPA)濃度が計測されている。溶剤濃度の計測値が予め定められた閾値(第1閾値)例えば500ppmを超えると、制御装置4は、排気路53を通る排気の流量を増加させる。この排気流量の増加は、ノーマルクローズの開閉弁54bを開くことにより実現することができる。
 排気路53の排気流量を増加させることにより、前述したように、ウエハ近傍上方空間から回収カップ50内に引き込まれる気体の流量が増加し、ウエハ近傍上方空間を流れる気体の流量(または流速が)増加し、ウエハ近傍上方空間内を漂う溶剤蒸気(IPA蒸気)が回収カップ50内により強く引き込まれるようになる。その結果、ウエハ近傍上方空間内の溶剤濃度(IPA濃度)を低下させることができる。
 増大させた排気路53の排気流量は、析出工程が終了するまで維持してもよい。そうすることにより、より確実にウエハ近傍上方空間内の溶剤濃度を低く維持することができる。これに代えて、溶剤濃度センサ46により検出されたIPA濃度が予め定められた閾値(第2閾値)未満となったら、増大させた排気路53の排気流量を元に戻してもよい。そうすることにより、工場用力(工場排気系)を有効利用することができる。なお、上記第1閾値と第2閾値は同じ値でもよいが、第2閾値を第1閾値よりも小さくすることが制御の安定性の観点から好ましい。
 なお、排気路53の排気流量(カップ排気の排気流量)を増加させると、チャンバ20A内の圧力が低下し、チャンバ20A内にチャンバ20A外部の雰囲気が流入するおそれがある。この問題を解消するために、(1)排気路57の排気流量(モジュール排気の排気流量)を減少させる、(2)気体供給部27の気体供給ノズル27aから気体を供給し、チャンバ20A内に供給される気体の総流量を増やす、(3)FFU21が各チャンバ20Aへの気体供給流量を個別的に制御できるならば、(例えばファン23またはダンパ24の制御により)FFU21からチャンバ20A内に供給される気体の総流量を増やす、等の対応策の少なくともいずれか一つを実行することができる。チャンバ20A内への気体供給流量を増やす対応策(2)または(3)を採用した場合には、ウエハ近傍上方空間に流入する気体のダウンフローが増加するため、ウエハ近傍上方空間内の溶剤濃度をより効率良く低下させることができる。
 析出工程が終了したら、基板搬送装置17により、洗浄ユニット16AからウエハWを搬出し、ベークユニット16Bに搬入する。次いで、排気用フード64が下降してウエハWの上方を覆う。排気用フード64に接続された排気管65に介設されたポンプ67によりウエハWの上方空間を吸引しながら、昇温された熱板61により昇華性物質の昇華温度以上の温度または昇華温度よりも高い温度にウエハWが加熱される。これにより、ウエハW上の昇華性物質は昇華して、ウエハWから除去される(昇華性物質除去工程)。
 昇華性物質除去工程の終了時の状態が図4Dに示されている。昇華性物質除去工程の終了後、ウエハWは、基板搬送装置17により、ベークユニット16Bから搬出され、元のキャリアCに搬送される。
 次に、ウエハW上の昇華性物質膜SS中に封じ込められた残存液に起因するパターン100の倒壊を防ぎつつ、昇華性物質膜SSを適切に昇華させる装置および方法について説明する。
 図5は、加熱温度に応じた昇華性物質膜SSの状態イメージを示す拡大断面図、拡大斜視図および拡大平面図を示す。具体的には、昇華性物質膜SSが加熱されていない状態(概ね20℃の環境下に置かれた状態)、昇華性物質膜SSが50℃に加熱された状態、昇華性物質膜SSが100℃に加熱された状態、および昇華性物質膜SSが150℃に加熱された状態の各々に関し、昇華性物質膜SSの拡大断面図、拡大斜視図、および拡大平面図が図5に示されている。図5に示す各図は、ケイフッ化アンモニウムを昇華性物質とする昇華性物質膜SSを、SEM(走査型電子顕微鏡)を使って撮影した画像に基づいており、理解を容易にするために簡略化して描かれている。
 大気圧下におけるケイフッ化アンモニウムの昇華温度は150℃よりも十分に高い温度であるため、150℃またはそれよりも低い温度では固体状のケイフッ化アンモニウムの昇華現象は殆ど生じないと考えられていた。しかしながら図5からも明らかなように、実際には、昇華温度よりも低い温度においても、固体状のケイフッ化アンモニウム(すなわち昇華性物質膜SS)が僅かながら消失することが、本件発明者の検証によって新たに判明した。
 このように昇華温度よりも低い温度で昇華性物質膜SSが実際には消失しているため、昇華性物質を使ったウエハWの乾燥処理においても、昇華性物質膜SS中に残存する水やIPA等の溶媒の表面張力によってパターン100の倒壊が誘発されることがある。
