WO2019138960A1 - 炭素系材料、電極触媒、及び炭素系材料の製造方法 - Google Patents

炭素系材料、電極触媒、及び炭素系材料の製造方法 Download PDF

Info

Publication number
WO2019138960A1
WO2019138960A1 PCT/JP2019/000060 JP2019000060W WO2019138960A1 WO 2019138960 A1 WO2019138960 A1 WO 2019138960A1 JP 2019000060 W JP2019000060 W JP 2019000060W WO 2019138960 A1 WO2019138960 A1 WO 2019138960A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
based material
carrier
organic compound
transition metal
Prior art date
Application number
PCT/JP2019/000060
Other languages
English (en)
French (fr)
Inventor
亮 釜井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019138960A1 publication Critical patent/WO2019138960A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a carbon-based material, an electrode catalyst, and a method for producing a carbon-based material.
  • the present invention relates to a carbon-based material that can be suitably used as a catalyst material or an electrode material, an electrode catalyst using the carbon-based material, and a method for producing a carbon-based material.
  • the oxygen reduction reaction shown below is a cathode reaction in an H 2 / O 2 fuel cell, sodium chloride electrolysis and the like, and is important in energy conversion electrochemical devices and the like.
  • noble metals such as platinum, ruthenium oxide, iridium oxide and the like are widely used as catalysts.
  • these precious metals are rare and expensive, and their price is unstable. Therefore, there are problems in using precious metals from the viewpoint of resource saving, securing of availability, cost reduction, and the like.
  • Non-Patent Document 1 discloses a carbon-based material containing iron or cobalt and nitrogen.
  • the carbon-based material of Non-Patent Document 1 after mixing iron chloride or cobalt nitrate, polyaniline and a carbon material, heating at 400 to 900 ° C. in a nitrogen atmosphere for 1 hour to wash with sulfuric acid, and heating for another 3 hours can be obtained by Non-Patent Document 1 discloses that the carbon-based material functions as a catalyst that promotes oxygen reduction. Further, Non-Patent Document 1 also discloses that this carbon-based material exhibits high catalytic activity when the heating temperature is 850 ° C. or higher.
  • Non-Patent Document 2 discloses carbon-based crystals that function as a catalyst and contain iron and nitrogen.
  • the carbon-based crystal of Non-Patent Document 2 can be prepared as follows. First, graphene oxide is chemically reduced using a reducing agent to form graphene oxide in a mixture of graphene oxide, iron chloride, and graphitic carbon nitride (gC 3 N 4 ). Further, the mixture is heated at 800 ° C. for 2 hours in an argon gas atmosphere to obtain carbon-based crystals.
  • Non-Patent Document 2 discloses that this carbon-based crystal functions as a catalyst that promotes an oxygen reduction reaction.
  • Non-Patent Document 3 discloses an electrode catalyst in which iron phthalocyanine molecules and cobalt phthalocyanine molecules are supported on the surface of a carbon material.
  • the electrode catalyst of Non-Patent Document 3 can be obtained by dispersing iron phthalocyanine molecules or cobalt phthalocyanine molecules in concentrated sulfuric acid and then mixing it with a carbon material, and washing the sulfuric acid with water.
  • Non-Patent Document 3 discloses that this electrode catalyst functions as a catalyst that promotes an oxygen reduction reaction.
  • Non-Patent Documents 1 and 2 it is necessary to carry out heat treatment at 800 to 1000 ° C. for several hours in order to obtain high catalytic activity.
  • the carbon-based crystal of Non-Patent Document 2 it is necessary to widen the area of one graphene sheet constituting the carbon-based crystal and to dope a large amount of iron and nitrogen is there.
  • most of the raw material is volatilized or scattered as fine particles in the process of heat treatment, and there is a problem that the yield of the product becomes extremely low.
  • many impurities such as iron carbide are generated on the surface of the product, so it was necessary to carry out a cleaning process using sulfuric acid.
  • Nonpatent literature 3 it is not necessary to heat-treat at high temperature.
  • the electrode catalyst of Non-Patent Document 3 is in a state where only a low molecular weight material is adsorbed on the surface of a carbon material, so the durability is extremely low and there is a problem that it can not be used practically.
  • the present invention has been made in view of the problems of the prior art. And the object of the present invention is to provide a carbon-based material that can be easily manufactured and has high catalytic activity and high durability, an electrode catalyst using the carbon-based material, and a method for producing a carbon-based material. It is in.
  • a carbon-based material is a carrier comprising a carbon material, and an organic comprising a transition metal supported by the carrier and at least one of iron and cobalt and nitrogen.
  • the ratio of nitrogen atoms to carbon atoms, which comprises the compound and the molybdenum compound and determined by X-ray photoelectron spectroscopy, is 0.033 to 0.25.
  • An electrode catalyst according to a second aspect of the present invention comprises the above-mentioned carbon-based material.
  • a method for producing a carbon-based material according to a third aspect of the present invention comprises urea, a carboxylic acid anhydride having two or more cyclic structures in which one acyl atom shares one oxygen atom, and a molybdenum compound. And a step of mixing with the carrier containing the carbon material, and a step of heat treating the mixture obtained in the mixing step at 180 to 600 ° C. for 30 minutes to 100 hours.
  • FIG. 1 is a schematic view showing an example of a carbon-based material according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an example of a fuel cell according to an embodiment of the present invention.
  • FIG. 3 is a graph showing a molybdenum (3d) spectrum when the carbon-based material of Example 1 is analyzed by X-ray photoelectron spectroscopy.
  • FIG. 4 is a graph showing the relationship between the oxygen reduction potential and the current density when the carbon-based materials of Example 1 and Example 2 are electrochemically evaluated by the rotating disk electrode method.
  • FIG. 5 is a graph showing the X-ray diffraction spectra of the carbon-based material of Example 1 and Example 2, and ketjen black.
  • FIG. 3 is a graph showing a molybdenum (3d) spectrum when the carbon-based material of Example 1 is analyzed by X-ray photoelectron spectroscopy.
  • FIG. 4 is a graph showing the relationship between the oxygen reduction potential and the current
  • FIG. 6 is a graph showing X-ray diffraction spectra (calculated values) of Alpha-type iron-supporting polyphthalocyanine (FePPc) and Beta-type iron-supporting polyphthalocyanine.
  • FIG. 7 is a graph showing the relationship between the heat treatment time and the N / C ratio (molar ratio) in the carbon-based materials of Examples 1, 4 and 5 and Comparative Examples 1 and 2.
  • the carbon-based material of the present embodiment includes a carrier containing a carbon material and an organic compound supported on the carrier.
  • the carbon-based material 1 includes a particulate carrier 2 containing a carbon material, and an organic compound 3 carried on the surface of the carrier 2 and containing a transition metal and nitrogen. It is.
  • the carrier 2 carrying the organic compound 3 on the surface preferably has conductivity. Further, from the viewpoint of stably supporting the organic compound 3, the carrier 2 is preferably a porous material. Therefore, the carrier 2 preferably contains a carbon material, and more preferably consists of the carbon material. Examples of the carbon material include at least one selected from the group consisting of carbon black such as ketjen black and acetylene black, graphene, graphite fine particles, fullerene, carbon nanohorn, carbon paper, carbon cloth, and carbon felt. In addition, as the carrier 2, amorphous carbon can also be used. Since these supports 2 are excellent in conductivity and corrosion resistance, high electrode performance can be maintained for a long time.
  • the carrier 2 conductive carbon generally used as a conductive material for electrodes of secondary batteries.
  • the carrier 2 is a porous conductive carbon which can impart the electron conductivity to the organic compound 3 by supporting the organic compound 3.
  • the carrier 2 preferably has a large specific surface area in order to increase the loading amount of the organic compound 3 and the transition metal.
  • the carrier 2 preferably has a specific surface area of 500 m 2 / g or more as calculated by the BET method.
  • the shape of the carrier 2 is not particularly limited, and can be, for example, at least one shape selected from the group consisting of a sphere, a plate, a scale, a column, and a needle.
  • the carrier 2 is preferably in the form of nanoparticles.
  • the average primary particle size of the carrier 2 is preferably 10 nm to 1000 nm, and more preferably 10 nm to 300 nm. When the particle diameter of the carrier 2 is in this range, the metal coordinated to the organic compound 3 and the organic compound 3 can be highly dispersed, and the activity of the metal can be enhanced.
  • the particle diameter of the carrier 2 can be determined, for example, by observing the carbon-based material 1 with a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the organic compound 3 is preferably a compound containing a transition metal and nitrogen.
  • the organic compound 3 is more preferably a compound containing a transition metal and a nitrogen-containing polymer. And, it is particularly preferable that the nitrogen atom contained in the polymer and the transition metal form a coordinate bond.
  • the transition metal can be dispersed in a monoatomic state, and the surface area of the transition metal can be increased. Furthermore, since the electron transfer can be performed at a high rate between the nitrogen-containing polymer and the carrier 2, the catalytic activity of the transition metal can be enhanced.
  • the organic compound 3 preferably contains a polymer having a phthalocyanine (Pc) ring. Moreover, it is preferable that the organic compound 3 contains the poly phthalocyanine (PPc) which consists of a structure where multiple phthalocyanine rings were connected. That is, the nitrogen-containing polymer is preferably polyphthalocyanine.
  • PPc polyphthalocyanine
  • Such polyphthalocyanines are polymers having a two-dimensional or three-dimensional network structure.
  • polyphthalocyanine has a porous structure having meso- and micro-sized pores, as well as low density and excellent physical and chemical stability. Therefore, when the organic compound 3 contains polyphthalocyanine, the carbon-based material 1 having excellent durability can be obtained.
  • polyphthalocyanine for example, as shown in chemical formula 1, it is preferable that phthalocyanine rings are linked by a phenyl group. And in the center part of each phthalocyanine ring in polyphthalocyanine, it is preferable that a transition metal forms a coordination bond with a nitrogen atom, and is held. As described above, by causing the electron transfer between the polyphthalocyanine and the transition metal while dispersing the transition metal in a monoatomic state, it is possible to exhibit high catalytic activity.
  • the substituent which connects phthalocyanine rings is not limited to a phenyl group, For example, as mentioned later, it is also possible to use the substituent which introduce
  • the organic compound 3 preferably contains a metal atom, and the metal atom is preferably coordinated to the organic compound 3.
  • a metal atom is not particularly limited, but a transition metal can be used.
  • the metal can be at least one selected from the group consisting of Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au.
  • the transition metal is preferably at least one of iron and cobalt.
  • the metal coordinated to the organic compound may be of one type or plural types.
  • the said metal atom and the nitrogen atom contained in the organic compound 3 form the planar four-coordinate structure.
  • electron donation from the nitrogen atom to the metal atom can be increased, and catalytic activity can be enhanced.
  • the organic compound 3 has a phthalocyanine ring, and a transition metal is further coordinated to the inside of the phthalocyanine ring. Moreover, in the organic compound 3, it is preferable that the nitrogen atom and transition metal which are contained in a phthalocyanine ring form the planar four-coordinate structure. Thereby, since the electron donor from the nitrogen atom of the phthalocyanine ring to the transition metal is efficiently performed, it is possible to further improve the catalytic activity of the transition metal.
  • the ratio (N / C) of nitrogen atoms to carbon atoms determined by X-ray photoelectron spectroscopy is preferably 0.033 to 0.25. That is, when the carbon-based material 1 is analyzed by X-ray photoelectron spectroscopy, the elemental composition ratio N / C of nitrogen and carbon determined from the peak areas of the N1s spectrum and the C1s spectrum is 0.033 to 0.25. preferable.
  • N / C when N / C is 0.033 or more, it can have an active point density sufficient as a catalyst.
  • N / C is 0.25 or less, high catalytic activity can be obtained without significantly inhibiting the conductivity required for use as an electrode catalyst.
  • the above-mentioned elemental composition ratio N / C can be determined as follows. First, with respect to the peak position in X-ray photoelectron spectroscopy, the binding energy of the maximum intensity of the peak derived from C1s is calibrated to 284.6 eV. Then, when quantifying the elemental composition, a baseline is drawn for the peaks derived from each element. Specifically, in the spectrum of each element, from the terminal position of the binding energy at which the signal is detected, to an average value between 2.0 eV on the small side and an average value between 2.0 eV on the large side In contrast, draw a baseline by Shirley method. Then, the peak area is determined by the integral value of the difference between the peak intensity and the baseline. In X-ray photoelectron spectroscopy, since the peak area has a correlation with the content of each element, the elemental composition ratio N / C can be calculated by comparing the peak areas of the elements.
  • the organic compound 3 may contain a hetero atom inside.
  • a hetero atom may be introduced into a phenyl group or the like connecting phthalocyanine rings.
  • the hetero atom is preferably at least one selected from the group consisting of sulfur, boron, nitrogen and phosphorus, and more preferably sulfur or nitrogen.
  • the organic compound 3 preferably contains polyphthalocyanine (PPc) composed of a structure in which a plurality of phthalocyanine rings are linked. Therefore, the organic compound 3 preferably has a pore of 1 nm to 50 nm. When the organic compound 3 has a plurality of such pores, not only the surface of the organic compound 3 but also the transition metal coordinated to the inside act as an active site, and it is possible to further enhance the catalytic activity.
  • PPc polyphthalocyanine
  • the organic compound 3 contains a nitrogen-containing polymer
  • the carbon-based material 1 is used as an electrode catalyst, the increase in the degree of polymerization of the polymer contained in the organic compound makes it possible to suppress that part of the low molecular component detaches from the surface of the carrier 2 and deactivates. .
