WO2019139320A1 - 강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지 - Google Patents

강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지 Download PDF

Info

Publication number
WO2019139320A1
WO2019139320A1 PCT/KR2019/000241 KR2019000241W WO2019139320A1 WO 2019139320 A1 WO2019139320 A1 WO 2019139320A1 KR 2019000241 W KR2019000241 W KR 2019000241W WO 2019139320 A1 WO2019139320 A1 WO 2019139320A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
ionic polymer
porous support
polymer
redox flow
Prior art date
Application number
PCT/KR2019/000241
Other languages
English (en)
French (fr)
Inventor
김성연
노태근
문식원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019548389A priority Critical patent/JP7005645B2/ja
Priority to US16/489,665 priority patent/US11309564B2/en
Priority to EP19738116.3A priority patent/EP3582309A4/en
Priority to CN201980001503.1A priority patent/CN110383553B/zh
Publication of WO2019139320A1 publication Critical patent/WO2019139320A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a reinforced membrane production method, a reinforced membrane produced thereby, and a redox flow cell.
  • Power storage technology is an important technology for efficient use of energy, such as efficient use of power, improvement of power supply system's ability and reliability, expansion of new and renewable energy with a large fluctuation over time, energy recovery of mobile body, There is a growing demand for possibilities and social contributions.
  • the characteristics required for secondary batteries to be used for large-capacity power storage must be high in energy storage density, and a secondary battery with high capacity and high efficiency most suitable for such characteristics is the most popular.
  • the most important component in the flow cell is a polymer electrolyte membrane capable of cation exchange, and studies have been conducted to ensure high cation conductivity for efficient cell driving.
  • the present invention improves the affinity between the hydrophobic porous support and the hydrophilic ionic polymer in the pretreatment of the reinforced separator to increase the ion permeability of the reinforced separator by increasing the impregnation rate of the ionic polymer in the porous support, Thereby improving the performance of the battery.
  • the present disclosure relates to a method for preparing a porous support, comprising: pre-treating a porous support using a first solution comprising an ionic polymer and ethanol; And impregnating the pretreated porous support with a second solution comprising an ionic polymer and a solvent, wherein the concentration of the first solution is lower than the concentration of the second solution. to provide.
  • the present specification provides a reinforced separator produced according to the above-described production method.
  • the present specification also provides a redox flow cell comprising the reinforced separator.
  • the impregnation rate of the hydrophilic ionic polymer can be improved in the hydrophobic porous support.
  • FIG. 1 is a cross-sectional view showing a general structure of a flow cell.
  • FIG 2 is a surface view of a reinforced membrane according to one embodiment of the present invention.
  • FIG 3 is a surface view of a reinforced membrane according to another embodiment of the present invention.
  • FIG. 4 is a surface view of a reinforced separator prepared by pretreating a porous support using ethanol alone.
  • FIG. 5 is a cross-sectional view of a porous support before the ionic polymer is impregnated, and a cross-sectional view of a reinforced separator impregnated with an ionic polymer according to one embodiment of the present disclosure.
  • FIG. 6 is a diagram showing discharge capacities of an embodiment and a comparative example of the present invention.
  • FIG. 7 is a graph showing energy efficiency of an embodiment of the present invention and a comparative example.
  • the present invention provides a method for preparing a porous support, comprising: pre-treating a porous support using a first solution comprising an ionic polymer and ethanol; And impregnating the pretreated porous support with a second solution comprising an ionic polymer and a solvent, wherein the concentration of the first solution is lower than the concentration of the second solution. to provide.
  • the ionic polymer impregnation ratio of the reinforced separator can be increased.
  • the impregnation rate of the ionic polymer it is possible to effectively transfer the hydrogen ions and prevent the migration of the active ions of the electrolytic solution.
  • the selective ion permeability of the separation membrane can be increased.
  • An ionic polymer such as Nafion is typically used as the material of the reinforced membrane, but the pure membrane manufactured only by Nafion is expensive, has low mechanical strength, and has low selective ion permeability, There is a limit to apply.
  • a porous separator containing a substrate as a reinforcing material is impregnated with an ionic polymer to prepare a reinforced separator.
  • the mechanical strength of the membrane can be improved and durability and selective permeability can be improved.
  • the manufacturing cost is lower than that of the pure film, which is advantageous in that it is economical.
  • the ionic polymer may be separated from the porous support, and a method of effectively impregnating the ionic polymer into the nano-sized pores of the porous support is needed.
  • the present invention improves the affinity between the porous support and the ionic polymer, thereby increasing the impregnation rate of the ionic polymer in the porous support.
  • a hydrophobic porous support is temporarily sprayed with ethanol to make the porous support hydrophilic.
  • a porous support is immersed in a solution in which glycerol is added to ethanol.
  • the method of pretreating the porous support by ethanol spraying may make the porous support hydrophilic, but when the porous support pretreated with the hydrophilic polymer solution is immersed, the concentration of the hydrophilic polymer solution may be lowered.
  • the concentration of the hydrophilic polymer solution may be greatly reduced, so that the impregnation rate of the ionic polymer may be lowered.
  • the method of pretreating the porous support by immersing the porous support in a solution prepared by adding glycerol to ethanol may cause glycerol to remain in the reinforced membrane after the pretreatment, which may cause a side-effect to the membrane.
  • the pretreatment of the porous support using the first solution containing the ionic polymer and ethanol does not decrease the concentration of the hydrophilic polymer solution to be impregnated after the pretreatment, and the affinity of the hydrophobic porous support and the hydrophilic ionic polymer And the impregnation rate of the ionic polymer can be increased.
  • the ionic polymer contained in the first solution of the present invention is dispersed in ethanol in a powder state. Thereafter, the first solution may be filtered using a filter, if necessary, and then used in the pretreatment step.
  • the ionic polymer contained in the first solution is in a powder state.
  • the pre-treating step may be spraying or dipping the first solution into the porous support.
  • the porous support may be sprayed with the first solution.
  • Said spraying or dipping can be done at from 20 to 25 DEG C in less than 3 minutes.
  • the pretreatment effect is maximized, and the impregnation rate of the ionic polymer can be improved. If the temperature of the pretreatment step exceeds 25 ⁇ ⁇ or the time exceeds 3 minutes, the alcohol may be evaporated and the pretreatment effect may be deteriorated.
  • the second solution is a hydrophilic polymer solution in which the ionic polymer is dispersed in the solvent.
  • the hydrophilic polymer solution can be prepared by dispersing an ionic polymer in a solvent in a powder state.
  • aggregation phenomenon may occur between the ionic polymers, and the degree of ionic polymer dispersion in the solvent may be lowered.
  • the present invention pre-treats the porous support with the first solution, the affinity between the porous support and the ionic polymer can be increased, so that when the second solution is impregnated with the ionic polymer, Can be further increased.
  • the concentration of the first solution is lower than the concentration of the second solution.
  • the concentration means the content of the ionic polymer contained in the solution according to the present specification.
  • the concentration may mean percent concentration.
  • the ionic polymer content of the first solution is 1 to 5 wt%, preferably 1 to 3 wt%, based on the total weight of the first solution.
  • the ionic polymer content of the second solution may be 10 to 40 wt%, preferably 15 to 25 wt%, based on the total weight of the second solution.
  • the difference between the concentration of the first solution and the concentration of the second solution may be 5 to 39% by weight.
  • the percent concentration difference may be between 10 and 24% by weight.
  • the step of impregnating the second solution may be to immerse the pretreated porous support in the second solution. Specifically, it may be immersed in the second solution at 20 to 25 ⁇ ⁇ for 1 to 20 minutes, preferably 5 to 10 minutes. If necessary, the step of impregnating the second solution may be followed by drying at room temperature for 24 hours.
  • the solvent contained in the second solution is a hydrophilic solvent.
  • the solvent contained in the second solution may be hydrophilic, such as, but not limited to, water, dimethylacetamide (DMAc), or dimethylsulfoxide (DMSO) Can be used.
  • the solvent included in the second solvent does not include alcohols such as ethanol contained in the first solution.
  • the ionic polymer may be a fluorine-based polymer, a hydrocarbon-based polymer, or a partially fluorine-based polymer.
  • the fluoropolymer may be Nafion (Dupont), Aquivion (Solvay), 3M ionomer (3M ionomer), or the like.
  • the hydrocarbon-based polymer may be a sulfonated polyether ketone (S-PEEK) or a sulfonated polyaryl ether ketone (S-PAEK).
  • the ionic polymer may be polyethylene oxide (PEO) or polyvinyl alcohol (PVA).
  • the ionic polymer may be an ion conductive polymer.
  • the ion conductive polymer is not particularly limited as long as it is a substance capable of ion exchange, and those generally used in the art can be used.
  • the ionic polymer contained in the first solution and the ionic polymer contained in the second solution may be homogeneous or heterogeneous.
  • the ionic polymer contained in the first solution and the ionic polymer contained in the second solution are the same, and may be a fluorine-based polymer.
  • the impregnation rate of the ionic polymer in the reinforced separator according to one embodiment of the present invention may be higher.
  • the ionic polymer contained in the first solution may be an ionomer of 3M
  • the ionic polymer contained in the second solution may be Aquivion (Solvay).
  • the hydrocarbon-based polymer may be a hydrocarbon-based sulfonated polymer having no fluorine group.
  • the fluorinated polymer may be a sulfonated polymer saturated with a fluorine group
  • the partially fluorinated polymer may be a sulfonated polymer that is not saturated with a fluorine group have.
  • the ion conductive polymer may be at least one selected from the group consisting of a sulfonated perfluorosulfonic acid-based polymer, a sulfonated hydrocarbon-based polymer, a sulfonated aromatic sulfonic polymer, a sulfonated aromatic ketone polymer, a sulfonated polybenzimidazole- A sulfonated polyimide-based polymer, a sulfonated polyvinylidene fluoride-based polymer, a sulfonated polyether sulfone-based polymer, a sulfonated polyphenylene sulfide-based polymer, a sulfonated polyimide-based polymer, A sulfonated polyphenylene oxide-based polymer, a sulfonated polyphosphazene-based polymer, a sulfonated polyethylene naphthalate-based polymer,
  • the polymer may be a single copolymer, an alternating copolymer, a random copolymer, a block copolymer, a multi-block copolymer or a graft copolymer, but is not limited thereto.
  • the ion conductive polymer may be a cationic conductive polymer, for example, Nafion, sulfonated polyetheretherketone (sPEEK) sulfonated polyetherketone (sPEK), polyvinylidene At least one of poly (vinylidene fluoride) -graft-poly (styrene sulfonic acid), PVDF-g-PSSA) and sulfonated poly (fluorenyl ether ketone) One can be included.
  • sPEEK sulfonated polyetheretherketone
  • sPEK polyvinylidene At least one of poly (vinylidene fluoride) -graft-poly (styrene sulfonic acid), PVDF-g-PSSA) and sulfonated poly (fluorenyl ether ketone)
  • PVDF-g-PSSA polyvinylidene fluoride
  • the ion conductive polymer may have a weight average molecular weight of several thousands to several tens of millions. Specifically, the weight average molecular weight of the polymer may be 1,000 g / mol to 10,000,000 g / mol, but is not limited thereto.
  • the size of the hole of the porous support is not particularly limited as long as mechanical properties required during the process are maintained, but the size of the hole may be 1 mm or more and 10 cm or less.
  • the percentage of the size of the hole may be 0.1% or more and 10% or less based on the width of the porous support. In this case, not only the porous support is tightly held, but also the loss of the reinforced separator made of the porous support is advantageously reduced.
  • the shape of the plurality of holes of the porous support may be circular, oval or polygonal.
  • the polygon means a figure surrounded by three or more line segments, and may be a triangle, a rectangle, a pentagon, a hexagon, and the like depending on the number of sides, and is not particularly limited.
  • the spacing between adjacent holes is not particularly limited as long as the mechanical properties required during the process are maintained, but the spacing between adjacent holes may be 1 mm or more and 10 cm or less.
