WO2024123069A1 - 이차전지용 분리막 및 이의 제조 방법 - Google Patents

이차전지용 분리막 및 이의 제조 방법 Download PDF

Info

Publication number
WO2024123069A1
WO2024123069A1 PCT/KR2023/019978 KR2023019978W WO2024123069A1 WO 2024123069 A1 WO2024123069 A1 WO 2024123069A1 KR 2023019978 W KR2023019978 W KR 2023019978W WO 2024123069 A1 WO2024123069 A1 WO 2024123069A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
secondary battery
redox
electrolyte
sealed
Prior art date
Application number
PCT/KR2023/019978
Other languages
English (en)
French (fr)
Inventor
이동영
김동흔
Original Assignee
스탠다드에너지(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/526,229 external-priority patent/US20240194901A1/en
Application filed by 스탠다드에너지(주) filed Critical 스탠다드에너지(주)
Publication of WO2024123069A1 publication Critical patent/WO2024123069A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells

Definitions

  • the present invention relates to a separator for secondary batteries, a method of manufacturing the same, and a secondary battery including the separator.
  • ESS advanced energy storage systems
  • electrochemical energy storage systems are secondary batteries in a broad sense, and examples include lithium ion batteries, fuel cells, and redox flow batteries.
  • Various types of electrochemical energy storage systems have different physical and/or chemical properties.
  • a secondary battery includes the following elements: two electrodes, an electrolyte, and a separator (or ion exchange membrane). Each of the above factors may affect the performance of the secondary battery.
  • the purpose of the present invention is to provide a method of manufacturing a separator for secondary batteries that can improve the mechanical strength of the separator and increase process efficiency without using a base film.
  • the present invention relates to a process of forming a film by immersing a solution containing an ion conductive resin into a porous membrane and then drying it, when the porous membrane is hydrophobic and the electrolyte solution used in the electrode assembly is hydrophilic, the hydrophilic electrolyte solution is hydrophobic.
  • the purpose of the present invention is to provide a method of manufacturing a separator that improves this problem.
  • a redox flow battery or a sealed redox battery using a redox couple has been described as an example of a secondary battery, but the subject to which the separator of the present invention is applied is not limited thereto.
  • a separator for a secondary battery including a.
  • the porous membrane that is not impregnated with the mixed solution may exhibit hydrophobicity, and the impregnation step may make the porous membrane hydrophilic.
  • the surfactant may be included in an amount of more than 0.1% by weight and less than 5.0% by weight.
  • the surfactant may include one or more of an ionic surfactant, a nonionic surfactant, and an organic surfactant.
  • the organic surfactant may include a silicone-based organic surfactant.
  • the ion conductive resin may include a polybenzimidazole-based polymer.
  • the porous membrane may be made of a material containing polypropylene, polyethylene, or a combination thereof.
  • the viscosity adjusting solvent may be included in an amount of 10% by weight to 25% by weight.
  • the viscosity adjusting solvent may include one or more of acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropanol, butanol, and isobutanol.
  • a step of drying may be further included after impregnating at least one side of the porous membrane with the mixed solution.
  • the secondary battery may use an aqueous electrolyte as a liquid electrode.
  • the aqueous electrolyte may include vanadium ions and an acidic aqueous solution.
  • a separator for a secondary battery manufactured according to the method for manufacturing a separator for a secondary battery according to the first aspect of the present invention can be provided.
  • a secondary battery including a separator for a secondary battery manufactured according to the method for manufacturing a separator for a secondary battery according to the first aspect of the present invention can be provided.
  • the effect of efficiently and uniformly making the porous membrane hydrophilic can be maximized, and the separator produced accordingly improves the performance of the secondary battery by solving the problem of poor contact with the electrolyte solution. You can contribute.
  • the process efficiency of separator film formation can be increased by increasing the drying speed in the subsequent drying step.
  • FIG. 1 is a schematic diagram of an exemplary redox flow battery.
  • Figure 2A is a schematic diagram of a sealed redox battery according to an embodiment.
  • FIG. 2B is a schematic diagram of a sealed redox battery including a plurality of sealed redox battery cells in a stacked configuration according to some embodiments.
  • Figure 2C is a schematic diagram of a sealed redox battery including a plurality of sealed redox battery cells in a stacked configuration according to some other embodiments.
  • Figure 2D is a schematic diagram of a sealed redox battery including a plurality of sealed redox battery cells in a cylindrical stacked configuration according to an embodiment.
  • top (or bottom) of a component or the arrangement of any component on the “top (or bottom)” of a component means that any component is disposed in contact with the top (or bottom) of the component.
  • other components may be interposed between the component and any component disposed on (or under) the component.
  • RFB redox flow batteries
  • DOD depth of discharge
  • Certain disadvantages of some secondary batteries known in the art include the generation of excessive heat and internal pressure during operation. To mitigate this effect, some secondary batteries use gaps between battery cells and/or separate cooling devices.
  • the generation of heat and pressure is significantly lower, which in turn lowers the risk of explosion, and no spacing or cooling device is required between battery cells, resulting in compactness of the battery cells and the battery itself. Enables integration.
  • bus bars to electrically connect the battery cells and/or the battery itself.
  • bus bars For compact integration, bus bars must be placed efficiently to reduce the amount of space they occupy.
  • it is separately necessary to physically and mechanically fasten the battery cells or batteries together in an efficient manner.
  • various embodiments disclosed herein provide bus bars that enable high-density integration of battery cells and/or batteries and energy storage devices including the same. Additionally, embodiments disclosed herein provide a battery that is easy to maintain after installation and an energy storage device including the same.
  • RFB 100 includes battery cells 104 .
  • the battery cell 104 has a first half cell 104A and a second half cell 104B separated by a separator or ion exchange membrane 112.
  • the first half cell 104A includes a first or positive electrolyte disposed therein and a positive electrolyte reservoir 106A containing the positive electrolyte
  • the second half cell 104B includes a second or negative electrolyte disposed therein. and a cathode electrolyte reservoir 106B containing the cathode electrolyte.
  • the positive electrode is electrically connected to the positive electrode current collector 108A
  • the negative electrode is electrically connected to the negative electrode current collector 108B.
  • Anode electrolyte reservoir 106A is in fluid communication and physically connected to anode electrolyte tank 116A
  • cathode electrolyte reservoir 106B is in fluid communication and physically connected to cathode electrolyte tank 116B.
  • the anode electrolyte is circulated between the anode electrolyte tank 116A and the anode electrolyte reservoir 106A through outlet and inlet conduits 120A and 124B as indicated by arrows using an anode electrolyte pump 128A.
  • cathode electrolyte is circulated between cathode electrolyte tank 116B and cathode electrolyte reservoir 106B through outlet and inlet conduits 120B, 124B.
  • a plurality of battery cells 104-1, 104-2, ..., 104-n are stacked to form an RFB cell 150, where each cell is configured in a similar manner to battery cell 104.
  • a plurality of battery cells (104-1, 104-2, ..., 104-n) have respective anode electrolyte reservoirs (106A) in fluid communication with each other and respective cathode electrolyte reservoirs (106B) in fluid communication with each other. Includes.
  • the plurality of anode electrolyte reservoirs 106A are connected to each other and in fluid communication with the anode electrolyte tank 116A, and the plurality of cathode electrolyte reservoirs 106B are connected to each other and in fluid communication with the cathode electrolyte tank 116B.
  • RFB Compared to other electrochemical storage technologies such as lithium-ion, lead acid and sodium-sulfur batteries, RFB offers several advantages, enabling independent power and energy scalability by decoupling power conversion from energy storage.
  • RFBs can be adjusted in a flexible and decentralized way depending on the application, e.g. for power and power ranging from a few kW/kWh for household storage up to a few to tens of MW/MWh for grid storage. It can be scaled up to provide energy.
  • the reactions in RFBs are reversible, allowing the same cell to function as a converter of electricity into chemical energy and vice versa.
  • RFBs operate by changing metal ion valence without consuming ionic metal, allowing for a long life cycle.
  • Cell temperature can be controlled relatively easily by regulating electrolyte flow, in part due to the relatively high thermal mass of the electrolyte.
  • State of charge (SOC) can be easily monitored through cell voltage and very deep depth of discharge (DOD) can be achieved.
  • the RFB has a plurality of conduits 120A, 120B, 124A, 124B for delivering electrolyte to and from the battery cell 104, pumps 128A, 128B for circulating the electrolyte, and a storage device for storing the electrolyte. It includes tanks 116A and 116B. Due to the relatively high complexity, the various connection points associated with the conduits 120A, 120B, 124A, 124B between the battery cells 104 and the tanks 116A, 116B may cause problems, such as resulting in leaks.
  • the probability and frequency of failure increases proportionally with the number of these conduits scaled with the size of the ESS. If a breakdown occurs, it can lead to unscheduled repairs as well as safety risks. Additionally, reducing the likelihood of these failures through preventive maintenance and ensuring uninterrupted operation adds to operating costs.
  • a second obstacle to widespread commercialization of RFBs concerns their relatively low efficiency.
  • One factor in the relatively low efficiency is related to the energy consumed in the circulation of the electrolyte.
  • the electrolyte for vanadium-based RFB may contain sulfuric acid and have a relatively high viscosity. Circulating electrolytes, especially electrolytes with relatively high viscosity, through the microporous structure of randomly oriented carbon fiber felt-based electrodes consumes a relatively large amount of external energy, which can reduce the external efficiency of the RFB.
  • the low external efficiency of RFB systems is one of the main reasons for their lower commercial competitiveness compared to competitive secondary battery technologies such as lithium-ion battery (LIB) technology.
  • LIB lithium-ion battery
  • a third obstacle to widespread commercialization of RFBs concerns their relatively low power and energy densities compared to other electrochemical storage technologies, impeding mobile applications.
  • power and energy density refers to the power output and energy storage of a storage device relative to the total volume of the energy storage device, respectively. Therefore, power and energy density in RFB refers to the ratio of power output and energy storage to the total volume, including cell volume, tank volume, and conduit volume for electrolyte delivery.
  • RFBs often have relatively large cell active areas and membranes, which can lead to increased cell size and consequently high transverse gradients of electrolyte within electrolyte reservoirs 116A, 116B.
  • the average current density and nominal current of the RFB can be significantly lower compared to the maximum theoretical value based on uniform maximum current density.
  • the need for a circulation system involving separate tanks and conduits further reduces space efficiency at the overall system level.
  • a fourth obstacle to widespread commercialization of RFBs concerns system complexity compared to chemical plants.
  • the high complexity of RFB system design leads to long development cycles and consequently significantly slows technology development.
  • the system complexity is labor and capital intensive and requires a high level of expertise for installation, maintenance and demolition at the ESS site.
  • systems become more complex consumers are deterred by the potential need for increased staffing and training to build and maintain the systems, as well as the overall cost increases that come with it.
  • the present disclosure is directed to a sealed redox cell that is not connected to a separate electrolyte tank. Additionally, the present disclosure relates to a secondary battery including a bus bar that enables efficient integration of a plurality of redox battery cells that can be additionally sealed.
  • the content of the present invention is not limited to the above-described battery form.
  • the various embodiments of the redox battery disclosed herein relate to redox batteries.
  • Redox cells maintain the advantages of RFBs while at least partially overcoming or mitigating some of the commercialization obstacles of RFBs discussed above.
  • embodiments of the redox battery disclosed herein include a sealed redox battery cell and a separate battery cell connected to the redox battery cell. It does not have an electrolyte tank and does not have an electrolyte circulation device such as a pump to supply electrolyte from outside the redox battery cell.
  • FIG. 2A is a schematic diagram of a sealed redox battery according to an embodiment.
  • the illustrated sealed redox battery 200A includes a first half cell 204A and a second half cell 204B.
  • First half cell 204A includes an anode electrolyte reservoir 106A having a first or anode electrolyte in contact with an anode disposed therein.
  • the first redox couple configured to cause the first redox half reaction is dissolved in the first electrolyte.
  • the second half cell 204B includes a cathode electrolyte reservoir 106B having a second or cathode electrolyte in contact with a cathode disposed therein.
  • a second redox couple configured to cause a second redox half reaction is dissolved in the second electrolyte.
  • Anode and cathode electrolyte reservoirs 106A, 106B define the reaction space for each half reaction.
  • the sealed redox battery 200A additionally includes an ion exchange membrane or separator 112 that separates the anode electrolyte reservoir 106A and the cathode electrolyte reservoir 106B.
  • the positive electrode is electrically connected to the positive electrode current collector 108A, and the negative electrode is electrically connected to the negative electrode current collector 108B.
  • the first bipolar plate 208A is interposed between the positive electrode current collector 108A and the positive electrolyte reservoir 106A
  • the second bipolar plate 208B is interposed between the negative electrode current collector 108B and the positive electrode current collector 108B. It is sandwiched between the cathode electrolyte reservoirs 106B.
  • the first half cell (204A), the second half cell (204B), and the ion exchange membrane or separator 112 are at least four of the battery cells. It defines a redox battery cell that is partially sealed or sealed by a frame 212 or casing surrounding the side.
  • the illustrated sealed redox battery 200A is a cross-sectional view, so only the top and bottom sides of the casing 212 are shown. However, the casing 212 will be understood as continuously surrounding the top, bottom, front, and back of the illustrated battery cell.
  • first and second separator plates 208A and 208B are in contact with the left and right edges or ribs of the casing 212, respectively, to form a space defined by the casing 212 and the first and second separator plates 208A and 208B.
  • the battery cells are surrounded and/or sealed in a sealed space. Accordingly, the sealed and/or sealed frame or casing 212, the first separator plate 208A and the second separator plate 208B are separated by the separator 112 into two spaces, namely the cathode electrolyte reservoir 106B, which accommodates the anode. ) and an anode electrolyte reservoir 106A containing the cathode.
  • the volume sealed by the casing 212 and the first and second separator plates 208A and 208B is such that its internal contents are physically inaccessible from the outside during normal operation. That is, the anode and cathode electrolytes are not in fluid communication with an external vessel, such as an electrolyte tank.
  • the casing 212 and the first and second separator plates 208A and 208B may hermetically and/or permanently seal the redox battery 200A. This configuration contrasts with conventional redox flow batteries where the redox battery cells are in fluid communication with an external tank. That is, in the sealed redox cell 200A, unlike the RFB 100 described above with respect to FIG.
  • neither the anode electrolyte reservoir 106A nor the cathode electrolyte reservoir 106B in the sealed cell is the first or second It is not in fluid communication or physically connected to the separate electrolyte tanks that store each electrolyte.