  • the electrode catalyst can maintain high durability.
  • the degree of polymerization of the organic compound 3 is preferably 10 or more, and more preferably 100 or more.
  • the degree of polymerization of the organic compound 3 refers to the number average degree of polymerization.
  • the nitrogen-containing polymer contained in the organic compound 3 may be a homopolymer such as the above-mentioned polyphthalocyanine.
  • the polymer contained in the organic compound 3 may be a copolymer in which plural types of repeating units are linked.
  • the polymer contained in the organic compound 3 may be a block copolymer formed by linking polyphthalocyanine and another polymer. Even when such a block copolymer is used, the electron transfer between the polymer and the transition metal is efficiently performed, so that the catalytic activity of the transition metal can be further improved.
  • the other polymers forming the block copolymer are not particularly limited, and, for example, cyclen (1,4,7,10-tetraazacyclododecane), cyclam (1,4,8,11-tetraazacyclo) Macrocyclic polyamines such as tetradecane) can be used.
  • the organic compound 3 is preferably held on the surface of the carrier 2. Since the organic compound 3 is held on the surface of the carrier 2, the electron transfer between the organic compound 3 and the carrier 2 becomes easy, and thus the catalytic activity of the carbon-based material 1 can be further improved. .
  • the shape of the organic compound 3 is not particularly limited, and can be in the form of a block or a thin film. Further, as shown in FIG. 1, the organic compound 3 may cover the entire surface of the carrier 2 or may cover only a part of the surface of the carrier 2.
  • the carbon-based material 1 can be obtained by mixing urea, a carboxylic acid anhydride, a molybdenum compound, and a carrier 2 containing a carbon material, and heating the mixture at a low temperature. That is, the polyphthalocyanine contained in the organic compound 3 can be obtained by using a molybdenum compound as a polymerization catalyst and polymerizing urea and a carboxylic acid anhydride. Thus, when the carbon-based material 1 is produced, the presence of the molybdenum compound makes it possible to advance the polymerization of phthalocyanine at a low temperature.
  • the carbon-based material 1 can be easily obtained with a low impurity content and a high N / C ratio. Therefore, the carbon-based material 1 obtained by the manufacturing method to be described later necessarily includes the molybdenum compound that has acted as a polymerization catalyst.
  • the molybdenum compound acts as a polymerization catalyst for polymerizing urea and carboxylic anhydride. Therefore, a molybdenum compound is contained as an impurity in the obtained carbon-based material 1. Therefore, the molybdenum compound may be contained in either or both of the carrier 2 and the organic compound 3.
  • the aspect of the molybdenum compound is not particularly limited.
  • it may be contained in the state of a molybdenum compound as described later (for example, ammonium dimolybdate ((NH 4 ) 2 Mo 2 O 7 )), and a compound formed by reacting the molybdenum compound (for example, Molybdenum oxide may be contained.
  • a molybdenum compound as described later for example, ammonium dimolybdate ((NH 4 ) 2 Mo 2 O 7 )
  • a compound formed by reacting the molybdenum compound for example, Molybdenum oxide
  • the content of molybdenum is preferably 0.1 to 10 mol% with respect to the total content of iron and cobalt.
  • the content of the molybdenum atom is 0.1 mol% or more, the polymerization reaction with urea and the carboxylic anhydride can be completed in a short time.
  • the content of the molybdenum atom is 10 mol% or less, the molybdenum compound does not easily inhibit the function as an electrode catalyst on the surface of the carbon-based material 1, so the catalytic activity of the carbon-based material 1 is increased. It becomes possible to maintain.
  • the content of molybdenum is preferably 0.02 to 2 mol% with respect to the content of nitrogen.
  • the carbon-based material 1 of the present embodiment includes a support 2 containing a carbon material, an organic compound 3 supported by the support 2 and containing at least one of iron and cobalt and nitrogen, and a molybdenum compound. And. Furthermore, in the carbon-based material 1, the ratio of nitrogen atoms to carbon atoms determined by X-ray photoelectron spectroscopy is 0.033 to 0.25.
  • the organic compound 3 contains a transition metal that is at least one of iron and cobalt and nitrogen, so the transition metal is coordinated to a nitrogen atom. Therefore, it is possible to disperse the transition metal in a monoatomic form and to increase the surface area of the transition metal. Furthermore, coordination can efficiently perform electron transfer between the transition metal and the organic compound 3. In addition, since the organic compound 3 is held on the surface of the carrier 2, electron transfer between the organic compound 3 and the carrier 2 is also facilitated. Therefore, the transition metal becomes an active point, and the catalytic activity of the carbon-based material 1 can be further improved.
  • the carbon-based material 1 contains a molybdenum compound that has acted as a polymerization catalyst. By adding the molybdenum compound, the organic compound 3 contains a polymer capable of coordinating the transition metal. Therefore, the carbon-based material 1 can achieve both high catalyst activity and durability.
  • the carbon-type material 1 of this embodiment does not contain a sulfur functional group.
  • heat treatment is often performed at 800 to 1000 ° C. for several hours to obtain high catalytic activity.
  • impurities composed of metal carbide or metal oxide are generated on the surface of the obtained electrode catalyst, it is necessary to carry out a cleaning process using sulfuric acid.
  • a sulfur functional group such as a sulfo group is formed on the surface of the carbon support.
  • the carbon-based material 1 of the present embodiment can be obtained by performing the heat treatment at a low temperature, the amount of impurities generated when the heat treatment is performed at a high temperature is extremely reduced. Therefore, in the method of manufacturing the carbon-based material 1, it is not necessary to perform the sulfuric acid cleaning for removing the impurities. Therefore, the sulfur functional group is not formed on the surface of the carrier 2, and the carbon-based material 1 can be configured not to contain the sulfur functional group.
  • the carbon-based material 1 of the present embodiment does not contain transition metal carbide.
  • heat treatment is often performed for several hours at 800 to 1000 ° C. in order to obtain high catalytic activity. In this case, many impurities made of metal carbide are generated on the surface of the obtained electrode catalyst.
  • the carbon-based material 1 of the present embodiment can be obtained by performing the heat treatment at a low temperature, the amount of impurities generated when the heat treatment is performed at a high temperature is extremely reduced. Therefore, the carbon-based material 1 can be configured not to contain transition metal carbides.
  • the crystal structure of the polyphthalocyanine is not particularly limited. However, it is preferable that the crystal structure of polyphthalocyanine is either or both of an Alpha type structure and a Beta type structure. Regardless of whether the polyphthalocyanine has an alpha-type structure or a beta-type structure, by being supported on the carrier 2, electron transfer from the transition metal to the carrier 2 is facilitated and high catalytic activity is exhibited. Is possible.
  • polyphthalocyanine of Alpha type structure and Beta type structure is shown in Non-patent document 4 (Zhengping Zhang et al., 4 persons, small, 2016, 12, No. 31, page 4193-4199).
  • a method for producing a carbon-based material 1 comprises the steps of mixing urea, a carboxylic acid anhydride, a molybdenum compound, and a carrier 2 containing a carbon material, and performing a heat treatment on the mixture obtained in the mixing step. It is.
  • urea and a carboxylic anhydride which are raw materials of the organic compound 3, a molybdenum compound which is a polymerization catalyst, and the carrier 2 are mixed.
  • the mixing conditions are not particularly limited, and the mixing can be performed in the atmosphere.
  • the carboxylic acid anhydride it is preferable to use a compound having two or more cyclic structures shown in chemical formula 2 in one molecule. That is, as the carboxylic acid anhydride, it is preferable to use a compound having a plurality of cyclic structures in which two acyl groups share one oxygen atom.
  • the reaction of such a carboxylic anhydride with urea facilitates the reaction to form polyphthalocyanine.
  • carboxylic acid anhydrides examples include benzene-1,2,4,5-tetracarboxylic acid dianhydride, 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid dianhydride, and It is possible to use at least one selected from the group consisting of 1,6-dimethylbenzene-1,2,4,5-tetracarboxylic acid dianhydride.
  • molybdenum compound for example, ammonium dimolybdate ((NH 4 ) 2 Mo 2 O 7 ), bis ammonium molybdate ((NH 4 ) 2 MoO 4 ), hexaammonium heptamolybdate tetrahydrate ((NH 4) ) At least selected from the group consisting of 6 Mo 7 O 24. 4 H 2 O), ammonium phosphomolybdate ((NH 4 ) 3 PMo 12 O 40 ), and ammonium tetrathiomolybdate ((NH 4 ) 2 MoS 4 )
  • a molybdenum compound for example, ammonium dimolybdate ((NH 4 ) 2 Mo 2 O 7 ), bis ammonium molybdate ((NH 4 ) 2 MoO 4 ), hexaammonium heptamolybdate tetrahydrate ((NH 4) ) At least selected from the group consisting of 6 Mo 7 O 24. 4 H 2 O), ammonium phosphomoly
  • the addition amount of the molybdenum compound is not particularly limited as long as the reaction for forming the phthalocyanine ring proceeds efficiently.
  • the addition amount of the molybdenum compound is adjusted so that the content of the molybdenum atom becomes 0.1 to 10 mol% of the content of the transition metal coordinated to the center of the phthalocyanine ring. It is preferable to do.
  • the polymerization reaction can be completed in a short time by adjusting the content of the molybdenum atom to be 0.1 mol% or more. Further, by adjusting the content of the molybdenum atom to be 10 mol% or less, it is difficult to inhibit the function as an electrode catalyst on the surface of the carbon-based material 1, and it becomes possible to obtain high catalytic activity.
  • heat treatment is performed on the mixture obtained in the above-mentioned mixing step.
  • the heat treatment of the mixture may be performed in the air or under an inert atmosphere.
  • the heat treatment temperature of the mixture is preferably 180 ° C. to 600 ° C., and more preferably 200 ° C. to 400 ° C.
  • the heat treatment temperature is 180 ° C. or higher, urea having a melting point of about 134 ° C. can be melted to allow the reaction to proceed.
  • the heat treatment temperature is 600 ° C. or less, volatilization of the raw material and formation of metal carbide can be suppressed.
  • the heat treatment temperature of the mixture is preferably 200 ° C. to 400 ° C., more preferably 200 ° C. to 350 ° C., and still more preferably 200 ° C. to 250 ° C.
  • the heat treatment time of the mixture is preferably 0.5 hours or more and 100 hours or less. If the heat treatment time is less than 0.5 hours, the polymerization reaction between urea and the carboxylic anhydride becomes insufficient, and the ratio of nitrogen atoms to carbon atoms in the resulting carbonaceous material decreases. Therefore, the carbon-based material to be obtained may have a reduced activity as an electrode catalyst. In addition, when the degree of polymerization decreases, there is a risk that the durability when using a carbon-based material as an electrode catalyst may be reduced. When the heat treatment time exceeds 100 hours, the mixing amount of the molten urea and the carrier becomes nonuniform due to the increase of the volatilization amount of the raw material urea. Therefore, in the surface of the obtained carbon-based material, the bias of the place where the organic compound is formed is largely generated. As a result, the uniformity of nitrogen atoms on the surface of the carbon-based material may be reduced, and the catalyst activity may be reduced.
  • the mixture is washed with a solvent and dried to obtain the carbon-based material 1 having the organic compound 3 supported on the surface.
  • the solvent used in the washing step is not particularly limited as long as impurities can be removed, for example, pure water can be used.
  • the method for supporting the metal on the organic compound 3 is not particularly limited.
  • a method of supporting the metal for example, a method of mixing a metal salt when synthesizing the organic compound 3 can be applied. That is, when mixing a urea, a carboxylic anhydride, a molybdenum compound, and the support
  • an impregnation method can be applied as a method of supporting the metal. That is, by impregnating the material in which the nitrogen-containing polymer is formed on the carrier 2 into a solution in which the metal salt is dissolved and then drying it, it is possible to make the organic compound 3 contain a metal atom.
  • the metal salt a salt containing at least one selected from the group consisting of Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au can be used.
  • pure water can be used as a solvent for dissolving the metal salt.
  • the non-patent document 5 ( persons from Go Tei, Chemistry Select, 2016, Vol. 1, page 5440-5444)
  • metal carbides form even with only a few minutes of heat treatment.
  • Such metal carbides can be identified by X-ray diffraction (XRD) measurement.
  • the carbon-based material of the present embodiment can be manufactured by heat treatment at a low temperature of about 180 ° C. to 600 ° C., impurities such as metal carbides are hardly generated even in the state immediately after the heat treatment.
  • impurities such as metal carbides are hardly generated even in the state immediately after the heat treatment.
  • carbon-based materials can be produced by heat treatment at low temperatures, and the need for sulfuric acid cleaning, which is necessary when removing impurities consisting of metal carbides and metal oxides, becomes unnecessary.
  • a sufficiently high catalytic activity can be expressed. That is, even in the state where the carbon-based material does not have a sulfur functional group, the carbon-based material contains almost no metal carbide. Therefore, the manufacturing process of the carbon-based material can be simplified.
  • the carbon-based material of the present embodiment can be produced by heat treatment at a low temperature of about 180 ° C. to 600 ° C. Therefore, it is possible to significantly reduce the amount of energy required for manufacturing.
  • the method for producing the carbon-based material 1 according to the present embodiment includes urea, a carboxylic acid anhydride having two or more cyclic structures in which one acyl atom shares one oxygen atom, and a molybdenum compound. And a carrier 2 containing a carbon material.
  • the production method further includes the step of heat treating the mixture obtained in the mixing step at 180 to 600 ° C. for 30 minutes to 100 hours.
  • a molybdenum compound is used as a polymerization catalyst for reacting a carboxylic anhydride and urea.