  • the distance between the holes means a distance between one of the holes and the center of one of the adjacent holes.
  • the percentage of the size of the hole may be 1% or more and 100% or less based on the distance between the holes.
  • the structure and material of the support are not particularly limited as long as the porous support includes a plurality of pores, and those generally used in the art can be used.
  • PI polyimide
  • PSF polysulfone
  • PBI polybenzimidazole
  • nylon polyethylene terephthalate
  • PET polytetrafluoro ethylene
  • PE polypropylene
  • PAES poly (arylene ether sulfone)
  • PEEK polyetheretherketone
  • FEP poly (ethene-co-tetrafluoroethene)
  • PCTFE polychlorotrifluoroethylene
  • PCTFE polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • PFA perfluoroalkoxy polymer
  • the thickness of the porous support is not particularly limited, but the thickness of the porous support may be 1 ⁇ or more and 500 ⁇ or less.
  • the width of the porous support is not particularly limited, but the width of the porous support may be 10 cm or more and 10 m or less.
  • the porous support comprises a porous metal comprising at least one of Au, Sn, Ti, Pt-Ti and IrO-Ti; Or porous carbon comprising at least one of carbon paper, carbon nanotubes, graphite felt and carbon felt.
  • the method for manufacturing the reinforced separator may further include a step of drying after impregnating the pretreated porous support with the second solution.
  • the drying step may be performed using a hot plate or a vacuum oven at 70 to 230 ° C. Specifically, it can be dried stepwise at 80 ⁇ ⁇ for 3 days, at 180 ⁇ ⁇ for 6 hours, and at 200 ⁇ ⁇ for 4 minutes.
  • the fluorine-based polymers Nafion can be sufficiently dried when it is dried at 80 ° C. for 3 days.
  • Aquivion used in one embodiment of the present invention, For 6 hours, and at 200 DEG C for 4 minutes.
  • the ionic polymer impregnated in the porous support may not be washed away in water.
  • One embodiment of the present invention can provide a reinforced separator having improved impregnation rate of an ionic polymer according to the above-described production method.
  • the impregnation amount of the ionic polymer in the reinforced separator produced according to the above-described production method may be 0.4 to 0.5 g based on the reinforced separator having a width of 8 cm x 8 cm and a thickness of 50 m. Specifically, the impregnation amount of the ionic polymer may be 0.45 to 0.5 g.
  • the thickness is not limited to that described above, and may vary depending on the use of the reinforced separator and the battery operating environment such as current density or voltage.
  • the impregnated amount of the ionic polymer may be calculated by subtracting the weight of the porous separator before the application of the method of the present invention from the weight of the reinforced separator manufactured by the manufacturing method of the present invention. The ion conductivity of the reinforced separator can be increased and the battery can be efficiently driven due to the impregnation amount of the ionic polymer as high as the above range.
  • the porosity of the reinforced separator produced by the production method of the present invention may be 0 or more and 1% or less. Preferably, the porosity may be 0%.
  • the porosity means a ratio of voids to the total volume of the reinforcing separator.
  • the reinforced separator produced by the production method of the present invention may be substantially free of voids through the pretreatment step.
  • One embodiment of the present disclosure provides a redox flow cell comprising the reinforced separator.
  • the redox flow battery may be a vanadium redox flow battery.
  • the redox flow cell produced by one embodiment of the present invention may have an ion conductivity of 0.038 S / cm or more.
  • the ionic conductivity may be 0.040 S / cm or more.
  • the ionic conductivity may be 0.038 to 0.050 S / cm, but is not limited thereto.
  • the ion conductivity of the redox flow cell made of the separation membrane not including the step of pretreating the porous support using the first solution according to one embodiment of the present invention is 0.032 S / cm or less.
  • the ion exchange membrane of the present invention has a high impregnation rate of the ionic polymer as compared with the membrane not subjected to the pretreatment step, the ion conductivity of the flow cell including the membrane is higher, have.
  • the reinforced separator is a membrane that includes a porous substrate and is capable of ion exchange, and includes an ion exchange membrane, an ion transport membrane, an ion conductive membrane, a membrane, an ion exchange membrane, A separator, an ion exchange electrolyte membrane, an ion transfer electrolyte membrane, or an ion conductive electrolyte membrane.
  • the Redox Flow Battery (Redox Flow Battery) is a system in which an active material contained in an electrolyte is oxidized and reduced to be charged and discharged.
  • the electrochemical storage cell in which the chemical energy of the active material is directly stored as electrical energy, Device.
  • the redox flow battery includes a negative electrode through which a negative electrode electrolyte solution containing a negative electrode active material is injected and discharged; A positive electrode through which a positive electrode electrolyte solution containing a positive electrode active material is injected and discharged; And a separator disposed between the cathode and the anode.
  • the redox-flow battery comprises a negative electrode tank and a positive electrode tank for respectively storing a negative electrode electrolyte solution and a positive electrode electrolyte solution;
  • a pump connected to the negative electrode tank and the positive electrode tank to supply the electrolyte solution to the negative electrode or the positive electrode;
  • a cathode inlet 31 and an anode inlet 32 through which the cathode electrolyte or the anode electrolyte flows from the pump, respectively;
  • a cathode discharge port 41 and a cathode discharge port 42 through which the electrolyte solution is discharged from the cathode 21 or the anode 22 to the cathode tank and the anode tank, respectively.
  • the shape of the flow cell is not limited, and may be, for example, a coin, a flat plate, a cylinder, a horn, a button, a sheet or a laminate.
  • the negative electrode means a region in which a negative electrode electrolyte is injected and discharged from a tank
  • the positive electrode is a region capable of chemically reacting with the positive electrode electrolyte injected and discharged from the tank to charge and discharge electric energy.
  • the negative electrode electrolytic solution and the positive electrode electrolytic solution may include an electrolyte and a solvent, respectively.
  • the electrolyte and the solvent are not particularly limited, but those generally used in the art can be employed.
  • the redox flow cell may use a V (IV) / V (V) redox couple as the positive electrode electrolyte and a V (II) / V (III) redox couple as the negative electrode electrolyte.
  • the redox flow cell may use a halogen redox couple as a positive electrode electrolyte and a V (II) / V (III) redox couple as a negative electrode electrolyte.
  • the redox flow battery may have a residual capacity of 29% or more. Specifically, it may be from 29 to 100%, and more specifically from 63 to 100%.
  • the redox flow battery may have a current efficiency of 95% or more at 200 cycles. Specifically, it may be from 95 to 100, and more specifically from 96 to 100%.
  • the redox flow battery may have a voltage efficiency of 74% or more at 200 cycles. Specifically, it may be from 74 to 100%, and more specifically from 76 to 100%.
  • the redox flow cell may have an energy efficiency of 71% or more at 200 cycles. Specifically from 71 to 100%, and more specifically from 74 to 100%. By satisfying the above range, efficient flow cell driving is possible.
  • impregnation means that the ionic polymer penetrates into the substrate.
  • the impregnation may be performed by dipping the substrate in the second solution, slot dye coating, bar casting, or the like.
  • immersion may be expressed by terms such as dip coating or dipping method.
  • a redox flow battery utilizes the principle of charging and discharging electrons by receiving electrons when an electrolyte containing an active material having different oxidation states meets the ion exchange membrane.
  • a redox flow cell is composed of a tank containing an electrolyte, a battery cell in which charging and discharging occur, and a circulation pump for circulating the electrolyte between the tank and the battery cell, and the unit cell of the battery cell includes an electrode, .
  • the redox flow cell herein may be manufactured according to conventional methods known in the art, except that it comprises a reinforced separator according to one embodiment of the present disclosure.
  • the first solution was prepared by mixing 1 wt% of ionomeric ionic polymer powder of 3M Company with ethanol to the total weight of the first solution containing 3M ionomer ionic polymer and ethanol.
  • the prepared first solution was pretreated by spraying the porous support at 20 to 25 ⁇ for 3 minutes.
  • PTFE polytetrafluoroethylene
  • the structure of the ionomeric ionic polymer of 3M Company is as follows.
  • the equivalent weight (EW) of the polymer structure per sulfonic acid group (-SO 3 H) was 850 g and n / m was 4.7.
  • 25% by weight of the ionic polymer was mixed with water to prepare a second solution, based on the total weight of the second solution containing the ionic polymer of Aquivion (Solvay Co.) and water and water.
  • the pretreated porous support was immersed in the second solution at 20 to 25 ⁇ for 5 to 10 minutes to impregnate the ionic polymer with Aquivion (Solvay).
  • the structure of the above-mentioned ionic polymer of Aquivion (Solvay) is as follows.
  • the equivalent weight (EW) of the polymer structure per one sulfonic acid group (-SO 3 H) was 830 g and m / n was 5.5.
  • the reinforced separator impregnated with the ionic polymer of Aquivion (Solvay) was dried at 80 ° C. for 3 days, at 180 ° C. for 6 hours, and at 200 ° C. for 4 minutes to form a reinforced separator.
  • a single cell evaluation of a redox flow cell comprising the prepared reinforced membranes was performed.
  • a reinforced membrane was prepared in the same manner as in Example 1, except that the ionomeric ionic polymer powder of 3M was used in an amount of 5% by weight based on the total weight of the first solution. A single cell evaluation of the redox flow cell was performed.
  • Example 1 a reinforced separator was produced in the same manner as in Example 1, except that ethanol was used in place of the first solution, and a single cell evaluation of the redox flow cell including the reinforced separator was performed.
  • a Nafion 212 product having a thickness of 50 ⁇ and made of an ionic polymer represented by the following structure without a porous substrate was used.
  • Example 1 As shown in Table 1, it was confirmed that the performance of the redox flow cell including the reinforced separator according to one embodiment of the present invention was improved. Specifically, it was confirmed that Examples 1 and 2 had higher ionic conductivity, voltage efficiency and energy efficiency than Comparative Examples 1 and 2. It was also found that the battery residual capacity and the current efficiency of Example 1 were higher than those of Comparative Example 2.
  • the reinforced separator manufactured according to one embodiment of the present invention has improved ionic polymer impregnation ratio and ion conductivity, and confirmed that the redox flow cell including the reinforced separator of the present invention exhibits excellent performance.
  • FIG. 2 is a graph showing the results of pretreatment of a porous support using a first solution having an ionic polymer content of 1% by weight based on the total weight of the first solution.
  • the ionic polymer content of the pretreated porous support is 25% by weight of the second solution.
  • FIG. 3 is a graph showing the results of pretreatment of a porous support using a first solution having an ionic polymer content of 5% by weight based on the total weight of the first solution, 25% by weight of the second solution.
  • FIG. 4 is a graph showing the results of pretreatment of a porous support using ethanol without ionic polymer and then impregnating the pretreated porous support with a second solution having an ionic polymer content of 25% by weight based on the total weight of the second solution This is the surface appearance of the reinforced membrane.
  • the diameters of the pores shown in FIGS. 2 and 3 were smaller than those of FIG. 4, and it was confirmed that the impregnation rate of the ionic polymer was improved in the porous support.
  • the diameter of the pores shown in FIG. 2 was larger than that of FIG. 3, but the separation membrane surface of FIG. 2 was more uniform.
  • FIG. 5 is a cross-sectional view of a porous support before impregnation of an ionic polymer and a cross-sectional view of a reinforced separator impregnated with an ionic polymer prepared in Example 1, wherein the porous support before impregnation had a plurality of pores It can be confirmed that there is no void in the reinforced membrane after impregnation.
  • Example 6 shows the residual capacities according to Example 1 and Comparative Examples 1 and 2 of the present invention. It was found that the residual capacity reduction width of Example 1 was not greater than that of Comparative Example 1, In Comparative Example 2 using Nafion, it was confirmed that the residual capacity reduction width was large.
  • Example 7 shows energy efficiency according to Example 1 of the present invention and Comparative Examples 1 and 2. It can be confirmed that the energy efficiency of Example 1 is higher than that of Comparative Examples 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