  • substantially the entire volume of the anode and cathode electrolytes are stored in the redox battery cell, and are sealed and sealed by the casing 212 and the first and second separator plates 208A and 208B. That is, the first electrolyte reservoir 106A stores substantially the entire volume of the first electrolyte for the first half cell 204A, and the second electrolyte reservoir 106B stores substantially the entire volume of the first electrolyte for the second half cell 204B.
  • the sealed redox battery 200A transfers the electrolyte to the redox battery cell and It does not include conduits 120A, 120B, 124A, 124B (FIG. 1) for delivery therefrom, or pumps 128A, 128B (FIG. 1) for circulating the electrolyte.
  • the sealed redox cell 200A As described above, a notable structural difference of the sealed redox cell 200A is that the pumps 128A and 128B (FIG. 1) are omitted. Instead, the sealed redox cell 200A according to the embodiment has the first and second electrolytes in the positive electrolyte reservoir 106A of the first half cell 204A and the negative electrolyte reservoir 106A of the second half cell 204B ( 106B), each is configured to circulate on its own.
  • self-circulation of the first and second electrolytes is triggered by one or more of the following: an osmotic pressure difference between the first and second electrolyte reservoirs; a change in density of one or both of the first and second electrolytes; diffusion or migration of one or both of the first and second electrolytes; the affinity of one or both of the first and second electrolytes for each of the first and second electrodes; first and second redox half reactions; and thermal expansion or contraction of one or both of the first and second electrolytes.
  • casing 212 is formed of a corrosion resistant material suitable for housing anode and cathode electrolytes, which may be strongly acidic.
  • casing 212 may be a rigid casing to provide mechanical support to sealed redox cell 200A.
  • at least a portion of casing 212 may be formed from a flexible material configured to deform to accommodate changes in internal pressure within the anode and cathode electrolyte reservoirs 106A, 106B.
  • An increase in internal pressure may be caused, for example, by various effects described below in relation to pressure-controlled sealed redox cells.
  • the remaining portion may be formed of a rigid material.
  • the flexible portion may be, for example, one or both of the anode and cathode electrolyte reservoirs 106A, 106B at 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20%, 50%. It may be configured to expand in response to an increase in pressure to accommodate each additional increase in volume.
  • Suitable materials for casing 212 may include polyvinyl chloride (PVC), polyethylene (PE), polystyrene (PS), polypropylene (PP), polycarbonate (PC), ABS, reinforced plastic, etc.
  • the sealed redox battery (200A) configured in this way provides various technical and commercial advantages. For example, a variety of reliability failures associated with conduits between redox battery cells and tanks, such as pipe joints and pumps for electrolyte circulation, are substantially reduced or eliminated, preventing unscheduled repairs as well as sealed redox cells ( Reduces the safety risks and operating costs associated with the operation of 200A). Additionally, as described above with respect to the RFB 100 (FIG. 1), there is no need to use a pump to circulate the electrolyte between the redox battery cell and the tank, thereby substantially improving external efficiency.
  • the sealed redox battery (200A) can improve power or energy density by up to 2 to 50 times compared to a conventional RFB because it does not require circulating electrolyte between the cell and the electrolyte tank. I realized that there was.
  • power or energy density refers to the power or energy output of a storage device relative to the total volume of the energy storage device, respectively.
  • power or energy density in a sealed redox cell refers to the ratio of power or energy output to the total volume of the sealed redox cell, respectively.
  • space efficiency is greatly improved by omitting a circulation system including separate tanks, pumps, and conduits.
  • sealed redox cells 200A
  • sealed redox cells 200A
  • sealed redox cells can be manufactured in packs similar to lithium-ion cells for modular implementation and thus automation without the need for intrusive configuration that may be required for conventional RFB installations. and becomes more suitable for mass production.
  • the operating principle and aspects of the sealed redox battery 200A are explained using the example of a sealed vanadium (V) redox battery based on a vanadium-based redox pair.
  • V vanadium
  • the embodiments are not so limited and that the principles described herein can be applied to redox cells according to various other redox pairs.
  • the first redox couple dissolved in the first or anode electrolyte of the first half cell 204A may be a V 4+ /V 5+ redox couple
  • the second The second redox couple dissolved in the second or cathode electrolyte of the half cell 204B may be a V 2+ /V 3+ redox couple.
  • the tetravalent vanadium ions V 4+ are oxidized to pentavalent vanadium ions V 5+
  • the trivalent ions V 3+ are oxidized to divalent ions V It is reduced to 2+
  • pentavalent vanadium ions V 5+ are reduced to tetravalent vanadium ions V 4+ in the first half cell 204A
  • divalent ions V 2+ are reduced to trivalent ions V in the second half cell 204B. It is oxidized to 3+ . While this redox reaction occurs, electrons are transferred through the external circuit and specific ions diffuse across the ion exchange membrane or separator 112 to balance the electrical neutrality of the anode and cathode half cells, respectively.
  • the first redox couple or the second redox couple is vanadium (V), zinc (Zn), bromine (Br), chromium (Cr), manganese (Mn), titanium (Ti), iron ( It contains one or more ions of Fe), cerium (Ce), and cobalt (Co).
  • the first and second redox couples include ions of the same metal as in the sealed V redox cell described above. In this embodiment, advantageously mixing the anode and cathode electrolytes does not result in cross-contamination of the electrolytes.
  • the electrolyte in a redox cell is a solution that conducts electric current through ionization.
  • the electrolyte serves to support the reduced and oxidized forms of the redox couple and also supports the corresponding cations and anions to balance the ionic charges in solution during the oxidation and reduction of the redox couple.
  • the anode and cathode electrolytes include an acidic aqueous solution.
  • the concentration of V ions is related to the energy density of the electrolyte. Higher energy densities can advantageously reduce the volume of the anode and cathode electrolyte reservoirs 106A, 106B required for a given amount of energy and power output.
  • V ion range for a given application.
  • the vanadium ions dissolved in one or both of the first and second electrolytes may exceed a value in a range defined as 1.0 M, 1.5 M, 2.0 M, 2.5 M, or any of these values.
  • V ion concentrations below 1.0 M may result in unsuitable energy levels for some applications.
  • V ion concentrations above 2.5 M may lower the stability of V 5+ ions, for example at operating temperatures above 50°C, and may reduce the stability of V ions in the electrolyte, for example at operating temperatures below -20°C.
  • the solubility limit of 2+ and V 3+ ions may be reached.
  • the positive and negative electrolytes may comprise the same solvent(s) and/or the same metal ions.
  • mixing of the anode and cathode electrolytes through the ion exchange membrane or separator 112 does not cause contamination of the respective half cells.
  • the anode and cathode electrolytes can be prepared from the same starting solvent(s) and solute(s).
  • both the anode and cathode electrolytes include sulfuric acid.
  • the electrolyte is prepared, for example, by dissolving 0.1 M to 2.5 M VOSO 4 (vanadyl sulfate) in 0.1 M to 6 M MH 2 SO 4 in an aqueous solution to form tetravalent vanadium ions (V 4+ ) and/or trivalent vanadium ions. Vanadium ions (V 3+ ) can be formed. Tetravalent/trivalent vanadium ions can be electrochemically oxidized to form an anode electrolyte (catholyte) containing a solution of pentavalent vanadium ions (V 5 + ). Conversely, tetravalent/trivalent vanadium ions can be electrochemically reduced to form a cathode electrolyte (anolyte) containing a solution of divalent vanadium ions (V 2+ ).
  • the anode and cathode disposed in the anode and cathode electrolyte reservoirs 106A and 106B, respectively, are made of carbon or carbon, such as graphite felt, carbon cloth, carbon black, graphite powder, and graphene. Contains substances. Carbon-based materials advantageously provide a relatively high operating range, good stability and high reversibility.
  • the electrode is optimized for relatively high electrochemical activity, low bulk resistivity and large specific area. Improvement of the electrochemical activity of the electrode increases the energy efficiency of the sealed redox battery (200A).
  • the electrode surface can be modified through, for example, metal coating, increasing surface roughness, or additive doping.
  • the anode and cathode electrolyte reservoirs 106A, 106B defining the reaction space are between the ion exchange membrane or separator 112 and, if present, each of the first and second separators 208A, 208B, or between the ion exchange membrane or separator 112. ) and each of the positive and negative electrode current collectors 108A and 108B is partially or completely filled with each electrode. After filling each electrode, the remaining space of the anode and cathode electrolyte reservoirs 106A, 106B is between the ion exchange membrane or separator 112 and the first and second separators 208A, 208B, if present, or the ion exchange membrane or separator.
  • the ion exchange membrane or separator 112 substantially separates the two half-cells and substantially prevents mixing of the two electrolytes and the redox couple while H It allows the transfer of ions such as + to balance the charge between the two half cells, completing the circuit while the current flows.
  • the ion exchange membrane or separation membrane 112 may be an anion exchange membrane or a cation exchange membrane.
  • an ion exchange membrane or separator 112 that may be selective for certain types of ions, for example cations or anions.
  • the ion exchange membrane or separator 112 may be a non-selective membrane, for example, a porous membrane.
  • the output power can be scaled by connecting multiple single redox battery cells in series, for example, to form a cell stack.
  • the first and second separator plates 208A and 208B can facilitate serial connection of single cells and the current collectors 108A and 108B between adjacent separator plates can be eliminated.
  • the first and second separator plates 208A, 208B may be formed of a suitable material such as graphite, carbon, carbon plastic, etc. to provide high electrical conductivity and low internal resistance of the cell stack. Additionally, the first and second separator plates 208A, 208B support the contact pressure applied when pressed against the electrodes, thereby increasing electrical conductivity. Additionally, the first and second separator plates 208A and 208B are provided with high acid resistance to prevent corrosion or oxidation of the current collectors 108A and 108B.
  • the anode and cathode current collectors 108A and 108B contain a highly electrically conductive metal such as copper or aluminum, and serve to flow current during charging and discharging processes.
  • the single sealed redox cell 200A described above has an output voltage characteristic of the electrochemical reaction, e.g., about 1.65 V or less, by connecting additional cells in electrical series or electrical parallel as described herein. Higher voltage and current can be achieved, respectively.
  • FIG. 2B is a schematic diagram of a sealed redox battery including a plurality of sealed redox battery cells in a stacked configuration according to some embodiments.
  • the illustrated sealed redox battery (200B) includes a plurality of stackable redox battery cells (200B-1, 200B-2, ..., 200B-n), where each cell is a sealed redox battery (200A) It is configured in a similar way ( Figure 2a).
  • Each of the plurality of redox battery cells (200B-1, 200B-2, ..., 200B-n) includes an anode electrolyte reservoir (106A), a cathode electrolyte reservoir (106B), and an ion exchange membrane or separation membrane (112).
  • each of the plurality of redox battery cells 200B-1, 200B-2, ..., 200B-n is sealed with a separate casing 212.
  • the output voltage can be increased by connecting a plurality of redox battery cells (200B-1, 200B-2, ..., 200B-n) in electrical series.
  • FIG. 2c is a schematic diagram of a sealed redox battery including a plurality of sealed redox battery cells stacked according to some other embodiments.
  • the illustrated sealed redox battery (200C) includes a plurality of stackable redox battery cells (200C-1, 200C-2, ..., 200C-n), where a plurality of redox battery cells (200C-1, 200C-2,..., 200C-n) a sealed redox cell 200A (FIG. 2A), each comprising an anode electrolyte reservoir 106A, a cathode electrolyte reservoir 106B, and an ion exchange membrane or separator 112. It is structured in a similar way. However, unlike the sealed redox battery 200B (FIG.
  • a plurality of redox battery cells 200C-1, 200C-2, ..., 200C-n are stored in a common casing 222. It is sealed.
  • the output voltage can be increased by connecting a plurality of redox battery cells (200C-1, 200C-2, ..., 200C-n) in electrical series. there is.
  • the cathode electrolyte reservoirs 106B (-1, 200C-2,..., 200C-n) may be in fluid communication with each other.
  • the sealed redox battery (200C) may be configured as a pouch-type redox battery or a hard case-type redox battery.
  • Figure 2D is a schematic diagram of a sealed redox battery including a plurality of sealed redox battery cells in a cylindrical stacked configuration according to an embodiment.
  • the illustrated sealed redox battery (200D) includes a plurality of redox battery cells (200D-1, 200D-2, ..., 200D-n) that can be stacked in a cylindrical shape, where a plurality of redox battery cells (200D- 1, 200D-2,..., 200D-n) sealed redox cells 200A, each comprising an anode electrolyte reservoir 106A, a cathode electrolyte reservoir 106B and an ion exchange membrane or separator 112 (FIG. 2A) ) is structured in a similar way.
  • a plurality of redox battery cells (200D-1, 200D-2, ..., 200D-n) can be individually sealed within a casing in a manner similar to that described above for the sealed redox battery (200B) (FIG. 2B).
  • a plurality of redox battery cells 200D-1, 200D-2, ..., 200D-n are stored in a common casing 222 in a manner similar to that described above for the sealed redox battery 200C (FIG. 2C). ) can be sealed.
  • FIG. 2C the sealed redox battery
  • the output voltage can be increased by connecting a plurality of redox battery cells (200D-1, 200D-2, ..., 200D-n) in electrical series. there is.
  • the anode electrolyte reservoir 106A of the plurality of redox battery cells 200D-1, 200D-2, ..., 200D-n can be in fluid communication with each other, and the plurality of redox battery cells ( The cathode electrolyte reservoirs 106B (200D-1, 200D-2,..., 200D-n) may be in fluid communication with each other.
  • Some or all of the plurality of redox battery cells in each of the stacked configurations described above with respect to FIGS. 2B-2C are electrically connected in series by appropriately electrically connecting current collectors of opposite polarity to some or all of the cells, or It will be understood that some or all of the current collectors of the same polarity can be connected in electrical parallel by appropriately electrically connecting them.
  • sealed redox cells 200A-200D retain some of the inherent design flexibility available in conventional RFBs.
  • the design of cell geometry is substantially more flexible compared to conventional secondary batteries due to the inherent compliance of liquids.
  • the power and energy storage capacities can be independently decoupled and scaled to a limited extent, for example, by adjusting the ratio of electrolyte volume to electrode surface area.
  • the ratio can be adjusted using, for example, the thickness of the anode and cathode electrolyte reservoirs 106A, 106B, as described above.
  • the sealed redox battery according to the embodiment also shares the main advantage of the conventional battery in that it is completely sealed and modularization is possible.
  • the sealed redox battery according to the embodiment and the conventional secondary battery, for example, LIB may have components referred to using similar terms, but the components of the sealed redox battery according to the embodiment and their operation It will be understood that the principles can be distinguished from the conventional secondary batteries described herein.
  • the structure, functional role, and operating principle of the electrolyte in the sealed redox battery according to the embodiment can be distinguished from that of a conventional secondary battery, for example, LIB.
  • LIB a conventional secondary battery
  • the electrolyte in LIB does not store energy itself and does not participate in electrochemical reactions during the charge/discharge process.
  • the electrolyte primarily serves to provide a path for lithium ions to pass between the anode and cathode during the charge/discharge process. Accordingly, the movement of the electrolyte is not substantially restricted by the separator.
