WO2019139002A1 - シール構造及びこれに用いるシール - Google Patents

シール構造及びこれに用いるシール Download PDF

Info

Publication number
WO2019139002A1
WO2019139002A1 PCT/JP2019/000227 JP2019000227W WO2019139002A1 WO 2019139002 A1 WO2019139002 A1 WO 2019139002A1 JP 2019000227 W JP2019000227 W JP 2019000227W WO 2019139002 A1 WO2019139002 A1 WO 2019139002A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
ring
rubber
space
shaped
Prior art date
Application number
PCT/JP2019/000227
Other languages
English (en)
French (fr)
Inventor
英象 林
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to JP2019564694A priority Critical patent/JPWO2019139002A1/ja
Priority to EP19738732.7A priority patent/EP3742027A1/en
Priority to US16/759,885 priority patent/US20200332896A1/en
Priority to CN201980004655.7A priority patent/CN111164338A/zh
Publication of WO2019139002A1 publication Critical patent/WO2019139002A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3496Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal

Definitions

  • the present invention relates to a seal structure used for sealing carbon dioxide (CO 2 ) and a seal used therefor.
  • the rotational speed of the rotating shaft fluctuates according to the throttle opening of the engine.
  • the rotational speed of the rotating shaft is maximized at full throttle, and at this time, the internal temperature of the compressor rises up to about 210 ° C. at the maximum due to heat generation accompanying the sliding of the rotating shaft. Therefore, excellent heat resistance is required for the seal material used for the seal structure of the compressor.
  • fluororubber FKM is used as a material that satisfies this requirement.
  • the sealing material of a compressor used for a vehicle air conditioner using carbon dioxide as a refrigerant gas is required to have duality of heat resistance and gas permeation suppressing effect.
  • a compressor When using a seal made of fluorine rubber excellent in heat resistance and a seal made of hydrogenated nitrile rubber excellent in gas permeation suppression in one seal structure, a compressor is used to secure a seal mounting space. Increase in size.
  • An object of this invention is to suppress the enlargement of a compressor and to improve the heat resistance of a seal structure, and the gas permeation suppression effect.
  • a ring-shaped seal for sealing an in-flight space on which an gas pressure of carbon dioxide acts from an outer space, the seal combining a first material and a second material.
  • the first material has better heat resistance than the second material, and the second material has a higher gas permeation inhibiting effect than the first material. Is a seal.
  • a second aspect of the present invention is a seal structure for use in a compressor having a rotating shaft, comprising: a housing; a mating ring fixed to the housing; a seal ring abutting on the mating ring; A seal structure having a seal disposed between a housing and the mating ring or between the seal ring and the rotation shaft.
  • the present embodiment is an example of a mechanical seal 11 including a seal structure applied to a compressor 1 (not shown in its entirety) used in a vehicle air conditioner, and an example of a seal 101 used therefor.
  • the compressor 1 of the present embodiment uses carbon dioxide as the refrigerant gas RG.
  • the compressor 1 rotatably supports a rotating shaft 3 inside a housing 2.
  • the interior space A filled with carbon dioxide is sealed from the exterior space B by the mechanical seal 11.
  • the space on the right side is an in-flight space A
  • the space on the left side is an outside space B.
  • the rotating shaft 3 is rotated by receiving a driving force from a crankshaft of the engine via an electromagnetic clutch to drive each part provided inside the compressor 1 (all not shown).
  • the mechanical seal 11 has a mating ring 12 and a seal ring 13.
  • the mating ring 12 is mounted non-rotatably on the side of the housing 2.
  • the seal ring 13 is attached to the rotating shaft 3 and rotates integrally with the rotating shaft 3.
  • the mating ring 12 and the seal ring 13 have the rotation shaft 3 inserted through the openings 12a and 13a provided in the central portion thereof, and the end faces face each other.
  • the mating ring 12 is made of, for example, a sliding material made of carbon.
  • the mating ring 12 is accommodated in an annular recess 5 formed by enlarging the diameter from the shaft hole 4 on the side of the interior space A of the housing 2.
  • the annular recess 5 is formed with an annular groove 6 continuous along the circumferential surface thereof.
  • a ring-shaped housing seal 101 a forming a seal 101 is fitted in the annular groove 6.
  • the housing seal 101 a is in close contact with the mating ring 12 and seals the inboard space A and the outboard space B.
  • the mating ring 12 is fixed to the housing 2 and the position does not move due to the rotation of the rotating shaft 3.
  • the seal ring 13 is made of a hard sliding material having a larger Young's modulus than a sliding material made of carbon, for example, a ceramic such as silicon carbide (SiC).
  • the seal ring 13 is a cup-shaped member which is disposed on the side of the interior space A relative to the mating ring 12 and opens on the opposite side to the mating ring 12.
  • the seal ring 13 is axially slidably attached to the outer peripheral surface of the rotary shaft 3 via a ring-shaped shaft seal 101b.
  • the shaft seal 101 b is formed in a step shape on the inner peripheral surface of the seal ring 13, and is fitted into the large diameter recess 14 that enlarges the diameter, and seals the rotation shaft 3.
  • the rotary shaft 3 is positioned on the back side of the in-machine space A relative to the seal ring 13 and has a step-shaped large-diameter portion 7 whose diameter is enlarged.
  • the cup-shaped case 15 is abutted against the end face 7a of the large diameter portion 7, and the case 15 is fitted and fixed.
  • the seal ring 13 joins a retainer 16 made of a metal plate to an end face facing the case 15. Between the case 15 and the retainer 16, a coil spring 17 surrounding the rotation shaft 3 is disposed in a compressed state.
  • the seal ring 13 which is slidably movable in the axial direction of the rotary shaft 3 via the shaft seal 101b is biased in the direction of the mating ring 12 by the extension force of the coil spring 17, and the tip face 18 is mated Press on ring 12
  • the mating ring 12 has an annular sliding projection 19 projecting in a position to abut on the distal end surface 18 of the seal ring 13.
  • the end face 18 of the seal ring 13 is in close contact with the end face 20 of the sliding projection 19 with a surface pressure corresponding to the biasing force of the coil spring 17 and seals the in-machine space A and the out-of-machine space B.
  • the seal ring 13 rotates integrally with the rotary shaft 3 together with the shaft seal 101b, the case 15, the retainer 16 and the coil spring 17, the slide ring 13 slides with the tip surface 18 of the seal ring 13 with the rotation of the rotary shaft 3. It slides in close contact with the end face 20 of the projection 19.
  • sealing sliding surface S the distal end surface 18 of the seal ring 13 sliding while maintaining the sealed state and the end surface 20 of the sliding projection 19 will be referred to as a sealing sliding surface S.
  • the mechanical seal 11 of this embodiment has two seals 101 of a housing seal 101a and a shaft seal 101b.
  • the housing seal 101 a is interposed between the housing 2 and the mating ring 12 to seal the both.
  • the shaft seal 101 b is interposed between the rotating shaft 3 and the seal ring 13 to seal the both.
  • the housing seal 101 a has a resin ring 111 and a rubber cover 112.
  • the resin ring 111 is formed of a resin material in a ring shape having a rectangular cross section.
  • the rubber cover 112 is made of a rubber material and is coated on the outer surface of the resin ring 111.
  • the resin material of the resin ring 111 is, for example, polyetheretherketone (PEE4K).
  • the rubber material of the rubber cover 112 is, for example, fluorine rubber (FKM).