본 명세서는 이온성 고분자 및 에탄올을 포함하는 제1 용액을 이용하여 다공성 지지체를 전처리하는 단계; 및 상기 전처리된 상기 다공성 지지체에 이온성 고분자 및 용매를 포함하는 제2 용액을 함침하는 단계를 포함하고, 상기 제1 용액의 농도는 상기 제2 용액의 농도보다 낮은 것인 강화 분리막의 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지에 관한 것이다.

Description

강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지
본 명세서는 강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름전지에 관한 것이다.
본 출원은 2018년 01월 10일에 한국특허청에 제출된 한국 특허 출원 제10-2018-0003222호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
전력 저장 기술은 전력 이용의 효율화, 전력 공급 시스템의 능력이나 신뢰성 향상, 시간에 따라 변동 폭이 큰 신재생 에너지의 도입 확대, 이동체의 에너지 회생 등 에너지 전체에 걸쳐 효율적 이용을 위해 중요한 기술이며 그 발전 가능성 및 사회적 기여에 대한 요구가 점점 증대되고 있다.
마이크로 그리드와 같은 반 자율적인 지역 전력 공급 시스템의 수급 균형의 조정 및 풍력이나 태양광 발전과 같은 신재생 에너지 발전의 불균일한 출력을 적절히 분배하고 기존 전력 계통과의 차이에서 발생하는 전압 및 주파수 변동 등의 영향을 제어하기 위해서 이차 전지에 대한 연구가 활발히 진행되고 있으며 이러한 분야에서 이차 전지의 활용도에 대한 기대치가 높아지고 있다.
대용량 전력 저장용으로 사용될 이차 전지에 요구되는 특성을 살펴보면 에너지 저장 밀도가 높아야 하며 이러한 특성에 가장 적합한 고용량 및 고효율의 2차 전지로서 흐름 전지가 가장 각광받고 있다.
흐름 전지에서 가장 핵심이 되는 구성 요소는 양이온 교환이 가능한 고분자 전해질막으로서, 효율적인 전지의 구동을 위해서, 높은 양이온 전도도를 확보하는 방향으로 연구가 진행되어 오고 있다.
본 명세서는 강화 분리막의 전처리 시, 소수성인 다공성 지지체와 친수성인 이온성 고분자의 친화력을 향상시켜, 다공성 지지체 안에 이온성 고분자의 함침률을 높임으로써, 강화 분리막의 선택적 이온 투과도를 높이고, 전해액의 크로스오버 현상을 방지함으로써 전지의 성능을 향상시킴을 목적으로 한다.
본 명세서는 이온성 고분자 및 에탄올을 포함하는 제1 용액을 이용하여 다공성 지지체를 전처리하는 단계; 및 상기 전처리된 상기 다공성 지지체에 이온성 고분자 및 용매를 포함하는 제2 용액을 함침하는 단계를 포함하고, 상기 제1 용액의 농도는 상기 제2 용액의 농도보다 낮은 것인 강화 분리막의 제조방법을 제공한다.
본 명세서는 전술한 제조방법에 따라 제조된 강화 분리막을 제공한다.
또한, 본 명세서는 상기 강화 분리막을 포함하는 레독스 흐름전지를 제공한다.
본 발명에 의한 제조방법에 의해 강화 분리막을 제조하는 경우, 소수성을 띠는 다공성 지지체 내부에 친수성 이온성 고분자의 함침률을 향상시킬 수 있다. 또한, 강화 분리막을 통한 전해액 활성 이온을 막아 활성 이온의 투과도를 낮춰줄 수 있고, 전해액의 크로스오버 현상을 방지할 수 있다.
도 1은 흐름 전지의 일반적인 구조를 나타낸 단면도이다.
도 2는 본 명세서의 일 실시예에 따른 강화 분리막의 표면 모습이다.
도 3은 본 명세서의 또 하나의 일 실시예에 따른 강화 분리막의 표면 모습이다.
도 4는 에탄올만을 이용하여 다공성 지지체를 전처리하여 제조한 강화 분리막의 표면 모습이다.
도 5는 이온성 고분자가 함침되기 전의 다공성 지지체의 단면 모습 및 본 명세서의 일 실시예에 따라 이온성 고분자가 함침된 강화 분리막의 단면 모습을 차례로 나타낸 것이다.
도 6는 본 발명의 일 실시예와 비교예의 방전 용량을 나타낸 도면이다.
도 7은 본 발명의 일 실시예와 비교예의 에너지 효율을 나타낸 도면이다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명은 이온성 고분자 및 에탄올을 포함하는 제1 용액을 이용하여 다공성 지지체를 전처리하는 단계; 및 상기 전처리된 상기 다공성 지지체에 이온성 고분자 및 용매를 포함하는 제2 용액을 함침하는 단계를 포함하고, 상기 제1 용액의 농도는 상기 제2 용액의 농도보다 낮은 것인 강화 분리막의 제조방법을 제공한다.
본 발명의 제조방법에 의해 강화 분리막을 제조하는 경우, 강화 분리막의 이온성 고분자 함침률을 높일 수 있다. 이온성 고분자의 함침률이 높아짐으로써, 수소 이온을 효과적으로 전달시킬 수 있고, 전해액의 활성 이온들의 이동을 막을 수 있다. 이로써, 분리막의 선택적 이온 투과도를 높일 수 있다.
강화 분리막의 재료로서, 대표적으로 나피온(Nafion)과 같은 이온성 고분자가 사용되나, 나피온만으로 제조된 순수 분리막은 고가이며, 기계적 강도가 낮고, 선택적 이온 투과도도 낮아 장기간 구동하는 전지의 분리막으로 적용하는데 한계가 있다. 이러한 한계를 극복하기 위해, 강화 재료인 기재를 포함하는 다공성 지지체 안에 이온성 고분자를 함침하여, 강화 분리막을 제조한다.
다공성 지지체 안에 이온성 고분자를 함침하여 강화 분리막을 제조함으로써, 분리막의 기계적 강도를 향상시킬 수 있고, 내구성 및 선택적 투과도도 향상시킬 수 있다. 또한, 순수막에 비해 제조 단가가 낮아 경제적이라는 이점이 있다. 그러나 장기간 전지를 구동하는 경우, 다공성 지지체로부터 이온성 고분자가 떨어져 나올 수 있어, 다공성 지지체의 나노 사이즈 기공에 이온성 고분자를 효과적으로 함침하는 방법이 필요하다.
본 발명은 다공성 지지체와 이온성 고분자의 친화력을 향상시켜, 다공성 지지체 안에 이온성 고분자의 함침률을 높인다.
기존의 전처리 방법에는 소수성인 다공성 지지체에 에탄올을 분무하여 일시적으로 다공성 지지체를 친수성으로 만들어 주는 방법이 있다. 또한, 에탄올에 글리세롤을 첨가한 용액에 다공성 지지체를 침지하는 방법이 있다. 다공성 지지체에 에탄올을 분무하여 전처리하는 방법은, 다공성 지지체를 친수성으로 만들어 줄 수 있으나, 이후 친수성 고분자 용액에 전처리된 다공성 지지체를 침지하는 경우, 친수성 고분자 용액의 농도가 낮아질 수 있다. 특히, 롤투롤에 의한 연속 공정으로 강화 분리막을 제조하는 경우, 친수성 고분자 용액의 농도가 큰 폭으로 감소할 수 있으므로, 이온성 고분자의 함침률이 낮아질 수 있다. 또한, 에탄올에 글리세롤을 첨가한 용액에 다공성 지지체를 침지하여 전처리하는 방법은, 전처리 후 글리세롤이 강화 분리막 안에 잔류할 수 있어, 분리막에 부작용(side-effect)을 유발할 수 있다.
그러나, 본 발명은 이온성 고분자 및 에탄올을 포함하는 제1 용액을 이용하여 다공성 지지체를 전처리함으로써, 전처리 이후 함침할 친수성 고분자 용액의 농도를 감소시키지 않고, 소수성인 다공성 지지체와 친수성 이온성 고분자의 친화력을 향상시킬 수 있으며, 이온성 고분자의 함침률을 높일 수 있다.
본 발명의 상기 제1 용액에 포함되는 이온성 고분자는 파우더 상태로 에탄올에 분산된다. 이후, 필요에 따라 필터를 이용하여 제1 용액을 거른 후 전처리 단계에서 사용할 수 있다.
즉, 본 명세서에 있어서, 상기 제1 용액에 포함되는 상기 이온성 고분자는 파우더 상태이다.