  • the electrochemical energy is in the form of dissolved active materials, for example, each dissolved in the anode and cathode electrolytes that cause electrochemical reactions during the charge/discharge process.
  • the electrolyte can be said to be a medium that stores energy in the sealed redox battery according to the embodiment.
  • the oxidation state of the V ion species dissolved in the anode and cathode electrolytes is changed by each Haff reaction.
  • the chemical composition of the anode and cathode electrolytes in a sealed redox battery are different from the electrolytes of LIB. Also, unlike LIB, in the sealed redox battery according to the embodiment, electromotive force due to the difference in chemical composition of the anode electrolyte and the cathode electrolyte leads to energy storage, so when the anode and cathode electrolytes are mixed, the stored energy is stored. A loss occurs.
  • the structure, functional role, and operating principle of the electrode in the sealed redox battery according to the embodiment can be distinguished from that of a conventional secondary battery, for example, LIB.
  • LIB the active material contained in the electrode directly participates in the electrochemical reaction.
  • lithium ions move between the active material of the anode and the active material of the cathode, achieving electrochemical equilibrium, and the electrode itself serves as the main medium for energy storage.
  • the electrodes of sealed redox cells according to embodiments play a very different role.
  • the anode of the sealed redox battery does not participate in the first redox half reaction, and the cathode of the sealed redox battery does not participate in the second redox half reaction.
  • an electrode that does not participate in a redox half reaction does not preclude the electrode's ability to provide a physical site for an electrochemical reaction in a manner similar to a catalyst.
  • the electrode itself is not involved in the electrochemical reaction, and redox ions do not move between the anode and cathode during charging and discharging of the redox cell.
  • functional groups that act as catalysts may be present on the surface. However, this can be distinguished from electrodes that actively participate in electrochemical reactions, such as in the case of LIB. Rather, the electrode substantially passively transfers electrons generated by electrochemical reactions.
  • the structure, functional role, and operating principle of the ion exchange membrane in the sealed redox battery according to the embodiment can be distinguished from the separator in a conventional secondary battery, for example, LIB.
  • LIB the active material of the electrode where the electrochemical reaction occurs is generally in a solid state, and the separator disposed between the anode and the cathode mainly serves to prevent electrical shorts between them. Therefore, although the separator serves to prevent electrical contact between the anode and cathode, in LIB the separator is not specifically designed to limit the transfer of lithium ions through it or limit the electrochemical reaction between them.
  • the separator mainly serves to electrically insulate the anode and cathode from each other without interfering with the movement of ions as part of the electrochemical reaction for charging and discharging. Therefore, the separator for LIB is designed to freely transfer lithium ions between electrodes.
  • the redox active species are dissolved in the electrolyte, and the ion exchange membrane or separator 112 (FIG. 2A) electrically separates the anode and cathode electrolytes and prevents them from mixing with each other. It plays a role.
  • the ion exchange membrane or separator 112 includes a selectively permeable membrane through which cations or anions are transferred to balance the charge between two half cells.
  • an ion exchange membrane can be configured to selectively pass cations or anions through it. Therefore, since the electrolyte that stores energy in the sealed redox battery according to the embodiment is liquid, without the ion exchange membrane or separator 112, electrical energy is generated by mixing the anode and cathode electrolytes regardless of whether the anode and cathode are in contact with each other. A short circuit occurs.
  • the first and second redox half reactions occur across the ion exchange membrane or separator 112 separating the anode electrolyte reservoir 106A and the cathode electrolyte reservoir 106B. This occurs without substantial ion transfer of the first redox couple or the second redox couple.
  • the ion exchange membrane or separator 112 which does not substantially transfer ions of the redox couple, substantially prevents crossing of the electrolyte between the anode and cathode electrolyte reservoirs 106A, 106B (FIG. 2A). It refers to the ion exchange membrane or separation membrane 112 that plays the role. Accordingly, the base material of the ion exchange membrane or separator 112 preferably blocks the movement of redox species in the electrolyte, e.g., V ions in a V redox cell, while retaining other ions, e.g., charge between the half cells. It may be a membrane that selectively allows the movement of H + ions in a V redox cell for balance. However, an ion exchange membrane or separator 112 that does not substantially transfer ions of the redox couple may still allow unintended crossing or limited intended mixing to relieve internal pressure build-up.
  • redox species in the electrolyte e.g., V ions in a
  • the ion exchange membrane or separator performs, among other functions, the function of conducting ions of the supporting electrolyte between the anode and cathode electrolyte reservoirs while substantially inhibiting the passage of redox active ions, such as vanadium ions.
  • redox active ions such as vanadium ions.
  • the separator one of the key materials in secondary batteries that use electrolyte as an aqueous electrolyte, mediates reactions as an ion exchange membrane and performs the function of separating the cathode and anode to prevent shunting.
  • the conditions required for a separation membrane include high ion conductivity and ion selectivity.
  • excellent mechanical properties that can withstand the pressure under which the electrolyte solution circulates, a strong acid environment, the oxidizing power of the redox couple of the electrolyte, high chemical stability against radicals generated in the aqueous electrolyte, and high efficiency in terms of process and cost are required.
  • Such a separator may be formed of an ion-conducting polymer, or may be manufactured by coating an ion-conducting polymer on a substrate.
  • an ion exchange membrane or separator contains an ion conductive resin and has excellent internal resistance, among other advantages compared to various commercially available membranes. It has a structure and composition arranged to provide chemical resistance, heat resistance and mechanical strength.
  • the various embodiments of the ion exchange membrane or separator disclosed herein are particularly effective when integrated as part of a sealed redox cell (e.g., ion exchange membrane or separator 112 in FIG. 2A). This is primarily because sealed redox cells can be exposed to harsher conditions, including higher internal pressures, that conventional membranes may not be able to withstand effectively and reliably.
  • separator are not limited to use in sealed redox cells, and the ion exchange membranes or separators disclosed herein may advantageously be used in redox flow cells, e.g., in the redox flow cell described above with reference to Figure 1. It will be understood that the battery 100 may be integrated for use in any suitable secondary battery, including a lithium ion battery.
  • a method of forming a film by immersing a solution containing an ion conductive resin into a porous membrane and drying it was applied.
  • this method does not require a base film removal process and a drying process.
  • the time is shortened, and furthermore, there is an advantage in that an excellent separator can be manufactured by suppressing the formation of an air layer between the base film and the separator.
  • hydrophilic electrolyte when applying a separator containing an ion conductive resin to an aqueous secondary battery using a hydrophilic electrolyte, when the porous membrane is hydrophobic and the electrolyte used in the electrode assembly is hydrophilic, the hydrophilic electrolyte is applied to the hydrophobic separator.
  • the presence of non-contact parts may cause problems in charging and discharging electrodes of the secondary battery.
  • the method for manufacturing a separator for a secondary battery according to the present invention includes the steps of dissolving an ion conductive resin and a surfactant in an organic solvent to form a mixed solution; and impregnating at least one side of the porous membrane with the mixed solution.
  • the porous membrane can be made hydrophilic most efficiently and uniformly, thereby reducing the secondary
  • the problem of defects in battery electrode charging and discharging can be resolved, and the drying speed can be increased in the subsequent drying step to increase process efficiency.
  • the organic solvents include N,N-dimethylacetamide (DMAc), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and N-methyl-2-pyrrolidone (NMP). At least one of them can be used as follows.
  • the organic solvent is an amide-based organic solvent.
  • the amide-based organic solvent at least one of N,N-dimethylacetamide (DMAc) and dimethylformamide (DMF) can be used, preferably N,N-dimethylacetamide.
  • a fluorine-based polymer or a hydrocarbon-based polymer may be selected as the ion conductive polymer.
  • ion conductive polymers containing sulfonic acid groups as fluorine-based polymers include perfluorosulfonic acid, poly(styrene sulfonic acid (PSSA), and sulfonated poly(ether ether ketones).
  • PSSA poly(styrene sulfonic acid
  • ether ether ketones include perfluorosulfonic acid, poly(styrene sulfonic acid (PSSA), and sulfonated poly(ether ether ketones).
  • SPEEK poly(ether sulfone)
  • SPES sulfonated poly(aryl ether ketone)
  • SPAEK sulfonated polybenzimidazole
  • SPBI sulfonated polybenzimidazole
  • SPPO sulfonated poly(phenylen oxide)
  • SPI sulfonated polyimide
  • hydrocarbon-based polymers may include polyimide-based polymers, polyetheretherketone-based polymers, polyethersulfone-based polymers, and polybenzimidazole (PBI)-based polymers. You can.
  • the polybenzimidazole-based polymer of the present invention is a polymer of polybenzimidazole, which is a mixture or copolymer (co- polymer).
  • the precursor of polybenzimidazole is ab-PBI (Poly(2,5-benzimidazole)), oPBI (Poly[2,2'-(4,4'-oxybis(1,4-phenylene))-5,5 '-bibenzimidazole), m-PBI (meta-polybenzimidazole), pPBI (para-polybenzimidazole), s-PBI (sulfonated polybenzimidazole), f-PBI (fluorine-containing polybenzimidazole), 2OH-PBI (Dihydroxy polybenzimidazole), PIPBI (Phenylindane) -polybenzimidazole), PBI-OO (poly[(1-(4,4'-diphenylether)-5-oxybenzimidazole)-benzimi
  • a separator containing a polybenzimidazole-based polymer can be used to exhibit excellent mechanical strength, heat resistance, chemical resistance, and durability even in increasingly harsh operating environments of secondary batteries.
  • the porous membrane may be manufactured using one or more polyolefin-based materials.
  • the porous membrane of the present invention may be made of a material containing polypropylene (PP), polyethylene (PE), or a combination thereof.
  • the viscosity of the solution can be lowered by adding an additional viscosity adjusting solvent to the mixed solution.
  • an additional viscosity adjusting solvent to the mixed solution.
  • the viscosity adjusting solvent may be included at, for example, 10% by weight to 25% by weight, for example, 12% by weight to 20% by weight, for example It may contain 15% to 18% by weight, but is not necessarily limited thereto.
  • the viscosity adjusting solvent may be one or more of a ketone solvent or an alcohol solvent.
  • the ketone solvent may be acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • an alcohol solvent may be methanol, ethanol, isopropanol, butanol, isobutanol, etc.
  • the surfactant according to one embodiment of the present invention can effectively hydrophilize the porous membrane, so depending on the type of ion conductive resin, porous membrane, and electrolyte solution used, it may be selected from a silicone-based surfactant, an ionic surfactant, and a non-ionic surfactant. , nonionic surfactants, organic surfactants, and combinations thereof may be used.
  • the surfactant of the present invention include Triton ), TTAB (tetradecyltrimethylammonium bromide), CTAB (Cetyltrimethylammonium Bromide), DPC (dodecylpyridinium chloride), PVP (Poly(vinylpolypyrrolidone)) as an organic surfactant, and Silwet ® as a silicone-based organic surfactant, but are not necessarily limited thereto.
  • the content of the surfactant may be, for example, more than 0.1% by weight and less than 5.0% by weight, for example, more than 0.2% by weight and less than 4.0% by weight when the solution containing the ion conductive resin is 100% by weight. It may include, for example, 0.5% by weight or more and 2.0% by weight or less, and may include, for example, 0.5% by weight or more and 1.0% by weight or less, but is not necessarily limited thereto. It can be appropriately adjusted depending on the type of ion conductive resin and surfactant used.
  • a silicone-based nonionic organic surfactant when polybenzimidazole is used as the ion-conducting resin and polyethylene film is selected as the porous film, a silicone-based nonionic organic surfactant may be selected.
  • the method of manufacturing a separator for a secondary battery according to an example of the present invention substantially increases the manufacturing cost, reduces the efficiency, and/or reduces the performance of the resulting separator, which are problems known to occur when the surface of a porous membrane is made hydrophilic using another process. Can be performed without reduction.
  • the electrode assembly using the separator for secondary batteries of the present invention has improved contact with the electrolyte, and as a result, the charging and discharging performance of the electrode can be improved, thereby improving the performance of the secondary battery.
  • m-PBI poly[2,2-(m-phenylene)-5,5bibenzimidazole]
  • DMAC dimethyl acetamide
  • a separator was prepared in the same manner as in Example 1, except that the only difference was that the PBI solution was prepared without adding a surfactant.
  • a surfactant solution (Silwet concentration is 5% by weight) was prepared by mixing “TMHydrostable 212 Silicone Surfactant (manufactured by Momentive)” as a surfactant in DMAc solvent, and then applied to the separator prepared in Comparative Example 1 and treated. By drying at a temperature of 50°C, a 27 ⁇ m thick separator was obtained.
  • PE polyethylene
  • a surfactant solution (Silwet concentration: 5% by weight) was applied to a polyethylene (PE) film (thickness: 20 ⁇ m) by mixing “TMHydrostable 212 Silicone Surfactant (manufactured by Momentive)” with DMAc solvent and then cooled at 50°C. By hot air drying at a temperature for 2 minutes, a 20 ⁇ m thick separator was obtained.
  • PE polyethylene
  • Two current collectors were manufactured by laminating a carbon current collector (graphite composite, thickness: 0.2 mm) and a metal current collector (aluminum foil, thickness: 0.2 mm), and were used as a positive electrode current collector and a negative electrode current collector, respectively, and carried out as described above.
  • Unit cells including an anode electrolyte accommodating part and a cathode electrolyte accommodating part formed using the separators prepared in Example 1 and Comparative Examples 1 to 4 were manufactured, respectively.
  • V 3.5+ electrolyte manufactured by Standard Energy
  • a concentration of 1.7M was supplied to each of the anode electrolyte accommodating part and the cathode electrolyte accommodating part.
  • the electrolyte was charged with a constant current of 1 C until the voltage reached 1.55 V, and when discharging, it was charged at 1 C.
  • the energy efficiency (EE) (%) was measured according to Equation 1 as follows, and this is shown in Table 1 below.
  • Example 1 is characterized in that a separator was manufactured by mixing a surfactant in a PBI solution and then impregnating a PE film. This is compared to Comparative Example 1 in which no surfactant was mixed. It was confirmed that energy efficiency was significantly improved.
  • Comparative Example 2 is different from Example 1 in that the separator was manufactured in the same way as in Comparative Example 1, and then a surfactant solution was additionally applied to the surfaces of PBI and PE. Process efficiency was reduced in that the number of film forming treatments had to be increased to two, and it was confirmed that energy efficiency (EE) was also reduced compared to Example 1.
  • EE energy efficiency
  • Comparative Example 3 only PE film was used as a separator, and as a result, it was impossible to evaluate the energy efficiency of the battery due to the inability to charge. Comparative Example 4 was treated only with surfactant without PBI, and the energy efficiency was significantly reduced compared to Example 1. .
  • a separator was prepared in the same manner as in Example 1, but the content (concentration) of the surfactant was varied as shown in Table 2 below.
  • the energy efficiency (EE) (%) was measured as above, and the results were measured in Table 2 below. Shown in 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명의 이차전지용 분리막의 제조 방법은 이온 전도성 수지 및 계면활성제를 유기용매에 용해시켜 혼합 용액을 형성하는 단계 및 혼합 용액으로 다공성 막의 적어도 한 면을 함침시키는 단계를 포함한다.