  • Fluorororubber is more heat resistant than polyetheretherketone.
  • Polyether ether ketone is more effective in suppressing gas permeation than fluororubber. Therefore, in the housing seal 101a formed of two kinds of materials, the material of the rubber cover 112 is more excellent in heat resistance than the material of the resin ring 111, and the material of the resin ring 111 suppresses gas permeation than the material of the rubber cover 112 The effect is high.
  • the thickness of the coating of fluororubber forming the rubber cover 112 is uniform on any surface of the outer surface of the resin ring 111.
  • the shaft seal 101 b has a resin ring 121 and a rubber cover 122.
  • the resin ring 121 is formed of a resin material in a ring shape having a rectangular cross section.
  • the rubber cover 122 is made of a rubber material and is coated on the outer surface of the resin ring 121.
  • the resin material of the resin ring 121 is, for example, polyetheretherketone (PEEK).
  • the rubber material of the rubber cover 122 is, for example, fluorine rubber (FKM).
  • Fluorororubber is more heat resistant than polyetheretherketone.
  • Polyether ether ketone is more effective in suppressing gas permeation than fluororubber. Therefore, in the shaft seal 101b formed of two types of materials, the material of the rubber cover 122 is more heat resistant than the material of the resin ring 121, and the material of the resin ring 121 suppresses gas permeation than the material of the rubber cover 122 The effect is high.
  • the rubber cover 122 of the shaft seal 101b is thicker than the rubber cover 112 of the housing seal 101a. Moreover, the rubber cover 122 of the shaft seal 101b changes the thickness of the coating on each surface of the resin ring 121, and the rubber thickness of the area facing the outer space B is thinner than the rubber thickness facing the other area. There is. That is, since the shaft seal 101b faces the outside space B at the gap G between the outer peripheral surface of the rotary shaft 3 and the inner peripheral surface of the seal ring 13, the region R facing this gap G It is the area facing the outside space B. It is clearly shown in FIG. 1 that the rubber thickness in the region R is thinner than the rubber thickness in the other regions.
  • refrigeration oil is mixed in the form of mist in the refrigerant gas RG made of carbon dioxide. A portion thereof infiltrates the sealing sliding surface S to form a lubricating oil film.
  • the lubricating oil film lubricates the sealing sliding surface S well and blocks the passage of the refrigerant gas RG to the outside space B.
  • the pressure of the refrigerant gas RG sealed in the interior space A is higher than the atmospheric pressure in the exterior space B. Therefore, as schematically shown in FIG. 2, the shaft seal 101b receives pressure from the right side of FIG. At this time, the compressor 1 seals carbon dioxide as the refrigerant gas RG in the interior space A. For this reason, for example, compared with a compressor using fluorocarbon R134a as a refrigerant, the internal pressure of the in-machine space A is significantly increased, and the shaft seal 101b is required to have a higher gas permeation suppressing effect.
  • the gas permeation suppressing effect of the shaft seal 101 b is particularly determined in the region R facing the outside space B defined by the gap G between the rotating shaft 3 and the seal ring 13.
  • the rotating shaft 3 rotates at high speed at the time of full throttle, and the temperature environment inside the compressor 1 The temperature rises up to about 210 ° C.
  • heat resistance is required for the seal 101 (housing seal 101a, shaft seal 101b) used for the mechanical seal 11.
  • the heat resistance of the shaft seal 101b is particularly determined on the surface facing the in-machine space A, for example, the surface immediately to the left of the arrow in FIG.
  • the sealing material of the compressor 1 using carbon dioxide as the refrigerant gas RG is required to have duality of heat resistance and gas permeation suppressing effect.
  • the resin material of the resin ring 111 is polyetheretherketone (PEEK), and the gas permeation suppressing effect is obtained.
  • the rubber material of the rubber cover 112 is fluorine rubber (FKM), which secures heat resistance.
  • the resin material of the resin ring 121 is polyetheretherketone (PEEK), and obtains the gas permeation suppressing effect.
  • the rubber material of the rubber cover 122 is fluorine rubber (FKM), which ensures heat resistance.
  • the resin ring 121 of the shaft seal 101 b is biased toward a region R facing the outside space B defined by the gap G between the rotating shaft 3 and the seal ring 13. Therefore, the gas permeation suppression effect is further improved. Further, since the surface facing the in-machine space A is used as the rubber cover 122, the heat resistance is further improved.
  • each seal 101 (housing seal 101 a, shaft seal 101 b) is made of the first material (fluorinated rubber) excellent in heat resistance and the second material (polyether ether ketone) excellent in gas permeation suppressing effect. Formed. Therefore, the enlargement of the compressor 1 is suppressed, and both the heat resistance of the mechanical seal 11 and the gas permeation suppressing effect are improved.
  • Second Embodiment A second embodiment will be described based on FIG.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is also omitted.
  • Each of the second and subsequent embodiments relates to the structure of the shaft seal 101b.
  • the shaft seal 101 b of this embodiment has a composite structure in which a resin ring 121 and an L-shaped rubber ring 131 are combined and joined.
  • the rubber material of the L-shaped rubber ring 131 is fluorine rubber (FKM).
  • the resin ring 121 of the present embodiment is the same as the resin ring 121 of the first embodiment.
  • the L-shaped rubber ring 131 does not cover the resin ring 121, but has an L-shaped cross section which is joined to the resin ring 121.
  • a resin ring 121 is incorporated between two sides of an L-shaped rubber ring 131 extending at a right angle to form an L-shape, and the shaft seal 101 b is formed in a rectangular shape in cross section.
  • the large-diameter recessed portion 14 of the rotary shaft 3 and the seal ring 13 is arranged such that the resin ring 121 is disposed in the region R facing the outside space B and the L-shaped rubber ring 131 is disposed in the other region. It is attached between. Therefore, an L-shaped rubber ring 131 is inevitably disposed on the surface of the shaft seal 101 b facing the in-machine space A.
  • the resin material of the resin ring 121 is polyetheretherketone (PEEK), which achieves the gas permeation suppressing effect. Further, the rubber material of the L-shaped rubber ring 131 is fluorine rubber (FKM), and heat resistance is secured.
  • PEEK polyetheretherketone
  • FKM fluorine rubber
  • the resin ring 121 is disposed in a region R facing the outside space B defined by the gap G between the rotary shaft 3 and the seal ring 13. Therefore, the gas permeation suppression effect is further improved. Further, since the surface facing the in-machine space A is the L-shaped rubber ring 131, the heat resistance is further improved.
  • each seal 101 (housing seal 101 a) is made of the first material (fluorinated rubber) excellent in heat resistance and the second material (polyether ether ketone) excellent in gas permeation suppressing effect. , Shaft seal 101b). Therefore, the enlargement of the compressor 1 is suppressed, and both the heat resistance of the mechanical seal 11 and the gas permeation suppressing effect are improved.
  • the outer surface of a resin ring 121 formed of a resin material in a ring shape having a rectangular cross section is covered with a rubber cover 122 made of a rubber material.
  • the resin material of the resin ring 121 is, for example, polyetheretherketone (PEEK).
  • the rubber material of the rubber cover 122 is, for example, fluorine rubber (FKM).
  • the thickness of the coating of fluororubber forming the rubber cover 122 is uniform on any surface of the outer surface of the resin ring 121.