본 명세서의 일 실시상태에 있어서, 상기 전처리하는 단계는 상기 다공성 지지체에 상기 제1 용액을 분무 또는 침지하는 것일 수 있다. 바람직하게는 상기 다공성 지지체에 상기 제1 용액을 분무하는 것일 수 있다. 상기 분무 또는 침지하는 것은 20 내지 25℃에서 0 초과 3분 이내에 이루어질 수 있다. 상기 범위에 해당하는 경우, 전처리 효과가 극대화되어 이온성 고분자의 함침률을 향상시킬 수 있다. 전처리하는 단계의 온도가 25℃를 초과하거나, 시간이 3분을 초과하는 경우, 알코올이 증발될 수 있어 전처리 효과가 떨어질 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용액은 상기 이온성 고분자가 상기 용매에 분산된 것으로서, 친수성 고분자 용액이다. 상기 친수성 고분자 용액은 이온성 고분자를 파우더 상태로 용매에 분산시켜 제조할 수 있다. 이온성 고분자가 파우더 상태로 용매에 분산되는 경우, 상기 이온성 고분자 사이에 응집 현상이 발생할 수 있어, 용매 내의 이온성 고분자 분산 정도가 떨어질 수 있다. 그럼에도 불구하고, 본 발명은 상기 제1 용액으로 다공성 지지체를 전처리하기 때문에, 다공성 지지체와 이온성 고분자의 친화력을 높일 수 있어 상기 제2 용액을 이온성 고분자에 함침하는 경우, 이온성 고분자의 함침률을 더욱 높일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용액의 농도는 상기 제2 용액의 농도보다 낮다.
상기 농도는 본 명세서에 따른 용액에 포함되는 이온성 고분자의 함량을 의미한다. 상기 농도는 퍼센트 농도를 의미할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용액의 이온성 고분자 함량은 상기 제1 용액 전체 중량에 대하여, 1 내지 5 중량%이며, 바람직하게는 1 내지 3 중량%일 수 있다. 또한, 상기 제2 용액의 이온성 고분자 함량은 상기 제2 용액 전체 중량에 대하여, 10 내지 40 중량%이며, 바람직하게는 15 내지 25 중량%일 수 있다. 상기 중량 범위에 의해 이온성 고분자가 낮은 농도로 포함된 제1 용액을 이용해 전처리를 한 후, 이온성 고분자가 높은 농도로 포함된 제2 용액을 다공성 지지체에 함침하는 경우, 제2 용액의 농도가 감소하는 것을 완화시킬 수 있고, 다공성 지지체와 이온성 고분자의 친화력을 향상시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용액의 농도와 제2 용액의 농도 차이는 5 내지 39 중량%일 수 있다. 바람직하게 상기 퍼센트 농도 차이는 10 내지 24 중량%일 수 있다. 상기 농도 차이의 범위를 만족하는 경우 전처리 단계를 수행함에 따른 다공성 지지체에의 이온성 고분자 함침률이 높아질 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용액을 함침하는 단계는 상기 전처리된 다공성 지지체를 상기 제2 용액에 침지하는 것일 수 있다. 구체적으로 제2 용액에 20 내지 25℃에서 1 내지 20분 동안, 바람직하게는 5 내지 10분 동안 침지할 수 있다. 필요에 따라, 상기 제2 용액에 함침하는 단계를 수행한 후에 상온에서 24시간 동안 건조하는 단계를 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용액에 포함되는 상기 용매는 친수성 용매이다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용액에 포함되는 용매는 물, 디메틸아세트아마이드(DMAc), 또는 디메틸설폭사이드(DMSO)와 같은 친수성 용매일 수 있으나, 이에 한정되지 않으며, 당 기술분야에서 일반적으로 사용하는 것을 이용할 수 있다. 상기 제2 용매에 포함되는 용매에는 상기 제1 용액에 포함되는 에탄올과 같은 알코올류는 포함되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 이온성 고분자는 불소계 고분자, 탄화수소계 고분자 또는 부분 불소계 고분자 일 수 있다. 상기 불소계 고분자는 나피온(Nafion, Dupont사), 아퀴비온(Aquivion, Solvay사), 3M 이오노머(3M사 ionomer) 등일 수 있다. 상기 탄화수소계 고분자는 술폰화된 폴리에테르케톤(S-PEEK) 또는 술폰화된 폴리아릴에테르케톤(S-PAEK)일 수 있다. 또한, 상기 이온성 고분자는 폴리에틸렌옥사이드(PEO) 또는 폴리비닐알코올(PVA)일 수 있다. 상기 이온성 고분자는 이온 전도성 고분자일 수 있다. 상기 이온 전도성 고분자는 이온 교환을 할 수 있는 물질이라면 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용하는 것을 이용할 수 있다.
본 명세서의 일 실시상태에 있어서, 제1 용액에 포함되는 이온성 고분자 및 제2 용액에 포함되는 이온성 고분자는 동종 또는 이종 계열일 수 있다. 또 다른 일 실시상태에 있어서, 제1 용액에 포함되는 이온성 고분자 및 제2 용액에 포함되는 이온성 고분자는 동종이며, 불소계 고분자일 수 있다. 제1 용액에 포함되는 이온성 고분자 및 제2 용액에 포함되는 이온성 고분자가 동종인 경우, 본 발명의 일 실시상태에 의한 강화 분리막의 이온성 고분자의 함침률이 더 높아질 수 있다. 일 실시상태에 있어서, 제1 용액에 포함되는 이온성 고분자는 3M사의 이오노머(ionomer)일 수 있고, 제2 용액에 포함되는 이온성 고분자는 아퀴비온(Aquivion, Solvay사)일 수 있다. 상기 탄화수소계 고분자는 플루오린기가 없는 탄화수소계 술폰화 고분자일 수 있으며, 반대로 불소계 고분자는 플루오린기로 포화된 술폰화 고분자일 수 있고, 상기 부분불소계 고분자는 플루오린기로 포화되지 않은 술폰화 고분자일 수 있다.
또한, 상기 이온 전도성 고분자는 술폰화된 퍼플루오르술폰산계 고분자, 술폰화된 탄화수소계 고분자, 술폰화된 방향족 술폰계 고분자, 술폰화된 방향족 케톤계 고분자, 술폰화된 폴리벤즈이미다졸계 고분자, 술폰화된 폴리스티렌계 고분자, 술폰화된 폴리에스테르계 고분자, 술폰화된 폴리이미드계 고분자, 술폰화된 폴리비닐리덴 플루오라이드계 고분자, 술폰화된 폴리에테르술폰계 고분자, 술폰화된 폴리페닐렌설파이드계 고분자, 술폰화된 폴리페닐렌옥사이드계 고분자, 술폰화된 폴리포스파젠계 고분자, 술폰화된 폴리에틸렌나프탈레이트계 고분자, 술폰화된 폴리에스테르계 고분자, 도핑된 폴리벤즈이미다졸계 술폰화된 고분자, 술폰화된 폴리에테르케톤계 고분자, 술폰화된 폴리페닐퀴녹살린계 고분자, 술폰화된 폴리술폰계 고분자, 술폰화된 폴리피롤계 고분자 및 술폰화된 폴리아닐린계 고분자로 이루어진 군에서 선택되는 하나 또는 둘 이상의 고분자일 수 있다. 상기 고분자는 단일 공중합체, 교대 공중합체, 랜덤 공중합체, 블록 공중합체, 멀티블록 공중합체 또는 그라프트 공중합체일 수 있으나, 이에 한정되는 것은 아니다.
상기 이온 전도성 고분자는 양이온 전도성 고분자일 수 있으며, 예를 들면, 나피온(Nafion), 술폰화 폴리에테르에테르케톤(sPEEK, Polyetheretherketone) 술폰화 폴리에테르케톤(sPEK, sulfonated (polyetherketone)), 폴리비닐리덴 플로라이드-그라프트-폴리스티렌 술폰산(poly (vinylidene fluoride)-graft-poly(styrene sulfonic acid), PVDF-g-PSSA) 및 술폰화 폴리플루로레닐 에테르케톤(Sulfonated poly (fluorenyl ether ketone)) 중 적어도 하나를 포함할 수 있다.
상기 이온 전도성 고분자는 중량평균분자량이 수천에서 수천만일 수 있다. 구체적으로, 상기 고분자의 중량평균분자량은 1,000g/mol 이상 10,000,000g/mol 이하일 수 있으나, 이에 한정되지 않는다.
상기 다공성 지지체의 홀의 크기는 공정 중에 필요한 기계적인 물성을 유지한다면 특별히 한정하지 않으나, 상기 홀의 크기는 1mm 이상 10cm 이하일 수 있다.
상기 다공성 지지체의 폭을 기준으로 상기 홀의 크기의 백분율은 0.1% 이상 10% 이하일 수 있다. 이 경우 다공성 지지체를 팽팽하게 잡아 줄 뿐만 아니라, 다공성 지지체로 제조되는 강화 분리막의 손실을 줄일 수 있는 장점이 있다.
상기 다공성 지지체의 다수의 홀의 형태는 원형, 타원형 또는 다각형일 수 있다. 상기 다각형은 3개 이상의 선분으로 둘러싸인 도형을 의미하며, 변의 수에 따라 삼각형, 사각형, 오각형, 육각형 등일 수 있으며 특별히 한정하지 않는다.
상기 다공성 지지체의 양측에 나열된 다수의 홀에서, 인접한 홀 간의 간격은 공정 중에 필요한 기계적인 물성을 유지한다면 특별히 한정하지 않으나, 인접한 홀 간의 간격은 1mm 이상 10cm 이하일 수 있다. 상기 홀 간의 간격은 어느 하나의 홀과 상기 어느 하나의 홀의 중심과 이웃한 또 하나의 홀의 중심의 거리를 의미한다. 상기 홀 간의 간격을 기준으로, 상기 홀의 크기의 백분율은 1% 이상 100% 이하일 수 있다.
본 명세서에 있어서, 상기 다공성 지지체는 다수의 기공을 포함하고 있다면 지지체의 구조 및 재질은 특별히 한정되지 않으며, 당 기술분야에서 일반적으로 사용하는 것을 이용할 수 있다. 예컨대, 폴리 이미드(Polyimide:PI), 폴리술폰(Polysulfone:PSF), 폴리벤즈이미다졸(Polybenzimidazole:PBI), 나일론, 폴리에틸렌테레프탈레이트(Polyethyleneterephtalate:PET), 폴리테트라플루오로에틸렌(Polytetrafluoro ethylene:PTFE), 폴리에틸렌(Polyethylene:PE), 폴리프로필렌(Polypropylene:PP), 폴리아릴렌에테르 술폰(Poly(arylene ether sulfone):PAES), 폴리에테르에테르케톤(Polyetheretherketone:PEEK), 폴리아라미드(Polyaramide), 불소계 에틸렌 프로필렌(Fluorinated ethylene propylene:FEP), 폴리(에텐-co-테트라플루오로에텐)(Poly(ethene-co-tetrafluoroethene)), 폴리클로로트리플루오로에틸렌(Polychlorotrifluoroethylene: PCTFE), 폴리비닐리덴플루오라이드(Polyvinylidene fluoride: PVDF) 및 퍼플루오로알킬계 고분자(Perfluoroalkoxy polymer:PFA) 중 적어도 하나를 포함할 수 있다.
상기 다공성 지지체의 두께는 특별히 한정하지 않으나, 상기 다공성 지지체의 두께는 1㎛ 이상 500㎛ 이하일 수 있다.
상기 다공성 지지체의 폭은 특별히 한정하지 않으나, 상기 다공성 지지체의 폭은 10cm 이상 10m 이하일 수 있다.
상기 다공성 지지체는 Au, Sn, Ti, Pt-Ti 및 IrO-Ti 중 적어도 하나를 포함하는 다공성 금속; 또는 카본 페이퍼, 카본 나노튜브, 그라파이트 펠트 및 카본펠트 중 적어도 하나를 포함하는 다공성 탄소를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 강화 분리막의 제조방법은 상기 전처리 된 다공성 지지체에 상기 제2 용액을 함침하는 단계 이후에, 건조하는 단계를 더 포함할 수 있다. 상기 건조하는 단계는 70℃ 내지 230℃에서 핫플레이트 또는 진공오븐을 이용하여 건조할 수 있다. 구체적으로, 80℃에서 3일, 180℃에서 6시간, 그리고 200℃에서 4분간 단계적으로 건조할 수 있다. 불소계 고분자 중 나피온(Nafion)은 80℃에서 3일 간 건조하는 경우, 충분히 건조될 수 있으나, 본 발명의 일 실시상태에서 사용되는 아퀴비온(Aquivion)의 경우, 80℃에서 3일, 180℃에서 6시간, 그리고 200℃에서 4분간 단계적으로 건조하는 과정을 거침으로써, 흐름 전지로 사용되는 경우 다공성 지지체에 함침된 이온성 고분자가 물에 씻겨 나가지 않을 수 있다.
본 명세서의 일 실시상태는 전술한 제조방법에 따라 이온성 고분자의 함침률이 향상된 강화 분리막을 제공할 수 있다.
본 발명의 일 실시상태에 있어서, 전술한 제조방법에 따라 제조된 강화 분리막의 이온성 고분자의 함침량은 가로 8cm X 세로 8cm 및 50μm의 두께의 강화 분리막을 기준으로 0.4 내지 0.5g일 수 있다. 구체적으로, 상기 이온성 고분자의 함침량은 0.45 내지 0.5g일 수 있다. 상기 두께는 전술한 것에 한정되지 않으며, 강화 분리막의 용도나, 전류밀도 또는 전압 등의 전지구동환경에 따라 달라질 수 있다. 상기 이온성 고분자의 함침량은 본 발명의 제조방법에 의해 제조된 강화 분리막의 무게에서 본 발명의 제조방법을 적용하기 전의 다공성 지지체의 무게를 뺀 값으로 계산할 수 있다. 상기 범위와 같이 높은 이온성 고분자의 함침량으로 인해 강화 분리막의 이온 전도도를 높일 수 있고 효율적인 전지 구동이 가능하다.
본 발명의 제조방법에 의해 제조된 강화 분리막의 공극률은 0 이상 1% 이하일 수 있다. 바람직하게 상기 공극률은 0% 일 수 있다. 상기 공극률이란 강화 분리막의 전체 부피에 대해 공극이 차지하는 비율을 의미한다. 본 발명의 제조방법에 의해 제조된 강화 분리막은 전처리 단계를 거침으로써, 공극을 거의 포함하지 않을 수 있다.
본 명세서의 일 실시상태는 상기 강화 분리막을 포함하는 레독스 흐름 전지를 제공한다. 상기 레독스 흐름 전지는 바나듐 레독스 흐름 전지일 수 있다.
본 명세서의 일 실시상태에 의해 제조된 레독스 흐름 전지의 이온 전도도는 0.038S/cm 이상일 수 있다. 또 다른 일 실시상태에 있어서, 상기 이온전도도는 0.040S/cm 이상일 수 있다. 또 하나의 일 실시상태에 있어서, 상기 이온전도도는 0.038 내지 0.050S/cm 일 수 있으나, 이에 한정되지 않는다. 반면에, 본 발명의 일 실시상태에 따른 제1 용액을 이용하여 다공성 지지체를 전처리하는 단계를 포함하지 않은 분리막으로 제조된 레독스 흐름 전지의 이온 전도도는 0.032S/cm 이하이다. 즉, 본 발명의 전처리 단계를 수행한 강화 분리막은 전처리 단계를 수행하지 않은 분리막에 비하여 이온성 고분자의 함침률이 높아 강화 분리막을 포함하는 흐름 전지의 이온 전도도가 더 높아, 전지 구동에 더 효율적일 수 있다.
본 명세서의 일 실시상태에 있어서, 강화 분리막이란 다공성인 기재를 포함하고 이온을 교환할 수 있는 막으로서, 이온교환막, 이온전달막, 이온 전도성 막, 분리막, 이온교환 분리막, 이온전달 분리막, 이온 전도성 분리막, 이온 교환 전해질막, 이온전달 전해질막 또는 이온 전도성 전해질막 등을 의미할 수 있다.
상기 레독스 흐름 전지(산화-환원 흐름 전지, Redox Flow Battery)란 전해액에 포함되어 있는 활성물질이 산화·환원되어 충전·방전되는 시스템으로 활성물질의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전 장치이다.
상기 레독스 흐름전지는 음극 활물질을 포함하는 음극 전해액이 주입 및 배출되는 음극; 양극 활물질을 포함하는 양극 전해액이 주입 및 배출되는 양극; 및 상기 음극과 양극 사이에 배치된 분리막을 포함할 수 있다.
도 1에서, 레독스 흐름 전지는 음극 전해액 또는 양극 전해액을 각각 저장하는 음극 탱크 및 양극 탱크; 상기 음극 탱크 및 양극 탱크와 연결되어 상기 전해액을 음극 또는 양극으로 공급하는 펌프; 상기 펌프로부터 음극 전해액 또는 양극 전해액이 각각 유입되는 음극 유입구(31) 및 양극 유입구(32); 및 음극(21) 또는 양극(22)으로부터 전해액이 각각 음극 탱크 및 양극 탱크로 배출되는 음극 배출구(41) 및 양극 배출구(42)를 더 포함할 수 있다.
상기 흐름 전지의 형태는 제한되지 않으며, 예를 들어, 코인형, 평판형, 원통형, 뿔형, 버튼형, 시트형 또는 적층형일 수 있다.
상기 음극은 음극 전해액이 탱크로부터 주입 및 배출되고, 상기 양극은 양극 전해액이 탱크로부터 주입 및 배출되면서 화학적으로 반응하여 전기 에너지를 충전하고 방전할 수 있는 영역을 의미한다.
상기 음극 전해액 및 양극 전해액은 각각 전해질과 용매를 포함할 수 있다. 상기 전해질 및 용매는 특별히 한정하지 않으나, 당 기술분야에서 일반적으로 사용하는 것을 채용할 수 있다.
예컨대, 상기 레독스 흐름 전지는 양극 전해질로 V(IV)/V(V) 레독스 커플을 사용하고, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용할 수 있다.
상기 레독스 흐름 전지는 양극 전해질로 할로겐 레독스 커플을 사용하고, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 레독스 흐름 전지는 잔류 용량이 29% 이상일 수 있다. 구체적으로는 29 내지 100%일 수 있으며, 더욱 구체적으로는 63 내지 100% 일 수 있다. 상기 레독스 흐름 전지는 200 cycle에서 전류 효율이 95% 이상일 수 있다. 구체적으로는 95 내지 100일 수 있으며, 더욱 구체적으로는 96 내지 100% 일 수 있다. 또한, 상기 레독스 흐름 전지는 200 cycle에서 전압 효율이 74% 이상일 수 있다. 구체적으로는 74 내지 100% 일 수 있으며, 더욱 구체적으로는 76 내지 100% 일 수 있다. 그리고, 상기 레독스 흐름 전지는 200 cycle에서 에너지 효율이 71% 이상일 수 있다. 구체적으로 71 내지 100%일 수 있으며, 더욱 구체적으로는 74 내지 100% 일 수 있다. 상기 범위를 만족함으로써, 효율적인 흐름 전지 구동이 가능하다.
본 명세서에서 함침(impregnation)이란, 기재 내에 이온성 고분자가 스며드는 것을 의미한다. 본 명세서에서는 상기 함침은 상기 기재를 상기 제2 용액에 침지(dipping), 슬롯 다이(slot dye) 코팅, 바 캐스팅(bar casting) 등을 이용하여 수행될 수 있다.
본 명세서에서 침지는 딥코팅(Dip Coating) 또는 디핑법(Dipping method) 등의 용어로 표현될 수 있다.
본 명세서에 있어서, 레독스 흐름 전지는 산화상태가 다른 활성물질을 포함하는 전해액이 이온교환막을 사이에 두고 만날 때 전자를 주고받아 충전과 방전이 되는 원리를 이용한다. 일반적으로 레독스 흐름 전지는 전해액이 담겨있는 탱크와 충전과 방전이 일어나는 전지 셀, 그리고 전해액을 탱크와 전지 셀 사이에 순환시키기 위한 순환펌프로 구성되고, 전지 셀의 단위셀은 전극, 전해질 및 분리막을 포함한다.
본 명세서의 일 실시상태에 따른 강화 분리막을 레독스 흐름 전지의 분리막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
본 명세서의 레독스 흐름 전지는 본 명세서의 일 실시상태에 따른 강화 분리막을 포함하는 것을 제외하고는, 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1.
3M사의 ionomer 이온성 고분자 및 에탄올을 포함하는 제1 용액 전체 중량에 대하여, 3M사의 ionomer 이온성 고분자 파우더 1 중량%를 에탄올과 혼합하여 제1 용액을 제조하였다. 제조된 제1 용액을 다공성 지지체에 20 내지 25℃에서 3분 동안 분무하여 전처리하였다. 상기 다공성 지지체로는 폴리테트라플루오로에틸렌(PTFE)를 사용하였다.
상기 3M사의 ionomer 이온성 고분자의 구조는 하기와 같다.
Figure PCTKR2019000241-appb-I000001
상기 구조에서, 술폰산기(-SO3H) 1 개당 상기 고분자 구조의 등가무게(EW)는 850g이고, n/m은 4.7이었다. 이후 아퀴비온(Aquivion, Solvay사) 이온성 고분자 및 물을 포함하는 제2 용액 전체 중량에 대하여, 이온성 고분자 25 중량%를 물과 혼합하여 제2 용액을 제조하였다. 상기 전처리된 다공성 지지체를 제2 용액에 20 내지 25℃에서 5 내지 10분 동안 침지하여, 아퀴비온(Aquivion, Solvay사) 이온성 고분자를 함침시켰다. 상기 아퀴비온(Aquivion, Solvay사) 이온성 고분자의 구조는 하기와 같다.
Figure PCTKR2019000241-appb-I000002
상기 구조에서, 술폰산기(-SO3H) 1 개당 상기 고분자 구조의 등가무게(EW)는 830g이고, m/n은 5.5이었다. 이후 아퀴비온(Aquivion, Solvay사) 이온성 고분자가 함침된 강화 분리막을 80℃에서 3일, 180℃에서 6시간, 200℃에서 4분 동안 단계적으로 건조시켜 강화 분리막을 제조하였다.
제조된 강화 분리막을 포함하는 레독스 흐름 전지의 단전지 평가를 수행하였다.
실시예 2.
상기 실시예 1에서, 제1 용액 전체 중량에 대하여, 3M사의 ionomer 이온성 고분자 파우더를 5 중량%로 한 것을 제외하고, 실시예 1과 동일한 방법으로 강화 분리막을 제조한 후, 상기 강화 분리막을 포함하는 레독스 흐름 전지의 단전지 평가를 수행하였다.
비교예 1.
상기 실시예 1에서, 제1 용액 대신 에탄올 만을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 강화 분리막을 제조한 후, 상기 강화 분리막을 포함하는 레독스 흐름 전지의 단전지 평가를 수행하였다.
비교예 2.
순수 분리막인 나피온을 포함하는 레독스 흐름 전지의 단전지 평가를 수행하였다. 상기 순수 분리막으로써 다공성 기재가 들어가 있지 않으며, 하기 구조로 표시되는 이온성 고분자로만 이루어진 50μm 두께의 Nafion212 제품을 사용하였다.
Figure PCTKR2019000241-appb-I000003
상기 구조에서, 술폰산기(-SO3H) 1 개당 상기 고분자 구조의 등가무게(EW)는 1100g이고, m/n은 6.6이었다. 상기 실시예 1과 비교예 1 및 2에서 제조된 레독스 흐름 전지의 단전지 성능 평가 결과를 하기 표 1에 기재하였다.
이온전도도 잔류 용량(%) 200cycle 평균 효율(%)
S/cm 전류 전압 에너지
실시예 1 0.040 63.387 96.46596 76.84334 74.12541
실시예 2 0.038 29.012 95.94049 74.02437 71.01766
비교예 1 0.032 64.127 96.87995 72.02343 69.77152
비교예 2 0.032 41.158 96.40695 72.2219 69.62189
상기 표 1의 결과와 같이, 본 발명의 일 실시상태에 따라 제조된 강화 분리막을 포함하는 레독스 흐름 전지의 성능이 향상된 것을 확인할 수 있었다. 구체적으로, 실시예 1 및 2는 비교예 1 및 2보다 이온전도도, 전압 효율 및 에너지 효율이 높음을 확인할 수 있었다. 또한 실시예 1의 전지 잔류 용량 및 전류 효율은 비교예 2보다 높음을 알 수 있었다.
따라서, 본 명세서의 일 실시상태에 따라 제조된 강화 분리막은 이온성 고분자 함침률 및 이온 전도도가 향상되어, 본 발명의 강화 분리막을 포함하는 레독스 흐름 전지는 우수한 성능을 나타냄을 확인하였다.
도 2는 제1 용액의 전체 중량에 대하여 이온성 고분자 함량이 1 중량%인 제1 용액을 이용하여 다공성 지지체를 전처리한 후, 전처리된 다공성 지지체에 제2 용액 전체 중량에 대하여 이온성 고분자 함량이 25 중량%인 제2 용액을 함침하여 제조한 강화 분리막의 표면 모습이다.
도 3은 제1 용액의 전체 중량에 대하여 이온성 고분자 함량이 5 중량%인 제1 용액을 이용하여 다공성 지지체를 전처리한 후, 전처리된 다공성 지지체에 제2 용액 전체 중량에 대하여 이온성 고분자 함량이 25 중량%인 제2 용액을 함침하여 제조한 강화 분리막의 표면 모습이다.
도 4는 이온성 고분자를 포함하지 않는 에탄올을 이용하여 다공성 지지체를 전처리한 후, 전처리된 다공성 지지체에 제2 용액 전체 중량에 대하여 이온성 고분자 함량이 25 중량%인 제2 용액을 함침하여 제조한 강화 분리막의 표면 모습이다.
상기 도 2 및 3에 나타난 기공의 직경은 도 4보다 작아, 다공성 지지체에 이온성 고분자의 함침률이 향상됨을 확인할 수 있었다.
상기 도 2의 강화 분리막에 나타난 기공의 직경은 도 3보다 크지만 도 2의 분리막 표면이 더 균일함을 확인할 수 있었다.
도 5는 이온성 고분자의 함침 전의 다공성 지지체의 단면 모습 및 실시예 1에 의해 제조된, 이온성 고분자가 함침된 강화 분리막의 단면 모습을 나타낸 것으로서, 함침 전의 다공성 지지체는 공극이 다수 개 존재하는 것에 비하여, 함침 후의 강화 분리막에는 공극이 존재하지 않음을 확인할 수 있었다.
도 6는 본 발명의 실시예 1, 비교예1 및 2에 따른 잔류용량을 나타낸 것으로, 실시예 1의 잔류용량 감소 폭이 비교예 1과 비교하여 크지 않음을 알 수 있었고, 이에 비해 순수막인 나피온을 사용한 비교예 2는 잔류용량 감소 폭이 큼을 확인할 수 있었다.
도 7는 본 발명의 실시예 1, 비교예1 및 2에 따른 에너지 효율을 나타낸 것으로, 실시예 1의 에너지 효율은 비교예 1 및 2보다 높음을 확인할 수 있었다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.
[부호의 설명]
1 : 하우징
10 : 분리막
21 : 음극
22 : 양극
31 : 음극 유입구
32 : 양극 유입구
41 : 음극 배출구
42 : 양극 배출구

Claims (15)

  1. 이온성 고분자 및 에탄올을 포함하는 제1 용액을 이용하여 다공성 지지체를 전처리하는 단계; 및
    상기 전처리된 상기 다공성 지지체에 이온성 고분자 및 용매를 포함하는 제2 용액을 함침하는 단계를 포함하고,
    상기 제1 용액의 농도는 상기 제2 용액의 농도보다 낮은 것인 강화 분리막의 제조방법.
  2. 청구항 1에 있어서, 상기 제1 용액의 이온성 고분자 함량은 상기 제1 용액 전체 중량에 대하여 1 내지 5 중량%이며, 상기 제2 용액의 이온성 고분자 함량은 상기 제2 용액 전체 중량에 대하여 10 내지 40 중량%인 것인 강화 분리막의 제조방법.
  3. 청구항 1에 있어서, 상기 제1 용액의 농도와 상기 제2 용액의 퍼센트 농도 차이는 5 내지 39 중량%인 것인 강화 분리막의 제조방법.
  4. 청구항 1에 있어서, 상기 제1 용액에 포함되는 상기 이온성 고분자는 파우더 상태인 것인 강화 분리막의 제조방법.
  5. 청구항 1에 있어서, 상기 전처리하는 단계는 상기 다공성 지지체에 상기 제1 용액을 분무 또는 침지하는 것인 강화 분리막의 제조방법.
  6. 청구항 1에 있어서, 상기 제2 용액을 함침하는 단계는, 상기 전처리된 상기 다공성 지지체를 상기 제2 용액에 침지하는 것인 강화 분리막의 제조방법.
  7. 청구항 1에 있어서, 제2 용액에 포함되는 상기 용매는 친수성 용매인 것인 강화 분리막의 제조방법.
  8. 청구항 1에 있어서, 상기 이온성 고분자는 불소계 고분자, 탄화수소계 고분자 또는 부분 불소계 고분자인 것인 강화 분리막의 제조방법.
  9. 청구항 1에 있어서, 제1 용액에 포함되는 이온성 고분자 및 제2 용액에 포함되는 이온성 고분자는 동종 또는 이종 계열인 것인 강화 분리막의 제조방법.
  10. 청구항 1에 있어서, 상기 강화 분리막의 제조방법은 상기 전처리된 다공성 지지체에 상기 제2 용액을 함침하는 단계 이후에, 건조하는 단계를 더 포함하는 것인 강화 분리막의 제조방법.
  11. 청구항 1 내지 10 중 어느 한 항에 따라 제조된 강화 분리막.
  12. 청구항 11에 있어서, 상기 강화 분리막의 이온성 고분자의 함침량은 가로 8cm X 세로 8cm 및 50μm 두께의 강화 분리막을 기준으로 0.4 내지 0.5g 인 것인 강화 분리막.
  13. 청구항 11에 있어서, 공극률이 0 이상 1% 이하인 것인 강화 분리막.
  14. 청구항 11의 강화 분리막을 포함하는 레독스 흐름 전지.
  15. 청구항 14에 있어서, 상기 레독스 흐름 전지는 바나듐 레독스 흐름 전지인 것인 레독스 흐름 전지.
PCT/KR2019/000241 2018-01-10 2019-01-08 강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지 WO2019139320A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019548389A JP7005645B2 (ja) 2018-01-10 2019-01-08 強化分離膜の製造方法、これにより製造された強化分離膜およびレドックスフロー電池
US16/489,665 US11309564B2 (en) 2018-01-10 2019-01-08 Method for manufacturing reinforced separator, reinforced separator manufactured using the same and redox flow battery
EP19738116.3A EP3582309A4 (en) 2018-01-10 2019-01-08 METHOD FOR PRODUCING A REINFORCED SEPARATOR, REINFORCED REALIZED SEPARATOR AND REDOX FLOW BATTERY
CN201980001503.1A CN110383553B (zh) 2018-01-10 2019-01-08 增强隔膜的制造方法、使用该制造方法制造的增强隔膜和氧化还原液流电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180003222A KR102157935B1 (ko) 2018-01-10 2018-01-10 강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지
KR10-2018-0003222 2018-01-10