 図6A~図7Bは、ウエハWの処理面Wa上に形成された昇華性物質膜SS中の残存液70の状態を説明するための概念図であり、図6A及び図7AはウエハWおよび昇華性物質膜SSの全体的な断面を示し、図6B及び図7BはウエハWの処理面Wa(特にパターン100)および昇華性物質膜SSの拡大断面を示す。図6A及び図6Bは、昇華性物質膜SSを加熱する前の状態を示す。一方、図7A及び図7Bは、昇華性物質膜SSを加熱しているが、昇華性物質膜SSが昇華温度に達する前の状態を示す。なお理解を容易にするために、図6A~図7Bは、誇張されて図示さている部分を含んでいたり、他の図と厳密には対応しないかもしれないが、当業者であれば図6A~図7Bに示す状態を容易に理解することができる。
 図6A及び図6Bに示すように、昇華性物質膜SS中の残存液70は、固体状の昇華性物質に封じ込められた状態で残存し、パターン100の凹部102内にも存在しうる。残存液70は、通常は、先立って行われた液処理で用いられた処理液(薬液、リンス液等)と、昇華性物質溶液SLに含まれる溶媒とを含みうるものであり、例えば水分およびIPAによって残存液70が構成される。
 一般に、昇華性物質膜SSの昇華温度は、残存液70の沸点よりも遥かに高い。そのため、昇華性物質膜SSを昇華させるために加熱する過程で、残存液70は、昇華性物質膜SSが昇華温度に達する前に気化してパターン倒壊を誘発しないものと考えられていた。しかしながら実際には、上述のように、昇華性物質膜SSは昇華温度に達する前に一部消失していた。そのため、残存液70が完全に気化する前に昇華性物質膜SSの一部が消失し、図7A及び図7Bに示すように、昇華性物質膜SSの表面がパターン100の凸部101の頂点よりも低い位置となり、パターン100の凹部102で昇華性物質膜SSから残存液70が露出する箇所が生じうる。このようにして昇華性物質膜SSから露出した残存液70は最終的には蒸発するが、隣接する凸部101が昇華性物質膜SSで被覆されていない状態で凹部102内の残存液70が液体状態から気体状態に遷移して蒸発すると、通常の液乾燥と同様に残存液70の表面張力に起因するパターン倒壊がもたらされる。
 残存液70によってもたらされるこのようなパターン倒壊を防ぐには、以下に説明する基板乾燥装置および基板乾燥方法が有効である。
 本実施形態に係る基板乾燥方法は、上述のように、処理液(薬液、リンス液等)を使って液処理が行われた処理面Waを有するウエハWを乾燥させるために、昇華性物質の固体膜である昇華性物質膜SSを処理面Waに形成する第1処理工程と、昇華性物質膜SSを昇華させて処理面Waから除去する第2処理工程とを含む。第1処理工程は、昇華性物質および溶媒を含有する昇華性物質溶液SLを処理面Waに供給する工程と、昇華性物質溶液SLが供給された処理面上Waから溶媒および処理液を除去し、昇華性物質膜SSを処理面Wa上に形成する工程と、を有する。
 そして第2処理工程では、昇華性物質膜SSを昇華させて処理面Waから除去するのに先立って、昇華性物質膜SS内に残存する溶媒および処理液を気化するための加熱処理が行われる。すなわち第2処理工程では、昇華性物質膜SSが形成されたウエハWを加熱し、当該ウエハWを昇華性物質の昇華温度よりも低い第1温度域内の温度で維持することで、昇華性物質膜SS内に残存する溶媒および処理液を気化する工程(プレ気化処理工程)が行われる。これにより、昇華性物質膜SS中に封じ込められていた残存液70は、加熱されて液体状態から気体状態に遷移する。なお本実施形態の第1温度域は、ウエハW上(特にパターン100上(凹部102内))に残存しうる溶媒の沸点および処理液の沸点のうち、より高い方の温度以上を示す温度域に設定される。これにより、残存液70に含まれる溶媒および処理液の両方の気化を、同時的に促すことができる。
 そして、このプレ気化処理工程後に、昇華性物質の昇華温度以上を示す第2温度域内の温度にウエハWを加熱することで、昇華性物質膜SSを処理面Wa上から除去する工程(昇華処理工程)が行われる。この昇華処理工程では、上述のプレ気化処理工程によって残存液70が気化された状態で昇華性物質膜SSが昇華されるため、凹部102内で昇華性物質膜SSから液体状態の残存液70が露出されることを回避し、残存液70の表面張力に起因するパターン倒壊を防ぐことができる。
 本実施形態の基板処理システム1(基板乾燥装置)では、上述の第1処理工程は図2に示す洗浄ユニット16A(第1ユニット)によって行われ、上述の第2処理工程は図3に示すベークユニット16B(第2ユニット)によって行われる。洗浄ユニット16Aにおいて、昇華性物質溶液SLをウエハWの処理面Waに供給する溶液供給部は、昇華性物質溶液ノズル44およびノズルアーム45を含む。昇華性物質膜SSを処理面Wa上に形成する第1液除去部は、ウエハWを回転させる回転部として構成される基板保持機構30を含み、制御装置4が基板保持機構30を介してウエハWを回転させることにより、処理面Wa上から液体(溶媒及び処理液)を蒸発させるスピンドライ乾燥が行われる。一方、ベークユニット16Bにおいて、昇華性物質膜SS内に残存する溶媒および処理液を気化する第2液除去部、および、昇華性物質膜SSを処理面Waから除去する固体膜除去部の両者は、抵抗加熱ヒーター62を内蔵する熱板61と、熱板61からの突出量を調整可能な支持ピン63とが組み合わされて実現されている。