  • the rubber cover 122 has a thickness such that the resin ring 121 is disposed in a region R facing the outside space B defined by the gap G between the rotating shaft 3 and the seal ring 13.
  • the resin material of the resin ring 121 is polyetheretherketone (PEEK), which achieves the gas permeation suppressing effect.
  • the rubber material of the rubber cover 122 is fluorine rubber (FKM), which ensures heat resistance.
  • the resin ring 121 is disposed in a region R facing the outside space B defined by the gap G between the rotary shaft 3 and the seal ring 13. Therefore, the gas permeation suppression effect is further improved. Further, since the surface facing the in-machine space A is used as the rubber cover 122, the heat resistance is further improved.
  • each seal 101 (housing seal 101 a) is made of the first material (fluorinated rubber) excellent in heat resistance and the second material (polyether ether ketone) excellent in gas permeation suppressing effect. , Shaft seal 101b). Therefore, the enlargement of the compressor 1 is suppressed, and both the heat resistance of the mechanical seal 11 and the gas permeation suppressing effect are improved.
  • the shaft seal 101b of the present embodiment does not have mounting directivity.
  • the mounting orientation of the shaft seal 101b is determined such that the resin ring 121 is disposed in the region R facing the outside space B.
  • the shaft seal 101b of this embodiment since the shaft seal 101b of this embodiment has a symmetrical shape in the axial direction, it has no mounting directivity. Therefore, the workability of the work of assembling the shaft seal 101b is improved.
  • the shaft seal 101 b of the present embodiment has a composite structure in which a rubber ring 141 and an L-shaped rubber ring 131 are combined and joined.
  • the rubber material of the L-shaped rubber ring 131 is fluorine rubber (FKM).
  • the rubber material of the rubber ring 141 is hydrogenated nitrile rubber (HNBR).
  • Fluorororubber is more heat resistant than hydrogenated nitrile rubber. Hydrogenated nitrile rubber is more effective in suppressing gas permeation than fluororubber. Therefore, in the shaft seal 101b formed of two kinds of materials, the material of the L-shaped rubber ring 131 is more heat resistant than the material of the rubber ring 141, and the material of the rubber ring 141 is more than the material of the L-shaped rubber ring 131 Also, the gas permeation suppression effect is high.
  • the rubber ring 141 has the same shape and size as the resin ring 121 of the second embodiment.
  • the L-shaped rubber ring 131 does not cover the rubber ring 141, and has an L-shaped cross-section that is joined to the rubber ring 141.
  • a rubber ring 141 is incorporated between two sides of an L-shaped rubber ring 131 extending at a right angle to form an L-shape, and the shaft seal 101 b is formed in a rectangular shape in cross section.
  • the large-diameter recessed portion 14 of the rotary shaft 3 and the seal ring 13 is arranged such that the rubber ring 141 is disposed in the region R facing the outside space B and the L-shaped rubber ring 131 is disposed in the other region. It is attached between. Therefore, an L-shaped rubber ring 131 is inevitably disposed on the surface of the shaft seal 101 b facing the in-machine space A.
  • the rubber material of the rubber ring 141 is a hydrogenated nitrile rubber (HNBR), and acquires the gas permeation suppressing effect. Further, the rubber material of the L-shaped rubber ring 131 is fluorine rubber (FKM), and heat resistance is secured.
  • HNBR hydrogenated nitrile rubber
  • FKM fluorine rubber
  • a rubber ring 141 made of hydrogenated nitrile rubber (HNBR) is disposed in a region R facing the outside space B defined by the gap G between the rotary shaft 3 and the seal ring 13. Therefore, the gas permeation suppression effect is further improved. Further, since the surface facing the in-machine space A is an L-shaped rubber ring 131 made of fluorine rubber (FKM), the heat resistance is further improved.
  • HNBR hydrogenated nitrile rubber
  • the shaft seal 101 b is formed of the first material (fluorinated rubber) excellent in heat resistance and the second material (hydrogenated nitrile rubber) excellent in the gas permeation suppressing effect. Therefore, the enlargement of the compressor 1 is suppressed, and both the heat resistance of the mechanical seal 11 and the gas permeation suppressing effect are improved.
  • the fifth embodiment will be described based on FIG.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is also omitted.
  • the shaft seal 101 b of the present embodiment has a composite structure in which an inner peripheral rubber ring 151 and an outer peripheral rubber ring 152 are combined and joined.
  • the rubber material of the inner circumferential rubber ring 151 is hydrogenated nitrile rubber (HNBR).
  • the rubber material of the outer peripheral rubber ring 152 is fluorine rubber (FKM).
  • Fluorororubber is more heat resistant than hydrogenated nitrile rubber. Hydrogenated nitrile rubber is more effective in suppressing gas permeation than fluororubber. Therefore, in the shaft seal 101b formed of two kinds of materials, the material of the outer peripheral rubber ring 152 is more excellent in heat resistance than the material of the inner peripheral rubber ring 151, and the material of the inner peripheral rubber ring 151 is of the outer peripheral rubber ring 152. The gas permeation suppression effect is higher than that of the material.
  • the inner circumferential rubber ring 151 is located on the inner circumferential side, and the outer circumferential rubber ring 152 is located on the outer circumferential side and joined together.
  • the shaft seal 101 b is mounted between the rotary shaft 3 and the large diameter recess 14 of the seal ring 13.
  • An inner circumferential rubber ring 151 is disposed in a region R facing the outboard space B defined by the gap G between the rotary shaft 3 and the seal ring 13.
  • the rubber material of the inner peripheral rubber ring 151 is a hydrogenated nitrile rubber (HNBR), which achieves the gas permeation suppressing effect. Further, the rubber material of the outer peripheral rubber ring 152 is fluorine rubber (FKM), and heat resistance is secured.
  • HNBR hydrogenated nitrile rubber
  • FKM fluorine rubber
  • the inner circumferential rubber ring 151 is disposed in a region R facing the outer space B defined by the gap G between the rotary shaft 3 and the seal ring 13. Therefore, the gas permeation suppression effect is further improved.
  • the shaft seal 101 b is formed of the first material (fluorinated rubber) excellent in heat resistance and the second material (hydrogenated nitrile rubber) excellent in the gas permeation suppressing effect. Therefore, the enlargement of the compressor 1 is suppressed, and both the heat resistance of the mechanical seal 11 and the gas permeation suppressing effect are improved.
  • the shaft seal 101b of the present embodiment does not have mounting directivity.
  • the shaft seal 101b has a fixed direction of attachment such that the resin ring 121 or the rubber ring 141 is disposed in the region R facing the outside space B.
  • the shaft seal 101b of this embodiment has a symmetrical shape in the axial direction, it has no mounting directivity. Therefore, the workability of the work of assembling the shaft seal 101b is improved.
  • a sliding material made of carbon is used for the mating ring 12, but another self-lubricating sliding material such as PTFE or polyimide may be used.
  • PTFE polyimide
  • ceramics such as alumina (Al 2 O 3 ), cemented carbides, etc. may be used as the material of the seal ring 13.
  • housing seal 101a and the shaft seal 101b in each of the above embodiments are illustrated as having a rectangular cross-sectional shape, the embodiment is not limited to such a shape, and various shapes such as a circular cross-sectional shape and a polygonal shape may be used. It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressor (AREA)
  • Mechanical Sealing (AREA)
  • Gasket Seals (AREA)
  • Sealing Material Composition (AREA)
  • Sealing Devices (AREA)