  • the organic compound 3 can be produced by heat treatment at a relatively low temperature of 180 to 600 ° C., it is possible to largely suppress the formation of metal carbide and metal oxide as impurities. In addition, since the generation of impurities is suppressed, the sulfuric acid cleaning step, which has conventionally been essential, becomes unnecessary, and the manufacturing process can be simplified.
  • the above-mentioned mixture preferably further contains a compound of a transition metal which is at least one of iron and cobalt.
  • a transition metal can be supported on the resulting organic compound 3 by adding a transition metal compound to a mixture of urea, a carboxylic anhydride, a molybdenum compound and a carrier 2. Therefore, the transition metal can be easily supported on the organic compound 3 as compared with the conventional impregnation method.
  • the carbon-based material 1 of the present embodiment Since the carbon-based material 1 of the present embodiment has high catalytic activity, it can be widely used for electrodes of electrochemical devices including fuel cells.
  • the example which applied the electrode catalyst containing the carbonaceous material 1 to a fuel cell is demonstrated.
  • FIG. 2 shows an example of the configuration of the fuel cell in the present embodiment.
  • a load 14 to which current is supplied when connected to the fuel cell is also shown.
  • the fuel cell 10 is a primary cell capable of releasing electricity, and includes, for example, hydrogen fuel cells such as a polymer electrolyte fuel cell (PEFC) and a phosphoric acid fuel cell (PAFC), and a microbial fuel cell ( MFC).
  • hydrogen fuel cells such as a polymer electrolyte fuel cell (PEFC) and a phosphoric acid fuel cell (PAFC), and a microbial fuel cell ( MFC).
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric acid fuel cell
  • MFC microbial fuel cell
  • a hydrogen fuel cell is a fuel cell that obtains electric energy from hydrogen and oxygen by the reverse reaction of water electrolysis.
  • PEFC alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid An electrolyte fuel cell (SOFC) or the like is known.
  • the fuel cell 10 is preferably a PEFC or a PAFC.
  • PEFC is a fuel cell using a proton conductive ion exchange membrane as an electrolyte material
  • PAFC is a fuel cell using phosphoric acid (H 3 PO 4 ) impregnated in a matrix layer as an electrolyte material.
  • Such a fuel cell 10 includes, for example, an electrolyte solution 11 (electrolyte material) as shown in FIG.
  • the fuel cell 10 also includes an anode 12 (fuel electrode) and a cathode 13 (air electrode).
  • the anode 12 is an electrode that emits electrons to the load 14 by an oxygen generation reaction.
  • the cathode 13 is an electrode into which electrons flow from the load 14 by an oxygen reduction reaction.
  • the cathode 13 is configured as a gas diffusion electrode, and includes an electrode catalyst including the above-described carbon-based material 1.
  • Gas diffusion electrodes can be suitably applied to electrodes such as hydrogen fuel cells and MFCs.
  • the fuel cell 10 according to the present embodiment may have a known configuration, except that the fuel cell 10 includes the cathode 13 and the cathode 13 is a gas diffusion electrode including an electrode catalyst.
  • the cathode 13 is described as being configured as a gas diffusion electrode and including an electrode catalyst, the present invention is not limited to such a configuration.
  • an electrode provided with an electrode catalyst can be used for either of the anode 12 and the cathode 13.
  • a gas diffusion electrode provided with an electrode catalyst may be used as the anode 12.
  • the electrode catalyst contained in the anode 12 promotes the oxidation reaction (H 2 ⁇ 2H + +2 e ⁇ ) of the hydrogen gas as the fuel to donate electrons to the anode 12.
  • a gas diffusion electrode provided with an electrode catalyst may be used as the cathode 13.
  • the electrode catalyst contained in the cathode 13 promotes the reduction reaction (1 / 2O 2 + 2H + + 2e ⁇ ⁇ H 2 O) of the oxygen gas which is an oxidant.
  • the anode 12 receives electrons directly from the electron donating microorganism. Therefore, in this case, the gas diffusion electrode provided with the electrode catalyst is mainly used as a cathode that causes the same electrode reaction as a hydrogen fuel cell.
  • the electrode catalyst containing the carbonaceous material 1 can be used suitably for the electrode of a fuel cell.
  • the application of the electrode catalyst containing the carbon-based material 1 is not limited to the fuel cell, and may be used as an electrode of various electrochemical devices. Examples of such an electrochemical device include a water electrolysis device, a carbon dioxide permeation device, a sodium chloride electrolysis device, a metal-air battery (lithium-air battery etc.) and the like.
  • Example 1 In accordance with the reaction formula shown in Chemical formula 3, a carbon-based material carrying polyphthalocyanine and a transition metal was synthesized on a carrier made of ketjen black (registered trademark).
  • urea 0.41 g of urea, 0.10 g of ammonium chloride, 0.25 mg of ammonium dimolybdate, 0.21 g of pyromellitic dianhydride, and 90 mg of iron (III) chloride were mixed in a mortar.
  • 0.30 g of ketjen black was added and further mixed in a mortar.
  • ketjen black used Lion Specialty Chemicals Ltd. EC600JD, and the average primary particle diameter was 34.0 nm.
  • the resulting mixture was transferred to a container of Pyrex glass and kept at 220 ° C. for 2 hours under air.
  • the heat-treated powder was then ultrasonically cleaned in 200 mL of deionized water for 10 minutes, filtered and dried. This obtained the carbon-type material of this example containing iron and nitrogen.
  • Example 2 a carbon-based material was synthesized in the same manner as in Example 1 except that washing with sulfuric acid was performed. Specifically, first, in the same manner as in Example 1, a mixture of urea, ammonium chloride, ammonium dimolybdate, pyromellitic dianhydride, iron (III) chloride and ketjen black was prepared.
  • the resulting mixture was transferred to a container of Pyrex glass and held at 220 ° C. under air for 2 hours.
  • the heat-treated powder was then washed at 60 ° C. for 2 hours using 2 M sulfuric acid.
  • the sulfuric acid washed powder was then sonicated in 200 mL of deionized water for 10 minutes, filtered and dried. This obtained the carbon-type material of this example containing iron and nitrogen.
  • Example 3 a carbon-based material was synthesized in the same manner as in Example 1 except that iron as a transition metal was substituted by cobalt. Specifically, first, 0.41 g of urea, 0.10 g of ammonium chloride, 0.25 mg of ammonium dimolybdate, 0.21 g of pyromellitic dianhydride, and 72 mg of cobalt chloride were mixed in a mortar . Next, 0.30 g of ketjen black was added and further mixed in a mortar.
  • the resulting mixture was transferred to a container of Pyrex glass and held at 220 ° C. under air for 2 hours.
  • the heat-treated powder was then ultrasonically cleaned in 200 mL of deionized water for 10 minutes, filtered and dried. This obtained the carbon-type material of this example containing cobalt and nitrogen.
  • Example 4 a carbon-based material was synthesized in the same manner as in Example 1 except that the heat treatment time of the mixture was shortened to 0.5 hours.
  • Example 5 a carbon-based material was synthesized in the same manner as in Example 1 except that the heat treatment time of the mixture was extended to 100 hours.
  • Example 6 a carbon-based material was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the mixture was set to 180 ° C.
  • Example 7 a carbon-based material was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the mixture was 350 ° C.
  • Example 8 a carbon-based material was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the mixture was set to 600 ° C.
  • Example 9 a carbon-based material was synthesized in the same manner as in Example 1 except that the content of the carrier was increased. Specifically, a carbon-based material of this example was obtained in the same manner as in Example 1 except that the amount of ketjen black added was changed to 0.50 g.
  • Example 10 a carbon-based material was synthesized in the same manner as in Example 1 except that the content of the carrier was reduced. Specifically, a carbon-based material of this example was obtained in the same manner as in Example 1 except that the amount of ketjen black added was changed to 0.020 g.
  • Comparative example 1 In Comparative Example 1, a carbon-based material was synthesized in the same manner as in Example 1 except that the heat treatment time of the mixture was reduced to 0.25 hours.
  • Comparative example 2 In Comparative Example 2, a carbon-based material was synthesized in the same manner as Example 1 except that the heat treatment time of the mixture was extended to 200 hours.
  • Comparative example 3 a carbon-based material was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the mixture was 140 ° C.
  • Comparative example 4 a carbon-based material was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the mixture was 700 ° C.
  • Comparative example 5 a carbon-based material was synthesized in the same manner as in Example 1 except that the content of the carrier was increased. Specifically, the carbon-based material of this example was obtained in the same manner as in Example 1 except that the amount of ketjen black added was changed to 0.70 g.
  • Comparative example 6 a carbon-based material of this example was obtained in the same manner as in Example 1 except that ketjen black as a carrier was not added.
  • an XPS apparatus (AXIS Ultra HAS, manufactured by Kratos Analytical) was used for the XPS measurement.
  • narrow scan measurement was performed on each element to obtain spectra of nitrogen (N1s) and carbon (C1s).
  • a baseline was determined for each element peak by the Shirley method, and the peak area was derived.
  • the elemental composition ratio N / C of nitrogen (N) and carbon (C) in the carbon-based material was determined from the peak areas of the obtained N1s spectrum and C1s spectrum.
  • Example 1 XPS measurement was performed on the carbon-based materials of Example 1 and Example 2 in the same manner as described above, and spectra of sulfur (S2p) and carbon (C1s) were determined. Then, a baseline was determined for each element peak by the Shirley method, and the peak area was derived. The elemental composition ratio S / C of sulfur (S) and carbon (C) in the carbon-based material was determined from the peak areas of the obtained S2p spectrum and C1s spectrum. The elemental composition ratio S / C in the carbon-based material of Example 1 and Example 2 is shown in Table 2. In addition, in Example 1, since the peak of a sulfur atom was not observed, element composition ratio S / C was not able to be calculated
  • Electrochemical evaluation was performed on the carbon-based material of each example using a rotating disk electrode (RDE) method.
  • RDE rotating disk electrode
  • a 4 mm diameter glassy carbon electrode (manufactured by BAS Co., Ltd.) polished with alumina having a particle diameter of 0.05 ⁇ m was prepared as a disk.
  • a catalyst ink was prepared by dispersing 5.0 mg of carbon-based material, 120 ⁇ L of ethanol, and 47.5 ⁇ L of 5% Nafion solution (manufactured by Sigma-Aldrich) with an ultrasonic homogenizer for 3 minutes while cooling with a water bath. .
  • the measurement results of the oxygen reduction onset potential in the carbon-based material of each example are shown in Table 1 together.
  • the polarization curve with respect to the oxygen reduction reaction obtained by electrochemical evaluation with respect to the carbon-type material of Example 1 and Example 2 is shown. Note that the higher the oxygen reduction onset potential in the carbon-based material, the higher the catalytic activity per unit amount of transition metal.
  • Crystal structure analysis Crystal structure analysis of the carbon-based material of Example 1 and Example 2 and ketjen black alone was performed using an X-ray diffractometer (product name: MultiFlex, manufactured by Rigaku Corporation). The measurement results of these X-ray diffraction (XRD) are shown in FIG. In FIG. 6, X-ray diffraction spectra (calculated values) of Alpha-type iron-supporting polyphthalocyanine (FePPc) and Beta-type iron-supporting polyphthalocyanine are shown.
  • the carbon-based materials of Examples 1 to 10 have an oxygen reduction onset potential of 0.76 V vs. It turns out that it becomes RHE or more and shows a favorable oxygen reduction characteristic.
  • the carbon-based materials of Examples 1 to 10 can be obtained by heat treatment at 180 to 600 ° C. for 30 minutes to 100 hours, it is understood that heat treatment at high temperature is not required.
  • the carbon-based material of Example 1 contains a molybdenum compound.
  • the ratio of Mo to Fe was 0.27 mol%.
  • Example 1 and Example 2 As shown in Table 2 above, as a result of performing XPS measurement on the carbon-based materials of Example 1 and Example 2, no peak of sulfur atoms was observed in the carbon-based material of Example 1, but Example In the second carbon-based material, a sulfur atom peak was observed. That is, since the carbon-based material of Example 2 was washed with sulfuric acid, it is understood that it contains a sulfur functional group. However, the oxygen reduction onset potentials of the carbon-based materials of Example 1 and Example 2 were both 0.83 V vs.. It became RHE and showed excellent oxygen reduction characteristics. Moreover, as shown in FIG. 4, the carbon-type material of Example 1 and Example 2 shows the same polarization curve, and it turns out that it has equivalent catalytic activity. Therefore, in the carbon-based material of the present embodiment, excellent oxygen reduction characteristics can be obtained without performing the sulfuric acid cleaning, which is essential in the conventional manufacturing method, so that the manufacturing process can be simplified.
  • the carbon-based material of Comparative Example 1 has a heat treatment time as short as 0.25 hours, as compared with the above-described example. Therefore, since the polymerization reaction was insufficient, the amount of polyphthalocyanine became too small, and the oxygen reduction characteristics deteriorated. Further, in the carbon-based material of Comparative Example 2, since the heat treatment time was as long as 200 hours, the uniformity of nitrogen atoms on the surface of the carbon-based material was degraded, and the oxygen reduction characteristics were degraded.
  • the element composition ratio N / C of nitrogen (N) to carbon (C) is less than 0.033.
  • the nitrogen content relatively decreased and the active site decreased, so that the oxygen reduction characteristics deteriorated.
  • the carbon-based material of Comparative Example 5 did not contain ketjen black as a carrier, the electron conductivity of the carbon-based material itself was lowered and the oxygen reduction characteristics were deteriorated.
  • FIG. 7 shows the relationship between the heat treatment time and the N / C ratio (mol ratio) in the carbon-based materials of Examples 1, 4 and 5 and Comparative Examples 1 and 2.
  • Examples 1, 4 and 5 and Comparative Examples 1 and 2 differ only in the heat treatment time, and the other manufacturing conditions are common.
  • the heat treatment time is 30 minutes to 100 hours
  • the element composition ratio N / C is 0.040 to 0.052, and it can be seen that the oxygen reduction characteristics become favorable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