 図8A及び図8Bは、支持ピン63の突出状態を示す概略図であり、図8Aは昇華性物質膜SS内に残存する溶媒および処理液を気化するためのプレ気化処理における状態を示し、図8Bは昇華性物質膜SSを処理面Waから除去するための昇華処理における状態を示す。
 上述のように、プレ気化処理工程では昇華温度よりも低い第1温度域内の温度にウエハWは加熱および維持されるのに対し、昇華処理工程では昇華温度以上を示す第2温度域内の温度にウエハWは加熱および維持される。したがって、プレ気化処理工程においてウエハWに伝えられる熱量を、昇華処理工程においてウエハWに伝えられる熱量よりも小さくする必要がある。本実施形態のベークユニット16Bに設けられる加熱機器は、ウエハWを加熱する際にウエハWに伝える熱量を変えることができ、ウエハWに伝える熱量をプレ気化処理工程と昇華処理工程との間で変えることによって、上述の第2液除去部および固体膜除去部として兼用される。具体的には、図8A及び図8Bに示す加熱機器は、ヒーター部として設けられる熱板61および抵抗加熱ヒーター62と、このヒーター部とウエハWとの間の距離を調整する位置調整機構として設けられる複数の支持ピン63と、を有する。複数の支持ピン63は、制御装置4(図1参照)の制御下で、ヒーター部(特に熱板61)からの突出量が変更可能に設けられている。なお、複数の支持ピン63の具体的な数や形状は限定されない。また全ての支持ピン63の突出量が変更可能である必要はなく、複数の支持ピン63のうちの一部の支持ピン63のみの突出量を変更可能として、他の支持ピン63の突出量が固定されていてもよい。
 例えば、加熱機器を第2液除去部として使用するプレ気化処理工程では、図8Aに示すように複数の支持ピン63の突出量は相対的に大きく設定され、ヒーター部(熱板61)とウエハWとの間の距離は第1の距離d1とされる。一方、加熱機器を固体膜除去部として使用する昇華処理工程では、図8Bに示すように複数の支持ピン63の突出量は相対的に小さく設定され、ヒーター部(熱板61)とウエハWとの間の距離は第2の距離d2とされる。このように、プレ気化処理工程におけるヒーター部(熱板61)とウエハWとの間の距離(第1の距離d1)は、昇華処理工程におけるヒーター部(熱板61)とウエハWとの間の距離(第2の距離d2)よりも大きい(d1>d2)。
 このようにヒーター部からの輻射熱を利用する本実施形態によれば、ヒーター部とウエハWとの間の距離に応じてウエハWに伝える熱量を簡単に変えることができ、ウエハWを所望温度域に加熱してプレ気化処理工程および昇華処理工程の各々を適切に実行することができる。特に、ウエハWの下方に設けられたヒーター部によりウエハWを下方から加熱することによって、昇華性物質膜SSに封じ込められている残存液70を効果的に加熱および気化させることができる。すなわち、洗浄ユニット16Aにおいて昇華性物質膜SSを形成する際には、スピンドライ乾燥によって、昇華性物質溶液SLから液体(溶媒および処理液)を蒸発させる。これは、昇華性物質溶液SLの露出面の近傍における液体の気化(表面気化)には有効であるが、昇華性物質溶液SLの露出面から離れた内側に存在する液体の気化には必ずしも有効ではない。一方、ウエハWを介して昇華性物質膜SSを加熱することにより(特に下方から加熱を行うことにより)、昇華性物質溶液SLの露出面から離れた内側に存在する残存液70を効果的に加熱し、残存液70の気化(自己蒸発)を効率良く促すことができる。
 以上説明したように本実施形態によれば、ウエハWの処理面Wa(特にパターン100)上の昇華性物質膜SSの昇華現象を進行させる前に、昇華性物質膜SS内の残存液70を気化させる処理を行うことで、残存液70に起因するパターン倒壊を効果的に防ぐことができる。
 特に、加熱機器としてヒーター部(熱板61および抵抗加熱ヒーター62)および位置調整機構(支持ピン63)を組み合わせて使用することで、1つのユニットにおいて、ヒーター部(抵抗加熱ヒーター62)からの発熱温度を一定に設定した状態であっても、ウエハWの加熱温度を簡単に切り替えることができる。このように本実施形態の装置および方法によれば、残存液70の加熱気化処理(プレ気化処理工程)および昇華性物質膜SSの加熱昇華処理(昇華処理工程)のそれぞれを所望のタイミングで適切に実行でき、且つ、装置の構成および制御を簡素化することができる。
[第1変形例]
 本変形例の装置は、上述の実施形態において説明した装置と同様の構成を有する。ただし上述の実施形態では、プレ気化処理工程においてウエハWを単一の温度域内(すなわち第1温度域内)の温度に加熱していたが、本変形例のプレ気化処理工程では、ウエハWが複数の温度域内の温度に段階的に加熱される。