Publications (1)

Publication Number Publication Date
WO2019139320A1 true WO2019139320A1 (ko) 2019-07-18

Family

ID=67218666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000241 WO2019139320A1 (ko) 2018-01-10 2019-01-08 강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지

Country Status (6)

Country Link
US (1) US11309564B2 (ko)
EP (1) EP3582309A4 (ko)
JP (1) JP7005645B2 (ko)
KR (1) KR102157935B1 (ko)
CN (1) CN110383553B (ko)
WO (1) WO2019139320A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143379B2 (ja) * 2020-09-30 2022-09-28 株式会社ダイセル 積層体
CN114865226B (zh) * 2022-05-25 2023-01-13 齐齐哈尔大学 MXene基无机粒子/PVDF基聚合物复合隔膜的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156451A (en) * 1994-11-10 2000-12-05 E. I. Du Pont De Nemours And Company Process for making composite ion exchange membranes
JP2005243494A (ja) * 2004-02-27 2005-09-08 Toyobo Co Ltd イオン交換膜
KR20130049077A (ko) * 2011-11-03 2013-05-13 삼성전자주식회사 이온 교환막 충전용 조성물, 이온 교환막의 제조방법, 이온 교환막 및 레독스 플로우 전지
KR20140043117A (ko) * 2011-06-17 2014-04-08 이 아이 듀폰 디 네모아 앤드 캄파니 개선된 콤포지트 중합체 전해질막
KR20170064837A (ko) * 2015-12-02 2017-06-12 에스케이씨 주식회사 레독스 흐름 전지용 분리막 및 이의 제조 방법
KR20180003222A (ko) 2016-06-30 2018-01-09 이재웅 미캐니컬 씰 커버 및 미캐니컬 씰의 열손상 확인 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830603A (en) 1993-09-03 1998-11-03 Sumitomo Electric Industries, Ltd. Separator film for a storage battery
CN1163998C (zh) 1998-08-05 2004-08-25 日本电池株式会社 高分子电解质膜、电化学装置和高分子电解质膜的制造方法
JP4045661B2 (ja) 1998-08-05 2008-02-13 株式会社ジーエス・ユアサコーポレーション 電解質膜及びその製法とそれを用いた固体高分子電解質型燃料電池
JP3885100B2 (ja) * 2000-08-12 2007-02-21 エルジー・ケミカル・カンパニー・リミテッド 多成分系複合フィルム及びその製造方法
EP1653541B1 (en) 2003-07-31 2011-05-11 Toyo Boseki Kabushiki Kaisha Electrolyte membrane-electrode assembly, fuel cell using same, and method for producing electrolyte membrane-electrode assembly
KR100684787B1 (ko) 2005-03-31 2007-02-20 삼성에스디아이 주식회사 연료전지용 고분자 전해질막, 이의 제조 방법 및 이를포함하는 연료전지용 스택 및 연료전지 시스템
JP2007188656A (ja) 2006-01-11 2007-07-26 Toray Ind Inc 高分子電解質膜の処理方法ならびに処理された高分子電解質膜およびそれを用いた燃料電池。
KR101049179B1 (ko) 2007-11-05 2011-07-14 한국에너지기술연구원 격리막을 포함하는 레독스 플로우 전지
KR101063215B1 (ko) 2008-02-20 2011-09-07 한국과학기술원 고분자 전해질 연료전지용 강화 복합막
CN102093584B (zh) 2009-12-09 2012-07-04 中国科学院金属研究所 一种全氟磺酸复合质子交换膜的制备方法
JP5798346B2 (ja) * 2011-03-20 2015-10-21 国立大学法人信州大学 セパレーターの製造方法
KR101767370B1 (ko) 2011-07-29 2017-08-24 코오롱인더스트리 주식회사 연료전지용 고분자 전해질막 및 그 제조방법
DK3046174T3 (da) * 2011-12-28 2020-04-14 Asahi Chemical Ind Benyttelse af en elektrolytmembran i et sekundært batteri med redox flow
KR101330571B1 (ko) 2012-06-12 2013-11-19 (주) 시온텍 하이브리드 이온교환막 제조방법
KR101765045B1 (ko) 2014-03-13 2017-08-11 더블유스코프코리아 주식회사 2차 전지용 분리막 필름 및 이를 이용한 레독스 플로우 배터리
CN104037431B (zh) * 2014-04-11 2017-12-12 广东玖美新材料有限公司 液流电池用离子交换膜
KR101742881B1 (ko) 2015-09-07 2017-06-01 롯데케미칼 주식회사 이온성 무기입자가 포함된 코팅 조성물 및 이를 이용한 레독스 흐름 전지용 분리막
KR101639536B1 (ko) 2015-12-21 2016-07-13 한국에너지기술연구원 강화복합막 및 이의 제조방법
WO2019025897A1 (en) 2017-07-31 2019-02-07 3M Innovative Properties Company MEMBRANE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156451A (en) * 1994-11-10 2000-12-05 E. I. Du Pont De Nemours And Company Process for making composite ion exchange membranes
JP2005243494A (ja) * 2004-02-27 2005-09-08 Toyobo Co Ltd イオン交換膜
KR20140043117A (ko) * 2011-06-17 2014-04-08 이 아이 듀폰 디 네모아 앤드 캄파니 개선된 콤포지트 중합체 전해질막
KR20130049077A (ko) * 2011-11-03 2013-05-13 삼성전자주식회사 이온 교환막 충전용 조성물, 이온 교환막의 제조방법, 이온 교환막 및 레독스 플로우 전지
KR20170064837A (ko) * 2015-12-02 2017-06-12 에스케이씨 주식회사 레독스 흐름 전지용 분리막 및 이의 제조 방법
KR20180003222A (ko) 2016-06-30 2018-01-09 이재웅 미캐니컬 씰 커버 및 미캐니컬 씰의 열손상 확인 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3582309A4

Also Published As

Publication number Publication date
US11309564B2 (en) 2022-04-19
JP7005645B2 (ja) 2022-01-21
CN110383553A (zh) 2019-10-25
JP2020509562A (ja) 2020-03-26
EP3582309A1 (en) 2019-12-18
CN110383553B (zh) 2022-10-04
KR102157935B1 (ko) 2020-09-18
EP3582309A4 (en) 2020-04-15
KR20190085288A (ko) 2019-07-18
US20200119382A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US10854904B2 (en) Polymer electrolyte membrane, a method for fabricating the same, and a membrane-electrode assembly including the same
US20050074651A1 (en) Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same
EP2293370B1 (en) Ion-conductive resin fibers, ion-conductive composite membrane, membrane electrode assembly, and fuel cell
KR102018913B1 (ko) 탄소 나노 섬유 방사층을 포함하는 연료전지용 기체확산층
KR102140121B1 (ko) 다공성 기재를 포함하는 강화-복합 전해질막 및 이의 제조방법
KR20090039180A (ko) 이온전도성 복합막, 막-전극 접합체 및 연료전지
US20060003209A1 (en) Polymer membrane for fuel cell and method for preparing the same
KR20150045305A (ko) 분리막의 제조방법 및 분리막
CA2568763C (en) Cell module having water permeable hollow body, and fuel cell comprising cell module
WO2019139320A1 (ko) 강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지
WO2020111687A1 (ko) 레독스 흐름 전지용 분리막 및 이의 제조방법
KR100637169B1 (ko) 복합전해질막
KR20130004615A (ko) 연료전지용 복합 전해질막 및 그 제조방법
WO2022071684A1 (ko) 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료 전지
WO2024014741A1 (ko) 고분자 전해질막 및 이를 포함하는 막-전극 어셈블리
CN113889636B (zh) 一种液流电池用纳米纤维复合膜及其制备方法和应用
WO2023195623A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 전기 화학 장치
KR20220043873A (ko) 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료 전지
KR20200056069A (ko) 다층 강화 분리막, 이의 제조방법 및 이를 포함하는 전지
KR20230068616A (ko) 고분자 전해질막 및 이를 포함하는 막-전극 어셈블리
KR20230070598A (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
CN116199934A (zh) 质子传导膜和制备质子传导膜的方法
WO2015065016A1 (ko) 이온 교환막 및 그 제조방법
KR20170112724A (ko) 강화막의 제조방법 및 적층체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548389

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019738116

Country of ref document: EP

Effective date: 20190911

NENP Non-entry into the national phase

Ref country code: DE