炭素系材料(1)は、炭素材料を含む担体(2)と、担体に担持され、鉄及びコバルトの少なくとも一方である遷移金属と窒素とを含む有機化合物(3)と、モリブデン化合物と、を含み、X線光電子分光法で定量される炭素原子に対する窒素原子の割合が、0.033~0.25である。電極触媒は、上述の炭素系材料を含む。炭素系材料の製造方法は、尿素と、二つのアシル基が一つの酸素原子を共有する環状構造を1分子中に2以上有するカルボン酸無水物と、モリブデン化合物と、炭素材料を含む担体とを混合する工程と、混合工程で得られた混合物に対して、180~600℃で30分~100時間の熱処理を行う工程と、を含む。

Description

炭素系材料、電極触媒、及び炭素系材料の製造方法
 本発明は、炭素系材料、電極触媒、及び炭素系材料の製造方法に関する。詳細には、本発明は、触媒材料や電極材料として好適に用いることが可能な炭素系材料、当該炭素系材料を用いた電極触媒、及び炭素系材料の製造方法に関する。
 下記に示す酸素還元反応は、H/O燃料電池や食塩電解等におけるカソード反応であり、エネルギー変換電気化学デバイスなどにおいて重要である。
 O+4H+4e → 2H
 また、この酸素還元反応の逆反応である下記の酸素発生反応は、水の電気分解等におけるアノード反応として重要である。
 2HO → O+4H+4e
 各種デバイスにおいて酸素還元反応又は酸素発生反応を進行させる場合、通常は触媒として白金、酸化ルテニウム、酸化イリジウムなどの貴金属が広く使用されている。しかし、これらの貴金属は稀少で高価であり、且つ、価格が不安定である。そのため、貴金属を使用することには、省資源化の観点や入手安定性を確保する観点、低コスト化の観点などから問題がある。
 そこで、近年、酸素還元触媒として、金属と窒素がドープされた炭素系材料が開発され、貴金属に代わる触媒として有力視されている。例えば、非特許文献1は、鉄又はコバルトと窒素とを含有する炭素系材料を開示している。非特許文献1の炭素系材料は、塩化鉄または硝酸コバルトとポリアニリンと炭素材料とを混合し、窒素雰囲気下400~900℃で1時間加熱して硫酸洗浄をした後に、さらに3時間加熱することで得ることができる。非特許文献1では、当該炭素系材料が酸素還元を促進する触媒として機能することが開示されている。また、非特許文献1では、この炭素系材料は、加熱温度が850℃以上の場合において高い触媒活性を発現することも開示されている。
 非特許文献2は、触媒として機能し、鉄と窒素を含有する炭素系結晶を開示している。非特許文献2の炭素系結晶は、次のようにして調製することができる。まず、酸化グラフェンと塩化鉄とグラファイト状窒化炭素(g-C)との混合物中の酸化グラフェンを、還元剤を用いて化学的に還元することで、グラフェンを生成する。更にこの混合物を、アルゴンガス雰囲気下で800℃、2時間加熱することで、炭素系結晶を得ている。非特許文献2では、この炭素系結晶が酸素還元反応を促進する触媒として機能することが開示されている。
 非特許文献3は、炭素材料の表面に鉄フタロシアニン分子やコバルトフタロシアニン分子が担持された電極触媒を開示している。非特許文献3の電極触媒は、鉄フタロシアニン分子やコバルトフタロシアニン分子を濃硫酸中に分散させた後に炭素材料と混合し、硫酸を水で洗い流すことで得ることができる。非特許文献3では、この電極触媒が酸素還元反応を促進する触媒として機能することが開示されている。
Gang Wu1外3名、Science、2011年、Vol.332、443-447頁 Hye Ryung Byon外2名、Chemistry of Materials、2011年、Vol.23、3421-3428頁 Rongrong Chen外3名、The Journal Of Physical Chemistry C、2009年、Vol.113、20689-20697頁
 しかしながら、非特許文献1及び2の製造方法では、高い触媒活性を得るために800~1000℃で数時間の熱処理を行う必要がある。例えば、非特許文献2の炭素系結晶が充分な触媒活性を発揮するためには、炭素系結晶を構成するグラフェンシートの1枚当たりの面積を広くし、多くの鉄と窒素をドープさせる必要がある。そのためには、炭素系結晶の製造時における加熱温度を高くしたり、加熱時間を長くする必要がある。その結果、熱処理の過程で原料の大部分が揮発あるいは微粒子として飛散してしまい、生成物の収率が極めて低くなるという問題があった。また、800~1000℃においては、生成物の表面に鉄炭化物などの不純物が多く生成するため、硫酸を用いて洗浄処理を行う必要があった。
 これに対して、非特許文献3の製造方法では、高温での熱処理を行う必要はない。しかしながら、非特許文献3の電極触媒は、炭素材料の表面に低分子材料が吸着しているだけの状態となっているため、耐久性が著しく低く、実用的に用いることができないという問題があった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、簡易に製造することができ、高い触媒活性と高い耐久性を有する炭素系材料、当該炭素系材料を用いた電極触媒、及び炭素系材料の製造方法を提供することにある。
 上記課題を解決するために、本発明の第一の態様に係る炭素系材料は、炭素材料を含む担体と、担体に担持され、鉄及びコバルトの少なくとも一方である遷移金属と窒素とを含む有機化合物と、モリブデン化合物と、を含み、X線光電子分光法で定量される炭素原子に対する窒素原子の割合が、0.033~0.25である。
 本発明の第二の態様に係る電極触媒は、上述の炭素系材料を含む。
 本発明の第三の態様に係る炭素系材料の製造方法は、尿素と、二つのアシル基が一つの酸素原子を共有する環状構造を1分子中に2以上有するカルボン酸無水物と、モリブデン化合物と、炭素材料を含む担体とを混合する工程と、混合工程で得られた混合物に対して、180~600℃で30分~100時間の熱処理を行う工程と、を含む。
図1は、本発明の実施形態に係る炭素系材料の一例を示す概略図である。 図2は、本発明の実施形態に係る燃料電池の一例を示す概略図である。 図3は、実施例1の炭素系材料をX線光電子分光分析した際のモリブデン(3d)スペクトルを示すグラフである。 図4は、実施例1及び実施例2の炭素系材料に対して回転ディスク電極法により電気化学評価を行った際の、酸素還元電位と電流密度との関係を示すグラフである。 図5は、実施例1及び実施例2の炭素系材料、並びにケッチェンブラックのX線回折スペクトルを示すグラフである。 図6は、Alpha型の鉄担持ポリフタロシアニン(FePPc)とBeta型の鉄担持ポリフタロシアニンのX線回折スペクトル(計算値)を示すグラフである。 図7は、実施例1,4及び5、並びに比較例1及び2の炭素系材料における、熱処理時間とN/C比(mol比)との関係を示すグラフである。
 以下、図面を参照しながら、本実施形態に係る炭素系材料、当該炭素系材料を用いた電極触媒、及び炭素系材料の製造方法について説明する。なお、以下で説明する実施形態は、いずれも好ましい例を示すものである。また、以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは一例であり、本実施形態を限定する主旨ではない。
[炭素系材料]
 本実施形態の炭素系材料は、炭素材料を含む担体と、担体に担持される有機化合物とを含んでいる。具体的には、図1に示すように、炭素系材料1は、炭素材料を含む粒子状の担体2と、担体2の表面に担持され、遷移金属と窒素とを含む有機化合物3とを含んでいる。
 (担体)
 炭素系材料1において、有機化合物3を表面に担持する担体2は、導電性を有していることが好ましい。また、担体2は、安定的に有機化合物3を担持する観点から、多孔質材料であることが好ましい。そのため、担体2は、炭素材料を含むことが好ましく、当該炭素材料からなることがより好ましい。炭素材料としては、ケッチェンブラックやアセチレンブラック等のカーボンブラック、グラフェン、グラファイト微粒子、フラーレン、カーボンナノホーン、カーボンペーパー、カーボンクロス、カーボンフェルトからなる群より選ばれる少なくとも一つを挙げることができる。また、担体2としては、無定形炭素も使用することができる。これらの担体2は導電性及び耐食性に優れるため、長期間に亘り高い電極性能を維持することができる。
 また、担体2として、二次電池の電極用導電性材料として一般に用いられる導電性炭素を用いることも好ましい。ただ、担体2は、有機化合物3を担持することによって、有機化合物3に電子伝導性を付与することができる多孔質な導電性炭素であることが特に好ましい。
 担体2は、有機化合物3及び遷移金属の担持量を増加させるために、比表面積が大きい方が好ましい。例えば、担体2は、BET法で算出される比表面積が500m/g以上であることが好ましい。
 担体2の形状は特に限定されず、例えば球状、板状、鱗片状、柱状及び針状からなる群より選ばれる少なくとも一つの形状とすることができる。担体2は、ナノ粒子の形態であることが好ましい。また、担体2の平均一次粒子径は、10nm~1000nmであることが好ましく、10nm~300nmであることがより好ましい。担体2の粒子径がこの範囲内であることにより、有機化合物3及び有機化合物3に配位している金属を高分散させ、当該金属の活性を高めることが可能となる。なお、担体2の粒子径は、例えば炭素系材料1を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)で観察することにより求めることができる。
 (有機化合物)
 炭素系材料1において、有機化合物3は、遷移金属と窒素とを含む化合物であることが好ましい。また、有機化合物3は、遷移金属と、窒素を含有する高分子とを含む化合物であることがより好ましい。そして、高分子に含まれる窒素原子と遷移金属とが配位結合を形成していることが特に好ましい。窒素を含有する高分子に遷移金属が配位することにより、遷移金属を単原子状に分散させ、遷移金属の表面積を大きくすることができる。さらに、窒素を含有する高分子と担体2との間において、高い割合で電子移動することができるため、当該遷移金属の触媒活性を高めることが可能となる。
 有機化合物3は、フタロシアニン(Pc)環を有する高分子を含むことが好ましい。また、有機化合物3は、フタロシアニン環が複数連結した構造からなるポリフタロシアニン(PPc)を含むことが好ましい。つまり、窒素を含有する高分子が、ポリフタロシアニンであることが好ましい。このようなポリフタロシアニンは、二次元又は三次元のネットワーク構造を有する高分子である。また、ポリフタロシアニンは、メゾやマイクロサイズの細孔を有する多孔質構造を有するとともに、低密度かつ優れた物理的・化学的安定性を有する。そのため、有機化合物3がポリフタロシアニンを含むことにより、耐久性に優れた炭素系材料1を得ることができる。
 ポリフタロシアニンは、例えば、化学式1に示すように、フェニル基によってフタロシアニン環同士が連結されていることが好ましい。そして、ポリフタロシアニンにおける各フタロシアニン環の中央部では、遷移金属が窒素原子と配位結合を形成して保持されていることが好ましい。このように、遷移金属を単原子状に分散させつつ、ポリフタロシアニンと遷移金属との間で電子移動を生じさせることにより、高い触媒活性を発揮することが可能となる。なお、フタロシアニン環同士を連結する置換基はフェニル基に限定されず、例えば、後述するように、フェニル基にヘテロ原子を導入した置換基を用いることも可能である。
Figure JPOXMLDOC01-appb-C000001
 有機化合物3は金属原子を含んでおり、当該金属原子は有機化合物3に配位していることが好ましい。このような金属原子は特に限定されないが、遷移金属を用いることができる。具体的には、当該金属は、Mn、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ag、Ir、Pt及びAuからなる群より選ばれる少なくとも一つを用いることができる。特に、炭素系材料1を、酸素還元反応を促進する電極触媒として用いる場合、遷移金属は、鉄およびコバルトの少なくとも一方であることが好ましい。なお、有機化合物に配位する金属は一種類であってもよく、複数種であっても構わない。