Description

이차전지용 분리막 및 이의 제조 방법
본 발명은 이차전지용 분리막 및 이의 제조방법과 상기 분리막을 포함하는 이차전지에 관한 것이다.
지구 온난화를 동반한 세계 경제 성장이 계속되면서 재생 가능 에너지, 예를 들어, 태양 및 풍력 에너지를 기반으로 한 재생 가능하고 지속 가능한 에너지 시스템에 대한 필요성이 더욱 시급해지고 있다. 이러한 형태의 에너지의 간헐적 이용가능성으로 인한 변동에 대비하여 그리드 네트워크의 안정성을 향상시키기 위해 발전된 에너지 저장 시스템(ESS)을 사용하여 잉여 전력을 저장하고 필요 시 최종 고객 또는 전력망에 전달할 수 있다. 그 중에서도 전기화학적 에너지를 기반으로 하는 ESS, 예를 들어, 충전식(rechargeable) 또는 이차전지는 비용 효율적이고 깨끗한 형태의 에너지 저장 솔루션을 제공할 수 있다. 전기화학적 에너지 저장 시스템은 광의의 이차전지로서, 그 예로는 리튬 이온 전지, 연료 전지, 레독스 흐름 전지(redox flow battery) 등이 있다. 다양한 유형의 전기화학적 에너지 저장 시스템은 다양한 물리적 및/또는 화학적 특성을 갖는다. 일반적으로 이차전지는 2개의 전극, 전해질 및 분리막(separator; 또는 이온 교환막)의 요소들을 구비한다. 상기 요소들은 각각 이차전지의 성능에 영향을 미칠 수 있다.
본 발명은 이차전지용 분리막의 제조에 있어서, 기재 필름을 사용하지 않고도 분리막의 기계적 강도를 향상시키고 공정 효율을 높일 수 있는 분리막의 제조방법을 제공하는 것을 목적으로 한다.
나아가, 본 발명은 이온 전도성 수지를 포함하는 용액을 다공성 막에 침지시킨 후 건조하여 제막하는 공정에 있어서, 다공성 막이 소수성을 나타내고 전극 조립체에 사용되는 전해액이 친수성을 나타내는 경우, 친수성인 전해액이 소수성인 분리막에 미접촉되는 부분이 존재하게 되어 이차전지의 충ㆍ방전 불량이 발생하는 문제점이 존재하는바, 이를 개선하는 분리막의 제조방법을 제공하는 것을 목적으로 한다.
본 발명에서 레독스 커플을 사용하는 레독스 흐름 전지 또는 밀봉형 레독스 전지를 이차전지의 예로서 설명하였으나, 본 발명의 분리막이 적용되는 대상은 이에 한정되는 것은 아니다.
본 발명의 제1 양태에 따르면, 이온 전도성 수지 및 계면활성제를 유기용매에 용해시켜 혼합 용액을 형성하는 단계; 및 상기 혼합 용액으로 다공성 막의 적어도 한 면을 함침시키는 단계;를 포함하는 이차전지용 분리막의 제조 방법을 제공할 수 있다.
상기 혼합 용액으로 함침시키지 않은 다공성 막은 소수성을 나타내고, 상기 함침 시키는 단계에 의하여 다공성 막을 친수화시키는 것일 수 있다.
상기 혼합 용액 100 중량%에 대하여, 상기 계면활성제는 0.1 중량% 초과 및 5.0 중량% 미만으로 포함할 수 있다.
상기 계면활성제는 이온성 계면활성제, 비이온성 계면활성제 및 유기 계면활성제 중 하나 이상을 포함할 수 있다.
상기 유기 계면활성제는 실리콘계 유기 계면활성제를 포함할 수 있다.
상기 이온 전도성 수지는 폴리벤즈이미다졸계 고분자를 포함할 수 있다.
상기 다공성 막은 폴리프로필렌, 폴리에틸렌 또는 이들의 조합을 포함하는 재료로 제작된 것일 수 있다.
상기 혼합 용액 100 중량%에 대하여, 점도 조절 용매를 10 중량% 내지 25 중량%로 포함할 수 있다.
상기 점도 조절 용매는, 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 메탄올, 에탄올, 이소프로판올, 부탄올 및 이소부탄올 중 1종 이상을 포함할 수 있다.
상기 혼합 용액으로 다공성 막의 적어도 한 면을 함침시키는 단계 이후 건조시키는 단계를 더 포함할 수 있다.
상기 이차전지는 수계 전해질을 액체 전극으로 사용하는 것일 수 있다.
상기 수계 전해질은 바나듐 이온 및 산성 수용액을 포함하는 것일 수 있다.
본 발명의 제2 양태에 따르면, 본 발명의 제1 양태에 따른 이차전지용 분리막의 제조 방법에 따라 제조된, 이차전지용 분리막을 제공할 수 있다.
본 발명의 제3 양태에 따르면, 본 발명의 제1 양태에 따른 이차전지용 분리막의 제조 방법에 따라 제조된, 이차전지용 분리막을 포함하는 이차전지를 제공할 수 있다.
본 발명에 따른 이차전지용 분리막의 제조방법에 따르면, 다공성 막을 효율적이고 균일하게 친수성화시키는 효과를 극대화시킬 수 있고, 이에 따라 제조된 분리막은 전해액과의 접촉 불량 문제를 해소하여 이차전지의 성능을 향상시키는데 기여할 수 있다.
또한, 본 발명에 따른 이차전지용 분리막의 제조방법에 따르면, 추후 건조 단계에서 건조 속도를 증가시켜 분리막 제막의 공정 효율을 높일 수 있다.
도 1은 예시적인 레독스 흐름 전지의 개략도이다.
도 2a는 구현예에 따른 밀봉형 레독스 전지(sealed redox battery)의 개략도이다.
도 2b는 일부 구현예에 따른 적층된 구성의 복수의 밀봉형 레독스 전지 셀을 포함하는 밀봉형 레독스 전지의 개략도이다.
도 2c는 일부 다른 구현예에 따른 적층된 구성의 복수의 밀봉형 레독스 전지 셀을 포함하는 밀봉형 레독스 전지의 개략도이다.
도 2d는 구현예에 따른 원통형으로 적층된 구성의 복수의 밀봉형 레독스 전지 셀을 포함하는 밀봉형 레독스 전지의 개략도이다.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
본 명세서에서 구성 요소를 "포함한다", "갖는다", "이루어진다", "배치한다", "구비한다" 등이 사용되는 경우 "~만"이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.
본 명세서에서 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
본 명세서에서 구성 요소의 "상부 (또는 하부)" 또는 구성요소의 "상 (또는 하)"에 임의의 구성이 배치된다는 것은, 임의의 구성이 상기 구성 요소의 상면 (또는 하면)에 접하여 배치되는 것뿐만 아니라, 상기 구성 요소와 상기 구성 요소 상에 (또는 하에) 배치된 임의의 구성 사이에 다른 구성이 개재될 수 있음을 의미할 수 있다.
전술된 바와 같이, 특정의 적용에 적합한 전기화학적 에너지 저장 시스템의 선택 및 설계에서 고려되는 경쟁 요소에는 무엇보다도 투자 비용, 전력, 에너지, 수명, 재활용성, 효율성, 규모성 및 유지관리 비용이 포함된다. 다양한 전기화학적 에너지 저장 시스템 중에서 레독스 흐름 전지(RFB)는 고정식 에너지 저장에 유망한 것으로 간주된다. RFB는 용액에 용해된 레독스 종의 레독스 과정을 활용하는 전기화학적 에너지 변환 장치이다. 용액은 외부 탱크에 저장되고 필요 시 RFB 셀로 도입된다. RFB 기술의 유리한 특징 중 일부는 전력 및 에너지의 독립적인 규모성, 높은 방전 심도(depth of discharge, DOD) 및 환경 영향 감소이다. 이러한 특징은 광범위한 작동 전력 및 방전 시간을 허용하므로, RFB는 재생 가능한 공급원으로부터 생성된 전기를 저장하는 데 바람직하다.
리튬 이온 전지와 같이 당업계에 알려진 일부 이차전지의 특정의 단점은 작동 중 과도한 열 및 내부 압력 발생을 포함한다. 이러한 영향을 완화하기 위해 일부 이차전지에서는 전지 셀 사이의 간격 및/또는 별도의 냉각 장치를 사용한다. 유리하게는, 본원에 개시된 구현예에 따른 전지에서는 열 및 압력의 발생이 유의하게 낮고, 이는 결국 폭발의 위험을 낮추어, 전지 셀 사이의 간격 또는 냉각 장치가 필요하지 않아 전지 셀 및 전지 자체의 컴팩트한 집적(integration)을 가능하게 한다.
다양한 전지는 버스 바(bus bar)를 이용하여 전지 셀 및/또는 전지 자체를 전기적으로 연결한다. 컴팩트한 집적을 위해, 버스 바를 효율적으로 배치함으로써 이들이 차지하는 공간량을 줄여야 한다. 전지 셀 및 전지를 전기적으로 연결하는 것 외에도 전지 셀 또는 전지를 효율적인 방식으로 물리적 및 기계적으로 함께 고정하는 것이 별도로 필요하다. 이러한 요구 및 다른 요구를 해결하기 위해, 본원에 개시된 다양한 구현예는 전지 셀 및/또는 전지의 고밀도 집적을 가능하게 하는 버스 바 및 이를 포함하는 에너지 저장 장치를 제공한다. 또한, 본원에 개시된 구현예는 장착 후 유지관리가 용이한 전지 및 이를 포함하는 에너지 저장 장치를 제공한다.
도 1은 예시적인 레독스 흐름 전지(RFB)의 개략도이다. RFB(100)는 전지 셀(104)을 포함한다. 전지 셀(104)은 분리막 또는 이온 교환막(112)에 의해 분리된 제1 하프 셀(104A) 및 제2 하프 셀(104B)을 갖는다. 제1 하프 셀(104A)은 내부에 배치된 제1 또는 양극 전해질 및 양극 전해질을 수용하는 양극 전해질 저장소(106A)를 포함하고, 제2 하프 셀(104B)은 내부에 배치된 제2 또는 음극 전해질 및 음극 전해질을 수용하는 음극 전해질 저장소(106B)를 포함한다. 양극은 양극 집전체(108A)에 전기적으로 연결되고, 음극은 음극 집전체(108B)에 전기적으로 연결된다. 양극 전해질 저장소(106A)는 유체 소통(fluid communication)하고 양극 전해질 탱크(116A)에 물리적으로 연결되며, 음극 전해질 저장소(106B)는 유체 소통하고 음극 전해질 탱크(116B)에 물리적으로 연결된다. 작동 시 양극 전해질은 양극 전해질 펌프(128A)를 사용하여 화살표로 표시된 바와 같이 출구 및 입구 도관(120A, 124B)을 통해 양극 전해질 탱크(116A)와 양극 전해질 저장소(106A) 사이에서 순환된다. 유사하게, 음극 전해질은 출구 및 입구 도관(120B, 124B)을 통해 음극 전해질 탱크(116B)와 음극 전해질 저장소(106B) 사이에서 순환된다.
일부 구성에서, 복수의 전지 셀(104-1, 104-2, …, 104-n)이 적층되어 RFB 셀(150)을 형성하며, 여기서 각 셀은 전지 셀(104)과 유사한 방식으로 구성된다. 복수의 전지 셀(104-1, 104-2, …, 104-n)은 서로 유체 소통할 수 있는 각각의 양극 전해질 저장소(106A) 및 서로 유체 소통할 수 있는 각각의 음극 전해질 저장소(106B)를 포함한다. 다수의 양극 전해질 저장소(106A)는 서로 연결되어 양극 전해질 탱크(116A)와 유체 소통하고, 다수의 음극 전해질 저장소(106B)는 서로 연결되어 음극 전해질 탱크(116B)와 유체 소통한다.
리튬 이온, 납산 및 나트륨-황 전지와 같은 다른 전기화학적 저장 기술과 비교하여, RFB는 에너지 저장으로부터 전력 변환을 분리함으로써 독립적인 전력 및 에너지의 대규모화가 가능하도록 하는 몇몇 장점을 제공한다. 예를 들어, RFB는 적용에 따라 유연하고 분산된 방식으로 조정될 수 있으며, 예를 들어, 가정용 저장을 위한 수 kW/kWh부터 그리드 저장을 위한 최대 몇몇 내지 수십 MW/MWh의 시스템까지 범위의 전력 및 에너지를 제공하도록 규모화될 수 있다. 또한 연료 셀과 달리, RFB에서의 반응은 가역적이므로 동일한 셀이 전기를 화학 에너지로 변환하는 역할을 가능하게 하거나 그 반대로 작동할 수 있다. RFB는 이온 금속을 소비하지 않고 금속 이온 원자가를 변경하여 작동하므로 긴 수명 주기가 가능하다. 셀 온도는 부분적으로는 전해질의 상대적으로 높은 열 질량으로 인해 전해질 흐름을 조절함으로써 상대적으로 쉽게 제어할 수 있다. 충전 상태(SOC)는 셀 전압을 통해 쉽게 모니터링할 수 있으며 매우 깊은 방전 심도(DOD)를 달성할 수 있다.
RFB의 다양한 장점에도 불구하고, 수십 년에 걸쳐 이 기술에 대한 상대적으로 큰 자본, 연구 및 개발 투자가 이루어졌음에도 RFB의 상업화는 다른 전기화학적 저장 기술에 비해 광범위하게 이루어지지 않았다. 특히, 최근 ESS 적용을 위한 전지의 수요가 급증하고, 잦은 화재 및 폭발로 인한 안전성 확보에 대한 요구가 높아지는 현재의 상황은, RFB가 적합성이 존재한다는 것을 보여주는 것임에도 불구하고, 아직 광범위한 상업화가 실현되지 않았으며, 이는 오랫동안 RFB 상업화의 필요성을 느끼지만 상당한 장애물이 있음을 시사한다. 본 발명자들은 상대적으로 낮은 신뢰성, 낮은 효율성, 큰 시스템 공간(footprint) 및 높은 시스템 복잡성을 포함한 이러한 몇몇 장애물을 인식하였다.
RFB의 광범위한 상업화에 대한 첫 번째 장애물은 도 1과 관련하여 전술한 RFB(100)와 같은 RFB의 상대적으로 높은 복잡성 및 연관된 신뢰성 문제에 관한 것이다. 전술된 바와 같이, RFB는 전지 셀(104)로 그리고 이로부터 전해질을 전달하기 위한 다수의 도관(120A, 120B, 124A, 124B), 전해질을 순환시키기 위한 펌프(128A, 128B) 및 전해질을 저장하기 위한 탱크(116A, 116B)를 포함한다. 상대적으로 높은 복잡성으로 인해, 전지 셀(104)과 탱크(116A, 116B) 사이의 도관(120A, 120B, 124A, 124B)과 연관된 다양한 연결 지점은 누출을 초래하는 등의 문제점을 발생시킬 수 있다. 고장 가능성 및 빈도는 ESS의 크기에 따라 규모화되는 이러한 도관의 수에 비례하여 증가한다. 고장이 발생하면 예정에 없던 수리는 물론 안전성 위험을 초래한다. 또한 예방적 유지관리를 통해 이러한 고장 가능성을 줄이고 중단 없는 작동을 보장하면 작동 비용이 추가된다.
RFB의 광범위한 상업화에 대한 두 번째 장애물은 RFB의 상대적으로 낮은 효율성에 관한 것이다. 상대적으로 낮은 효율성의 한 요인은 전해질의 순환에서 소비되는 에너지와 관련이 있다. 예를 들어, 바나듐계 RFB용 전해질은 황산을 포함하여, 상대적으로 높은 점도를 가질 수 있다. 무작위 배향된 탄소섬유 펠트 기반 전극의 미세 다공성 구조를 통해 전해질, 특히 상대적으로 높은 점도를 갖는 전해질을 순환시키는 것은 상대적으로 많은 양의 외부 에너지를 소비함으로써, RFB의 외적 효율성을 낮출 수 있다. RFB 시스템의 낮은 외적 효율성은 리튬 이온 전지(LIB) 기술과 같은 경쟁적 이차전지 기술에 비해 상업 경쟁력이 더 낮은 주요 원인 중 하나이다.
RFB의 광범위한 상업화에 대한 세 번째 장애물은 다른 전기화학적 저장 기술과 비교하여 상대적으로 낮은 전력 밀도 및 에너지 밀도에 관한 것으로, 모바일 적용을 방해한다. 본원에 설명된 바와 같이, 전력 및 에너지 밀도는 각각 에너지 저장 장치의 총 부피에 대한 저장 장치의 전력 출력 및 에너지 저장을 지칭한다. 따라서 RFB에서 전력 및 에너지 밀도는 셀 부피, 탱크 부피 및 전해질 전달을 위한 도관 부피를 포함하는 총 부피에 대한 전력 출력 및 에너지 저장의 비율을 지칭한다. 낮은 전력 및 에너지 밀도를 부분적으로 보상하기 위해 RFB는 종종 상대적으로 큰 셀 활성 면적 및 막을 가져서 셀 크기가 증가하고 결과적으로 전해질 저장소(116A, 116B) 내부에 전해질의 높은 횡단 구배를 야기할 수 있다. 결과적으로, RFB의 평균 전류 밀도 및 공칭 전류는 균일한 최대 전류 밀도에 기반한 최대 이론값과 비교하여 상당히 낮을 수 있다. 또한 별도의 탱크 및 도관을 포함하는 순환 시스템의 필요성으로 인해 전체 시스템 수준의 공간 효율성이 더욱 감소된다.
RFB의 광범위한 상업화를 가로막는 네 번째 장애물은 화학 공장과 비교되는 시스템 복잡성에 관한 것이다. RFB 시스템 설계의 높은 복잡성으로 인해 개발 주기가 길어지고 결과적으로 기술 개발이 유의하게 느려진다. 또한 시스템 복잡성은 노동 및 자본 집약적이며 ESS 현장에서의 설치, 유지관리 및 철거에 대한 높은 수준의 전문 지식을 필요로 한다. 시스템이 복잡해지면 시스템을 구축하고 유지하는 데 필요한 인력 및 교육 증가에 대한 잠재적 필요뿐만 아니라 이에 수반되는 전체 비용 증가로 인해 소비자가 방해를 받는다.
RFB에 의해 부여되는 대부분의 장점을 유지하면서 이들 및 다른 제한사항들을 해결하기 위해, 본 개시내용은 별도의 전해질 탱크에 연결되지 않는밀봉형 레독스 전지에 관한 것이다. 또한, 본 개시내용은 추가적으로 밀봉될 수 있는 복수의 레독스 전지 셀의 효율적인 집적을 가능하게 하는 버스 바를 포함하는 이차전지에 관한 것이다. 그러나, 본 발명의 내용은 상술한 전지 형태에만 한정되는 것이 아니다.
밀봉형 레독스 전지
일 양태에서, 본원에 개시된 레독스 전지의 다양한 구현예는 레독스 전지에 관한 것이다. 구현예에 따른 레독스 전지는 RFB의 장점을 유지하면서 위에서 논의된 RFB의 모든 상업화 장애물 중 일부를 적어도 부분적으로 극복하거나 완화시킨다. 특히, 레독스 반응에 참여하는 레독스 커플(couple)을 사용하면서도, 일부 RFB와 달리, 본원에 개시된 레독스 전지의 구현예는 밀봉형 레독스 전지 셀을 포함하고, 레독스 전지 셀에 연결된 별도의 전해질 탱크를 갖지 않으며 레독스 전지 셀 외부로부터 전해질을 공급하기 위한 펌프와 같은 전해질 순환 장치도 갖지 않는다.
도 2a는 구현예에 따른 밀봉형 레독스 전지의 개략도이다. 도시된 밀봉형 레독스 전지(200A)는 제1 하프 셀(204A) 및 제2 하프 셀(204B)을 포함한다. 제1 하프 셀(204A)은 내부에 배치된 양극과 접촉하는 제1 또는 양극 전해질을 갖는 양극 전해질 저장소(106A)를 포함한다. 제1 전해질에는 제1 레독스 하프 반응이 일어나도록 구성된 제1 레독스 커플이 용해되어 있다. 제2 하프 셀(204B)은 내부에 배치된 음극과 접촉하는 제2 또는 음극 전해질을 갖는 음극 전해질 저장소(106B)를 포함한다. 제2 전해질에는 제2 레독스 하프 반응이 일어나도록 구성된 제2 레독스 커플이 용해되어 있다. 양극 및 음극 전해질 저장소(106A, 106B)는 각각의 하프 반응을 위한 반응 공간을 정의한다. 밀봉형 레독스 전지(200A)는 양극 전해질 저장소(106A)와 음극 전해질 저장소(106B)를 분리하는 이온 교환막 또는 분리막(112)를 추가적으로 포함한다. 양극은 양극 집전체(108A)에 전기적으로 연결되고 음극은 음극 집전체(108B)에 전기적으로 연결된다. 일부 구현예에서, 제1 분리판(bipolar plate)(208A)은 양극 집전체(108A)와 양극 전해질 저장소(106A) 사이에 개재되고, 제2 분리판(208B)은 음극 집전체(108B)와 음극 전해질 저장소(106B) 사이에 개재된다.
종래의 RFB와 달리, 구현예에 따른 밀봉형 레독스 전지(200A)에서, 제1 하프 셀(204A), 제2 하프 셀(204B) 및 이온 교환막 또는 분리막(112)은 전지 셀의 적어도 4개 측면을 둘러싸는 프레임(212) 또는 케이싱에 의해 부분적으로 밀폐되거나 밀봉되는 레독스 전지 셀을 정의한다. 도시된 밀봉형 레독스 전지(200A)는 단면도를 도시하므로 케이싱(212)의 상부 및 하부 측면만이 도시된다. 그러나, 케이싱(212)은 도시된 전지 셀의 상부, 하부, 전면 및 후면을 연속으로 둘러싸는 것으로 이해될 것이다. 또한, 제1 및 제2 분리판(208A, 208B)은 케이싱(212)의 좌우 가장자리 또는 립에서 각각 이와 접촉하여 케이싱(212)과 제1 및 제2 분리판(208A, 208B)에 의해 정의된 밀봉된 공간에서 전지 셀을 둘러싸고/거나 밀봉한다. 따라서 밀폐되고/되거나 밀봉된 프레임 또는 케이싱(212), 제1 분리판(208A) 및 제2 분리판(208B)은 분리막(112)에 의해 2개의 공간, 즉 양극을 수용하는 음극 전해질 저장소(106B) 및 음극을 수용하는 양극 전해질 저장소(106A)로 분할되는 밀폐되거나 밀봉된 부피를 정의한다. 케이싱(212)과 제1 및 제2 분리판(208A 및 208B)에 의해 밀봉된 부피는 정상 작동 시 이의 내부 내용물이 외부로부터 물리적으로 접근할 수 없도록 되어 있다. 즉, 양극 및 음극 전해질은 전해질 탱크와 같은 외부 용기와 유체 소통하지 않는다. 케이싱(212)과 제1 및 제2 분리판(208A 및 208B)은 레독스 전지(200A)를 기밀하게 및/또는 영구적으로 밀봉할 수 있다. 이러한 구성은 레독스 전지 셀이 외부 탱크와 유체 소통하는 종래의 레독스 흐름 전지와 대조된다. 즉, 밀봉형 레독스 전지(200A)에서는 도 1과 관련하여 전술한 RFB(100)와는 달리, 밀폐된 셀 내의 양극 전해질 저장소(106A) 또는 음극 전해질 저장소(106B) 중 어느 것도 제1 또는 제2 전해질 각각을 저장하는 별도의 전해질 탱크와 유체 소통하거나 물리적으로 연결되지 않는다. 이와 같이, 실질적으로 양극 및 음극 전해질의 전체 부피는 레독스 전지 셀 내에 저장되고, 케이싱(212)과 제1 및 제2 분리판(208A 및 208B)에 의해 밀봉 및 밀폐된다. 즉, 제1 전해질 저장소(106A)는 실질적으로 제1 하프 셀(204A)에 대해 제1 전해질의 전체 부피를 저장하고, 제2 전해질 저장소(106B)는 실질적으로 제2 하프 셀(204B)에 대해 제2 전해질의 전체 부피를 저장한다. 부분적으로는 밀봉형 레독스 전지(200A)는 도 1에 도시된 RFB(100)와 달리, 별도의 저장 탱크에 연결되지 않기 때문에, 밀봉형 레독스 전지(200A)는 전해질을 레독스 전지 셀로 그리고 이로부터 전달하기 위한 도관(120A, 120B, 124A, 124B)(도 1)이나, 전해질을 순환시키기 위한 펌프(128A, 128B)(도 1)를 포함하지 않는다.
전술된 바와 같이, 밀봉형 레독스 전지(200A)의 주목할만한 구조적 차별점은 펌프(128A, 128B)(도 1)가 생략된 점이다. 대신에, 구현예에 따른 밀봉형 레독스 전지(200A)는 제1 및 제2 전해질이 제1 하프 셀(204A)의 양극 전해질 저장소(106A)와 제2 하프 셀(204B)의 음극 전해질 저장소(106B) 내에서 각각 자체 순환하도록 구성된다. 다양한 구성에서, 제1 및 제2 전해질의 자체 순환은 다음 중 하나 이상에 의해 유발된다: 제1 및 제2 전해질 저장소 사이의 삼투압 차이; 제1 및 제2 전해질 중 하나 또는 둘 모두의 밀도 변화; 제1 및 제2 전해질 중 하나 또는 둘 모두의 확산 또는 이동; 제1 및 제2 전극 각각에 대한 제1 및 제2 전해질 중 하나 또는 둘 모두의 친화도; 제1 및 제2 레독스 하프 반응; 및 제1 및 제2 전해질 중 하나 또는 둘 모두의 열팽창 또는 수축.
발명자들은 도 2a의 단면도에서 양극 및 음극 전해질 저장소(106A, 106B)의 두께가 20cm, 15cm, 10cm, 5cm, 2cm, 1cm 또는 이들 값 중 임의의 값으로 정의된 범위의 값을 초과하지 않을 때 자체 순환이 전력 및 에너지 출력의 안정성을 제공하는 데 효과적이라는 것을 발견하였다.
계속해서 도 2a를 참조하여, 케이싱(212)은 강한 산성일 수 있는, 양극 및 음극 전해질을 수용하기에 적합한 내식성 물질로 형성된다. 내식성을 제공하는 것 외에도, 케이싱(212)은 밀봉형 레독스 전지(200A)에 기계적 지원을 제공하도록 단단한 케이싱일 수 있다. 일부 구현예에서, 구현예에 따른 케이싱(212)의 적어도 일부는 양극 및 음극 전해질 저장소(106A, 106B) 내의 내부 압력의 변화를 수용하도록 변형을 위해 구성된 유연한 물질로 형성될 수 있다. 내부 압력의 증가는, 예를 들어, 압력 제어되는 밀봉형 레독스 전지와 관련하여 후술하는 다양한 효과로 인해 야기될 수 있다. 케이싱의 일부만이 유연한 물질로 형성되는 구성에서, 나머지 부분은 단단한 물질로 형성될 수 있다. 유연한 부분은, 예를 들어, 양극 및 음극 전해질 저장소(106A, 106B) 중 하나 또는 둘 모두가 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20%, 50% 초과의 각각의 부피 증가를 수용할 수 있도록 압력 증가에 응답하여 팽창하도록 구성될 수 있다. 케이싱(212)의 적합한 물질은 폴리염화비닐(PVC), 폴리에틸렌(PE), 폴리스티렌(PS), 폴리프로필렌(PP), 폴리카보네이트(PC), ABS, 강화 플라스틱 등을 포함할 수 있다.
이와 같이 구성된 밀봉형 레독스 전지(200A)는 다양한 기술적, 상업적 장점을 제공한다. 예를 들어, 레독스 전지 셀과 탱크 사이의 도관, 예를 들어, 파이프 조인트 및 전해질 순환용 펌프와 연관된 다양한 신뢰성 실패가 실질적으로 감소되거나 제거되어, 예정에 없던 수리뿐만 아니라 밀봉형 레독스 전지(200A)의 작동과 연관된 안전성 위험 및 운영 비용을 감소시킨다. 또한, RFB(100)(도 1)와 관련하여 전술한 바와 같이, 펌프를 이용하여 레독스 전지 셀과 탱크 사이의 전해질을 순환시킬 필요가 없어져 외적 효율성이 실질적으로 향상된다. 발명자들은 시스템의 크기에 따라 밀봉형 레독스 전지(200A)가 셀과 전해질 탱크 사이에 전해질을 순환시킬 필요가 없으므로 종래의 RFB와 비교하여 전력 또는 에너지 밀도를 최대 2배 내지 50배까지 향상시킬 수 있음을 깨달았다. 전술된 바와 같이, 전력 또는 에너지 밀도는 각각 에너지 저장 장치의 총 부피에 대한 저장 장치의 전력 또는 에너지 출력을 지칭한다. 따라서, 밀봉형 레독스 전지에서 전력 또는 에너지 밀도는 각각 밀봉형 레독스 전지의 총 부피에 대한 전력 또는 에너지 출력의 비율을 지칭한다. 또한, 별도의 탱크, 펌프 및 도관을 포함한 순환시스템을 생략하여 공간 효율성이 크게 향상된다. 또한, 시스템 복잡성이 크게 감소되어 밀봉형 레독스 전지(200A)의 상업적 구현에 대한 장벽을 크게 낮춘다. 예를 들어, 종래의 RFB와 달리, 밀봉형 레독스 전지(200A)는 모듈화된 구현을 위해 리튬 이온 전지와 유사한 팩으로 제조될 수 있으므로 종래의 RFB 설치에 필요할 수 있는 간섭적 구성이 필요 없이 자동화 및 대량 생산에 더 적합하게 된다.
아래에서는, 바나듐계 레독스 쌍(pair)을 기반으로 하는 밀봉형 바나듐(V) 레독스 전지의 예를 사용하여 밀봉형 레독스 전지(200A)의 작동 원리 및 양태를 설명한다. 그러나 구현예는 그와 같이 제한되지 않으며 본원에 설명된 원리는 다양한 다른 레독스 쌍에 따른 레독스 전지에 적용될 수 있음이 이해될 것이다.
구현예에 따른 밀봉형 V 레독스 전지에서, 제1 하프 셀(204A)의 제1 또는 양극 전해질에 용해된 제1 레독스 커플은 V4+/V5+ 레독스 커플일 수 있고, 제2 하프 셀(204B)의 제2 또는 음극 전해질에 용해된 제2 레독스 커플은 V2+/V3+ 레독스 커플일 수 있다. 충전 및 방전 동안의 레독스 반응은 다음 방정식을 사용하여 설명될 수 있으며, 여기서 →는 방전 반응의 방향을 나타내고 ←는 충전 반응의 방향을 나타낸다:
제2 하프 셀/음극: V2+ ←→ V3+ + e-
제1 하프 셀/양극: V5+ + e- ←→ V4+
전체 반응: V2+ + V5+ ←→ V3+ + V4+
충전 동안, 제1 하프 셀(204A)에서는 4가 바나듐 이온 V4+이 5가 바나듐 이온 V5+으로 산화되는 반면, 제2 하프 셀(204B)에서는 3가 이온 V3+이 2가 이온 V2+으로 환원된다. 방전 동안, 제1 하프 셀(204A)에서는 5가 바나듐 이온 V5+이 4가 바나듐 이온 V4+으로 환원되는 반면, 제2 하프 셀(204B)에서는 2가 이온 V2+이 3가 이온 V3+으로 산화된다. 이러한 레독스 반응이 일어나는 동안, 전자는 외부 회로를 통해 전달되고 특정 이온은 이온 교환막 또는 분리막(112)을 가로질러 확산되어 각각 양극 및 음극 하프 셀의 전기적 중성의 균형을 맞춘다.
구현예에 따른 밀봉형 레독스 전지(200A)에서 다른 레독스 반응이 구현될 수 있다. 다양한 구현예에 따라, 제1 레독스 커플 또는 제2 레독스 커플은 바나듐(V), 아연(Zn), 브롬(Br), 크롬(Cr), 망간(Mn), 티타늄(Ti), 철(Fe), 세륨(Ce) 및 코발트(Co) 중 하나 이상의 이온을 포함한다. 일부 구현예에서, 제1 및 제2 레독스 커플은 전술된 밀봉형 V 레독스 전지에서와 같이 동일한 금속의 이온을 포함한다. 이러한 구현예에서, 유리하게도 양극 및 음극 전해질의 혼합은 전해질의 교차 오염을 초래하지 않는다.
본원에 설명된 바와 같이, 레독스 전지의 전해질은 이온화를 통해 전류를 전도하는 용액이다. 전해질은 레독스 커플의 환원 및 산화된 형태를 지지하는 역할을 하며, 또한 레독스 커플의 산화 및 환원 동안 용액 내 이온 전하의 균형을 맞추기 위해 상응하는 양이온 및 음이온을 지지한다. 구현예에 따른 양극 및 음극 전해질은 산성 수용액을 포함한다. 밀봉형 V 레독스 전지의 경우 V 이온의 농도는 전해질의 에너지 밀도와 관련이 있다. 에너지 밀도가 높을수록 주어진 양의 에너지 및 전력 출력에 필요한 양극 및 음극 전해질 저장소(106A, 106B)의 부피를 감소시키는 데 유리하게 작용할 수 있다. 그러나 V 이온의 농도가 너무 높으면 V 이온의 안정성이 낮아질 수 있다. 따라서 주어진 적용에 대한 최적의 V 이온 범위가 있다. 예를 들어, 제1 및 제2 전해질 중 하나 또는 둘 모두에 용해된 바나듐 이온은 1.0 M, 1.5 M, 2.0 M, 2.5 M 또는 이들 값 중 임의의 값으로 정의된 범위의 값을 초과할 수 있다. 한편으로는, 1.0 M 미만의 V 이온 농도는 일부 적용에 대해 적합하지 않은 에너지 수준을 초래할 수 있다. 다른 한편으로는, 2.5 M 초과의 V 이온 농도는 예를 들어, 50℃초과의 작동 온도에서 V5+ 이온의 안정성을 낮출 수 있고, 예를 들어, -20℃미만의 작동 온도에서 전해질 내 V2+ 및 V3+ 이온의 용해도 한계에 도달할 수 있다.
유리하게는, 구현예에 따라 양극 및 음극 전해질은 동일한 용매(들) 및/또는 동일한 금속 이온을 포함할 수 있다. 이들 구현예에서, 이온 교환막 또는 분리막(112)을 통한 양극 및 음극 전해질의 혼합은 각각의 하프 셀의 오염을 유발하지 않는다. 또한, 양극 및 음극 전해질은 동일한 출발 용매(들) 및 용질(들)로부터 제조될 수 있다. 예를 들어, 일부 구현예에 따른 밀봉형 V 레독스 전지의 경우, 양극 및 음극 전해질 모두 황산을 포함한다. 전해질은, 예를 들어, 수용액의 0.1 M 내지 6 M MH2SO4에 0.1 M 내지 2.5 M VOSO4(황산바나딜)을 용해시킴으로써 제조되어 4가 바나듐 이온(V4+) 및/또는 3가 바나듐 이온(V3+)을 형성할 수 있다. 4가/3가 바나듐 이온은 전기화학적으로 산화되어 5가 바나듐 이온(V5+) 용액을 함유하는 양극 전해질(음극액)을 형성할 수 있다. 반대로, 4가/3가 바나듐 이온은 전기화학적으로 환원되어 2가 바나듐 이온(V2+)의 용액을 함유하는 음극 전해질(양극액)을 형성할 수 있다.
계속해서 도 2a를 참조하여, 다양한 구현예에서, 양극 및 음극 전해질 저장소(106A, 106B)에 각각 배치된 양극 및 음극은 탄소 또는 흑연 펠트, 탄소 천, 카본 블랙, 흑연 분말 및 그래핀 등과 같은 탄소계 물질을 포함한다. 탄소계 물질은 유리하게 상대적으로 높은 작동 범위, 우수한 안정성 및 높은 가역성을 제공한다. 전극은 상대적으로 높은 전기화학적 활성, 낮은 벌크 저항성 및 넓은 특이적 면적에 최적화되어 있다. 전극의 전기화학적 활성의 향상은 밀봉형 레독스 전지(200A)의 에너지 효율을 증가시킨다. 밀봉형 레독스 전지(200A)의 성능을 향상시키기 위해, 예를 들어, 금속 코팅, 표면 거칠기 증가, 또는 첨가제 도핑을 통해 전극 표면을 개질할 수 있다.
반응 공간을 정의하는 양극 및 음극 전해질 저장소(106A, 106B)는 이온 교환막 또는 분리막(112)과 존재하는 경우 제1 및 제2 분리판(208A, 208B) 각각의 사이, 또는 이온 교환막 또는 분리막(112)과 양극 및 음극 집전체(108A, 108B) 각각의 사이에 각각의 전극으로 부분적으로 또는 완전히 채워진다. 각각의 전극을 채운 후 양극 및 음극 전해질 저장소(106A, 106B)의 남은 공간은 이온 교환막 또는 분리막(112)과 존재하는 경우 제1 및 제2 분리판(208A, 208B) 사이, 또는 이온 교환막 또는 분리막(112)과 양극 및 음극 집전체(108A, 108B) 사이에 부분적으로 또는 완전히 각각의 전해질로 채워진다. 다양한 구현예에서, 의도적으로 천공되거나 다공성으로 만들어진 경우를 제외하고, 이온 교환막 또는 분리막(112)은 2개의 하프 셀을 실질적으로 분리하고 2개의 전해질과 레독스 커플의 혼합을 실질적으로 방지하는 동시에 H+와 같은 이온 전달을 허용하여 두 개의 하프 셀 사이의 전하 균형을 맞추어 전류가 흐르는 동안 회로를 완성한다. 이온 교환막 또는 분리막(112)은 음이온 교환막 또는 양이온 교환막일 수 있다.
다양하게 도시된 구현예는 특정 유형의 이온, 예를 들어, 양이온 또는 음이온에 선택적일 수 있는 이온 교환막 또는 분리막(112)을 포함하지만, 구현예는 이에 제한되지 않는다. 예를 들어, 다양한 구현예에서, 이온 교환막 또는 분리막(112)은 비선택적 막, 예를 들어, 다공성 막일 수 있다.
계속해서 도 2a를 참조하여, 일부 구현예에서, 출력 전력은 다수의 단일 레독스 전지 셀을 예를 들어, 직렬로 연결하여 셀 스택(cell stack)을 형성함으로써 규모화될 수 있다. 이러한 구성에서, 제1 및 제2 분리판(208A, 208B)은 단일 셀의 직렬 연결을 용이하게 할 수 있으며 인접한 분리판 사이의 집전체(108A, 108B)은 제거될 수 있다. 제1 및 제2 분리판(208A, 208B)은 셀 스택의 높은 전기 전도성 및 낮은 내부 저항을 제공하기 위해 흑연, 탄소, 탄소 플라스틱 등과 같은 적합한 물질로 형성될 수 있다. 또한, 제1 및 제2 분리판(208A, 208B)은 전극에 대해 가압될 때 가해지는 접촉 압력을 지지하여 전기 전도성을 증가시킨다. 또한, 제1 및 제2 분리판(208A, 208B)은 집전체(108A, 108B)의 부식 또는 산화를 방지하기 위해 높은 내산성을 갖도록 제공된다.
양극 및 음극 집전체(108A, 108B)는 구리 또는 알루미늄과 같은 전기 전도성이 높은 금속을 포함하며, 충전 및 방전 과정 동안 전류를 흐르게 하는 역할을 한다.
전술한 단일의 밀봉형 레독스 전지(200A)는 전기화학 반응의 특징인 출력 전압을 가지며, 예를 들어, 약 1.65V 이하의 추가 셀을 본원에 설명된 바와 같이 전기 직렬 또는 전기 병렬로 연결하여 각각 더 높은 전압 및 전류를 얻을 수 있다.
도 2b는 일부 구현예에 따른 적층 구성의 복수의 밀봉형 레독스 전지 셀을 포함하는 밀봉형 레독스 전지의 개략도이다. 도시된 밀봉형 레독스 전지(200B)는 적층 가능한 복수의 레독스 전지 셀(200B-1, 200B-2, …, 200B-n)을 포함하며, 여기서 각 셀은 밀봉형 레독스 전지(200A)와 유사한 방식으로 구성된다(도 2a). 복수의 레독스 전지 셀(200B-1, 200B-2, …, 200B-n) 각각은 양극 전해질 저장소(106A), 음극 전해질 저장소(106B) 및 이온 교환막 또는 분리막(112)을 포함한다. 도시된 구현예에서, 복수의 레독스 전지 셀(200B-1, 200B-2, …, 200B-n) 각각은 별도의 케이싱(212)으로 밀폐되어 있다. 복수의 레독스 전지 셀(200B-1, 200B-2, …, 200B-n)을 전기 직렬로 연결하여 출력 전압을 증가시킬 수 있다.
도 2c는 일부 다른 구현예에 따른 적층 구성된 복수의 밀봉형 레독스 전지 셀을 포함하는 밀봉형 레독스 전지의 개략도이다. 도시된 밀봉형 레독스 전지(200C)는 적층 가능한 복수의 레독스 전지 셀(200C-1, 200C-2, …, 200C-n)을 포함하며, 여기서 복수의 레독스 전지 셀(200C-1, 200C-2, …, 200C-n) 각각은 양극 전해질 저장소(106A), 음극 전해질 저장소(106B) 및 이온 교환막 또는 분리막(112)을 포함하는, 밀봉형 레독스 전지(200A)(도 2a)와 유사한 방식으로 구성된다. 그러나 밀봉형 레독스 전지(200B)(도 2b)와 달리, 도시된 구현예에서, 복수의 레독스 전지 셀(200C-1, 200C-2, …, 200C-n)은 공통 케이싱(222)으로 밀폐되어 있다. 밀봉형 레독스 전지(200B)(도 2b)와 유사한 방식으로, 복수의 레독스 전지 셀(200C-1, 200C-2, …, 200C-n)을 전기 직렬로 연결하여 출력 전압을 증가시킬 수 있다. 또한, 일부 구현예에서, 복수의 레독스 전지 셀(200C-1, 200C-2, … 200C-n)의 양극 전해질 저장소(106A)는 서로 유체 소통할 수 있고, 복수의 레독스 전지 셀(200C-1, 200C-2, …, 200C-n)의 음극 전해질 저장소(106B)는 서로 유체 소통할 수 있다. 밀봉형 레독스 전지(200C)는 파우치형 레독스 전지 또는 단단한 케이스형 레독스 전지로서 구성될 수 있다.
도 2d는 구현예에 따른 원통형으로 적층된 구성의 복수의 밀봉형 레독스 전지 셀을 포함하는 밀봉형 레독스 전지의 개략도이다. 도시된 밀봉형 레독스 전지(200D)는 원통형으로 적층 가능한 복수의 레독스 전지 셀(200D-1, 200D-2, …, 200D-n)을 포함하며, 여기서 복수의 레독스 전지 셀(200D-1, 200D-2, …, 200D-n) 각각은 양극 전해질 저장소(106A), 음극 전해질 저장소(106B) 및 이온 교환막 또는 분리막(112)을 포함하는, 밀봉형 레독스 전지(200A)(도 2A)와 유사한 방식으로 구성된다. 복수의 레독스 전지 셀(200D-1, 200D-2, …, 200D-n)은 밀봉형 레독스 전지(200B)(도 2b)에 대해 전술한 것과 유사한 방식으로 개별적으로 케이싱 내에 밀폐될 수 있다. 대안적으로, 복수의 레독스 전지 셀(200D-1, 200D-2, …, 200D-n)은 밀봉형 레독스 전지(200C)(도 2c)에 대해 전술한 것과 유사한 방식으로 공통 케이싱(222)에 의해 밀폐될 수 있다. 밀봉형 레독스 전지(200B)(도 2b)와 유사한 방식으로, 복수의 레독스 전지 셀(200D-1, 200D-2, …, 200D-n)을 전기 직렬로 연결하여 출력 전압을 증가시킬 수 있다. 또한, 일부 구현예에서, 복수의 레독스 전지 셀(200D-1, 200D-2, …, 200D-n)의 양극 전해질 저장소(106A)는 서로 유체 소통할 수 있고, 복수의 레독스 전지 셀(200D-1, 200D-2, …, 200D-n)의 음극 전해질 저장소(106B)는 서로 유체 소통할 수 있다.
도 2b-2c와 관련하여 전술한 각각의 적층 구성의 복수의 레독스 전지 셀 중 일부 또는 전부는 셀의 일부 또는 전부의 반대 극성의 집전체를 적절하게 전기적으로 연결함으로써 전기 직렬로 연결되거나, 셀의 일부 또는 전부의 동일한 극성의 집전체를 적절하게 전기적으로 연결함으로써 전기 병렬로 연결될 수 있음이 이해될 것이다.
종래의 이차전지와 비교한 밀봉형 레독스 전지의 차별점
종래의 RFB에 대한 구현예에 따른 밀봉형 레독스 전지의 차별점 및 장점은 종래의 RFB의 느린 상업적 구현에 기여한 전해질 탱크, 펌핑 시스템 및 도관 네트워크가 생략된 것을 포함하는 것으로 전술되었다. 별도의 전해질 탱크가 존재할 수 없는 반면, 밀봉형 레독스 전지(200A-200D)(도 2a-2d)는 종래의 RFB에서 이용할 수 있는 일부의 고유한 설계 유연성을 유지한다. 예를 들어, 액체의 본질적인 순응성으로 인해 셀 기하학의 설계는 종래의 이차전지에 비해 실질적으로 더 유연하다. 또한, 전력 및 에너지 저장 용량은 예를 들어, 전극 표면적에 대한 전해질 부피의 비율을 조정함으로써 제한된 범위로 독립적으로 디커플링(decoupling)되고 규모화될 수 있다. 비율은 전술된 바와 같이 예를 들어, 양극 및 음극 전해질 저장소(106A, 106B)의 두께를 사용하여 조정될 수 있다. 다른 한편으로는, 구현예에 따른 밀봉형 레독스 전지는 또한 완전히 밀봉되어 모듈화 구현이 가능하다는 점에서 종래의 전지의 주요 장점을 공유한다. 구현예에 따른 밀봉형 레독스 전지 및 종래의 이차전지, 예를 들어, LIB는 유사한 용어를 사용하여 지칭된 구성요소를 가질 수 있지만, 구현예에 따른 밀봉형 레독스 전지의 구성요소 및 그 작동 원리는 본원에 설명된 종래의 이차전지와 구별될 수 있음이 이해될 것이다.
이하에서는, 구현예에 따른 밀봉형 레독스 전지와 LIB 사이를 비교하게 되지만, 비교는 종래의 다른 이차전지에도 적용 가능함이 이해될 것이다.
첫째, 구현예에 따른 밀봉형 레독스 전지에서 전해질의 구조, 기능적 역할 및 작동 원리는 종래의 이차전지, 예를 들어, LIB와 구별될 수 있다. 작동 시 LIB에서 전해질은 자체적으로 에너지를 저장하지 않으며 충전/방전 과정에서 전기화학 반응에 참여하지 않는다. 대신에, LIB에서 전해질은 주로 충전/방전 과정 동안 리튬 이온이 양극과 음극 사이에 전달될 수 있는 경로를 제공하는 역할을 한다. 따라서, 전해질의 이동은 실질적으로 분리막에 의해 제한되지 않는다. 대조적으로, 구현예에 따른 밀봉형 레독스 전지(200A)에서 전기화학적 에너지는 용해된 활성 물질의 형태, 예를 들어, 충전/방전 과정 동안 전기화학 반응을 일으키는 양극 및 음극 전해질에 용해된 각각의 레독스 쌍으로 전해질에 저장된다. 따라서, 전해질은 구현예에 따른 밀봉형 레독스 전지에서 에너지를 저장하는 매개체라고 할 수 있다. 전술된 바와 같이, V 레독스 전지의 예에서 양극 및 음극 전해질에 용해된 V 이온 종(V ion species)의 산화 상태는 각각의 하프 반응에 의해 변화된다. 따라서 밀봉형 레독스 전지 내 양극 및 음극 전해질의 화학적 조성은 LIB의 전해질과 다르다. 또한 LIB와 달리, 구현예에 따른 밀봉형 레독스 전지에서는 양극 전해질 및 음극 전해질의 화학적 조성의 차이로 인한 기전력(electromotive force)이 에너지 저장으로 이어지기 때문에, 양극 및 음극 전해질이 혼합되면 저장된 에너지의 손실이 발생한다.
둘째, 구현예에 따른 밀봉형 레독스 전지에서 전극의 구조, 기능적 역할 및 작동 원리는 종래의 이차전지, 예를 들어, LIB와 구별될 수 있다. LIB에서는 전극에 포함된 활성 물질이 직접적으로 전기화학 반응에 참여한다. 작동 시 LIB에서 리튬 이온은 양극의 활성 물질과 음극의 활성 물질 사이를 이동하면서 전기화학적 평형을 이루고, 전극 자체가 에너지 저장의 주요 매개체 역할을 한다. 대조적으로, 구현예에 따른 밀봉형 레독스 전지의 전극은 매우 다른 역할을 한다. 밀봉형 레독스 전지의 양극은 제1 레독스 하프 반응에 참여하지 않고, 밀봉형 레독스 전지의 음극은 제2 레독스 하프 반응에 참여하지 않는다. 본원에 설명된 바와 같이, 레독스 하프 반응에 참여하지 않는 전극은 촉매와 유사한 방식으로 전기화학 반응을 위한 물리적 부위를 제공하는 전극의 기능을 배제하지 않는다. 그러나 전극 자체는 전기화학 반응에 관여하지 않으며, 레독스 이온은 레독스 전지의 충전 및 방전 동안 양극과 음극 사이를 이동하지 않는다. 조성에 따라, 촉매로서 작용하는 작용기가 표면에 존재할 수 있다. 그러나 이는 LIB의 경우와 같이 전기화학 반응에 활성으로 참여하는 전극과 구별될 수 있다. 오히려, 전극은 실질적으로 전기화학 반응에 의해 생성된 전자를 수동적으로 전달한다.
셋째, 구현예에 따른 밀봉형 레독스 전지에서 이온 교환막의 구조, 기능적 역할 및 작동 원리는 종래의 이차전지, 예를 들어, LIB에서의 분리막과 구별될 수 있다. LIB에서는 전기화학 반응이 일어나는 전극의 활성 물질은 일반적으로 고체 상태이며, 양극과 음극 사이에 배치되는 분리막은 주로 그 사이의 전기적 단락(electrical short)을 방지하는 역할을 한다. 따라서, 분리막은 양극과 음극 사이의 전기적 접촉을 방지하는 역할을 하지만, LIB에서 분리막은 특별히 이를 통한 리튬 이온의 전달을 제한하거나 그 사이의 전기화학 반응을 제한하도록 설계되어 있지 않다. 즉, LIB에서 분리막은 주로 충전 및 방전을 위한 전기화학 반응의 일부로서 이온의 이동을 방해하지 않으면서 양극과 음극을 서로에게서 전기적으로 절연하는 역할을 한다. 따라서 LIB용 분리막은 전극 사이에서 리튬 이온을 자유롭게 전달할 수 있도록 설계된다. 대조적으로, 구현예에 따른 밀봉형 레독스 전지에서 레독스 활성 종은 전해질에 용해되고, 이온 교환막 또는 분리막(112)(도 2a)은 양극 및 음극 전해질을 전기적으로 분리하고 서로의 혼합을 방지하는 역할을 한다.
일반적으로, 이온 교환막 또는 분리막(112)은 두 하프 셀 사이의 전하 균형을 맞추기 위해 양이온 또는 음이온이 그 사이로 전달되는 선택적 투과성 막을 포함한다. 예를 들어, 이온 교환막은 이를 통해 양이온 또는 음이온을 선택적으로 통과시키도록 구성될 수 있다. 따라서, 구현예에 따른 밀봉형 레독스 전지에서 에너지를 저장하는 전해질은 액체이기 때문에 이온 교환막 또는 분리막(112)이 없으면 양극 및 음극의 서로간 접촉 여부에 관계없이 양극 및 음극 전해질의 혼합에 의해 전기적 단락이 발생한다.
따라서, 구현예에 따른 밀봉형 레독스 전지에서, 제1 및 제2 레독스 하프 반응은 양극 전해질 저장소(106A) 및 음극 전해질 저장소(106B)를 분리하는 이온 교환막 또는 분리막(112)을 가로질러 제1 레독스 커플 또는 제2 레독스 커플의 실질적인 이온 전달 없이 일어난다.
본원에 설명된 바와 같이, 실질적으로 레독스 커플의 이온을 전달하지 않는 이온 교환막 또는 분리막(112)은 실질적으로 양극과 음극 전해질 저장소(106A, 106B)(도 2a) 사이의 전해질의 교차를 방지하는 역할을 하는 이온 교환막 또는 분리막(112)을 의미한다. 따라서, 이온 교환막 또는 분리막(112)의 기본 물질은 바람직하게는 전해질에서 레독스 종, 예를 들어, V 레독스 전지에서 V 이온의 이동을 차단하면서 다른 이온, 예를 들어, 하프 셀 사이의 전하 균형을 위한 V 레독스 전지에서 H+ 이온의 이동을 선택적으로 허용하는 막일 수 있다. 그러나, 실질적으로 레독스 커플의 이온을 전달하지 않는 이온 교환막 또는 분리막(112)은 내부 압력 형성을 완화하기 위한 의도되지 않은 교차 또는 제한적으로 의도된 혼합을 여전히 허용할 수 있다.
이차전지용 분리막 및 이의 제조방법
전술된 바와 같이, 이온 교환막 또는 분리막은 다른 기능 중에서 레독스 활성 이온, 예를 들어, 바나듐 이온의 통과를 실질적으로 억제하면서 양극과 음극 전해질 저장소 사이에서 지지 전해질의 이온을 전도하는 기능을 수행한다. 레독스 전지 셀의 성능을 추가로 향상시키기 위해, 다른 개선사항 중에서 더 높은 전류 밀도에서 작동이 가능하도록 이온 저항성을 낮추는 것, 장벽 특성을 개선하는 것, 용량 불균형을 최소화하기 위해 순 전해질 전달의 균형을 맞추는 것, 및 막 또는 분리막 물질의 화학적 안정성을 향상시키는 것 중 하나 이상을 달성하기 위해 막 또는 분리막의 추가적인 개선과 효율적인 제조방법을 개발하는 것이 필요하다.
전해액을 수계 전해질로 사용하는 이차전지에서 핵심이 되는 소재 중 하나인 분리막은, 이온 교환막으로서 반응을 매개하며 음극 및 양극을 분리시켜 션트(shunt)을 방지하는 기능을 수행한다. 분리막에 요구되는 조건은 이온의 전도성은 높으면서도 이온의 선택성이 요구된다. 또한, 전해액이 순환하는 압력을 견딜 수 있는 우수한 기계적 물성, 강산 환경, 전해질의 레독스 커플의 산화력, 수계 전해질 내에서 생성되는 라디칼 등에 대한 높은 화학적 안정성, 공정·비용상 높은 효율성 등이 요구된다.
이와 같은 분리막은 이온 전도성을 가지는 고분자로 형성되거나, 기재(substrate)에 이온 전도성 고분자를 코팅하여 제조할 수 있다.
본 발명의 다양한 구현예에 따르면, 이온 교환막 또는 분리막(예를 들어, 도 2a의 이온 교환막 또는 분리막(112))은 이온전도성 수지를 포함하고 상업적으로 이용할 수 있는 다양한 막에 비해 다른 장점 중 우수한 내화학성, 내열성 및 기계적 강도를 제공하도록 배열된 구조 및 조성을 갖는다. 특히, 본원에 개시된 이온 교환막 또는 분리막의 다양한 구현예는 특히 밀봉형 레독스 전지(예를 들어, 도 2a의 이온 교환막 또는 분리막(112))의 일부로서 집적될 때 효과적인 것이 이해될 것이다. 이는 무엇보다도 밀봉형 레독스 전지는 기존의 막이 효과적이고 안정적으로 견디지 못할 수도 있는, 더 높은 내부 압력을 포함하는 더 가혹한 조건에 노출될 수 있기 때문이다. 그러나, 분리막의 구현예는 밀봉형 레독스 전지에서 사용하는 것에 제한되지 않으며, 본원에 개시된 이온 교환막 또는 분리막은 유리하게는 레독스 흐름 전지, 예를 들어, 도 1과 관련하여 전술한 레독스 흐름 전지(100)뿐만 아니라 리튬 이온 전지를 포함하는 임의의 적합한 이차전지에서 사용하도록 집적될 수 있음이 이해될 것이다.
본 발명에서는 이온 전도성 수지를 포함하는 용액을 다공성 막에 침지시킨 후 건조하여 제막하는 공정을 적용하는 방법을 적용하였으며, 상기 방법은 기재 필름을 사용하는 경우에 비하여 기재 필름 제거 공정이 없고, 건조 공정 시간이 단축된다는 이점이 있으며, 나아가 기재 필름과 분리막 사이에 생성되는 공기층 형성을 억제하여 우수한 분리막을 제조할 수 있다는 장점들이 존재한다.
한편, 이온전도성 수지를 포함하는 분리막을 친수성 전해액을 사용하는 수계 이차전지에 적용하는 경우에 있어서, 다공성 막이 소수성을 나타내고 전극 조립체에 사용되는 전해액이 친수성을 나타내는 경우, 친수성인 전해액이 소수성인 분리막에 미접촉되는 부분이 존재하게 되어 이차전지의 전극 충전 및 방전의 결함이 발생하는 문제점이 발생할 수 있다.
상기 문제점을 해결하기 위하여, 본 발명에 따른 이차전지용 분리막의 제조 방법은, 이온 전도성 수지 및 계면활성제를 유기용매에 용해시켜 혼합 용액을 형성하는 단계; 및 혼합 용액으로 다공성 막의 적어도 한 면을 함침시키는 단계를 포함한다. 이에 따르면, 계면활성제를 사용하지 않는 경우, 계면활성제를 미리 다공성 막에 적용하는 경우, 분리막을 모두 제조한 후 계면활성제를 처리하는 경우 등에 비하여, 다공성 막을 가장 효율적이고 균일하게 친수화시킬 수 있어 이차전지의 전극 충전 및 방전의 결함 문제를 해소할 수 있으며, 후속 건조 단계에서 건조 속도가 증가되어 과정 효율성을 증가시킬 수 있다.
본 발명의 일 구현예에 따르면, 유기용매로는 N,N-디메틸아세트아미드(DMAc), 디메틸포름아미드(DMF), 디메틸 설폭사이드(DMSO) 및 N-메틸-2-피롤리돈(NMP) 중 적어도 하나가 다음과 같이 사용될 수 있다. 바람직하게는, 상기 유기용매는 아미드계 유기용매이다. 예를 들어, 아미드계 유기용매로는 N,N-디메틸아세트아미드(DMAc) 및 디메틸포름아미드(DMF) 중 적어도 하나를 사용할 수 있으며, 바람직하게는 N,N-디메틸아세트아미드를 사용한다.
본 발명의 일 구현예에 따르면, 이온 전도성 고분자로서 불소계 고분자 또는 탄화수소계 고분자를 선택할 수 있다.
예를 들어, 불소계 고분자로서 술폰산기를 포함하는 이온 전도성 고분자는 과불화술폰산(perfluorosulfonic acid), 폴리스티렌술 포닉산(poly(styrene sulfonic acid, PSSA), 술폰화 폴리에테르에테르케톤(sulfonated poly(ether ether ketones), SPEEK), 술폰화 폴리에테르술폰(sulfonated poly(ether sulfone), SPES), 술폰화 폴리아릴에테르케톤(sulfonated poly(aryl ether ketone), SPAEK), 술폰화 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화 폴리페닐렌옥사이드(sulfonated poly(phenylen oxide), SPPO), 및 술폰화 폴리이미드(sulfonated polyimide, SPI) 중 어느 하나 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 탄화수소계 고분자는 폴리이미드(polyimide)계 고분자, 폴리에테르에테르케톤(polyetheretherketone)계 고분자, 폴리에테르술폰(polyethersulfone)계 고분자, 폴리벤지미다졸(polybenzimidazole; PBI)계 고분자 등을 포함할 수 있다.
본 발명의 폴리벤즈이미다졸계 고분자는 폴리벤즈이미다졸의 중합체로서, 폴리벤즈이미다졸의 전구체(폴리벤즈이미다졸 중합체를 형성하기 위한 반복 유닛 또는 단량체를 의미함)의 혼합물 또는 코폴리머(co-polymer)를 의미한다. 상기 폴리벤즈이미다졸의 전구체는 ab-PBI (Poly(2,5-benzimidazole)), oPBI (Poly[2,2'-(4,4'-oxybis(1,4-phenylene))-5,5'-bibenzimidazole), m-PBI (meta-polybenzimidazole), pPBI (para-polybenzimidazole), s-PBI (sulfonated polybenzimidazole), f-PBI (fluorine-containing polybenzimidazole), 2OH-PBI (Dihydroxy polybenzimidazole), PIPBI (Phenylindane-polybenzimidazole), PBI-OO (poly[(1-(4,4'-diphenylether)-5-oxybenzimidazole)-benzimidazole]) 등일 수 있으나, 이에 반드시 제한되는 것은 아니다.
본 발명에서는 점점 가혹해지는 이차전지의 구동 환경에서도 우수한 기계적 강도, 내열성, 내화학성 및 내구성을 나타내기 위하여 폴리벤지미다졸계 고분자를 포함하는 분리막을 사용할 수 있다.
본 발명의 일 구현예에 따르면, 다공성 막으로서 폴리올레핀계 재료를 1종 이상 사용하여 제조한 것일 수 있다. 예를 들어, 본 발명의 다공성 막은 폴리프로필렌(PP), 폴리에틸렌(PE) 또는 이들의 조합을 포함하는 재료로 제작된 것일 수 있다.
본 발명의 일 구현예에 따르면, 상기 혼합 용액에 점도 조절 용매를 더 추가함으로써, 용액의 점도를 낮출 수 있다. 본 발명과 같이 용액을 이용하는 제막 공정에서 용액의 점도가 높으면 제막시 유동성이 낮아지고 얇은 두께로 제막하기 어려워지는 등의 정밀성 제어가 어려워진다. 따라서, 이온 전도성 수지를 용해하기 위한 유 용매 외에, 점도 조절 용매를 더 추가함으로써 제막 성능 및 정밀성을 높일 수 있다.
따라서, 상기 혼합 용액 100 중량%에 대하여, 점도 조절 용매를 예를 들어 10 중량% 내지 25 중량%로 포함할 수 있고, 예를 들어 12 중량% 내지 20 중량%로 포함할 수 있고, 예를 들어 15 중량% 내지 18 중량%로 포함할 수 있으나, 이에 반드시 제한되는 것은 아니다.
본 발명의 일 구현예에 따르면, 점도 조절 용매는 케톤류 용매 또는 알코올계 용매 중 1종 이상일 수 있고, 보다 구체적인 예로서 케톤류 용매는 아세톤, 메틸에틸케톤, 메틸이소부틸케톤 등일 수 있고, 알코올계 용매는 메탄올, 에탄올, 이소프로판올, 부탄올, 이소부탄올 등일 수 있다.
본 발명의 일 구현예에 따른 계면활성제는, 다공성 막을 효과적으로 친수화시킬 수 있으므로, 사용되는 이온 전도성 수지, 다공성 막 및 전해질 용액의 유형에 따라, 실리콘계 계면활성제, 이온성 계면활성제, 비이온성 계면활성제, 비이온성 계면활성제, 유기 계면활성제 및 이들의 조합 등이 사용될 수 있다. 본 발명의 계면활성제의 구체적인 예로는, 비이온성 계면활성제로서 Triton X-100®, Tween®, 음이온성 계면활성제로서 SDS(Sodium Dodecyl Sulfate), SDBS(Dodecylbenzenesulphonate), 양이온성 계면활성제로서 DTAB(dodecyltrimethylammonium bromide), TTAB(tetradecyltrimethylammonium bromide), CTAB(Cetyltrimethylammonium Bromide), DPC(dodecylpyridinium chloride), 유기 계면활성제로서 PVP(Poly(vinylpolypyrrolidone)), 실리콘계 유기 계면활성제로서 Silwet® 등이 있으나, 이에 반드시 제한되는 것은 아니다.
상기 계면활성제의 함량은 이온전도성 수지를 포함하는 용액을 100 중량%로 할 때 예를 들어 0.1 중량% 초과 및 5.0 중량% 미만으로 포함할 수 있고, 예를 들어 0.2 중량% 이상 및 4.0 중량% 이하로 포함할 수 있고, 예를 들어 0.5 중량% 이상 및 2.0 중량% 이하로 포함할 수 있고, 예를 들어 0.5 중량% 이상 및 1.0 중량% 이하로 포함할 수 있으나, 이에 반드시 한정되는 것은 아니며, 사용하는 이온 전도성 수지 및 계면활성제의 종류에 따라 적절히 조절될 수 있다.
본 발명의 특이적인 예에 따라, 폴리벤즈이미다졸이 이온 전도성 수지로서 사용되고 폴리에틸렌 필름이 다공성 필름으로서 선택되는 경우, 실리콘계 비이온성 유기 계면활성제가 선택될 수 있다. 본 발명예에 따른 이차전지용 분리막의 제조 방법은, 다공성 막의 표면이 다른 과정을 이용하여 친수화되는 경우에 발생하는 것으로 알려진 문제점인, 실질적으로 제조 원가 상승, 효율성 감소 및/또는 생성되는 분리막의 성능 감소 없이 수행될 수 있다.
또한, 본 발명의 이차전지용 분리막을 사용한 전극 조립체는 전해질과의 접촉성이 향상되어, 결과적으로 전극의 충전 및 방전 성능을 향상시켜 이차전지의 성능을 향상시킬 수 있다.
이하 본 발명의 실시예를 설명한다. 그러나, 하기 실시예는 본 발명의 일 예시일뿐 이에 한정되는 것은 아니다.
< 제조예 >
실시예 1
다이메틸 아세트아마이드(DMAC)에 이온 전도성 수지로서 m-PBI (poly[2,2-(m-phenylene)-5,5bibenzimidazole])및 계면활성제로서 “™Hydrostable 212 Silicone Surfactant(Momentive 제조)”을 투입한 후, 용해시 160℃의 온도 및 상압 조건에서 24 시간 동안 교반하면서 용해시켜 PBI 농도 12 중량% 및 계면활성제의 농도 5 중량%의 실시예 1의 PBI 용액을 제조하였다. 그런 다음, 상기 실시예 1의 PBI 용액에 폴리에틸렌(PE) 필름(두께: 20㎛)을 함침시킨 후, 50℃의 온도로 2분간 열풍 건조시켜, 27㎛ 두께의 분리막을 수득하였다.
비교예 1
상기 실시예 1과 동일하게 분리막을 제조하되, 계면활성제를 첨가하지 않은 채로 PBI 용액을 제조하여 분리막을 수득한 점에서만 차이가 있다.
비교예 2
DMAc 용매에 계면활성제를 “™Hydrostable 212 Silicone Surfactant(Momentive 제조)”를 혼합하여 계면활성제 용액(Silwet 농도는 5 중량%)를 제조한 후 상기 비교예 1에서 제조된 분리막에 도포하여 처리한 후, 50℃의 온도에서 건조시켜 27㎛ 두께의 분리막을 수득하였다.
비교예 3
폴리에틸렌(PE) 필름(두께: 20㎛)을 준비하여 어떠한 처리도 하지 않았으며 이를 비교예 3의 분리막으로 사용하였다.
비교예 4
폴리에틸렌(PE) 필름(두께: 20㎛)에 DMAc 용매에 계면활성제를 “™Hydrostable 212 Silicone Surfactant(Momentive 제조)”를 혼합하여 계면활성제 용액(Silwet 농도는 5 중량%)을 도포한 다음, 50℃의 온도로 2분간 열풍 건조시켜, 20㎛ 두께의 분리막을 수득하였다.
< 전지 성능 평가 >
탄소 집전체(흑연복합재, 두께: 0.2mm) 및 금속 집전체(알루미늄박, 두께: 0.2mm)를 적층하여 집전체를 2개 제조하였으며, 각각 양극 집전체 및 음극 집전체로서 사용하고, 상기 실시예 1 및 비교예 1 내지 4에서 제조한 분리막을 사용하여 형성한 양극 전해액 수용부 및 음극 전해액 수용부를 포함하는 단위 셀을 각각 제조하였다.
상기 양극 전해액 수용부 및 음극 전해액 수용부 각각에 1.7M 농도의 V3.5+ 전해액(스탠다드에너지 제조)을 공급하였으며, 충전시 1 C 의 전류로 전압이 1.55 V까지 정전류로 충전하고, 방전시 1 C 의 전류로 전압이 1.10 V 에 이를 때까지 정전류로 방전하여 구동하면서, 하기와 같이 식 1에 따른 에너지 효율(EE, Energy Efficiency)(%)를 측정하였고 이를 하기 표 1에 나타냈다.
[식 1] 에너지 효율 (Energy Efficiency) = (방전에너지 (Wh) / 충전에너지 (Wh)) ×100 (%)
에너지 효율 (EE)
(%)
제막 처리 횟수
(회)
실시예 1 90.6 1
비교예 1 82.3 1
비교예 2 89.7 2
비교예 3 - -
비교예 4 37.2 1
상기 표 1에서 알 수 있는 것처럼, 실시예 1는 PBI 용액에 계면활성제를 혼합한 후에 PE 필름에 함침하여 분리막을 제조한 것에 특징이 있는데, 이는 계면활성제를 혼합하지 않은 경우인 비교예 1에 비하여 에너지 효율이 유의미하게 향상된 것으로 확인되었다.비교예 2는 비교예 1에서와 동일하게 분리막을 제조한 다음, 추가로 PBI와 PE 표면에 계면활성제 용액을 도포했다는 점에서 실시예 1과 차이가 있는데, 제막 처리 횟수를 2회로 증가시켜야 했다는 점에서 공정 효율성이 감소되었으며, 에너지 효율(EE)도 실시예 1에 비하여 감소했음을 확인할 수 있었다.
한편, 비교예 3은 PE 필름만을 분리막으로 사용한 결과 충전 불가로 전지의 에너지 효율의 평가 자체가 불가능하였고, 비교예 4는 PBI 없이 계면활성제로만 처리하였는데, 실시예 1에 비하여 에너지 효율이 현저히 감소하였다.
< 계면활성제 함량에 대한 실험 >
상기 실시예 1과 동일하게 분리막을 제조하되, 하기 표 2와 같이 계면활성제의 함량(농도)를 달리하여 분리막을 제조하였고, 상기와 같이 에너지 효율 EE, Energy Efficiency)(%)을 측정하여 하기 표 2에 나타냈다.
No. 계면활성제 농도
(중량%)
Energy Efficiency (EE)
(%)
1 0 82.3
2 0.1 84.9
3 0.2 89.2
4 0.5 90.6
5 1.0 90.5
6 2.0 90.4
7 3.0 89.7
8 4.0 89.4
9 5.0 88.6
상기 표 2의 "No.1"은 비교예 1과 동일하고, "No.4"는 실시예 1과 동일한 것으로서, 에너지 효율이 가장 높은 것을 알 수 있다. 계면활성제의 농도가 변함에 따라 에너지 효율의 값이 달라졌으며, 계면활성제 농도가 0.1 중량% 이하가 되거나 5.0 중량%가 되면 에너지 효율이 매우 감소하였다. 또한, 상기 표 2에서 알 수 있는 것처럼, 0.1 중량% 초과 및 5.0 중량% 미만에서 에너지 효율이 좋게 나타났고, 0.2 중량% 내지 4.0 중량%에서 에너지 효율이 더 우수하였고, 0.5 중량% 내지 2.0 중량%에서 에너지 효율이 더욱 더 우수하였고, 0.5 중량% 내지 1.0 중량%에서 에너지 효율이 가장 우수한 것으로 나타났다.
상기와 같이 특정 실시예가 설명되었지만, 이들 실시예는 단지 예로서 제시되었으며 개시내용의 범위를 제한하려는 의도가 아니다. 실제로, 본원에 설명된 신규의 장치, 방법 및 시스템은 다양한 다른 형태로 구현될 수 있으며; 또한, 본 개시내용의 정신에서 벗어나지 않으면서 본원에 설명된 방법 및 시스템의 형태에 대한 다양한 생략, 치환 및 변경이 이루어질 수 있다. 전술된 상기 실시예의 요소 및 행위의 임의의 적합한 조합이 결합되어 추가 실시예를 도출할 수 있다. 전술된 다양한 특징 및 과정은 서로 독립적으로 구현될 수 있거나 다양한 방식으로 결합될 수 있다. 본 개시내용의 특징의 모든 가능한 조합 및 하위조합은 본 개시내용의 범위 내에 속하도록 의도된다.

Claims (14)

  1. 이온 전도성 수지 및 계면활성제를 유기용매에 용해시켜 혼합 용액을 형성하는 단계; 및
    상기 혼합 용액으로 다공성 막의 적어도 한 면을 함침시키는 단계;
    를 포함하는 이차전지용 분리막의 제조 방법.
  2. 제1항에 있어서,
    상기 혼합 용액으로 함침시키지 않은 다공성 막은 소수성을 나타내고,
    상기 함침 시키는 단계에 의하여 다공성 막을 친수화시키는 것인, 이차전지용 분리막의 제조 방법.
  3. 제1항에 있어서,
    상기 혼합 용액 100 중량%에 대하여, 상기 계면활성제는 0.1 중량% 초과 및 5.0 중량% 미만으로 포함하는, 이차전지용 분리막의 제조 방법.
  4. 제1항에 있어서,
    상기 계면활성제는 이온성 계면활성제, 비이온성 계면활성제 및 유기 계면활성제 중 하나 이상을 포함하는, 이차전지용 분리막의 제조 방법.
  5. 제4항에 있어서,
    상기 유기 계면활성제는 실리콘계 유기 계면활성제를 포함하는, 이차전지용 분리막의 제조방법.
  6. 제1항에 있어서,
    상기 이온 전도성 수지는 폴리벤즈이미다졸계 고분자를 포함하는, 이차전지용 분리막의 제조 방법.
  7. 제1항에 있어서,
    상기 다공성 막은 폴리프로필렌, 폴리에틸렌 또는 이들의 조합을 포함하는 재료로 제작되는 것인, 이차전지용 분리막의 제조 방법.
  8. 제1항에 있어서,
    상기 혼합 용액 100 중량%에 대하여, 점도 조절 용매를 10 중량% 내지 25 중량%로 포함하는, 이차전지용 분리막의 제조 방법.
  9. 제8항에 있어서,
    상기 점도 조절 용매는, 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 메탄올, 에탄올, 이소프로판올, 부탄올 및 이소부탄올 중 1종 이상을 포함하는, 이차전지용 분리막의 제조 방법.
  10. 제1항에 있어서,
    상기 함침시키는 단계 이후 건조시키는 단계를 더 포함하는, 이차전지용 분리막의 제조 방법.
  11. 제1항에 있어서,
    상기 이차전지는 수계 전해질을 액체 전극으로 사용하는 것인, 이차전지용 분리막의 제조 방법.
  12. 제11항에 있어서,
    상기 수계 전해질은 바나듐 이온 및 산성 수용액을 포함하는 것인, 이차전지용 분리막의 제조 방법.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 이차전지용 분리막의 제조 방법에 따라 제조된, 이차전지용 분리막.
  14. 제1항 내지 제12항 중 어느 한 항에 따른 이차전지용 분리막의 제조 방법에 따라 제조된, 이차전지용 분리막을 포함하는 이차전지.
PCT/KR2023/019978 2022-12-07 2023-12-06 이차전지용 분리막 및 이의 제조 방법 WO2024123069A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202263386463P 2022-12-07 2022-12-07
US63/386,463 2022-12-07
US18/526,229 US20240194901A1 (en) 2022-12-07 2023-12-01 Separator for secondary battery and method of fabricating same
US18/526,229 2023-12-01
KR1020230174823A KR20240085195A (ko) 2022-12-07 2023-12-05 이차전지용 분리막 및 이의 제조 방법
KR10-2023-0174823 2023-12-05

Publications (1)

Publication Number Publication Date
WO2024123069A1 true WO2024123069A1 (ko) 2024-06-13

Family

ID=91379816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/019978 WO2024123069A1 (ko) 2022-12-07 2023-12-06 이차전지용 분리막 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2024123069A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073894A (ko) * 2008-12-23 2010-07-01 주식회사 효성 이차전지용 다공성 분리막의 제조방법
KR20140070199A (ko) * 2012-11-30 2014-06-10 주식회사 엘지화학 다공성 분리막 및 그의 제조방법
KR101670200B1 (ko) * 2010-08-02 2016-10-27 셀가드 엘엘씨 높은 용융 온도 미세다공성 리튬-이온 2차 전지 세퍼레이터 및 제조방법 및 용도
KR20190085288A (ko) * 2018-01-10 2019-07-18 주식회사 엘지화학 강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지
KR20210117633A (ko) * 2020-03-19 2021-09-29 주식회사 엘지화학 전기화학소자용 분리막 부재 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073894A (ko) * 2008-12-23 2010-07-01 주식회사 효성 이차전지용 다공성 분리막의 제조방법
KR101670200B1 (ko) * 2010-08-02 2016-10-27 셀가드 엘엘씨 높은 용융 온도 미세다공성 리튬-이온 2차 전지 세퍼레이터 및 제조방법 및 용도
KR20140070199A (ko) * 2012-11-30 2014-06-10 주식회사 엘지화학 다공성 분리막 및 그의 제조방법
KR20190085288A (ko) * 2018-01-10 2019-07-18 주식회사 엘지화학 강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지
KR20210117633A (ko) * 2020-03-19 2021-09-29 주식회사 엘지화학 전기화학소자용 분리막 부재 제조 방법

Similar Documents

Publication Publication Date Title
KR101265201B1 (ko) 레독스 플로우 전지용 격리막 및 이를 포함하는 레독스 플로우 전지
JP5760262B2 (ja) レドックスセルおよび電池の改良されたパーフルオロ膜および改良された電解質
US5863672A (en) Polymer electrolyte membrane fuel cell
CN101383403B (zh) 一种复合离子交换膜及其制备
US5783324A (en) Fuel cell including a single sheet of a polymer electrolyte membrane (PEM), the PEM being divided into regions of varying electrical and ionic conductivity
KR100684734B1 (ko) 연료 전지용 고분자 전해질 막, 이의 제조 방법 및 이를 포함하는 연료 전지 장치
WO2020111687A1 (ko) 레독스 흐름 전지용 분리막 및 이의 제조방법
WO2019139320A1 (ko) 강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지
EP2800181A1 (en) Use of proton exchange membrane in iron-chromium liquid fluid battery
JP5341624B2 (ja) 燃料電池システム
WO2024123069A1 (ko) 이차전지용 분리막 및 이의 제조 방법
WO2024123067A1 (ko) 이차전지용 폴리벤즈이미다졸계 분리막 및 이의 제조 방법
US20220293991A1 (en) Sealed redox battery
WO2024123068A1 (ko) 이차전지용 폴리벤즈이미다졸계 분리막의 후처리 방법 및 후처리된 폴리벤즈이미다졸계 분리막
WO2024123071A1 (ko) 폴리벤즈이미다졸계 분리막의 제조방법, 이에 의해 제조된 폴리벤즈이미다졸계 분리막 및 이를 포함하는 이차전지
EP4383436A1 (en) Separator for secondary battery and manufacturing method thereof
EP4383437A1 (en) Polybenzimidazole-based separator for secondary battery and manufacturing method thereof
EP4383383A1 (en) Method for post-treating polybenzimidazole-based separator for secondary battery and post-treated polybenzimidazole-based separator
EP4383382A1 (en) Method for manufacturing polybenzimidazole-based separator, polybenzimidazole-based separator manufactured thereby, and secondary battery including the same
US20240194902A1 (en) Polybenzimidazole-based separator for secondary battery, and method of preparing fabricating same and secondary battery comprising the same
WO2018236094A1 (ko) 고분자 전해질막, 이를 포함하는 전기화학 전지 및 흐름 전지, 고분자 전해질막용 조성물, 및 고분자 전해질막의 제조방법
WO2024014741A1 (ko) 고분자 전해질막 및 이를 포함하는 막-전극 어셈블리
WO2023113218A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2016122287A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
US20230057780A1 (en) Connections for redox battery integration