Abstract

【課題】圧縮機の大型化を抑制し、シール構造の耐熱性とガス透過抑制効果とを向上させる。 【解決手段】二酸化炭素のガス圧が作用する機内空間を機外空間から密封するリング状のシール(101)であって、前記シール(101)は、第1の材料と第2の材料とを組み合わせた単一の構造物であり、前記第1の材料は、前記第2の材料よりも優れた耐熱性を有し、前記第2の材料は、前記第1の材料よりも高いガス透過抑制効果を有する、シール。

Description

シール構造及びこれに用いるシール
 本発明は、二酸化炭素(CO)の密封に用いられるシール構造及びこれに用いるシールに関する。
 近年、オゾン層の破壊を防止する観点より、二酸化炭素が空調装置に用いられる冷媒として広く用いられている。このような空調装置には、例えば特開2001-004034号公報(以下、「特許文献1」)に記載されているような圧縮機が用いられる。
 この種の圧縮機では、機内空間と機外空間と圧力差が大きい。フロンR134aを冷媒として用いた圧縮機の場合、通常の使用条件での吸入圧力は0.1~0.3MPa、吐出圧力は1~3MPa程度であるのに対して、二酸化炭素を冷媒として用いた場合には、吸入圧力3~4MPa、吐出圧力7~13MPa程度にまで上昇することが特許文献1には記載されている(段落[0004]参照)。
 したがって二酸化炭素を冷媒として用いる圧縮機では、二酸化炭素を封入する機内空間を機外空間から密封するシール構造に、ガス透過抑制効果の高い構造が求められる。そのため、特許文献1に記載されているようなメカニカルシールが広く用いられている。
 カーエアコン等の車両用の空調装置に用いられる圧縮機では、エンジンのスロットル開度に応じて回転軸の回転速度が変動する。回転軸の回転速度はフルスロットル時に最大になり、このとき、回転軸の摺動に伴う発熱により、圧縮機の内部温度は最大で210℃程度にまで上昇する。そこで、圧縮機のシール構造に用いるシール材には、優れた耐熱性が要求される。この要求を満たす材料として、一般的にフッ素ゴム(FKM)が用いられている。
 ところが、シール材として広く用いられている水素化ニトリルゴム(HNBR)などと比較して、フッ素ゴムのガス透過抑制効果は良好ではない。このため、冷媒ガスとして二酸化炭素を使用する圧縮機等の高いガス透過抑制効果が求められる圧縮機のシール材にフッ素ゴムを用いた場合、冷媒ガスが透過しやすくなる。
 したがって、二酸化炭素を冷媒ガスとして用いる車両用の空調装置に用いられる圧縮機のシール材には、耐熱性とガス透過抑制効果の二面性が求められる。
 ところが、ガス透過抑制効果に優れた材料である水素化ニトリルゴムも、耐熱性に優れた材料であるフッ素ゴムも、単独素材としては、耐熱性とガス透過抑制効果の二面性の両立が困難である。
 一つのシール構造中、耐熱性に優れたフッ素ゴムからなるシールと、ガス透過抑制効果に優れた水素化ニトリルゴムからなるシールをそれぞれ使う場合には、シール装着空間を確保するため、圧縮機が大型化する。
 本発明は、圧縮機の大型化を抑制し、シール構造の耐熱性とガス透過抑制効果とを向上することを目的とする。
 本発明の第1の観点は、二酸化炭素のガス圧が作用する機内空間を機外空間から密封するリング状のシールであって、前記シールは、第1の材料と第2の材料とを組み合わせた単一の構造物であり、前記第1の材料は、前記第2の材料よりも優れた耐熱性を有し、前記第2の材料は、前記第1の材料よりも高いガス透過抑制効果を有する、シールである。
 本発明の第2の観点は、回転軸を有する圧縮機に用いられるシール構造であって、ハウジングと、前記ハウジングに固定されるメイティングリングと、前記メイティングリングと当接するシールリングと、前記ハウジングと前記メイティングリングとの間、又は前記シールリングと前記回転軸との間に配置されるシールと、を有するシール構造である。
 本発明によれば、圧縮機の大型化を抑制し、シール構造の耐熱性とガス透過抑制効果とを向上することができる。
実施形態の圧縮機用のメカニカルシールを示す縦断側面図 第1実施形態の軸パッキンを示す模式図 第2実施形態の軸パッキンを示す模式図 第3実施形態の軸パッキンを示す模式図 第4実施形態の軸パッキンを示す模式図 第5実施形態の軸パッキンを示す模式図
[第1実施形態]
 第1実施形態を図1及び図2に基づいて説明する。
 本実施形態は、車両用の空調装置に用いられる圧縮機1(全体を図示しない)に適用されるシール構造を含むメカニカルシール11、及びこれに用いられるシール101の一例である。本実施形態の圧縮機1は、二酸化炭素を冷媒ガスRGとして用いる。
 図1に示すように、圧縮機1は、ハウジング2の内部に回転軸3を回転自在に支持する。二酸化炭素が充填された機内空間Aは、メカニカルシール11によって機外空間Bから密封される。図1中、右側の空間が機内空間A、左側の空間が機外空間Bである。回転軸3は、電磁クラッチを介してエンジンのクランク軸からの駆動力を伝達されて回転し、圧縮機1の内部に設けられた各部を駆動する(すべて図示せず)。
 メカニカルシール11は、メイティングリング12と、シールリング13とを有する。メイティングリング12は、ハウジング2の側に非回転状態で装着される。シールリング13は、回転軸3に装着され、回転軸3と一体的に回転する。メイティングリング12とシールリング13とは、その中央部分に設けた開口12a,13aに回転軸3を挿通させ、端面同士を互いに対面させる。
 メイティングリング12は、例えばカーボンを材料とする摺動材からなる。ハウジング2の機内空間A側において軸孔4から径を拡大して形成された環状凹部5に、メイティングリング12は収容される。環状凹部5には、その周面に沿って連続する環状溝6が形成されている。環状溝6には、シール101をなすリング状のハウジングシール101aが嵌合する。ハウジングシール101aはメイティングリング12に密接し、機内空間Aと機外空間Bとを密封する。
 したがって、メイティングリング12はハウジング2に固定され、回転軸3の回転によって位置が動かない。
 シールリング13は、カーボンを材料とする摺動材よりもヤング率の大きい硬質な摺動材、例えば、炭化ケイ素(SiC)等のセラミックスからなる。シールリング13は、メイティングリング12より機内空間Aの側に配置され、メイティングリング12とは反対側に開口するカップ状の部材である。シールリング13は、リング状の軸シール101bを介して、回転軸3の外周面に、軸方向にスライド移動自在に取り付けられる。軸シール101bは、シールリング13の内周面に段状に形成されて径を拡大する径大凹部14に嵌め込まれ、回転軸3を密封する。
 回転軸3は、シールリング13よりも機内空間Aの奥側に位置させて、径を拡大する段状の径大部7有する。径大部7の端面7aにカップ状のケース15を突き当て、ケース15を嵌合固定する。シールリング13は、ケース15に対面する端面に金属板からなるリテーナ16を接合させる。ケース15とリテーナ16との間には、回転軸3を取り囲むコイルスプリング17が圧縮状態で配置される。
 したがって、軸シール101bを介して回転軸3の軸方向に沿いスライド移動自在のシールリング13は、コイルスプリング17の伸び力によってメイティングリング12の方向に付勢され、その先端面18をメイティングリング12に押し付ける。メイティングリング12は、シールリング13の先端面18と当接する位置に突出する、環状の摺動突起19を有する。
 シールリング13の先端面18は、コイルスプリング17の付勢力に応じた面圧で、摺動突起19の端面20に密接し、機内空間Aと機外空間Bとを密封する。このときシールリング13は、軸シール101b、ケース15、リテーナ16及びコイルスプリング17とともに回転軸3と一体的に回転するので、回転軸3の回転に伴い、シールリング13の先端面18と摺動突起19の端面20とは、密接状態を保ちながら摺動する。
 説明の便宜上、密封状態を保ちながら摺動するシールリング13の先端面18と摺動突起19の端面20とを密封摺動面Sと呼ぶ。
 本実施形態のメカニカルシール11は、ハウジングシール101aと軸シール101bの二つのシール101を有する。ハウジングシール101aは、ハウジング2とメイティングリング12との間に介在して両者を密封する。軸シール101bは、回転軸3とシールリング13との間に介在して両者を密封する。
 図1に示すように、ハウジングシール101aは、樹脂リング111と、ゴムカバー112とを有する。樹脂リング111は、樹脂材料を断面矩形のリング状に形成される。ゴムカバー112はゴム材料からなり、樹脂リング111の外面に被覆される。樹脂リング111の樹脂材料は、例えばポリエーテルエーテルケトン(PEE4K)である。ゴムカバー112のゴム材料は、例えばフッ素ゴム(FKM)である。
 フッ素ゴムは、ポリエーテルエーテルケトンよりも耐熱性が高い。ポリエーテルエーテルケトンは、フッ素ゴムよりもガス透過抑制効果が高い。したがって二種類の材料で形成されるハウジングシール101aでは、ゴムカバー112の材料は、樹脂リング111の材料よりも耐熱性に優れ、樹脂リング111の材料は、ゴムカバー112の材料よりもガス透過抑制効果が高い。
 ゴムカバー112をなすフッ素ゴムの被覆の厚みは、樹脂リング111の外面のいずれの面においても均一である。
 図1に示すように、軸シール101bは、樹脂リング121と、ゴムカバー122とを有する。樹脂リング121は、樹脂材料を断面矩形のリング状に形成される。ゴムカバー122はゴム材料からなり、樹脂リング121の外面に被覆される。樹脂リング121の樹脂材料は、例えばポリエーテルエーテルケトン(PEEK)である。ゴムカバー122のゴム材料は、例えばフッ素ゴム(FKM)である。
 フッ素ゴムは、ポリエーテルエーテルケトンよりも耐熱性が高い。ポリエーテルエーテルケトンは、フッ素ゴムよりもガス透過抑制効果が高い。したがって二種類の材料で形成される軸シール101bでは、ゴムカバー122の材料は、樹脂リング121の材料よりも耐熱性に優れ、樹脂リング121の材料は、ゴムカバー122の材料よりもガス透過抑制効果が高い。
 ハウジングシール101aのゴムカバー112よりも、軸シール101bのゴムカバー122の方がフッ素ゴムによる被覆の厚みが厚い。しかも軸シール101bのゴムカバー122は、樹脂リング121の各面における被覆の厚みを変化させ、機外空間Bに面する領域のゴム厚を、他の領域に面するゴム厚よりも薄くしている。つまり軸シール101bは、回転軸3の外周面とシールリング13の内周面との間の隙間Gの部分において機外空間Bに面しているため、この隙間Gに面する領域Rが「機外空間Bに面する領域」となる。図1には、領域Rにおけるゴム厚は、他の領域のゴム厚よりも薄いことが明確に示されている。
 回転軸3が回転する圧縮機1の動作時には、二酸化炭素からなる冷媒ガスRGの中に、冷凍機油がミスト状に混在する。その一部は、密封摺動面Sに浸入して潤滑油膜を形成する。潤滑油膜は、密封摺動面Sを良好に潤滑し、また機外空間Bへの冷媒ガスRGの通過を遮断する。
 機内空間Aに封入される冷媒ガスRGの圧力は、機外空間Bにおける大気圧よりも高圧である。そのため、図2に模式的に示すように、軸シール101bは、図2の右側からの圧力を受ける。このとき圧縮機1は、二酸化炭素を冷媒ガスRGとして機内空間Aに密封している。このため例えばフロンR134aを冷媒として用いる圧縮機と比較すると、機内空間Aの内圧が格段に高まり、軸シール101bには、より高いガス透過抑制効果が求められる。軸シール101bにおけるガス透過抑制効果は、回転軸3とシールリング13との間の隙間Gによって規定される機外空間Bに面する領域Rにおいて、特に求められる。
 また本実施形態のように、車両用の空調装置に用いられる圧縮機1では、フルスロットル時、回転軸3は高速で回転し、このときの摺動発熱により、圧縮機1内部の温度環境は最大で210℃程度にまで上昇する。このためメカニカルシール11に用いられるシール101(ハウジングシール101a,軸シール101b)には、耐熱性が求められる。軸シール101bにおける耐熱性は、機内空間Aに対面する面、例えば図2中、矢印のすぐ左側の面において特に求められる。
 よって二酸化炭素を冷媒ガスRGとして用いる圧縮機1のシール材には、耐熱性とガス透過抑制効果の二面性が求められる。
 本実施形態のハウジングシール101aでは、樹脂リング111の樹脂材料がポリエーテルエーテルケトン(PEEK)であり、ガス透過抑制効果を獲得する。また、ゴムカバー112のゴム材料がフッ素ゴム(FKM)であり、耐熱性を確保する。
 同様に、軸シール101bは、樹脂リング121の樹脂材料がポリエーテルエーテルケトン(PEEK)であり、ガス透過抑制効果を獲得する。また、ゴムカバー122のゴム材料がフッ素ゴム(FKM)であり、耐熱性を確保する。
 図2に示すように、軸シール101bの樹脂リング121は、回転軸3とシールリング13との間の隙間Gによって規定される機外空間Bに面する領域Rに寄せて偏在する。そのため、ガス透過抑制効果がより一層向上する。また機内空間Aに対面する面をゴムカバー122とするため、耐熱性がより一層向上する。
 本実施形態では、耐熱性に優れた第1の材料(フッ素ゴム)と、ガス透過抑制効果に優れた第2の材料(ポリエーテルエーテルケトン)とによって各シール101(ハウジングシール101a,軸シール101b)を形成した。そのため、圧縮機1の大型化を抑制し、メカニカルシール11の耐熱性とガス透過抑制効果とが共に向上する。
[第2実施形態]
 第2実施形態を図3に基づいて説明する。第1実施形態と同一部分は同一符号で示し、説明も省略する。第2実施形態以降の各実施形態は、軸シール101bの構造に関する。
 図3に示すように、本実施形態の軸シール101bは、樹脂リング121とL字ゴムリング131とを組み合わせて接合させた複合構造を有する。L字ゴムリング131のゴム材料は、フッ素ゴム(FKM)である。
 本実施形態の樹脂リング121は、第1実施形態の樹脂リング121と同一である。L字ゴムリング131は、樹脂リング121を被覆するのではなく、樹脂リング121と接合する断面L字形状を有する。直角に延びてL字をなすL字ゴムリング131の二辺の間に樹脂リング121が組み込まれ、軸シール101bは断面矩形形状に形成される。
 軸シール101bは、機外空間Bに面する領域Rに樹脂リング121が配置され、他の領域にL字ゴムリング131が配置されるように、回転軸3とシールリング13の径大凹部14との間に装着される。したがって軸シール101bにおいて機内空間Aに対面する面には、必然的にL字ゴムリング131が配置される。
 樹脂リング121の樹脂材料がポリエーテルエーテルケトン(PEEK)であり、ガス透過抑制効果を獲得する。また、L字ゴムリング131のゴム材料がフッ素ゴム(FKM)であり、耐熱性を確保する。
 回転軸3とシールリング13との間の隙間Gによって規定される機外空間Bに面する領域Rに樹脂リング121を配置する。そのため、ガス透過抑制効果がより一層向上する。また、機内空間Aに対面する面をL字ゴムリング131とするため、耐熱性がより一層向上する。
 本実施形態のメカニカルシール11では、耐熱性に優れた第1の材料(フッ素ゴム)と、ガス透過抑制効果に優れた第2の材料(ポリエーテルエーテルケトン)とによって各シール101(ハウジングシール101a,軸シール101b)を形成した。そのため、圧縮機1の大型化を抑制し、メカニカルシール11の耐熱性とガス透過抑制効果とが共に向上する。
[第3実施形態]
 第3実施形態を図4に基づいて説明する。第1実施形態と同一部分は同一符号で示し、説明も省略する。
 図4に示すように、本実施形態の軸シール101bは、樹脂材料を断面矩形のリング状に形成した樹脂リング121の外面に、ゴム材料からなるゴムカバー122を被覆している。樹脂リング121の樹脂材料は、例えばポリエーテルエーテルケトン(PEEK)である。ゴムカバー122のゴム材料は、例えばフッ素ゴム(FKM)である。
 ゴムカバー122をなすフッ素ゴムの被覆の厚みは、樹脂リング121の外面のいずれの面においても均一である。ゴムカバー122は、回転軸3とシールリング13との間の隙間Gによって規定される機外空間Bに面する領域Rに樹脂リング121が配置される程度の厚みを有する。
 樹脂リング121の樹脂材料がポリエーテルエーテルケトン(PEEK)であり、ガス透過抑制効果を獲得する。また、ゴムカバー122のゴム材料がフッ素ゴム(FKM)であり、耐熱性を確保する。
 回転軸3とシールリング13との間の隙間Gによって規定される機外空間Bに面する領域Rに樹脂リング121を配置する。そのため、ガス透過抑制効果がより一層向上する。また、機内空間Aに対面する面をゴムカバー122とするため、耐熱性がより一層向上する。
 本実施形態のメカニカルシール11では、耐熱性に優れた第1の材料(フッ素ゴム)と、ガス透過抑制効果に優れた第2の材料(ポリエーテルエーテルケトン)とによって各シール101(ハウジングシール101a,軸シール101b)を形成した。そのため、圧縮機1の大型化を抑制し、メカニカルシール11の耐熱性とガス透過抑制効果とが共に向上する。
 また本実施形態の軸シール101bは、第1及び第2実施形態とは異なり、装着の方向性がない。第1及び第2実施形態では、機外空間Bに面する領域Rに樹脂リング121が配置されるように、軸シール101bには装着の方向性が定められている。これに対して本実施形態の軸シール101bは、軸方向上に対称な形状を有するため、装着の方向性を有さない。したがって、軸シール101bを組み付ける作業の作業性が良好になる。
[第4実施形態]
 第4実施形態を図5に基づいて説明する。第1実施形態と同一部分は同一符号で示し、説明も省略する。
 図5に示すように、本実施形態の軸シール101bは、ゴムリング141とL字ゴムリング131とを組み合わせて接合させた複合構造を有する。L字ゴムリング131のゴム材料は、フッ素ゴム(FKM)である。ゴムリング141のゴム材料は、水素化ニトリルゴム(HNBR)である。