 当該金属原子と有機化合物3に含まれる窒素原子とは、平面四配位構造を形成していることが好ましい。平面四配位構造を形成することによって、窒素原子から金属原子への電子供与が大きくなり、触媒活性を高めることが可能となる。
 炭素系材料1において、有機化合物3はフタロシアニン環を有し、さらにフタロシアニン環の内部に遷移金属が配位されていることが好ましい。また、有機化合物3において、フタロシアニン環に含まれる窒素原子と遷移金属は、平面四配位構造を形成していることが好ましい。これにより、フタロシアニン環の窒素原子から遷移金属への電子供与が効率的に行われるため、遷移金属の触媒活性をより向上させることが可能となる。
 炭素系材料1において、X線光電子分光法で定量される炭素原子に対する窒素原子の割合(N/C)は、0.033~0.25であることが好ましい。つまり、炭素系材料1をX線光電子分光法で分析した際、N1sスペクトル及びC1sスペクトルのピーク面積から求められる窒素と炭素の元素組成比N/Cが0.033~0.25であることが好ましい。炭素系材料1において、N/Cが0.033以上である場合には、触媒として十分な活性点密度を有することができる。また、N/Cが0.25以下である場合には、電極触媒として利用する際に必要となる導電性を大きく阻害せず、高い触媒活性を得ることができる。
 ここで、上述の元素組成比N/Cは、次のように求めることができる。まず、X線光電子分光法でのピーク位置に関し、C1sに由来するピークの最大強度の結合エネルギーを、284.6eVに較正する。そして、元素組成の定量に際し、各元素に由来するピークに対して、ベースラインを引く。具体的には、各元素のスペクトルにおいて、信号が検出される結合エネルギーの末端位置から、小さい側に2.0eVまでの間の平均値、および大きい側に2.0eVまでの間の平均値に対して、Shirley法によってベースラインを引く。そして、ピーク強度とベースラインの差の積分値によってピーク面積を求める。X線光電子分光法において、ピーク面積は各元素の含有量と相関性があることから、各元素のピーク面積を比較することで、元素組成比N/Cを算出することができる。
 有機化合物3は、その内部にヘテロ原子を含有していてもよい。例えば、フタロシアニン環同士を連結するフェニル基などにヘテロ原子を導入してもよい。なお、ヘテロ原子は、硫黄、ホウ素、窒素及びリンからなる群より選ばれる少なくとも一つであることが好ましく、硫黄または窒素であることがより好ましい。
 上述のように、有機化合物3は、フタロシアニン環が複数連結した構造からなるポリフタロシアニン(PPc)を含むことが好ましい。そのため、有機化合物3は、1nm~50nmの細孔を有することが好ましい。有機化合物3がこのような細孔を複数有することにより、有機化合物3の表面だけでなく内部に配位した遷移金属も活性点として作用するため、触媒活性をより高めることが可能となる。
 有機化合物3が窒素を含有する高分子を含む場合、有機化合物3の重合度は高ければ高いほど好ましい。有機化合物に含まれる高分子の重合度が高まることにより、炭素系材料1を電極触媒として使用する際に、低分子成分の一部が担体2の表面から脱離して失活することを抑制できる。その結果、電極触媒は、高い耐久性を保持することが可能となる。具体的には、有機化合物3が窒素を含有する高分子を含む場合、有機化合物3の重合度は10以上であることが好ましく、100以上であることがより好ましい。なお、有機化合物3の重合度は数平均重合度をいう。
 有機化合物3に含まれる窒素を含有する高分子は、上述のポリフタロシアニンのようなホモポリマーであってもよい。ただ、有機化合物3に含まれる高分子は、複数種類の繰返しユニットが連結したコポリマーであってもよい。具体的には、有機化合物3に含まれる高分子は、ポリフタロシアニンと他の高分子とが連結してなるブロック共重合体であってもよい。このようなブロック共重合体を用いた場合でも、高分子と遷移金属の間の電子移動が効率的に行われるため、遷移金属の触媒活性をより向上させることが可能となる。なお、ブロック共重合体を形成する他の高分子は特に限定されないが、例えば、シクレン(1,4,7,10-テトラアザシクロドデカン)、シクラム(1,4,8,11-テトラアザシクロテトラデカン)などの大環状ポリアミンを用いることができる。
 上述のように、炭素系材料1において、有機化合物3は、担体2の表面に保持されていることが好ましい。有機化合物3が担体2の表面に保持されていることにより、有機化合物3と担体2との間の電子移動が容易となるため、炭素系材料1の触媒活性をより向上させることが可能となる。ただ、この場合、有機化合物3の形状は特に限定されず、塊状又は薄膜状とすることができる。また、図1に示すように、有機化合物3は、担体2の表面全体を被覆してもよく、担体2の表面の一部のみを被覆してもよい。
 (モリブデン化合物)
 後述するように、炭素系材料1は、尿素とカルボン酸無水物とモリブデン化合物と炭素材料を含む担体2とを混合し、低温で加熱することにより得ることができる。つまり、モリブデン化合物を重合触媒とし、尿素とカルボン酸無水物とを重合させることにより、有機化合物3に含まれるポリフタロシアニンを得ることができる。このように、炭素系材料1を製造する際にモリブデン化合物が存在することにより、低温でフタロシアニンの重合を進行させることが可能となる。さらに、不純物が少なくN/C比率の高い炭素系材料1を容易に得ることができる。そのため、後述する製造方法により得られる炭素系材料1は、重合触媒として作用したモリブデン化合物を必然的に含むものである。
 上述のように、モリブデン化合物は、尿素とカルボン酸無水物とを重合させる重合触媒として作用する。そのため、得られた炭素系材料1において、モリブデン化合物は不純物として含まれるものである。したがって、モリブデン化合物は、担体2及び有機化合物3のいずれか一方又は両方に含まれていてもよい。
 炭素系材料1において、モリブデン化合物の態様は特に限定されない。例えば、後述するようなモリブデン化合物(例えば、二モリブデン酸アンモニウム((NHMo))の状態で含まれていてもよく、さらに当該モリブデン化合物が反応してなる化合物(例えば、モリブデン酸化物)の状態で含まれていてもよい。
 炭素系材料1において、モリブデンの含有量は、鉄及びコバルトの合計含有量に対して0.1~10mol%であることが好ましい。モリブデン原子の含有量が0.1mol%以上であることにより、尿素とカルボン酸無水物と重合反応を短時間で完結することが可能となる。また、モリブデン原子の含有量が10mol%以下であることにより、炭素系材料1の表面において、モリブデン化合物が電極触媒としての作用を阻害し難くなるため、炭素系材料1の触媒活性を高い状態に維持することが可能となる。なお、炭素系材料1において、モリブデンの含有量は、窒素の含有量に対して0.02~2mol%であることが好ましい。
 このように、本実施形態の炭素系材料1は、炭素材料を含む担体2と、担体2に担持され、鉄及びコバルトの少なくとも一方である遷移金属と窒素とを含む有機化合物3と、モリブデン化合物と、を含む。炭素系材料1は、さらに、X線光電子分光法で定量される炭素原子に対する窒素原子の割合が、0.033~0.25である。炭素系材料1において、有機化合物3は、鉄及びコバルトの少なくとも一方である遷移金属と窒素とを含んでいるため、遷移金属が窒素原子に配位結合している。そのため、遷移金属を単原子状に分散させ、遷移金属の表面積を大きくすることが可能となる。さらに、配位結合することにより、遷移金属と有機化合物3との間における電子移動を効率的に行うことができる。また、有機化合物3が担体2の表面に保持されていることにより、有機化合物3と担体2との間の電子移動も容易となる。そのため、遷移金属が活性点となり、炭素系材料1の触媒活性をより向上させることが可能となる。
 炭素系材料1は、重合触媒として作用したモリブデン化合物を含んでいる。モリブデン化合物を添加したことにより、有機化合物3は、遷移金属を配位することが可能な高分子を含むこととなる。そのため、炭素系材料1は、高い触媒活性と耐久性を両立することが可能となる。
 なお、本実施形態の炭素系材料1は、硫黄官能基を含まないことが好ましい。一般的な電極触媒の製造方法では、高い触媒活性を得るために、800~1000℃で数時間の熱処理を行うことが多い。この場合、得られる電極触媒の表面には、金属炭化物や金属酸化物からなる不純物が多く生成するため、硫酸を用いて洗浄処理を行う必要がある。そして、一般的に、硫酸洗浄の際、スルホ基などの硫黄官能基が炭素担体の表面に形成されてしまう。
 しかしながら、後述するように、本実施形態の炭素系材料1は、低温で熱処理を行うことにより得ることができるため、高温で熱処理した際に生じる不純物が極めて少なくなる。そのため、炭素系材料1の製造方法では、不純物を除くための硫酸洗浄を行う必要がない。したがって、硫黄官能基が担体2の表面に形成されず、炭素系材料1は硫黄官能基を含まない構成とすることができる。なお、硫黄官能基は特に限定されないが、スルホ基(-SOH)、硫酸基(-O-SOH)、亜硫酸基(-O-SOH)、スルホニル基(-S(=O)-)、チオール基(-SH)、スルフィド基(R-S-R’)、チオエステル基(R-CO-S-R’)、及びチオカルボニル基(>C=S)からなる群より選ばれる少なくとも一つを挙げることができる。
 本実施形態の炭素系材料1は、遷移金属炭化物を含まないことが好ましい。上述のように、一般的な電極触媒の製造方法では、高い触媒活性を得るために、800~1000℃で数時間の熱処理を行うことが多い。この場合、得られる電極触媒の表面には、金属炭化物からなる不純物が多く生成する。しかしながら、本実施形態の炭素系材料1は、低温で熱処理を行うことにより得ることができるため、高温で熱処理した際に生じる不純物が極めて少なくなる。そのため、炭素系材料1は遷移金属炭化物を含まない構成とすることができる。
 炭素系材料1において、有機化合物3が遷移金属を担持したポリフタロシアニンを含有する場合、ポリフタロシアニンの結晶構造は特に限定されない。ただ、ポリフタロシアニンの結晶構造は、Alpha型構造及びBeta型構造のいずれか一方又は両方であることが好ましい。ポリフタロシアニンがAlpha型構造及びBeta型構造のいずれの場合であっても、担体2に担持されることにより、遷移金属から担体2に至るまでの電子移動が容易となり、高い触媒活性を発揮することが可能となる。なお、Alpha型構造及びBeta型構造のポリフタロシアニンは、非特許文献4(Zhengping Zhang外4名、small、2016年、12、No.31、4193-4199頁)に示されている。
[炭素系材料の製造方法]
 次に、本実施形態に係る炭素系材料1の製造方法について説明する。炭素系材料1の製造方法は、尿素とカルボン酸無水物とモリブデン化合物と炭素材料を含む担体2とを混合する工程と、混合工程で得られた混合物に対して熱処理を行う工程とを有するものである。
 炭素系材料1の製造方法では、まず、有機化合物3の原料である尿素及びカルボン酸無水物と、重合触媒であるモリブデン化合物と、担体2とを混合する。混合条件は特に限定されず、大気中で混合することができる。
 カルボン酸無水物としては、化学式2に示す環状構造を、1分子中に2以上有する化合物を用いることが好ましい。つまり、カルボン酸無水物としては、2つのアシル基が1つの酸素原子を共有する環状構造を複数有する化合物を用いることが好ましい。このようなカルボン酸無水物と尿素とが反応することにより、ポリフタロシアニンを形成する反応が進行しやすくなる。カルボン酸無水物としては、例えば、ベンゼン-1,2,4,5-テトラカルボン酸二無水物、3,6-ジブロモベンゼン-1,2,4,5-テトラカルボン酸二無水物、及び3,6-ジメチルベンゼン-1,2,4,5-テトラカルボン酸二無水物からなる群より選ばれる少なくとも一つを用いることができる。
Figure JPOXMLDOC01-appb-C000002