 すなわち本変形例のプレ気化処理工程は、第1サブ気化処理工程と、当該第1サブ気化処理工程の後に行われる第2サブ気化処理工程と、を含む。第1サブ気化処理工程において、加熱機器(熱板61、抵抗加熱ヒーター62および支持ピン63(第2液除去部))は、昇華性物質膜SSが形成されたウエハWを加熱し、当該ウエハWを上述の第1温度域内における第1サブ温度域内の温度で第1サブ温度時間維持する。一方、第2サブ気化処理工程において、加熱機器は、昇華性物質膜SSが形成されたウエハWを、第1温度域内における第2サブ温度域内の温度で第2サブ温度時間維持する。ここで第1サブ温度域は、昇華性物質溶液SLの溶媒の沸点および処理液の沸点のうちより低い温度を示す一方側の沸点(例えば溶媒の沸点)以上であり、且つ、他方側の沸点(例えば処理液の沸点)よりも低い温度域に設定される。一方、第2サブ温度域は、この他方側の沸点以上を示す温度域に設定される。したがって全体として、第1サブ温度域は第2サブ温度域よりも低温の温度域となる。上述のようにプレ気化処理工程を段階的に行うことで、第1サブ気化処理工程では、溶媒および処理液のうちより低い沸点を示す方の気化を主として促すことができるのに対し、第2サブ気化処理工程では、溶媒および処理液のうちより高い沸点を示す方の気化を促すことができる。
 このように加熱温度の異なる複数の工程(第1サブ気化処理工程及び第2サブ気化処理)によってプレ気化処理工程を構成することによって、昇華性物質膜SSがより高温に加熱される第2サブ温度時間を短くすることができ、昇華性物質膜SSの消失を効果的に抑えることができる。図5に示すように本件発明者による検証の結果、昇華温度よりも低い温度における昇華性物質膜SSの消失の程度は、昇華性物質膜SSの加熱温度と相関が見られ、昇華性物質膜SSを高温に加熱するほど昇華性物質膜SSの消失の程度は大きくなる傾向があると考えられる。そのため昇華性物質膜SSの消失の程度を抑える観点からは、昇華性物質膜SSをより高温に維持する時間が短いほど好ましいと考えられる。したがって昇華性物質膜SSの消失を抑える観点からは、上記の第2サブ温度時間(すなわちウエハWを第2サブ温度域内の温度で維持する時間)は、上記の第1サブ温度時間(すなわちウエハWを第1サブ温度域内の温度で維持する時間)よりも短いことが好ましい。
 なお本変形例においても、上述の実施形態と同様に、ヒーター部(熱板61)とウエハWとの間の距離を調整することによって、ウエハWの加熱温度を調節することができる。したがって、第1サブ気化処理工程におけるヒーター部(熱板61)とウエハWとの間の距離を「d3」(図示省略)で表し、第2乾燥処理工程におけるヒーター部(熱板61)とウエハWとの間の距離を「d4」(図示省略)で表した場合、これらの距離d3、d4および上述の昇華処理工程におけるヒーター部(熱板61)とウエハWとの間の距離d2は「d2<d4<d3」の関係を有する。
[他の変形例]
 ヒーター部(熱板61および抵抗加熱ヒーター62)からウエハWに伝達される熱量の調整は、ヒーター部(熱板61)とウエハWとの間の距離を調節する方法以外の方法で実現されてもよく、例えばヒーター部(抵抗加熱ヒーター62)の発熱量(例えば通電量)を制御装置4の制御下で調節する方法が採用されてもよい。またベークユニット16Bにおいて複数のヒーター部を設置し、実際に発熱するヒーター部の数を制御装置4の制御下で調節することで、ウエハWに伝達される熱量の調整が行われてもよい。また、これらの方法及び他の方法のうちの2以上が組み合わされてもよい。
 また排気管65(図3参照)を介した排気量を、プレ気化処理工程と昇華処理工程との間で変えてもよいし、第1サブ気化処理工程と第2サブ気化処理工程との間で変えてもよい。例えば、昇華処理工程における排気量がプレ気化処理工程における排気量よりも大きくなるように、制御装置4(図1参照)はポンプ67(図3参照)を制御してもよい。また、それぞれの工程でチャンバ20B内(特にウエハWの上方空間)の湿度が所望湿度となるように、また溶剤濃度センサ46により検出される溶剤濃度が所望濃度となるように、制御装置4はポンプ67を制御してもよい。
 また本発明の適用対象は装置および方法には限定されない。例えば、上述の基板乾燥装置の動作を制御するためのコンピュータにより実行されたときに、コンピュータが基板乾燥装置を制御して上述の基板乾燥方法を基板乾燥装置に実行させるプログラムが記録された記憶媒体(非一時的なコンピュータ読み取り可能な記録媒体)として本発明が具体化されてもよい。
[昇華性物質等の具体例]
 上述の装置および方法において用いることができる昇華性物質は、特に限定されず、例えば、ケイフッ化アンモニウム((NHSiF)、ショウノウ、ナフタレン等である。昇華性物質としてケイフッ化アンモニウム((NHSiF)を使用する場合、溶媒として、例えば、純水(DIW)、DIWとイソプロピルアルコール(IPA)との混合液等を使用することができる。昇華性物質としてショウノウまたはナフタレンを使用する場合、溶媒として、例えば、アルコール類(例えばIPA)等を使用することができる。昇華性物質は上記の例に限らず、加熱処理の開始前において固形物の状態が保たれるものであればよい。
 上記の昇華性物質に代えてまたはそれとともに、以下の式(Ia)、(Ib)、(Ic)、(Id)、(IIa)、(IIb)、(IIc)、(IId)、(IIe)、(IIIa)、(IIIb)、(IVa)および(IVb)で表される昇華性物質を使用することができる(特開2015-106645号公報参照)。これらの昇華性物質は、室温での蒸気圧が5Pa以下の有機物であり、減圧および/または加熱条件下で昇華性を示す。
Figure JPOXMLDOC01-appb-C000001
 式(Ia)、(Ib)、(Ic)および(Id)中、R、RおよびRは、それぞれ独立して、ヒドロキシ基(-OH)、カルボキシル基(-COOH)、アミノ基(-NH)、アミド基(-CONH)、ニトロ基(-NO)またはメチルエステル基(-COO-CH)を表す。
Figure JPOXMLDOC01-appb-C000002
 式(IIa)、(IIb)、(IIc)、(IId)および(IIe)中、R、R、RおよびRは、それぞれ独立して、ヒドロキシ基(-OH)、カルボキシル基(-COOH)、アミノ基(-NH)、アミド基(-CONH)、ニトロ基(-NO)、メチルエステル基(-COO-CH)、メトキシ基(-OCH)、エトキシ基(-OCHCH)またはプロポキシ基(-OCHCHCH)を表す。
Figure JPOXMLDOC01-appb-C000003
 式(IIIa)および(IIIb)中、RおよびRは、それぞれ独立して、ヒドロキシ基(-OH)、カルボキシル基(-COOH)、アミノ基(-NH)、アミド基(-CONH)、ニトロ基(-NO)、メチルエステル基(-COO-CH)、メトキシ基(-OCH)、エトキシ基(-OCHCH)またはプロポキシ基(-OCHCHCH)を表す。
Figure JPOXMLDOC01-appb-C000004
 式(IVa)および(IVb)中、R、R、RおよびRは、それぞれ独立して、ヒドロキシ基(-OH)、カルボキシル基(-COOH)、アミノ基(-NH)、アミド基(-CONH)、ニトロ基(-NO)、メチルエステル基(-COO-CH)、メトキシ基(-OCH)、エトキシ基(-OCHCH)またはプロポキシ基(-OCHCHCH)を表し、Rは、カルボニル基(-CO-)、ペプチド結合(-CONH-)、エステル結合(-COO-)、エーテル結合(-O-)、(-NHNHO-)結合、(-COCOO-)結合または(-CHCH-)結合を表す。
 式(Ia)~(Id)で表される昇華性物質としては、例えば、シクロヘキサン-1,2-ジカルボン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、シクロヘキサン-1,2,4-トリカルボン酸等が挙げられる。
 式(IIa)または(IIb)で表される昇華性物質としては、例えば、フタル酸、アミノアセトフェノン等が挙げられる。
 式(IIc)で表される昇華性物質としては、例えば、バニリン、4-ヒドロキシフタル酸、トリメリット酸、無水トリメリット酸、ジメトキシアセトフェノン等が挙げられる。
 式(IId)で表される昇華性物質としては、例えば、5-ヒドロキシイソフタル酸等が挙げられる。
 式(IIe)で表される昇華性物質としては、例えば、没食子酸、没食子酸メチル等が挙げられる。
 式(IIIa)または(IIIb)で表される昇華性物質としては、1,7-ジヒドロナフタレン等が挙げられる。
 式(IVa)または(IVb)で表される昇華性物質としては、例えば、4,4’-ジヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン等が挙げられる。
 昇華性物質溶液は、昇華性物質および溶媒に加えて、不純物を含有する。不純物は、例えば、昇華性物質の製造の際に昇華性物質に混入した物質、溶媒の製造の際に溶媒に混入した物質等である。不純物の具体例は、有機不純物(例えば、ヘキサメチルシクロトリシロキサン、メチルアミン、1-ブロモオクタデカン)、フッ素原子を有する高分子(例えば、ポリビニリデンフルオライド)等である。昇華性物質溶液の原料として使用される昇華性物質および/または溶媒は不純物を含有するため、昇華性物質溶液は、昇華性物質および溶媒に加えて、不純物を含有することになる。
 薬液としては、例えば、DHF、BHF、SC-1、SC-2、APM、HPM、SPM等が挙げられる。
16 処理ユニット
16A 洗浄ユニット
16B ベークユニット
30 基板保持機構
44 昇華性物質溶液ノズル
45 ノズルアーム
61 熱板
62 抵抗加熱ヒーター
63 支持ピン
70 残存液
SL 昇華性物質溶液
SS 昇華性物質膜
W ウエハ
Wa 処理面

Claims (10)

  1.  処理液を使って液処理が行われた処理面を有する基板を乾燥させる基板乾燥装置であって、
     昇華性物質の固体膜を前記処理面に形成する第1ユニットと、
     前記固体膜を昇華させて前記処理面から除去する第2ユニットと、を備え、
     前記第1ユニットは、
     前記昇華性物質および溶媒を含有する昇華性物質溶液を前記処理面に供給する溶液供給部と、
     前記昇華性物質溶液が供給された前記処理面上から前記溶媒および前記処理液を除去し、前記昇華性物質の前記固体膜を前記処理面上に形成する第1液除去部と、を有し、
     前記第2ユニットは、
     前記固体膜が形成された前記基板を加熱し、当該基板を前記昇華性物質の昇華温度よりも低い第1温度域内の温度で維持することで、前記固体膜内に残存する前記溶媒および前記処理液を気化する第2液除去部と、
     前記第2液除去部が前記基板を前記第1温度域内の温度で維持した後に、当該基板を前記昇華性物質の昇華温度以上を示す第2温度域内の温度に加熱することで、前記固体膜を前記処理面上から除去する固体膜除去部と、を有する、基板乾燥装置。
  2.  前記第2液除去部は、前記基板を下方から加熱する請求項1に記載の基板乾燥装置。
  3.  前記第1液除去部は、前記基板を回転させる回転部を有し、当該回転部を介して前記基板を回転させることにより、前記処理面上から前記溶媒および前記処理液を蒸発させる請求項1または2に記載の基板乾燥装置。
  4.  前記第2ユニットは、前記基板を加熱する加熱機器であって、前記基板に伝える熱量を変えられる加熱機器を有し、
     前記加熱機器は、前記基板に伝える熱量を変えることによって、前記第2液除去部および前記固体膜除去部として兼用される請求項1~3のいずれか一項に記載の基板乾燥装置。
  5.  前記加熱機器は、ヒーター部と、前記ヒーター部と前記基板との間の距離を調整する位置調整機構と、を有し、
     前記加熱機器を前記第2液除去部として使用する場合の前記ヒーター部と前記基板との間の距離は、前記加熱機器を前記固体膜除去部として使用する場合の前記ヒーター部と前記基板との間の距離よりも大きい請求項4に記載の基板乾燥装置。
  6.  前記第1温度域は、前記溶媒の沸点および前記処理液の沸点のうちより高い方の温度以上を示す温度域である請求項1~5のいずれか一項に記載の基板乾燥装置。
  7.  前記第2液除去部は、
     前記固体膜が形成された前記基板を加熱し、当該基板を前記第1温度域内における第1サブ温度域内の温度で第1サブ温度時間維持し、
     前記固体膜が形成された前記基板を前記第1サブ温度域内の温度で前記第1サブ温度時間維持した後に、当該基板を前記第1温度域内における第2サブ温度域内の温度で第2サブ温度時間維持し、
     前記第1サブ温度域は、前記溶媒の沸点および前記処理液の沸点のうちより低い温度を示す一方側の沸点以上であり且つ他方側の沸点よりも低い温度域であり、
     前記第2サブ温度域は、前記他方側の沸点以上を示す温度域である請求項1~5のいずれか一項に記載の基板乾燥装置。
  8.  前記第2サブ温度時間は前記第1サブ温度時間よりも短い請求項7に記載の基板乾燥装置。
  9.  処理液を使って液処理が行われた処理面を有する基板を乾燥させる基板乾燥方法であって、
     昇華性物質の固体膜を前記処理面に形成する第1処理工程と、
     前記固体膜を昇華させて前記処理面から除去する第2処理工程と、を含み、
     前記第1処理工程は、
     前記昇華性物質および溶媒を含有する昇華性物質溶液を前記処理面に供給する工程と、
     前記昇華性物質溶液が供給された前記処理面上から前記溶媒および前記処理液を除去し、前記昇華性物質の前記固体膜を前記処理面上に形成する工程と、を有し、
     前記第2処理工程は、
     前記固体膜が形成された前記基板を加熱し、当該基板を前記昇華性物質の昇華温度よりも低い第1温度域内の温度で維持することで、前記固体膜内に残存する前記溶媒および前記処理液を気化する工程と、
     前記基板を前記第1温度域内の温度で維持した後に、当該基板を前記昇華性物質の昇華温度以上を示す第2温度域内の温度に加熱することで、前記固体膜を前記処理面上から除去する工程と、を有する、基板乾燥方法。
  10.  基板乾燥装置の動作を制御するためのコンピュータにより実行されたときに、前記コンピュータが前記基板乾燥装置を制御して請求項9に記載の基板乾燥方法を前記基板乾燥装置に実行させるプログラムが記録された記憶媒体。
PCT/JP2019/002630 2018-01-29 2019-01-28 基板乾燥装置、基板乾燥方法および記憶媒体 WO2019146776A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019567199A JP6946474B2 (ja) 2018-01-29 2019-01-28 基板乾燥装置、基板乾燥方法および記憶媒体
US16/962,742 US11854815B2 (en) 2018-01-29 2019-01-28 Substrate drying apparatus, substrate drying method and storage medium
CN201980008874.2A CN111630636B (zh) 2018-01-29 2019-01-28 基片干燥装置、基片干燥方法和存储介质
KR1020207023961A KR20200111739A (ko) 2018-01-29 2019-01-28 기판 건조 장치, 기판 건조 방법 및 기억 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018012932 2018-01-29
JP2018-012932 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019146776A1 true WO2019146776A1 (ja) 2019-08-01

Family

ID=67394942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002630 WO2019146776A1 (ja) 2018-01-29 2019-01-28 基板乾燥装置、基板乾燥方法および記憶媒体

Country Status (5)

Country Link
US (1) US11854815B2 (ja)
JP (1) JP6946474B2 (ja)
KR (1) KR20200111739A (ja)
CN (1) CN111630636B (ja)
WO (1) WO2019146776A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7100564B2 (ja) * 2018-11-09 2022-07-13 株式会社Screenホールディングス 基板乾燥方法および基板処理装置
KR102267912B1 (ko) * 2019-05-14 2021-06-23 세메스 주식회사 기판 처리 방법 및 기판 처리 장치
KR20220009518A (ko) * 2020-07-15 2022-01-25 세메스 주식회사 기판 처리 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243869A (ja) * 2011-05-17 2012-12-10 Tokyo Electron Ltd 基板乾燥方法及び基板処理装置
JP2017175049A (ja) * 2016-03-25 2017-09-28 株式会社Screenホールディングス 基板処理装置、基板処理システムおよび基板処理方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE621339A (ja) * 1961-08-30 1900-01-01
US3481778A (en) * 1963-12-16 1969-12-02 Gen Electric Method of forming a superconducting metallic film
US6037001A (en) * 1998-09-18 2000-03-14 Gelest, Inc. Method for the chemical vapor deposition of copper-based films
JP3817471B2 (ja) * 2001-12-11 2006-09-06 富士写真フイルム株式会社 多孔質構造体および構造体、ならびにそれらの製造方法
US20130160712A1 (en) * 2010-09-01 2013-06-27 Sharp Kabushiki Kaisha Evaporation cell and vacuum deposition system the same
JP2013033817A (ja) * 2011-08-01 2013-02-14 Tokyo Electron Ltd 基板処理装置及び基板処理方法
JP6076887B2 (ja) 2013-11-29 2017-02-08 株式会社東芝 半導体装置の製造方法
US11257693B2 (en) * 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
JP6502206B2 (ja) * 2015-08-07 2019-04-17 東京エレクトロン株式会社 基板処理装置及び基板処理方法
KR102008566B1 (ko) * 2016-05-24 2019-08-07 가부시키가이샤 스크린 홀딩스 기판 처리 장치 및 기판 처리 방법
CN109791886B (zh) * 2016-09-30 2023-08-29 东京毅力科创株式会社 基板处理方法以及基板处理装置
JP6356207B2 (ja) * 2016-12-15 2018-07-11 東京エレクトロン株式会社 基板乾燥方法及び基板処理装置
JP7010629B2 (ja) * 2017-08-31 2022-01-26 株式会社Screenホールディングス 基板乾燥方法および基板処理装置
JP6966899B2 (ja) * 2017-08-31 2021-11-17 株式会社Screenホールディングス 基板乾燥方法および基板処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243869A (ja) * 2011-05-17 2012-12-10 Tokyo Electron Ltd 基板乾燥方法及び基板処理装置
JP2017175049A (ja) * 2016-03-25 2017-09-28 株式会社Screenホールディングス 基板処理装置、基板処理システムおよび基板処理方法

Also Published As

Publication number Publication date
CN111630636A (zh) 2020-09-04
JPWO2019146776A1 (ja) 2021-01-14
CN111630636B (zh) 2024-03-22
US11854815B2 (en) 2023-12-26
KR20200111739A (ko) 2020-09-29
JP6946474B2 (ja) 2021-10-06
US20200357649A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
JP6502206B2 (ja) 基板処理装置及び基板処理方法
WO2019146776A1 (ja) 基板乾燥装置、基板乾燥方法および記憶媒体
JP5647845B2 (ja) 基板乾燥装置及び基板乾燥方法
US8707893B2 (en) Substrate treatment system, substrate treatment method, and non-transitory computer storage medium
JP6728358B2 (ja) 基板処理装置、基板処理方法および記憶媒体
JP5639556B2 (ja) 半導体基板の洗浄方法及び装置
US20170084470A1 (en) Substrate processing apparatus and cleaning method of processing chamber
US20120164840A1 (en) Substrate Processing Method and Substrate Processing Apparatus
JP2016201385A (ja) 基板処理方法および基板処理装置
JP2009200193A (ja) 基板処理装置および基板処理方法
US11515182B2 (en) Drying apparatus, substrate processing system, and drying method
JP7336306B2 (ja) 基板処理装置、基板処理方法および記憶媒体
US20040045188A1 (en) Apparatus for drying a substrate using an isopropyl alcohol vapor
TWI756451B (zh) 基板處理方法及基板處理裝置
JPWO2018061697A1 (ja) 基板処理方法および基板処理装置
TWI227513B (en) Drying process for wafers
TW202249097A (zh) 基板處理方法及處理液
JP2011049353A (ja) 塗布膜形成方法、プログラム、コンピュータ記憶媒体及び基板処理システム
JP2020004869A (ja) 基板液処理方法、記憶媒体および基板液処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207023961

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19743650

Country of ref document: EP

Kind code of ref document: A1