 フッ素ゴムは、水素化ニトリルゴムよりも耐熱性が高い。水素化ニトリルゴムは、フッ素ゴムよりもガス透過抑制効果が高い。したがって二種類の材料で形成される軸シール101bでは、L字ゴムリング131の材料は、ゴムリング141の材料よりも耐熱性に優れ、ゴムリング141の材料は、L字ゴムリング131の材料よりもガス透過抑制効果が高い。
 ゴムリング141は、第2実施形態の樹脂リング121と同一の形状及び大きさを有する。L字ゴムリング131は、ゴムリング141を被覆するのではなく、ゴムリング141と接合する断面L字形状を有する。直角に延びてL字をなすL字ゴムリング131の二辺の間にゴムリング141が組み込まれ、軸シール101bは断面矩形形状に形成される。
 軸シール101bは、機外空間Bに面する領域Rにゴムリング141が配置され、他の領域にL字ゴムリング131が配置されるように、回転軸3とシールリング13の径大凹部14との間に装着される。したがって軸シール101bにおいて機内空間Aに対面する面には、必然的にL字ゴムリング131が配置される。
 ゴムリング141のゴム材料が水素化ニトリルゴム(HNBR)であり、ガス透過抑制効果を獲得する。また、L字ゴムリング131のゴム材料がフッ素ゴム(FKM)であり、耐熱性を確保する。
 回転軸3とシールリング13との間の隙間Gによって規定される機外空間Bに面する領域Rに、水素化ニトリルゴム(HNBR)からなるゴムリング141を配置する。そのため、ガス透過抑制効果がより一層向上する。また、機内空間Aに対面する面を、フッ素ゴム(FKM)からなるL字ゴムリング131とするため、耐熱性がより一層向上する。
 本実施形態のメカニカルシール11では、耐熱性に優れた第1の材料(フッ素ゴム)と、ガス透過抑制効果に優れた第2の材料(水素化ニトリルゴム)とによって軸シール101bを形成した。そのため、圧縮機1の大型化を抑制し、メカニカルシール11の耐熱性とガス透過抑制効果とが共に向上する。
[第5実施形態]
 第5実施形態を図6に基づいて説明する。第1実施形態と同一部分は同一符号で示し、説明も省略する。
 図6に示すように、本実施形態の軸シール101bは、内周ゴムリング151と外周ゴムリング152とを組み合わせて接合させた複合構造を有する。内周ゴムリング151のゴム材料は、水素化ニトリルゴム(HNBR)である。外周ゴムリング152のゴム材料は、フッ素ゴム(FKM)である。
 フッ素ゴムは、水素化ニトリルゴムよりも耐熱性が高い。水素化ニトリルゴムは、フッ素ゴムよりもガス透過抑制効果が高い。したがって二種類の材料で形成される軸シール101bでは、外周ゴムリング152の材料は、内周ゴムリング151の材料よりも耐熱性に優れ、内周ゴムリング151の材料は、外周ゴムリング152の材料よりもガス透過抑制効果が高い。
 内周ゴムリング151は内周側に位置し、外周ゴムリング152は外周側に位置し、互いに接合している。
 軸シール101bは、回転軸3とシールリング13の径大凹部14との間に装着される。回転軸3とシールリング13との間の隙間Gによって規定される機外空間Bに面する領域Rには、内周ゴムリング151が配置される。
 内周ゴムリング151のゴム材料が水素化ニトリルゴム(HNBR)であり、ガス透過抑制効果を獲得する。また、外周ゴムリング152のゴム材料がフッ素ゴム(FKM)であり、耐熱性を確保する。
 回転軸3とシールリング13との間の隙間Gによって規定される機外空間Bに面する領域Rに内周ゴムリング151を配置する。そのため、ガス透過抑制効果がより一層向上する。
 本実施形態のメカニカルシール11では、耐熱性に優れた第1の材料(フッ素ゴム)と、ガス透過抑制効果に優れた第2の材料(水素化ニトリルゴム)とによって軸シール101bを形成した。そのため、圧縮機1の大型化を抑制し、メカニカルシール11の耐熱性とガス透過抑制効果とが共に向上する。
 また本実施形態の軸シール101bは、第1、第2及び第4実施形態とは異なり、装着の方向性がない。第1、第2及び第4実施形態では、機外空間Bに面する領域Rに樹脂リング121又はゴムリング141が配置されるように、軸シール101bには装着の方向性が定められている。これに対して本実施形態の軸シール101bは、軸方向上に対称な形状を有するため、装着の方向性を有さない。したがって、軸シール101bを組み付ける作業の作業性が良好になる。
 実施に際しては、各種の変形や変更が可能である。
 例えば上記各実施形態においては、カーボンを材料とする摺動材をメイティングリング12に用いたが、PTFEやポリイミドなど他の自己潤滑性摺動材を用いてもよい。またシールリング13の材料としては、上記各実施形態で用いた炭化ケイ素(SiOC)の他、アルミナ(Al)等のセラミックス、超硬合金などを用いてもよい。
 また上記各実施形態のハウジングシール101aや軸シール101bは、断面矩形形状のものを例示したが、実施に際してはこのような形状に限らず、断面円形形状や多角形形状など、各種の形状にすることが可能である。
 その他、あらゆる変形や変更が許容される。
 1   圧縮機
 2   ハウジング
 3   回転軸
 4   軸孔
 5   環状凹部
 6   環状溝
 7   径大部
 7a  端面
11   メカニカルシール
12   メイティングリング
12a  開口
13   シールリング
13a  開口
14   径大凹部
15   ケース
16   リテーナ
17   コイルスプリング
18   先端面
19   摺動突起
20   端面
101  シール
101a ハウジングシール
101b 軸シール
111  樹脂リング
112  ゴムカバー
121  樹脂リング
122  ゴムカバー
131  L字ゴムリング
141  ゴムリング
151  内周ゴムリング
152  外周ゴムリング
  A  機内空間
  B  機外空間
  G  隙間
  R  領域
  S  密封摺動面
 

Claims (8)

  1.  二酸化炭素のガス圧が作用する機内空間を機外空間から密封するリング状のシールであって、
     前記シールは、第1の材料と第2の材料とを組み合わせた単一の構造物であり、
     前記第1の材料は、前記第2の材料よりも優れた耐熱性を有し、
     前記第2の材料は、前記第1の材料よりも高いガス透過抑制効果を有する、
     シール。
  2.  前記第2の材料はリング状であり、
     前記第1の材料は、機外空間に面する領域の厚さを他の領域に面する厚さよりも薄くして、前記第2の材料を覆う、
     請求項1に記載のシール。
  3.  前記第2の材料はリング状であり、機外空間に面する領域に配置され、
     前記第1の材料は断面L字状のリング状であり、前記第2の材料と接合される、
     請求項1に記載のシール。
  4.  前記第2の材料はリング状であり、
     前記第1の材料は、前記第2の材料の全周を均一な厚さで覆う、
     請求項1に記載のシール。
  5.  前記第2の材料はリング状であり、機外空間に面する領域から機内空間に面する領域まで延出し、
     前記第1の材料はリング状であり、前記第2の材料の外周側に接合される、
     請求項1に記載のシール。
  6.  前記第1の材料はフッ素ゴムであり、
     前記第2の材料は樹脂である、
     請求項1~5のいずれかに記載のシール。
  7.  前記第1の材料はフッ素ゴムであり、
     前記第2の材料は水素化ニトリルゴムである、
     請求項1~5のいずれかに記載のシール。
  8.  回転軸を有する圧縮機に用いられるシール構造であって、
     ハウジングと、
     前記ハウジングに固定されるメイティングリングと、
     前記メイティングリングと当接するシールリングと、
     請求項1~7のいずれかに記載のシールであって、前記ハウジングと前記メイティングリングとの間、又は前記シールリングと前記回転軸との間に配置されるシールと、
     を有するシール構造。
     
PCT/JP2019/000227 2018-01-15 2019-01-08 シール構造及びこれに用いるシール WO2019139002A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019564694A JPWO2019139002A1 (ja) 2018-01-15 2019-01-08 シール構造及びこれに用いるシール
EP19738732.7A EP3742027A1 (en) 2018-01-15 2019-01-08 Seal structure and seal to be used in same
US16/759,885 US20200332896A1 (en) 2018-01-15 2019-01-08 Seal structure and seal to be used in same
CN201980004655.7A CN111164338A (zh) 2018-01-15 2019-01-08 密封结构以及用于该密封结构的密封件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018004207 2018-01-15
JP2018-004207 2018-01-15

Publications (1)

Publication Number Publication Date
WO2019139002A1 true WO2019139002A1 (ja) 2019-07-18

Family

ID=67218587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000227 WO2019139002A1 (ja) 2018-01-15 2019-01-08 シール構造及びこれに用いるシール

Country Status (5)

Country Link
US (1) US20200332896A1 (ja)
EP (1) EP3742027A1 (ja)
JP (1) JPWO2019139002A1 (ja)
CN (1) CN111164338A (ja)
WO (1) WO2019139002A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4224041A1 (de) * 2022-02-07 2023-08-09 Siemens Energy Global GmbH & Co. KG Gleitring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004034A (ja) 1999-04-23 2001-01-09 Toyota Autom Loom Works Ltd Co2圧縮機用メカニカルシール
JP2001349437A (ja) * 2000-06-05 2001-12-21 Toyota Industries Corp シール材
JP2002156042A (ja) * 2000-11-20 2002-05-31 Nok Corp 密封装置
JP2004060830A (ja) * 2002-07-31 2004-02-26 Nok Corp リップ型高圧シール
WO2008129950A1 (ja) * 2007-04-18 2008-10-30 Eagle Industry Co., Ltd. ガスケット

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089936A (ja) * 2014-11-04 2016-05-23 ニチアス株式会社 ガスケット
CN107076305B (zh) * 2014-12-12 2019-05-03 Nok株式会社 密封装置
JP6494311B2 (ja) * 2015-02-09 2019-04-03 Ntn株式会社 油圧式オートテンショナ
CN206229551U (zh) * 2016-10-28 2017-06-09 江联重工集团股份有限公司 一种轻型中温旋风分离器径向膨胀密封装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004034A (ja) 1999-04-23 2001-01-09 Toyota Autom Loom Works Ltd Co2圧縮機用メカニカルシール
JP2001349437A (ja) * 2000-06-05 2001-12-21 Toyota Industries Corp シール材
JP2002156042A (ja) * 2000-11-20 2002-05-31 Nok Corp 密封装置
JP2004060830A (ja) * 2002-07-31 2004-02-26 Nok Corp リップ型高圧シール
WO2008129950A1 (ja) * 2007-04-18 2008-10-30 Eagle Industry Co., Ltd. ガスケット

Also Published As

Publication number Publication date
EP3742027A1 (en) 2020-11-25
US20200332896A1 (en) 2020-10-22
CN111164338A (zh) 2020-05-15
JPWO2019139002A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2014041832A1 (ja) シールリング
JP6128286B2 (ja) 密封構造
TWI579463B (zh) 無油螺旋式壓縮機
JP4971990B2 (ja) メカニカルシール装置
EP1098117A1 (en) Mechanical seal for compressor
WO2019139002A1 (ja) シール構造及びこれに用いるシール
JP4958445B2 (ja) 圧縮機のメカニカルシール装置
JP6581179B2 (ja) メカニカルシール装置、ダブルシール装置およびダブルメカニカルシール装置
JP4606545B2 (ja) メカニカルシールによる圧縮機の軸封機構
JP6857100B2 (ja) 密封装置
JP2001004034A (ja) Co2圧縮機用メカニカルシール
WO2018074395A1 (ja) 密封装置
JP3997794B2 (ja) 密封装置
JP2006177500A (ja) メカニカルシール
JP2000193099A (ja) ガス圧縮機用メカニカルシ―ル
WO2020080408A1 (ja) 密封装置
JP2009108688A (ja) 圧縮機の軸封装置
JP2016056873A (ja) シール装置及びその装置に用いるパッキン
JP4793151B2 (ja) メカニカルシール装置及びウォーターポンプ
JP2006083955A (ja) 密封装置
JP2006029502A (ja) メカニカルシール
JPH0227729Y2 (ja)
JP3686810B2 (ja) 高圧用メカニカルシール
JP2001050397A (ja) リップ型シール
JP2008169933A (ja) 密封装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019738732

Country of ref document: EP

Effective date: 20200817