 モリブデン化合物としては、例えば、二モリブデン酸アンモニウム((NHMo)、モリブデン酸ビスアンモニウム((NHMoO)、七モリブデン酸六アンモニウム四水和物((NHMo24・4HO)、燐モリブデン酸アンモニウム((NHPMo1240)、及びテトラチオモリブデン酸アンモニウム((NHMoS)からなる群より選ばれる少なくとも一つを用いることができる。このようなモリブデン化合物を添加することによって、フタロシアニン環の重合を低温で行うことが可能となる。
 ここで、尿素とカルボン酸無水物とモリブデン化合物と担体2との混合物において、モリブデン化合物の添加量は、フタロシアニン環を形成する反応が効率的に進行するならば、特に限定されない。ただ、モリブデン化合物の添加量は、得られる炭素系材料1において、モリブデン原子の含有量が、フタロシアニン環の中心に配位される遷移金属の含有量の0.1~10mol%となるように調整することが好ましい。モリブデン原子の含有量が0.1mol%以上となるように調整することにより、重合反応を短時間で完結することが可能となる。また、モリブデン原子の含有量が10mol%以下となるように調整することにより、炭素系材料1の表面において電極触媒としての作用を阻害し難くなり、高い触媒活性を得ることが可能となる。
 次に、上述の混合工程で得られた混合物に対して、熱処理を行う。混合物の熱処理は大気中で行ってもよく、不活性雰囲気下で行ってもよい。
 ここで、混合物の熱処理温度は180℃~600℃であることが好ましく、200℃~400℃であることがより好ましい。熱処理温度が180℃以上であることにより、融点がおよそ134℃である尿素が溶融して反応を進行させることが可能となる。また、熱処理温度が600℃以下であることにより、原料の揮発や金属炭化物の形成を抑制することが可能となる。なお、混合物の熱処理温度は、200℃~400℃であることが好ましく、200℃~350℃であることがより好ましく、200℃~250℃であることがさらに好ましい。
 混合物の熱処理時間は、0.5時間以上100時間以下であることが好ましい。熱処理時間が0.5時間未満では、尿素とカルボン酸無水物との重合反応が不十分となり、得られる炭素系材料における炭素原子に対する窒素原子の比率が小さくなる。そのため、得られる炭素系材料は、電極触媒としての活性が低下してしまう可能性がある。また、重合度が小さくなることで、炭素系材料を電極触媒として用いた際の耐久性が低下してしまう恐れがある。熱処理時間が100時間を超える場合には、原料である尿素の揮発量が大きくなることによって、溶融尿素と担体の混合状態が不均一となる。そのため、得られる炭素系材料の表面において、有機化合物が形成される場所の偏りが大きく生じてしまう。結果として、炭素系材料の表面における窒素原子の均一性が低下し、触媒活性が低下してしまう可能性がある。
 混合物を熱処理した後、溶媒を用いて洗浄して乾燥することにより、表面に有機化合物3を担持した炭素系材料1を得ることができる。なお、洗浄工程で用いる溶媒は不純物が除去できれば特に限定されないが、例えば純水を用いることができる。
 ここで、有機化合物3に金属を担持する方法は特に限定されない。金属を担持する方法としては、例えば、有機化合物3を合成する際に金属塩を混合する方法を適用することができる。つまり、尿素とカルボン酸無水物とモリブデン化合物と担体2とを混合する際、金属塩を添加することにより、有機化合物3に金属原子を含有させることが可能となる。また、金属を担持する方法としては、含浸法を適用することができる。つまり、窒素含有高分子を担体2に形成した材料を、金属塩を溶解した溶液中に含浸した後に乾燥することにより、有機化合物3に金属原子を含有させることが可能となる。なお、金属塩としては、Mn、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ag、Ir、Pt及びAuからなる群より選ばれる少なくとも一つを含む塩を使用することができる。また、金属塩を溶解する溶媒としては、純水を使用することができる。
 ここで、炭素系材料の製造工程において、800℃以上の高温で熱処理を行った場合、非特許文献5(Go Tei外5名、Chemistry Select、2016年、Vol.1、5440-5444頁)に記載されているように、数分の熱処理を行っただけでも金属炭化物が生成する。このような金属炭化物は、X線回折(XRD)の測定により同定することができる。
 これに対して、本実施形態の炭素系材料は、180℃~600℃程度の低温の熱処理で製造することができるため、熱処理直後の状態においても金属炭化物などの不純物は殆ど生成しない。このように、低温での熱処理にて炭素系材料を製造できることに由来し、金属炭化物や金属酸化物からなる不純物を除く際に必要となる硫酸洗浄が不要となる。このため、炭素系材料の表面に、硫酸洗浄により形成される硫黄官能基を有しない状態においても、十分高い触媒活性を発現することができる。すなわち、炭素系材料が硫黄官能基を有しない状態においても、炭素系材料は金属炭化物を殆ど含まない。このため、炭素系材料の製造プロセスを簡易にすることができる。
 上述のように、本実施形態の炭素系材料は、180℃~600℃程度の低温の熱処理で製造することができる。そのため、製造に要するエネルギー量を大幅に小さくすることが可能となる。
 ここで、800℃以上の高温で熱処理を行う際、被焼成物の嵩を高くした場合には、熱処理中に揮発する成分などの影響によって、バルク中の温度が表面と比較して大幅に低くなり、加熱が不均一になってしまうという問題がある。このため、従来は、一度に多くの量の触媒を製造することが難しいという問題があった。しかし、本実施形態に係る炭素系材料の製造においては、熱処理温度が低いため、揮発する成分の量が少ない。さらに、被焼成物の嵩を高くした場合においても、加熱の不均一性は大幅に抑制される。したがって、一度により多くの量の炭素系材料を製造することが可能となる。
 また、800~1000℃の高温で熱処理を行う場合には、製造の際に被焼成物を入れる容器について、高温に耐え得る材料を選定して用いる必要がある。そのような高耐熱性の材料は、石英、グラファイト、炭化ケイ素、貴金属などに限定されるため、使用できる容器が大きく制約されてしまうという問題があった。しかし、熱処理温度が180℃~600℃程度の低温であれば、アルミナや耐熱ガラスをはじめとした多様な材料の容器を用いて製造を行うことが可能となる。そのため、熱処理コストの低減を図ることが可能となる。
 このように、本実施形態の炭素系材料1の製造方法は、尿素と、2つのアシル基が1つの酸素原子を共有する環状構造を1分子中に2以上有するカルボン酸無水物と、モリブデン化合物と、炭素材料を含む担体2とを混合する工程を含む。当該製造方法は、さらに、混合工程で得られた混合物に対して、180~600℃で30分~100時間の熱処理を行う工程を含む。このように、本実施形態の製造方法では、カルボン酸無水物と尿素とを反応させる重合触媒としてモリブデン化合物を用いている。そのため、180~600℃という比較的低温の熱処理で有機化合物3を製造することができるため、不純物である金属炭化物や金属酸化物の生成を大きく抑制することが可能となる。また、不純物の生成が抑制されることから、従来必須であった硫酸洗浄工程が不要となり、製造工程を簡略化することが可能となる。
 炭素系材料1の製造方法において、上述の混合物は、さらに鉄及びコバルトの少なくとも一方である遷移金属の化合物を含有することが好ましい。尿素、カルボン酸無水物、モリブデン化合物及び担体2の混合物に遷移金属の化合物を添加することにより、得られる有機化合物3に遷移金属を担持することができる。そのため、従来の含浸法に比べて、有機化合物3に対して容易に遷移金属を担持することが可能となる。
[電極触媒及び燃料電池]
 本実施形態の炭素系材料1は高い触媒活性を有することから、燃料電池をはじめとした電気化学デバイスの電極に幅広く用いることができる。以下、炭素系材料1を含む電極触媒を燃料電池に適用した例を説明する。
 図2では、本実施形態における燃料電池の構成の一例を示している。なお、同図には、当該燃料電池に接続された場合に電流が供給される負荷14も図示されている。この燃料電池10は、電気を放出することができる一次電池であり、例えば、固体高分子形燃料電池(PEFC)及びリン酸形燃料電池(PAFC)のような水素燃料電池、並びに微生物燃料電池(MFC)を含む。
 水素燃料電池は、水の電気分解の逆反応により、水素と酸素から電気エネルギーを得る燃料電池であり、PEFC、PAFC、アルカリ形燃料電池(AFC)、溶融炭酸塩形燃料電池(MCFC)、固体電解質形燃料電池(SOFC)等が知られている。燃料電池10は、PEFC又はPAFCであることが好ましい。PEFCはプロトン伝導性イオン交換膜を電解質材とする燃料電池であり、PAFCはマトリクス層に含浸されたリン酸(HPO)を電解質材とする燃料電池である。
 このような燃料電池10は、図2に示すように、例えば、電解液11(電解質材)を備える。また、燃料電池10は、アノード12(燃料極)とカソード13(空気極)とを備える。アノード12は、酸素発生反応により負荷14に電子を放出する電極である。また、カソード13は、酸素還元反応により負荷14から電子が流入する電極である。
 本実施形態において、カソード13はガス拡散電極として構成され、上述の炭素系材料1を含む電極触媒を備える。ガス拡散電極は、水素燃料電池及びMFC等の電極に好適に適用され得る。本実施形態における燃料電池10は、カソード13を備え、さらにカソード13が電極触媒を備えるガス拡散電極であること以外は、公知の構成を有していればよい。
 なお、上記説明では、カソード13がガス拡散電極として構成され、電極触媒を備えているとして説明したが、このような構成に限定されない。本実施形態における燃料電池10において、電極触媒を備える電極は、アノード12及びカソード13のいずれにも用いることができる。
 例えば、燃料電池10が水素燃料電池である場合、電極触媒を備えるガス拡散電極は、アノード12として用いられてもよい。この場合、アノード12に含まれる電極触媒は、燃料である水素ガスの酸化反応(H→2H+2e)を促進して、アノード12に電子を供与する。また、電極触媒を備えるガス拡散電極は、カソード13として用いられてもよい。この場合、カソード13に含有される電極触媒は、酸化剤である酸素ガスの還元反応(1/2O+2H+2e → HO)を促進する。
 ただし、燃料電池10がMFCである場合、アノード12は電子供与微生物から直接電子を受容する。よって、この場合、電極触媒を備えるガス拡散電極は、主として水素燃料電池と同じ電極反応を起こすカソードとして用いられる。
 このように、炭素系材料1を含む電極触媒は燃料電池の電極に好適に用いることができる。ただ、炭素系材料1を含む電極触媒の用途は燃料電池に限定されず、種々の電気化学デバイスの電極として用いられてもよい。このような電気化学デバイスとしては、水の電気分解装置、二酸化炭素透過装置、食塩電解装置、金属空気電池(リチウム空気電池など)等が挙げられる。
 以下、実施例により本実施形態をさらに詳細に説明するが、本実施形態はこれらによって限定されるものではない。
[炭素系材料の合成]
 (実施例1)
 化学式3に示す反応式に沿って、ケッチェンブラック(登録商標)からなる担体上に、ポリフタロシアニン及び遷移金属を担持した炭素系材料を合成した。
Figure JPOXMLDOC01-appb-C000003
 まず、0.41gの尿素、0.10gの塩化アンモニウム、0.25mgの二モリブデン酸アンモニウム、0.21gのピロメリット酸二無水物、及び90mgの塩化鉄(III)を乳鉢で混合した。次に、0.30gのケッチェンブラックを加え、さらに乳鉢で混合した。なお、ケッチェンブラックは、ライオン・スペシャリティ・ケミカルズ株式会社製EC600JDを使用し、平均一次粒子径が34.0nmであった。
 得られた混合物をパイレックス(登録商標)ガラスの容器に移し、大気下220℃で2時間保持した。そして、熱処理後の粉末を、200mLの脱イオン水中で10分間超音波洗浄し、ろ過して乾燥した。これにより、鉄及び窒素を含有する本例の炭素系材料を得た。
 (実施例2)
 実施例2では、硫酸洗浄を行ったこと以外は実施例1と同様にして、炭素系材料を合成した。具体的には、まず、実施例1と同様に、尿素、塩化アンモニウム、二モリブデン酸アンモニウム、ピロメリット酸二無水物、塩化鉄(III)、ケッチェンブラックの混合物を調製した。
 得られた混合物をパイレックスガラスの容器に移し、大気下220℃で2時間保持した。そして、熱処理後の粉末を、2Mの硫酸を用い、60℃で2時間洗浄した。次いで、硫酸洗浄した粉末を、200mLの脱イオン水中で10分間超音波洗浄し、ろ過して乾燥した。これにより、鉄及び窒素を含有する本例の炭素系材料を得た。
 (実施例3)
 実施例3では、遷移金属としての鉄をコバルトに置換したこと以外は実施例1と同様にして、炭素系材料を合成した。具体的には、まず、0.41gの尿素、0.10gの塩化アンモニウム、0.25mgの二モリブデン酸アンモニウム、0.21gのピロメリット酸二無水物、及び72mgの塩化コバルトを乳鉢で混合した。次に、0.30gのケッチェンブラックを加え、さらに乳鉢で混合した。
 得られた混合物をパイレックスガラスの容器に移し、大気下220℃で2時間保持した。そして、熱処理後の粉末を、200mLの脱イオン水中で10分間超音波洗浄し、ろ過して乾燥した。これにより、コバルト及び窒素を含有する本例の炭素系材料を得た。
 (実施例4)
 実施例4では、混合物の熱処理時間を0.5時間に短縮したこと以外は実施例1と同様にして、炭素系材料を合成した。
 (実施例5)
 実施例5では、混合物の熱処理時間を100時間に延長したこと以外は実施例1と同様にして、炭素系材料を合成した。
 (実施例6)
 実施例6では、混合物の熱処理温度を180℃にしたこと以外は実施例1と同様にして、炭素系材料を合成した。
 (実施例7)
 実施例7では、混合物の熱処理温度を350℃にしたこと以外は実施例1と同様にして、炭素系材料を合成した。
 (実施例8)
 実施例8では、混合物の熱処理温度を600℃にしたこと以外は実施例1と同様にして、炭素系材料を合成した。
 (実施例9)
 実施例9では、担体の含有量を増やしたこと以外は実施例1と同様にして、炭素系材料を合成した。具体的には、ケッチェンブラックの添加量を0.50gに変更したこと以外は実施例1と同様にして、本例の炭素系材料を得た。
 (実施例10)
 実施例10では、担体の含有量を減らしたこと以外は実施例1と同様にして、炭素系材料を合成した。具体的には、ケッチェンブラックの添加量を0.020gに変更したこと以外は実施例1と同様にして、本例の炭素系材料を得た。
 (比較例1)
 比較例1では、混合物の熱処理時間を0.25時間に短縮したこと以外は実施例1と同様にして、炭素系材料を合成した。
 (比較例2)
 比較例2では、混合物の熱処理時間を200時間に延長したこと以外は実施例1と同様にして、炭素系材料を合成した。
 (比較例3)
 比較例3では、混合物の熱処理温度を140℃にしたこと以外は実施例1と同様にして、炭素系材料を合成した。
 (比較例4)
 比較例4では、混合物の熱処理温度を700℃にしたこと以外は実施例1と同様にして、炭素系材料を合成した。
 (比較例5)
 比較例5では、担体の含有量を増やしたこと以外は実施例1と同様にして、炭素系材料を合成した。具体的には、ケッチェンブラックの添加量を0.70gに変更したこと以外は実施例1と同様にして、本例の炭素系材料を得た。
 (比較例6)
 比較例6では、担体であるケッチェンブラックを添加しなかったこと以外は実施例1と同様にして、本例の炭素系材料を得た。
 上述のようにして得られた実施例1乃至10及び比較例1乃至6の炭素系材料における、担持した遷移金属種、混合物の熱処理時間及び熱処理温度、並びに、熱処理後の粉末に対する酸洗浄の有無を表1に纏めて示す。
Figure JPOXMLDOC01-appb-T000004
[評価]
 (X線光電子分光(XPS)による分析)
 各例の炭素系材料をXPS測定することにより、窒素及び炭素のスペクトルを測定し、窒素(N)と炭素(C)との元素組成比N/Cを求めた。
 具体的には、XPS測定は、XPS装置(AXIS Ultra HAS、Kratos Analytical社製)を用いた。また、励起X線として、単色化Al Kα線(hν=1486.6eV)を用いた。そして、各元素に対してナロースキャン測定を行い、窒素(N1s)及び炭素(C1s)のスペクトルを求めた。次いで、各元素のピークについてShirley法によってベースラインを決定し、ピーク面積を導出した。得られたN1sスペクトル及びC1sスペクトルのピーク面積から、炭素系材料における窒素(N)と炭素(C)との元素組成比N/Cを求めた。
 上記方法で求めた各例の炭素系材料における、窒素原子の原子数を炭素原子の原子数で除した値(N/C)を、表1に合わせて示す。
 さらに、実施例1の炭素系材料に対して上述と同様にXPS測定を行い、モリブデン(Mo3d)スペクトルを求めた。得られたモリブデンスペクトルを図3に示す。
 また、実施例1及び実施例2の炭素系材料に対して上述と同様にXPS測定を行い、硫黄(S2p)及び炭素(C1s)のスペクトルを求めた。そして、各元素のピークについてShirley法によってベースラインを決定し、ピーク面積を導出した。得られたS2pスペクトル及びC1sスペクトルのピーク面積から、炭素系材料における硫黄(S)と炭素(C)との元素組成比S/Cを求めた。実施例1及び実施例2の炭素系材料における元素組成比S/Cを、表2に示す。なお、実施例1では、硫黄原子のピークが観測されなかったため、元素組成比S/Cを求めることができなかった。
Figure JPOXMLDOC01-appb-T000005
 (酸素還元活性の電気化学評価)
 各例の炭素系材料に対して、回転ディスク電極(RDE)法を用いて電気化学評価を行った。
 具体的には、まず、ディスクとして、粒径が0.05μmのアルミナで研磨処理を行った4mmφのグラッシーカーボン電極(ビー・エー・エス株式会社製)を準備した。次に、炭素系材料5.0mg、エタノール120μL、5%Nafion溶液(Sigma-Aldrich社製)47.5μLを、水浴で冷却しながら超音波ホモジナイザーで3分間分散することにより、触媒インクを調製した。
 次に、触媒インク2.1μLをグラッシーカーボン上に塗布した。触媒インクを完全に乾燥させた後、三電極系でのサイクリックボルタンメトリー(CV)を行った。CVは、0.1MのHClO水溶液中で、電極回転速度を1500rpmとし、電位掃引速度を10mV/sとして行った。酸素還元活性の分析は、酸素飽和でのCVから窒素飽和でのCVを差し引くことで、正味の酸素還元電流を求める方法にて行った。
 そして、酸素還元反応に由来する電流が20μA/cm流れた電位を酸素還元開始電位と定義し、各例の炭素系材料における酸素還元開始電位を測定した。各例の炭素系材料における酸素還元開始電位の測定結果を表1に合わせて示す。また、図4では、実施例1及び実施例2の炭素系材料に対する電気化学評価で得られた、酸素還元反応に対する分極曲線を示している。なお、炭素系材料における酸素還元開始電位が高いほど、単位遷移金属量当たりの触媒活性が高いことを示している。
 (結晶構造解析)
 実施例1及び実施例2の炭素系材料、並びにケッチェンブラック単体の結晶構造解析を、X線回折装置(製品名:MultiFlex、株式会社リガク製)を用いて行った。これらのX線回折(XRD)の測定結果を図5に示す。なお、図6では、Alpha型の鉄担持ポリフタロシアニン(FePPc)とBeta型の鉄担持ポリフタロシアニンのX線回折スペクトル(計算値)を示している。
 (考察)
 上述のように、実施例1乃至10の炭素系材料は、炭素担体の表面にポリフタロシアニン(PPc)が担持され、さらにポリフタロシアニンには鉄又はコバルトが配位結合している。そのため、表1に示すように、実施例1乃至10の炭素系材料は、酸素還元開始電位が0.76V vs.RHE以上となり、良好な酸素還元特性を示すことが分かる。また、実施例1乃至10の炭素系材料は、180~600℃で30分~100時間の熱処理により得ることができるため、高温での熱処理を必要としないことが分かる。
 また、上述のように、実施例1の炭素系材料について、Mo-3dのXPSスペクトルを測定したところ、図3に示すようにピークが確認された。そのため、実施例1の炭素系材料には、モリブデン化合物が含まれていることが分かる。なお、実施例1の炭素系材料について、ICP発光分光分析法によってモリブデンを定量したところ、Feに対するMoの比率は0.27mol%であった。
 さらに、実施例1及び実施例2の炭素系材料について結晶構造解析を行った結果、図5及び図6に示すように、19°付近と29°付近に鋭いピークが観察された。そのため、実施例1及び実施例2の炭素系材料では、Alpha型とBeta型の鉄担持ポリフタロシアニンが混合していると推察される。なお、27°付近のブロードなピークは、グラファイトの(002)面に由来するものであり、43°付近のブロードなピークは、グラファイトの(101)面に由来するものである。
 ここで、炭素系材料に鉄炭化物が含まれている場合には、43°付近に鋭いピークが観測される。つまり、非特許文献5に記載のように、炭素系材料に鉄炭化物が含まれている場合には、鉄炭化物(FeC)に由来する鋭いピークが観測される。しかしながら、実施例1及び実施例2の炭素系材料ではこのような鋭いピークは観測されなかった。そのため、実施例1及び実施例2の炭素系材料には、鉄炭化物が含まれていないことが分かる。
 上述の表2に示すように、実施例1及び実施例2の炭素系材料についてXPS測定を行った結果、実施例1の炭素系材料では、硫黄原子のピークが観測されなかったが、実施例2の炭素系材料では、硫黄原子のピークが観測された。つまり、実施例2の炭素系材料は、硫酸洗浄を行ったことから、硫黄官能基を含んでいることが分かる。ただ、実施例1と実施例2の炭素系材料における酸素還元開始電位は、共に0.83V vs.RHEとなり、優れた酸素還元特性を示した。また、図4に示すように、実施例1及び実施例2の炭素系材料は、同様の分極曲線を示し、同等の触媒活性を有していることが分かる。そのため、本実施形態の炭素系材料では、従来の製造方法では必須であった硫酸洗浄を施さなくても、優れた酸素還元特性が得られるため、製造工程を簡略化できることが分かる。
 上述の実施例に対して、比較例1の炭素系材料は、熱処理時間が0.25時間と短い。そのため、重合反応が不十分であることから、ポリフタロシアニンが過少となり、酸素還元特性が悪化した。また、比較例2の炭素系材料は、熱処理時間が200時間と長いため、炭素系材料の表面における窒素原子の均一性が低下し、酸素還元特性が悪化した。
 比較例3の炭素系材料は、熱処理温度が140℃と低いため、重合反応が不十分となり、酸素還元特性が悪化した。また、比較例4の炭素系材料は、熱処理温度が700℃と高いため、表面に鉄炭化物などの不純物が生成してしまい、酸素還元特性が悪化した。
 比較例5の炭素系材料は、担体であるケッチェンブラックの含有量が過多であるため、窒素(N)と炭素(C)との元素組成比N/Cが0.033未満となった。その結果、窒素含有量が相対的に低下し、活性点が減少したことから、酸素還元特性が悪化した。また、比較例5の炭素系材料は、担体であるケッチェンブラックを含まないため、炭素系材料自体の電子伝導性が低下し、酸素還元特性が悪化した。
 なお、図7では、実施例1,4及び5、並びに比較例1及び2の炭素系材料における、熱処理時間とN/C比(mol比)との関係を示している。なお、実施例1,4及び5、並びに比較例1及び2は熱処理時間のみが異なり、その他の製造条件は共通している。図7に示すように、熱処理時間が30分~100時間の場合には、元素組成比N/Cが0.040~0.052となり、酸素還元特性が良好となることが分かる。
 以上、実施例に沿って本実施形態の内容を説明したが、本実施形態はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 特願2018-002704号(出願日:2018年1月11日)の全内容は、ここに援用される。
 本開示によれば、簡易に製造することができ、高い触媒活性と高い耐久性を有する炭素系材料、当該炭素系材料を用いた電極触媒、及び炭素系材料の製造方法を提供することができる。
 1 炭素系材料
 2 担体
 3 有機化合物

Claims (9)

  1.  炭素材料を含む担体と、
     前記担体に担持され、鉄及びコバルトの少なくとも一方である遷移金属と窒素とを含む有機化合物と、
     モリブデン化合物と、
     を含み、
     X線光電子分光法で定量される炭素原子に対する窒素原子の割合が、0.033~0.25である、炭素系材料。
  2.  硫黄官能基を含まない、請求項1に記載の炭素系材料。
  3.  遷移金属炭化物を含まない、請求項1又は2に記載の炭素系材料。
  4.  モリブデンの含有量は、鉄及びコバルトの合計含有量に対して0.1~10mol%である、請求項1乃至3のいずれか一項に記載の炭素系材料。
  5.  前記有機化合物は、フタロシアニン環を有する高分子を含む、請求項1乃至4のいずれか一項に記載の炭素系材料。
  6.  前記有機化合物は、前記フタロシアニン環の内部に前記遷移金属が配位している、請求項5に記載の炭素系材料。
  7.  請求項1乃至6のいずれか一項に記載の炭素系材料を含む電極触媒。
  8.  尿素と、2つのアシル基が1つの酸素原子を共有する環状構造を1分子中に2以上有するカルボン酸無水物と、モリブデン化合物と、炭素材料を含む担体とを混合する工程と、
     前記混合工程で得られた混合物に対して、180~600℃で30分~100時間の熱処理を行う工程と、
     を含む、炭素系材料の製造方法。
  9.  前記混合物は、さらに鉄及びコバルトの少なくとも一方である遷移金属の化合物を含有する、請求項8に記載の炭素系材料の製造方法。
PCT/JP2019/000060 2018-01-11 2019-01-07 炭素系材料、電極触媒、及び炭素系材料の製造方法 WO2019138960A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018002704 2018-01-11
JP2018-002704 2018-01-11

Publications (1)

Publication Number Publication Date
WO2019138960A1 true WO2019138960A1 (ja) 2019-07-18

Family

ID=67219337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000060 WO2019138960A1 (ja) 2018-01-11 2019-01-07 炭素系材料、電極触媒、及び炭素系材料の製造方法

Country Status (1)

Country Link
WO (1) WO2019138960A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234218A (zh) * 2020-10-16 2021-01-15 澳门大学 氧还原催化剂、其制备工艺、电池正极、其制备工艺及电池
CN113285081A (zh) * 2021-05-28 2021-08-20 昆明理工大学 FeCo-PPc催化剂及其制备方法和应用
CN113484386A (zh) * 2021-05-21 2021-10-08 郑州轻工业大学 一种金属聚酞菁纳米材料的制备方法及其应用,适配体传感器及其制备方法
CN113659154A (zh) * 2021-07-14 2021-11-16 上海大学 一种碱性燃料电池阴极用碳催化剂及其制备方法
CN113699554A (zh) * 2021-09-17 2021-11-26 中国矿业大学 一种稀土金属和过渡金属共掺杂碳基材料的制备方法及其应用
CN113764684A (zh) * 2021-08-17 2021-12-07 上海纳米技术及应用国家工程研究中心有限公司 一种燃料电池负极催化剂材料的制备方法
CN113832574A (zh) * 2021-09-20 2021-12-24 哈尔滨工程大学 配位原子掺杂多孔碳纤维限域过渡金属单原子材料及其制备方法
CN115954491A (zh) * 2022-12-01 2023-04-11 中南大学 一种氮掺杂功能化碳载铂过渡金属二元有序合金催化剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138066A (ja) * 1983-01-26 1984-08-08 Nippon Telegr & Teleph Corp <Ntt> 燃料電池・空気電池用電極
JPS6048145A (ja) * 1983-08-29 1985-03-15 Dainippon Ink & Chem Inc 異性化触媒およびその製法
JP2005205287A (ja) * 2004-01-21 2005-08-04 Toyota Motor Corp 有機大環状化合物を用いた触媒材料
JP2015091578A (ja) * 2013-10-04 2015-05-14 国立研究開発法人産業技術総合研究所 酸素の電気化学的還元用触媒
JP2015229119A (ja) * 2014-06-03 2015-12-21 帝人株式会社 炭素触媒およびその製造方法
JP2017010853A (ja) * 2015-06-24 2017-01-12 国立研究開発法人産業技術総合研究所 電気化学的酸素還元用触媒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138066A (ja) * 1983-01-26 1984-08-08 Nippon Telegr & Teleph Corp <Ntt> 燃料電池・空気電池用電極
JPS6048145A (ja) * 1983-08-29 1985-03-15 Dainippon Ink & Chem Inc 異性化触媒およびその製法
JP2005205287A (ja) * 2004-01-21 2005-08-04 Toyota Motor Corp 有機大環状化合物を用いた触媒材料
JP2015091578A (ja) * 2013-10-04 2015-05-14 国立研究開発法人産業技術総合研究所 酸素の電気化学的還元用触媒
JP2015229119A (ja) * 2014-06-03 2015-12-21 帝人株式会社 炭素触媒およびその製造方法
JP2017010853A (ja) * 2015-06-24 2017-01-12 国立研究開発法人産業技術総合研究所 電気化学的酸素還元用触媒

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234218A (zh) * 2020-10-16 2021-01-15 澳门大学 氧还原催化剂、其制备工艺、电池正极、其制备工艺及电池
CN113484386A (zh) * 2021-05-21 2021-10-08 郑州轻工业大学 一种金属聚酞菁纳米材料的制备方法及其应用,适配体传感器及其制备方法
CN113484386B (zh) * 2021-05-21 2024-02-13 郑州轻工业大学 一种金属聚酞菁纳米材料的制备方法及其应用,适配体传感器及其制备方法
CN113285081B (zh) * 2021-05-28 2023-11-10 昆明理工大学 FeCo-PPc催化剂及其制备方法和应用
CN113285081A (zh) * 2021-05-28 2021-08-20 昆明理工大学 FeCo-PPc催化剂及其制备方法和应用
CN113659154A (zh) * 2021-07-14 2021-11-16 上海大学 一种碱性燃料电池阴极用碳催化剂及其制备方法
CN113659154B (zh) * 2021-07-14 2024-04-19 上海大学 一种碱性燃料电池阴极用碳催化剂及其制备方法
CN113764684A (zh) * 2021-08-17 2021-12-07 上海纳米技术及应用国家工程研究中心有限公司 一种燃料电池负极催化剂材料的制备方法
CN113699554A (zh) * 2021-09-17 2021-11-26 中国矿业大学 一种稀土金属和过渡金属共掺杂碳基材料的制备方法及其应用
CN113832574A (zh) * 2021-09-20 2021-12-24 哈尔滨工程大学 配位原子掺杂多孔碳纤维限域过渡金属单原子材料及其制备方法
CN113832574B (zh) * 2021-09-20 2023-09-29 哈尔滨工程大学 配位原子掺杂多孔碳纤维限域过渡金属单原子材料及其制备方法
CN115954491B (zh) * 2022-12-01 2023-10-27 中南大学 一种氮掺杂功能化碳载铂过渡金属二元有序合金催化剂的制备方法
CN115954491A (zh) * 2022-12-01 2023-04-11 中南大学 一种氮掺杂功能化碳载铂过渡金属二元有序合金催化剂的制备方法

Similar Documents

Publication Publication Date Title
WO2019138960A1 (ja) 炭素系材料、電極触媒、及び炭素系材料の製造方法
Wang et al. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution
Fu et al. FeCo–Nx embedded graphene as high performance catalysts for oxygen reduction reaction
JP4624368B2 (ja) カーボンナノチューブの製造方法、カーボンナノチューブを含む担持触媒及び担持触媒を利用した燃料電池
Huang et al. Active catalysts based on cobalt oxide@ cobalt/NC nanocomposites for oxygen reduction reaction in alkaline solutions
Huang et al. Effect of a sulfur and nitrogen dual-doped Fe–N–S electrocatalyst for the oxygen reduction reaction
Zhang et al. Effective construction of high-quality iron oxy-hydroxides and Co-doped iron oxy-hydroxides nanostructures: towards the promising oxygen evolution reaction application
Wang et al. Boron-doped carbon nanotube-supported Pt nanoparticles with improved CO tolerance for methanol electro-oxidation
Fu et al. One-step synthesis of cobalt and nitrogen co-doped carbon nanotubes and their catalytic activity for the oxygen reduction reaction
Choi et al. Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene–CNT self-assembly for enhanced oxygen reduction activity in acid media
KR101679809B1 (ko) 질소(N)가 도핑된 탄소에 담지된 백금(Pt)촉매의 제조방법 및 이의 이용하여 제조된 질소(N)가 도핑된 탄소에 담지된 백금(Pt)촉매
US20150303487A1 (en) Carbon-based material, electrode catalyst, electrode, gas diffusion electrode, electrochemical device, fuel battery, and process for producing carbon-based material
US9634331B2 (en) Non-PGM cathode catalysts for fuel cell application derived from heat treated heteroatomic amines precursors
EP2899785A1 (en) Electrode catalyst for fuel cell, method of preparing the same, electrode for fuel cell including the electrolyte catalyst, and fuel cell including the electrode
JP7368853B2 (ja) 多機能電極添加剤
JP2016003396A (ja) コアシェル電極触媒のための安定なコアとしての合金ナノ粒子の合成
JPWO2010131636A1 (ja) 触媒およびその製造方法ならびにその用途
JP2019155349A (ja) 酸素還元触媒用炭素系複合体ならびにその製造方法および用途
Moguchikh et al. Platinum nanoparticles supported on nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction
Chen et al. PtCoN supported on TiN-modified carbon nanotubes (PtCoN/TiN–CNT) as efficient oxygen reduction reaction catalysts in acidic medium
Han et al. Highly stable and active Pt electrocatalysts on TiO2-Co3O4-C composite support for polymer exchange membrane fuel cells
US9466842B2 (en) Fuel cell electrode catalyst including a core containing platinum, a transition metal, and a nonmetal element and a shell containing platinum and the nonmetal element electrode including the same, and method for preparing the same
Preda et al. Graphene Incorporation as a Propitious Approach for Improving the Oxygen Reduction Reaction (ORR) Activity of Self-assembled Polycrystalline NiCo 2 O 4–NiO
US9673456B2 (en) Non-PGM catalysts for ORR based on charge transfer organic complexes
Huang et al. Fe@ Pt core-shell nanoparticles as electrocatalyst for oxygen reduction reaction in acidic media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19737966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19737966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP