WO2019138825A1 - 電動機の制御装置 - Google Patents

電動機の制御装置 Download PDF

Info

Publication number
WO2019138825A1
WO2019138825A1 PCT/JP2018/046903 JP2018046903W WO2019138825A1 WO 2019138825 A1 WO2019138825 A1 WO 2019138825A1 JP 2018046903 W JP2018046903 W JP 2018046903W WO 2019138825 A1 WO2019138825 A1 WO 2019138825A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedforward
command signal
load
signal
motor
Prior art date
Application number
PCT/JP2018/046903
Other languages
English (en)
French (fr)
Inventor
弘 藤原
田澤 徹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP18899132.7A priority Critical patent/EP3739747A4/en
Priority to CN201880085810.8A priority patent/CN111587530B/zh
Priority to JP2019564606A priority patent/JP7178561B2/ja
Publication of WO2019138825A1 publication Critical patent/WO2019138825A1/ja
Priority to US16/912,774 priority patent/US11415948B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/18Suppression of vibrations in rotating systems by making use of members moving with the system using electric, magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/32Automatic controllers electric with inputs from more than one sensing element; with outputs to more than one correcting element
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes

Definitions

  • the present invention relates to a motor and a control device for a motor that controls driving operation such as speed or position of the motor with respect to a motor and a mechanical load driven by the motor.
  • the present invention relates to a control device of a motor provided with a control configuration that suppresses vibration caused by anti-resonance of a mechanical load generated at the time of driving or the like.
  • the control device of this type of motor has at least one of a feedforward control system and a feedback control system inside so that the position command input from the host controller matches the position of the motor and the load (mechanical load) to be controlled.
  • the controller for such a motor calculates a torque command value for matching the position command and the motor position from the position command and the position detection value of the motor, and fixes the motor so that the same torque as the torque command value is generated in the motor.
  • the positions of the motor and the load to be controlled (mechanical load) are controlled by controlling the current supplied to the secondary winding.
  • the conventional feed control device installs an acceleration sensor on a slider which is a load to be controlled (mechanical load), and an acceleration which is a weighting factor to an acceleration detection value of the load to be controlled (mechanical load)
  • an acceleration feedback loop that subtracts the product of the feedback gain from the torque command value, it is configured to suppress the vibration that occurs in the load to be controlled (machine load) at the time of acceleration / deceleration or at the time of disturbance application.
  • the present invention solves the conventional problems.
  • the present invention in a control device for a motor having a feedforward control system and a load acceleration feedback system, achieves both the stability and the vibration suppression by obtaining the vibration suppression effect by the load acceleration feedback while maintaining the command following performance. It is an object of the present invention to provide a control device for a motor. That is, the present invention reduces or avoids the trade-off relationship between the load acceleration feedback gain (acceleration feedback amount) and the command tracking performance, and maintains the command tracking performance while maintaining acceleration feedback from the load side.
  • the load acceleration feedback gain acceleration feedback amount
  • the inventors of the present application conducted trial and error repeatedly and conducted intensive studies.
  • the inventors have found a novel control device for a motor in which the vibration suppression effect by the acceleration feedback from the load side is enhanced while maintaining the command following performance. The details are described below.
  • a first aspect for solving the problem is a control device of a motor for driving a load to be controlled (a mechanical load), and includes a feedforward control unit, a feedback control unit, and an adder / subtractor.
  • the feedforward control unit inputs a position command signal specifying a target load position to be controlled, a feedforward position command signal indicating a target position of the motor, a feedforward speed command signal indicating a target speed of the motor, and the motor And a feed forward torque command signal indicating a torque required to perform an operation indicated by the target position or the target speed.
  • the feedback control unit inputs a feedforward position command signal, a feedforward speed command signal, a motor position signal indicating the position of the motor, and a motor speed signal indicating the speed of the motor, and the motor position signal and the feedforward position command A feedback torque command signal indicating a torque command for feedback control so that the signals match is output.
  • the adder-subtractor subtracts the load acceleration feedback torque signal obtained by multiplying the load acceleration signal indicating the acceleration of the load to be controlled by the load acceleration feedback gain from the torque command signal obtained by adding the feedforward torque command signal and the feedback torque command signal. , And output as a torque command correction signal.
  • the feedforward control unit generates a feedforward torque command signal so as to compensate in advance the influence of the load acceleration feedback torque signal that is subtracted from the torque command signal during the acceleration / deceleration operation.
  • the second aspect is the control device for a motor according to the first aspect, wherein the feedforward control unit transmits the inertia of the motor and the motor to the feedforward acceleration command signal calculated by second-order differentiation of the feedforward position command signal.
  • a feedforward torque command signal is generated by multiplying the sum of the load inertia to be controlled and the load acceleration feedback gain.
  • the adder / subtractor applies load acceleration to a signal obtained by filtering a load acceleration signal indicating an acceleration of a load to be controlled from a torque command signal.
  • a torque command correction signal is generated by subtracting the load acceleration feedback torque signal multiplied by the feedback gain.
  • the feedforward control section multiplies the feedforward acceleration command signal by multiplying the feedforward acceleration command signal calculated by second-order differentiation of the feedforward position command signal by the sum of the inertia of the motor and the inertia of the load to be controlled.
  • a feedforward torque command signal is generated by adding a signal obtained by applying filtering processing equivalent to filtering processing to a signal obtained by multiplying the load acceleration feedback gain.
  • the control device for a motor having a feedforward control system and a load acceleration feedback system does not cause a decrease in command follow-up performance due to load acceleration feedback, and the load follow-up performance is maintained while maintaining command follow-up performance. Vibration suppression effect can be enhanced. Therefore, it is possible to realize both the settling and the vibration suppression.
  • the controller of the motor according to the present invention compensates in advance for the subtraction of the acceleration / deceleration torque by the load acceleration feedback in the feedforward torque calculation by the feedforward control system.
  • the controller of the motor according to the present invention makes it possible to enhance the vibration suppression effect by the load acceleration feedback while maintaining the command following performance, and is of great industrial value.
  • FIG. 1 is a diagram showing an example of a configuration of a control device of a motor according to a first embodiment of the present invention.
  • a control device 100 of the motor shown in FIG. 1 detects an acceleration of a load 204 which is an object to be driven connected to the motor 201 via the joint portion 203 and a position detector 202 for detecting the positions of the motor 201 and the motor 201. It is connected to the acceleration detector 205.
  • the motor control device 100 receives a position command signal from a host controller (not shown), and energizes the stator winding of the motor so that the position command signal matches the position of the motor and the load to be controlled (mechanical load). Control the current.
  • the position detector 202 detects the position of the motor and outputs it to the control device 100 of the motor as a motor position signal ⁇ m.
  • the acceleration detector 205 detects the acceleration of the load and outputs it to the control device 100 of the motor as a load acceleration signal AL.
  • the configuration of the motor control device 100 internally includes a feedforward control unit 1001, a feedback control unit 1002, a torque control unit 103, a speed conversion unit 104, a load acceleration correction unit 105, and an adder / subtractor.
  • feedforward control unit 1001 position command signal ⁇ s is input, feedforward position command signal ⁇ ff indicating the target operation of the motor, feedforward speed command signal ⁇ ff, and torque necessary for the motor to perform the target operation.
  • a certain feedforward torque command signal ⁇ ff is output.
  • the feedback control unit 1002 receives the feedforward position command signal ⁇ ff, the feedforward speed command signal ⁇ ff, the motor position signal ⁇ m, and the motor speed signal ⁇ m calculated by the speed conversion unit 104 from the motor position signal ⁇ m.
  • a feedback torque command signal .tau.fb is output which indicates the torque for reducing the positional deviation between the feedforward position command signal .theta.ff and the motor position signal .theta.m and the speed difference between the feedforward speed command signal .omega.ff and the motor speed signal .omega.m.
  • the adder-subtractor 108 outputs a torque command correction signal ⁇ in obtained by subtracting a load acceleration feedback torque signal ⁇ acc, which will be described later, from a torque command signal ⁇ s which is an addition value of the feedforward torque command signal ⁇ ff and the feedback torque command signal ⁇ fb.
  • the torque control unit 103 receives the torque command correction signal ⁇ in, and controls the current supplied to the stator winding of the motor so that the same torque as the torque command correction signal ⁇ in is generated in the motor.
  • the load acceleration correction unit 105 receives a load acceleration correction signal A′L obtained by subtracting the command acceleration signal As from the load acceleration signal AL, and outputs a load acceleration feedback torque signal ⁇ acc.
  • the controller 100 of the motor has a feedforward control system and a cascade type feedback of the motor position, the motor speed, and the load speed so that the position command and the position of the motor and the load coincide with each other. It has a feedback control system.
  • the feedforward control unit 1001 internally includes a feedforward operation command generation unit 106 and a feedforward torque command generation unit 107.
  • Feed forward operation command generation unit 106 receives position command signal ⁇ s, and outputs feed forward position command signal ⁇ ff, feed forward speed command signal ⁇ ff, and feed forward acceleration command signal Aff.
  • the position command signal ⁇ s is output as it is as the feedforward position command signal ⁇ ff
  • the feedforward position command signal ⁇ ff is subjected to the first-order differential arithmetic processing to feedforward speed command signal ⁇ ff and the feedforward position command signal ⁇ ff.
  • the feedforward acceleration command signal Aff is calculated by performing differential operation processing.
  • Feed forward torque command generation unit 107 receives feed forward acceleration command signal Aff, and feed forward torque command signal ⁇ ff, which is a torque necessary for the acceleration of motor 201 or load 204 to coincide with feed forward acceleration command signal Aff. Output.
  • the feedforward torque command ⁇ ff is calculated by multiplying the feedforward acceleration command Aff by a weighting factor indicating the total inertia of the motor or the load.
  • the details of the configuration for calculating the feedforward torque command signal ⁇ ff in the feedforward torque command generation unit 107 will be described later.
  • feedforward control unit 1001 generates feedforward position command signal ⁇ ff and feedforward speed from position command signal ⁇ s input by the action of feedforward operation command generation unit 106 and feedforward torque command generation unit 107.
  • a command signal ⁇ ff and a feedforward torque command signal ⁇ ff are output.
  • the feedback control unit 1002 internally includes a position control unit 101 and a speed control unit 102.
  • the position control unit 101 receives the feedforward position command signal ⁇ ff and the motor position signal ⁇ m, and outputs a speed command signal ⁇ s for reducing the difference between the two.
  • the position control unit 101 performs, for example, a proportional control calculation that outputs a product of the feedforward position command signal ⁇ ff and the motor position signal ⁇ m multiplied by a weighting factor as the speed command signal ⁇ s.
  • the speed control unit 102 receives the feedforward speed command signal ⁇ ff, the speed command signal ⁇ s, and the motor speed signal ⁇ m. Speed control unit 102 outputs a feedback torque command signal ⁇ fb for reducing the difference between the sum of feedforward speed command signal ⁇ ff and speed command signal ⁇ s and motor speed signal ⁇ m.
  • the speed control unit 102 multiplies the value obtained by subtracting the motor speed signal ⁇ m from the addition value of the feedforward speed command signal ⁇ ff and the speed command signal ⁇ s and multiplies the weight coefficient, the feedforward speed command signal ⁇ ff and the speed command A proportional integral operation is performed to output, as a feedback torque command signal ⁇ fb, an addition value obtained by multiplying the integrated value of the value obtained by subtracting the motor speed signal ⁇ m from the addition value of the signal ⁇ s and the weighting factor.
  • the feedback control unit 1002 outputs the feedback torque command signal ⁇ fb from the input feedforward position command signal ⁇ ff, the feedforward speed command signal ⁇ ff, the motor position signal ⁇ m, and the motor speed signal ⁇ m.
  • the speed conversion unit 104 receives the motor position signal ⁇ m, and outputs a motor speed signal ⁇ m indicating the motor speed. For example, the speed converter 104 performs a differential operation on the motor position signal ⁇ m, and outputs the calculation result as the motor speed signal ⁇ m.
  • the load acceleration correction unit 105 receives the load acceleration signal AL, and outputs a value obtained by multiplying the load acceleration signal AL by a weighting factor as a load acceleration feedback torque signal ⁇ acc. Then, a value obtained by subtracting the load acceleration feedback torque signal ⁇ acc from the torque command signal ⁇ s which is the addition value of the feedforward torque command signal ⁇ ff and the feedback torque command signal ⁇ fb is input to the torque control unit 103 as the torque command correction signal ⁇ in. Ru.
  • FIG. 2 is a diagram showing an example of a configuration of the load acceleration correction unit 105 in the first embodiment of the present invention.
  • the load acceleration correction unit 105 receives the load acceleration signal AL, and outputs a value obtained by multiplying the load acceleration signal AL by the load acceleration feedback gain Kacc which is a weighting factor as a load acceleration feedback torque signal ⁇ acc.
  • the command acceleration signal As 0
  • the transfer function G ⁇ s ⁇ ⁇ m (s) of the motor position signal ⁇ m with respect to the torque command signal ⁇ s and the transfer function G ⁇ s ⁇ ⁇ L (s) of the load position ⁇ L with respect to the torque command signal are It is shown by the following equation (1) and equation (2).
  • Equations (1) and (2) s is the Laplace operator, Jm is the inertia of the motor 201, JL is the inertia of the load 204, ⁇ ′p is the resonance in the transfer characteristic from the torque command signal ⁇ s to the motor position signal ⁇ m
  • the frequency ⁇ z is an antiresonance frequency in the transfer characteristic from the torque command signal ⁇ s to the motor position signal ⁇ m.
  • the relationship between the motor inertia Jm, the load inertia JL, the load acceleration feedback gain Kacc and the resonance frequency ⁇ 'p is represented by the equation (3), and the relationship with the antiresonance frequency ⁇ z is represented by the equation (4).
  • Ks represents the elastic modulus of the joint portion 203.
  • feedback of the load acceleration by the load acceleration correction unit 105 has an effect of reducing the gain at the antiresonance frequency, that is, the sensitivity, according to the above principle.
  • the total inertia is the motor inertia Jm, the load inertia JL, and the load acceleration feedback gain Kacc from the equations (1) and (2). It turns out that it is an addition value of. That is, the total inertia of the controlled object formed of the motor 201 and the load 204 as seen from the torque command signal ⁇ s is increased by the load acceleration feedback gain Kacc by performing the load acceleration feedback by the load acceleration correction unit 105. Show that.
  • feedforward torque command generation unit 107 only the feedforward torque command signal ⁇ ff is applied to the motor during acceleration / deceleration operation when the change in total inertia due to the load acceleration feedback of the controlled object seen from torque command signal ⁇ s is not taken into consideration.
  • the operation command output from the feedforward operation command generator does not match the motor operation. That is, the command following performance by feedforward control is degraded.
  • the position control unit 101 and the speed control unit 102 are controlled so that the operation command and the motor operation coincide with each other, the position control unit 101 and the speed control unit 102 Control is performed according to the deviation between the command and the motor operation. For this reason, a delay occurs in control, and the operation delay, overshoot, or undershoot or the like occurs immediately before stopping due to the control delay.
  • FIG. 3 is a diagram showing an example of a configuration of feedforward torque command generation unit 107 according to the first embodiment of the present invention.
  • the feedforward torque command generation unit 107 calculates a feedforward torque command signal by multiplying the input value of the feedforward acceleration command Aff by the sum of the motor inertia Jm, the load inertia JL, and the load acceleration feedback gain Kacc. .
  • the feedforward torque command generation unit 107 calculates the feedforward torque command ⁇ ff from the feedforward acceleration command signal Aff, the load acceleration feedback gain is added to the inertia of the motor and load.
  • the feedforward torque command ⁇ ff is calculated in consideration of the influence of the load acceleration feedback of the total inertia of the controlled object viewed from the torque command ⁇ s.
  • the subtraction of the acceleration / deceleration torque by the load acceleration feedback is compensated in advance to maintain the command follow-up performance while the load acceleration feedback is maintained. Vibration suppression effect can be obtained. Therefore, the vibration suppression effect by the load acceleration feedback can be obtained while maintaining the command follow-up performance, so that it is possible to achieve both settling and vibration suppression.
  • the motor control device 100 is a motor control device for driving a load to be controlled, and includes a feedforward control unit 1001, a feedback control unit 1002, and an adder / subtractor 108. And.
  • a feedforward control unit 1001 receives a position command signal ⁇ s specifying a target load position to be controlled, a feedforward position command signal ⁇ ff indicating a target position of the motor, and a feedforward speed command signal indicating a target speed of the motor. It outputs ⁇ ff and a feedforward torque command signal ⁇ ff indicating the torque required to perform the operation indicated by the target position or speed with the motor.
  • the feedback control unit 1002 receives the feedforward position command signal ⁇ ff, the feedforward speed command signal ⁇ ff, the motor position signal ⁇ m indicating the position of the motor, and the motor speed signal ⁇ m indicating the speed of the motor, and outputs the motor position signal.
  • a feedback torque command signal ⁇ fb indicating a torque command for feedback control so that ⁇ m and feedforward position command signal ⁇ ff coincide with each other is output.
  • the feedback torque signal ⁇ acc is subtracted and output as a torque command correction signal ⁇ in.
  • the feedforward control unit 1001 generates a feedforward torque command signal ⁇ ff so as to compensate in advance the influence of the load acceleration feedback torque that is subtracted from the torque command signal ⁇ s during the acceleration / deceleration operation.
  • the vibration suppression effect by the load acceleration feedback can be enhanced while maintaining the command following performance. it can. Therefore, the vibration suppression effect by the load acceleration feedback can be obtained while maintaining the command follow-up performance, so that it is possible to achieve both settling and vibration suppression.
  • the feedforward control unit 1001 adds the inertia of the motor and the inertia of the load to be controlled and the load acceleration feedback gain Kacc to the feedforward acceleration command signal Aff calculated by the second derivative of the feedforward position command signal ⁇ ff.
  • the feedforward torque command signal ⁇ ff may be generated by multiplying the value.
  • FIG. 4 is a diagram showing an example of a configuration of a control device of a motor according to a second embodiment of the present invention.
  • FIG. 4 is different from FIG. 1 in the acceleration detector 206 and the feedforward torque command generation unit 307.
  • the functions of the other components are the same as those of the motor control device according to the first embodiment of the present invention shown in FIG.
  • the acceleration detector 206 outputs, as a load acceleration signal AL, an acceleration detector 206 that has been subjected to low-pass filter processing or high-pass filter processing for the purpose of removing detected noise components from the acceleration of the load 204.
  • a load acceleration signal AL an acceleration detector 206 that has been subjected to low-pass filter processing or high-pass filter processing for the purpose of removing detected noise components from the acceleration of the load 204.
  • the apparent inertia change due to load acceleration feedback is affected by the filtering. Therefore, in the calculation process of the feedforward torque command signal ⁇ ff in the feedforward torque command generation unit 307, it is necessary to consider the filtering process in the acceleration detector 206.
  • FIG. 5 shows an example of the configuration of feedforward torque command generation unit 307 according to the second embodiment of the present invention.
  • the feedforward torque command generation unit 307 internally includes an inertia multiplication unit 3071, a filter unit 3072, and a load acceleration feedback gain multiplication unit 3073.
  • An inertia multiplication unit 3071 receives the feedforward acceleration signal Aff.
  • An inertia multiplication unit 3071 outputs a value obtained by multiplying the addition value of the motor inertia Jm and the load inertia JL as a weighting factor by the feedforward acceleration signal Aff as a first feedforward torque command signal ⁇ ff1.
  • the filter unit 3072 similarly receives the feedforward acceleration signal Aff.
  • the filter unit 3072 subjects the input feedforward acceleration signal Aff to filtering processing equivalent to the filtering performed on the acceleration of the load in the acceleration detector 206, and outputs a feedforward acceleration command correction signal Affc.
  • the load acceleration feedback gain multiplication unit 3073 receives the feedforward acceleration command correction signal Affc, and multiplies this by the load acceleration feedback gain Kacc, and outputs a product as a second feedforward torque command signal ⁇ ff2.
  • the addition value of the first feedforward torque command signal ⁇ ff1 and the second feedforward torque command signal ⁇ ff2 is output from the feedforward torque command generation unit 307 as the feedforward torque command signal ⁇ ff.
  • the load acceleration feedback gain is considered in addition to the inertia of the motor and load, and the load acceleration is further calculated. It also performs filtering on As a result, a feedforward torque command is calculated that takes into account the change in total inertia due to load acceleration feedback of the control target viewed from the torque command signal ⁇ s. Therefore, the difference between the operation command at the time of acceleration / deceleration operation and the motor operation can be reduced, and the operation delay, overshoot, undershoot, etc. can be improved immediately before the stop.
  • the vibration suppression effect by the load acceleration feedback can be enhanced while maintaining the command following performance. Therefore, the vibration suppression effect by the load acceleration feedback can be obtained while maintaining the command follow-up performance, so that it is possible to achieve both settling and vibration suppression.
  • adder / subtractor 108 applies a load processing to a signal obtained by filtering load acceleration signal AL indicating the acceleration of the load to be controlled from torque command signal ⁇ s.
  • a torque command correction signal ⁇ in is generated.
  • feedforward control section 1001 is a signal obtained by multiplying feedforward acceleration command signal Aff calculated by second-order differentiation of feedforward position command signal ⁇ ff by the sum of the inertia of the motor and the inertia of the load to be controlled, and the feed.
  • a feedforward torque command signal ⁇ ff is generated by adding a signal obtained by applying a filter process equivalent to the filter process to the forward acceleration command signal Aff and a signal obtained by multiplying the load acceleration feedback gain Kacc.
  • the difference between the operation command at the time of acceleration / deceleration operation and the motor operation can be reduced, and the operation delay, overshoot, undershoot or the like at the time of stop can be improved.
  • the acceleration processing unit is configured to filter the load acceleration, but may be configured to filter the load acceleration in the control device of the motor.
  • the motor control device can obtain the vibration suppression effect by the load acceleration feedback while maintaining the command following performance.
  • load acceleration feedback gain acceleration feedback amount
  • command tracking performance vibration suppression effect by acceleration feedback from the load side while maintaining command tracking performance It is possible to provide a motor control device with enhanced Therefore, it is suitable for applications such as a control device of a motor used in a semiconductor manufacturing apparatus or an electronic component mounter.
  • Reference Signs List 100 motor control device 1001 feedforward control unit 1002 feedback control unit 101 position control unit 102 speed control unit 103 torque control unit 104 speed conversion unit 105 load acceleration correction unit 106 feedforward operation command generation unit 107 feedforward torque command generation unit 108 Adder / subtractor 201 Motor 202 Position detector 203 Junction 204 Load 205 Acceleration detector 206 Acceleration detector 307 Feedforward torque command generation unit 3071 Inertia multiplication unit 3072 Filter unit 3073 Load acceleration feedback gain multiplication unit

Abstract

被制御対象の負荷(機械負荷)を駆動する電動機の制御装置であって、フィードフォワード制御部と、フィードバック制御部と、加減算器と、を備える。フィードフォワード制御部は、被制御対象の負荷目標位置を指定する位置指令信号を入力し、電動機の目標位置を示すフィードフォワード位置指令信号と、電動機の目標速度を示すフィードフォワード速度指令信号と、電動機で目標位置または目標速度が示す動作を為すために必要なトルクを示すフィードフォワードトルク指令信号と、を出力する。フィードバック制御部は、フィードフォワード位置指令信号と、フィードフォワード速度指令信号と、電動機の位置を示す電動機位置信号と、電動機の速度を示す電動機速度信号とを入力し、電動機位置信号とフィードフォワード位置指令信号が一致するようフィードバック制御するためのトルク指令を示すフィードバックトルク指令信号を出力する。加減算器は、フィードフォワードトルク指令信号とフィードバックトルク指令信号を加算したトルク指令信号から、被制御対象の負荷の加速度を示す負荷加速度信号に負荷加速度フィードバックゲインを乗じた負荷加速度フィードバックトルク信号を減算し、トルク指令補正信号として出力する。フィードフォワード制御部は、加減速動作時にトルク指令信号から減算される負荷加速度フィードバックトルク信号の影響を予め補償するようにフィードフォワードトルク指令信号を生成する。

Description

電動機の制御装置
 本発明は、電動機および電動機で駆動される機械負荷に対し、電動機の速度または位置などの駆動動作を制御する電動機の制御装置に関する。特に、駆動時などに発生する機械負荷の反共振に起因する振動を抑制する制御構成を備えた電動機の制御装置に関する。
 この種の電動機の制御装置は、上位コントローラから入力された位置指令と電動機および被制御対象の負荷(機械負荷)の位置が一致するように、内部に少なくともフィードフォワード制御系とフィードバック制御系の一つを有している。このような電動機の制御装置は、位置指令と電動機の位置検出値から、位置指令と電動機位置を一致させるためのトルク指令値を算出し、電動機でトルク指令値と同じトルクが生じるよう電動機の固定子巻線に通電する電流を制御することで、電動機および被制御対象の負荷(機械負荷)の位置を制御している。しかしながら、電動機と被制御対象の負荷(機械負荷)との接合部の機械剛性が低い場合は、加減速時または外乱印加時において、被制御対象の負荷(機械負荷)に反共振に起因する振動が生じやすく、整定性および外乱抑圧性を従来よりも更に高めることが課題として認識されていた。
 この課題に対し、従来の送り制御装置は、被制御対象の負荷(機械負荷)であるスライダに加速度センサを設置し、被制御対象の負荷(機械負荷)の加速度検出値に重み係数である加速度フィードバックゲインを乗じたものを、トルク指令値から減算する加速度フィードバックループを備えることで、加減速時または外乱印加時に被制御対象の負荷(機械負荷)に生じる振動を抑制するように構成されている(例えば、特許文献1を参照)。
 特許文献1等で代表される構成では、加速度フィードバックゲインを大きくするほど機械剛性に起因する振動が小さくなる。一方、本構成をフィードフォワード制御系を有する電動機の制御装置に適用した場合に、負荷の加減速動作に必要なトルクがトルク指令値から減算される。このため、指令追従性能が劣化し、停止間際に動作遅れ、オーバーシュート、またはアンダーシュートなどが生じてしまい、整定性と振動抑制が両立できない、という問題を有していた。換言すると、加速度フィードバックゲイン(加速度フィードバック量)と指令追従性能との間には、トレードオフの関係があり、整定性と振動抑制の両立については、更なる改良が希求されていた。
特開平6-91482号公報
 本発明は、従来の課題を解決する。本発明は、フィードフォワード制御系と負荷加速度フィードバック系を有する電動機の制御装置において、指令追従性能を保ちつつ、負荷加速度フィードバックによる振動抑制効果を得ることで、整定性と振動抑制の両立が可能となる電動機の制御装置を提供することを目的とする。即ち、本発明は、負荷加速度フィードバックゲイン(加速度フィードバック量)と指令追従性能との間の、トレードオフの関係を、緩和、或いは回避を図り、指令追従性能を保ちつつ、負荷側からの加速度フィードバックによる振動抑制効果を高めた電動機の制御装置を提供する。
 上述の課題を解決するために、本出願の発明者らは、試行錯誤を重ね且つ鋭意検討を行った。そして、指令追従性能を保ちつつ、負荷側からの加速度フィードバックによる振動抑制効果を高めた新規な電動機の制御装置を見出した。その詳細を下記に述べる。
 課題を解決するための第1の態様は、被制御対象の負荷(機械負荷)を駆動する電動機の制御装置であって、フィードフォワード制御部と、フィードバック制御部と、加減算器と、を備える。
 フィードフォワード制御部は、被制御対象の負荷目標位置を指定する位置指令信号を入力し、電動機の目標位置を示すフィードフォワード位置指令信号と、電動機の目標速度を示すフィードフォワード速度指令信号と、電動機で目標位置または目標速度が示す動作を為すために必要なトルクを示すフィードフォワードトルク指令信号と、を出力する。
 フィードバック制御部は、フィードフォワード位置指令信号と、フィードフォワード速度指令信号と、電動機の位置を示す電動機位置信号と、電動機の速度を示す電動機速度信号とを入力し、電動機位置信号とフィードフォワード位置指令信号が一致するようにフィードバック制御するためのトルク指令を示すフィードバックトルク指令信号を出力する。
 加減算器は、フィードフォワードトルク指令信号とフィードバックトルク指令信号を加算したトルク指令信号から、被制御対象の負荷の加速度を示す負荷加速度信号に負荷加速度フィードバックゲインを乗じた負荷加速度フィードバックトルク信号を減算し、トルク指令補正信号として出力する。
 フィードフォワード制御部は、加減速動作時にトルク指令信号から減算される負荷加速度フィードバックトルク信号の影響を予め補償するようにフィードフォワードトルク指令信号を生成する。
 また、第2の態様は、第1の態様の電動機の制御装置において、フィードフォワード制御部は、フィードフォワード位置指令信号の二階微分によって算出されたフィードフォワード加速度指令信号に対し、電動機のイナーシャと被制御対象の負荷のイナーシャと負荷加速度フィードバックゲインの加算値を乗じることによって、フィードフォワードトルク指令信号を生成する。
 また、第3の態様は、第1の態様の電動機の制御装置において、加減算器は、トルク指令信号から、被制御対象の負荷の加速度を示す負荷加速度信号にフィルタ処理を施した信号に負荷加速度フィードバックゲインを乗じた負荷加速度フィードバックトルク信号を減算することで、トルク指令補正信号を生成する。
 フィードフォワード制御部は、フィードフォワード位置指令信号の二階微分によって算出されたフィードフォワード加速度指令信号に電動機のイナーシャと被制御対象の負荷のイナーシャの加算値を乗じた信号と、フィードフォワード加速度指令信号にフィルタ処理と等価なフィルタ処理を施した信号に負荷加速度フィードバックゲインを乗じた信号と、を加算することによってフィードフォワードトルク指令信号を生成する。
 上述の課題解決によって、フィードフォワード制御系と負荷加速度フィードバック系を有する電動機の制御装置は、負荷加速度フィードバックによる指令追従性能の低下を招くことも無く、指令追従性能を保ったまま、負荷加速度フィードバックによる振動抑制効果を高められる。したがって、整定性と振動抑制の両立が実現可能である。
 本発明の電動機の制御装置は、フィードフォワード制御系によるフィードフォワードトルク演算において、負荷加速度フィードバックによる加減速トルクの減算分を予め補償する。本発明の電動機の制御装置は、指令追従性能を保ちつつ、負荷加速度フィードバックによる振動抑制効果を高めることを可能にし、産業的価値の大いなるものである。
本発明の実施の形態1における電動機の制御装置の構成の一例を示す図 本発明の実施の形態1における負荷加速度補正部の構成の一例を示す図 本発明の実施の形態1におけるフィードフォワードトルク指令生成部の構成の一例を示す図 本発明の実施の形態2における電動機の制御装置の構成の一例を示す図 本発明の実施の形態2におけるフィードフォワードトルク指令生成部の構成の一例を示す図
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1における電動機の制御装置の構成の一例を示す図である。図1に示す電動機の制御装置100は、電動機201と電動機201の位置を検出する位置検出器202と、接合部203を介して電動機201に繋がれた駆動対象である負荷204の加速度を検出する加速度検出器205に接続されている。電動機の制御装置100は、図示しない上位コントローラから位置指令信号が入力され、位置指令信号と電動機および被制御対象の負荷(機械負荷)の位置が一致するように電動機の固定子巻線に通電する電流を制御する。位置検出器202は電動機の位置を検出し、電動機位置信号θmとして、電動機の制御装置100へ出力する。加速度検出器205は負荷の加速度を検出し、負荷加速度信号ALとして電動機の制御装置100へ出力する。
 電動機の制御装置100の構成を説明する。電動機の制御装置100は、内部にフィードフォワード制御部1001、フィードバック制御部1002、トルク制御部103、速度変換部104、負荷加速度補正部105、加減算器108を有している。フィードフォワード制御部1001においては、位置指令信号θsが入力され、電動機の目標動作を示すフィードフォワード位置指令信号θff、フィードフォワード速度指令信号ωff、および、電動機が目標動作を為すために必用なトルクであるフィードフォワードトルク指令信号τffが出力される。
 フィードバック制御部1002は、フィードフォワード位置指令信号θffと、フィードフォワード速度指令信号ωffと、電動機位置信号θmと、電動機位置信号θmから速度変換部104によって算出された電動機速度信号ωmとを入力し、フィードフォワード位置指令信号θffと電動機位置信号θmの位置ずれ、およびフィードフォワード速度指令信号ωffと電動機速度信号ωmの速度ずれを小さくするためのトルクを示すフィードバックトルク指令信号τfbを出力する。
 加減算器108は、フィードフォワードトルク指令信号τffとフィードバックトルク指令信号τfbの加算値であるトルク指令信号τsから後述する負荷加速度フィードバックトルク信号τaccを減じたトルク指令補正信号τinを出力する。トルク制御部103は、トルク指令補正信号τinを入力し、電動機でトルク指令補正信号τinと同じトルクが生じるように、電動機の固定子巻線に通電する電流を制御する。
 負荷加速度補正部105には、負荷加速度信号ALから指令加速度信号Asを減じた負荷加速度補正信号A’Lが入力され、負荷加速度フィードバックトルク信号τaccが出力される。
 このようにして、電動機の制御装置100は、位置指令と電動機および負荷の位置が一致するにように、内部に、フィードフォワード制御系と、電動機位置と電動機速度と負荷速度をフィードバックしたカスケード型のフィードバック制御系を有している。
 次に、電動機の制御装置の構成の詳細を説明する。
 フィードフォワード制御部1001は、内部に、フィードフォワード動作指令生成部106とフィードフォワードトルク指令生成部107を有している。
 フィードフォワード動作指令生成部106は、位置指令信号θsを入力し、フィードフォワード位置指令信号θffと、フィードフォワード速度指令信号ωffと、フィードフォワード加速度指令信号Affとを出力する。例えば、位置指令信号θsをそのままフィードフォワード位置指令信号θffとして出力し、フィードフォワード位置指令信号θffに一階微分演算処理を施すことでフィードフォワード速度指令信号ωffを、フィードフォワード位置指令信号θffに二階微分演算処理を施すことでフィードフォワード加速度指令信号Affを算出する。
 フィードフォワードトルク指令生成部107は、フィードフォワード加速度指令信号Affを入力し、電動機201または負荷204の加速度がフィードフォワード加速度指令信号Affと一致するために必用なトルクであるフィードフォワードトルク指令信号τffを出力する。
 例えば、フィードフォワード加速度指令Affに電動機または負荷などの総イナーシャを示す重み係数を乗じ、フィードフォワードトルク指令τffを算出する。なお、フィードフォワードトルク指令生成部107におけるフィードフォワードトルク指令信号τffを演算する構成の詳細は後述する。
 このようにして、フィードフォワード制御部1001は、フィードフォワード動作指令生成部106とフィードフォワードトルク指令生成部107の作用により、入力された位置指令信号θsから、フィードフォワード位置指令信号θffとフィードフォワード速度指令信号ωffとフィードフォワードトルク指令信号τffとを出力する。フィードバック制御部1002は、内部に、位置制御部101と速度制御部102を有している。位置制御部101は、フィードフォワード位置指令信号θffと電動機位置信号θmを入力し、両者の差異を小さくするための速度指令信号ωsを出力する。位置制御部101は、例えば、フィードフォワード位置指令信号θffと電動機位置信号θmに重み係数を乗じたものを速度指令信号ωsとして出力する比例制御演算を行う。
 速度制御部102は、フィードフォワード速度指令信号ωffと速度指令信号ωsと電動機速度信号ωmを入力する。速度制御部102は、フィードフォワード速度指令信号ωffと速度指令信号ωsとの加算値と、電動機速度信号ωmの差異を小さくするためのフィードバックトルク指令信号τfbを出力する。速度制御部102は、例えば、フィードフォワード速度指令信号ωffと速度指令信号ωsとの加算値から電動機速度信号ωmを減じた値に重み係数を乗じたものと、フィードフォワード速度指令信号ωffと速度指令信号ωsの加算値から電動機速度信号ωmを減じたものの積分値に重み係数を乗じたものとの加算値を、フィードバックトルク指令信号τfbとして出力する比例積分演算を行う。
 このようにして、フィードバック制御部1002は、入力されたフィードフォワード位置指令信号θffとフィードフォワード速度指令信号ωffと電動機位置信号θmと電動機速度信号ωmから、フィードバックトルク指令信号τfbを出力する。
 速度変換部104は、電動機位置信号θmを入力し、電動機速度を示す電動機速度信号ωmを出力する。速度変換部104では、例えば、電動機位置信号θmに対して微分演算を行い、その算出結果を電動機速度信号ωmとして出力する。
 負荷加速度補正部105は、負荷加速度信号ALを入力し、負荷加速度信号ALに重み係数を乗じた値を負荷加速度フィードバックトルク信号τaccとして出力する。そして、フィードフォワードトルク指令信号τffとフィードバックトルク指令信号τfbの加算値であるトルク指令信号τsから、負荷加速度フィードバックトルク信号τaccを減じた値が、トルク指令補正信号τinとしてトルク制御部103に入力される。
 しかしながら、電動機位置信号θmまたは負荷位置θLを位置指令信号θsに追従させるために電動機または負荷を加減速動作させる際、負荷加速度フィードバックトルク信号τaccをトルク指令信号τsから減じると、加減速動作に必用なトルクとして算出されたフィードフォワードトルク指令信号τffから負荷加速度フィードバックトルク信号τaccが減じられる。フィードフォワードトルク指令信号τffから負荷加速度フィードバックトルク信号τaccが減じられる場合の作用について、負荷加速度補正部105の動作原理と合わせて説明する。
 図2は、本発明の実施の形態1における負荷加速度補正部105の構成の一例を示す図である。負荷加速度補正部105は、負荷加速度信号ALを入力し、負荷加速度信号ALに重み係数である負荷加速度フィードバックゲインKaccを乗じた値を負荷加速度フィードバックトルク信号τaccとして出力する。このとき、指令加速度信号As=0とすると、トルク指令信号τsに対する電動機位置信号θmの伝達関数Gτs→θm(s)、およびトルク指令信号に対する負荷位置θLの伝達関数Gτs→θL(s)は、次の式(1)、式(2)で示される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 式(1)および式(2)において、sはラプラス演算子、Jmは電動機201のイナーシャ、JLは負荷204のイナーシャ、ω’pはトルク指令信号τsから電動機位置信号θmへの伝達特性における共振周波数、ωzはトルク指令信号τsから電動機位置信号θmへの伝達特性における反共振周波数である。電動機イナーシャJm、負荷イナーシャJL、負荷加速度フィードバックゲインKaccと共振周波数ω’pとの関係は式(3)、反共振周波数ωzとの関係は式(4)の式で示される。式(3)および式(4)において、Ksは接合部203の弾性係数を示している。電動機の制御装置100で電動機201を介して負荷204を駆動する場合、加減速動作によって負荷204に反共振周波数ωzの振動が励起され、停止時の整定性の悪化要因となる。
 式(1)に着目すると、負荷加速度フィードバックゲインKaccを大きくすると、共振周波数ω’pは大きくなり、反共振周波数ωzは変化しないことが分かる。共振周波数と反共振周波数の差異が大きくなるほど、反共振周波数におけるゲインは小さくなるので、反共振の影響は小さくなる。一方、式(1)と式(2)より、トルク指令信号τsに対する、電動機位置信号θmと負荷位置θLとの関係は、次の式(5)の関係にあることが分かる。
Figure JPOXMLDOC01-appb-M000005
 式(5)より、電動機位置信号θmと負荷位置θLとの関係は、負荷加速度フィードバックゲインKaccに関わらず、常に一定である。よって、式(1)において、負荷加速度フィードバックゲインKaccを上げることで、トルク指令信号τsに対する電動機位置信号θmの伝達特性の反共振周波数ωzにおけるゲインが小さくなると、トルク指令信号τsに対する負荷位置θLの伝達特性の反共振周波数ωzにおけるゲインも同様に小さくなる。よって、加減速動作によって生じる負荷204の反共振周波数ωzの振動も小さくなる。
 よって、負荷加速度補正部105によって負荷加速度をフィードバックすることで、上記の原理により、反共振周波数におけるゲイン、つまり感度を下げる作用がある。これによって、電動機の制御装置100によって電動機201または負荷204を駆動する際に、加減速動作時や外乱印加時に負荷204に生じる反共振振動を減じることができる。
 以上に示した通り、負荷加速度補正部105による負荷加速度信号ALをフィードバックすることで、反共振に起因する振動を抑制する効果が得られる。
 一方で、式(1)および式(2)より、トルク指令信号τsに対する電動機位置信号θmおよび負荷位置θLの伝達関数から、その総イナーシャは電動機イナーシャJm、負荷イナーシャJL、および負荷加速度フィードバックゲインKaccの加算値であることが分かる。つまり、トルク指令信号τsから見た、電動機201と負荷204で構成される被制御対象の総イナーシャが、負荷加速度補正部105による負荷加速度フィードバックを行うことで、負荷加速度フィードバックゲインKaccだけ増加していることを示している。
 これは、トルク指令信号τsから負荷加速度フィードバックトルク指令τaccを減じることが、トルク指令信号τsから見た被制御対象の総イナーシャが負荷加速度フィードバックゲインKaccだけ増加することと等価である。
 フィードフォワードトルク指令生成部107において、トルク指令信号τsから見た被制御対象の負荷加速度フィードバックによる総イナーシャ変化が考慮されていない場合、加減速動作時にフィードフォワードトルク指令信号τffのみを電動機に印加しても、フィードフォワード動作指令生成部から出力された動作指令と電動機動作とは一致しなくなる。つまり、フィードフォワード制御による指令追従性能が劣化する。
 動作指令と電動機動作との差異は、位置制御部101および速度制御部102によって補償され、動作指令と電動機動作が一致するように制御されるが、位置制御部101および速度制御部102は、動作指令と電動機動作の不一致による両者の偏差に応じて制御が為される。このため、制御に遅れが生じ、この制御遅れが原因で、停止間際に動作遅れ、オーバーシュート、またはアンダーシュートなどが発生してしまう。
 つまり、フィードフォワード制御系と負荷加速度フィードバック系を有する電動機の制御装置において、負荷加速度フィードバックゲインを大きくするほど、指令追従性能が劣化し、停止間際に動作遅れ、オーバーシュート、またはアンダーシュートなどが発生してしまう。換言すると、加速度フィードバックゲイン(加速度フィードバック量)と指令追従性能との間には、トレードオフの関係があり、整定性と振動抑制を両立することができない、という問題がある。
 停止間際の動作遅れ、オーバーシュート、またはアンダーシュートを防ぎ、整定性と振動抑制を両立するには、フィードフォワードトルク指令生成部107によるフィードフォワードトルク指令信号τffの演算において、負荷加速度フィードバックによるトルク指令信号τsからの減算量である負荷加速度フィードバックトルク信号τaccを考慮する必要がある。すなわち、負荷加速度フィードバックによって生じるトルク指令信号τsから見た被制御対象の総イナーシャ変化を考慮する必要がある。
 図3は、本発明の実施の形態1におけるフィードフォワードトルク指令生成部107の構成の一例を示す図である。フィードフォワードトルク指令生成部107では、入力されたフィードフォワード加速度指令Affに、電動機イナーシャJmと、負荷イナーシャJLと、負荷加速度フィードバックゲインKaccの加算値を乗じることで、フィードフォワードトルク指令信号を算出する。
 このように、電動機の制御装置100では、フィードフォワードトルク指令生成部107において、フィードフォワード加速度指令信号Affからフィードフォワードトルク指令τffを算出する際に、電動機と負荷のイナーシャに加え、負荷加速度フィードバックゲインKaccも考慮することで、トルク指令τsから見た被制御対象の総イナーシャの負荷加速度フィードバックによる変化による影響を加味したフィードフォワードトルク指令τffが算出される。これによって、加減速動作時の動作指令と電動機動作との差異が小さくなるので、指令追従性が向上し、停止間際の動作遅れ、オーバーシュート、またはアンダーシュートなどを改善することができる。
 以上のように、本実施の形態においてはフィードフォワード制御系によるフィードフォワードトルク演算において、負荷加速度フィードバックによる加減速トルクの減算分を予め補償することで、指令追従性能を保ちつつ、負荷加速度フィードバックによる振動抑制効果を高める得ることができる。よって、指令追従性能を保ちつつ、負荷加速度フィードバックによる振動抑制効果が得られるので、整定性と振動抑制の両立が可能となる。
 以上のように、本実施の形態の電動機の制御装置100は、被制御対象の負荷を駆動する電動機の制御装置であって、フィードフォワード制御部1001と、フィードバック制御部1002と、加減算器108と、を備える。フィードフォワード制御部1001は、被制御対象の負荷目標位置を指定する位置指令信号θsを入力し、電動機の目標位置を示すフィードフォワード位置指令信号θffと、電動機の目標速度を示すフィードフォワード速度指令信号ωffと、電動機で目標位置または目標速度が示す動作を為すために必要なトルクを示すフィードフォワードトルク指令信号τffと、を出力する。フィードバック制御部1002は、フィードフォワード位置指令信号θffと、フィードフォワード速度指令信号ωffと、電動機の位置を示す電動機位置信号θmと、電動機の速度を示す電動機速度信号ωmとを入力し、電動機位置信号θmとフィードフォワード位置指令信号θffが一致するようフィードバック制御するためのトルク指令を示すフィードバックトルク指令信号τfbを出力する。加減算器108は、フィードフォワードトルク指令信号τffとフィードバックトルク指令信号τfbを加算したトルク指令信号τsから、被制御対象の負荷の加速度を示す負荷加速度信号ALに負荷加速度フィードバックゲインKaccを乗じた負荷加速度フィードバックトルク信号τaccを減算し、トルク指令補正信号τinとして出力する。フィードフォワード制御部1001は、加減速動作時にトルク指令信号τsから減算される負荷加速度フィードバックトルクの影響を予め補償するようにフィードフォワードトルク指令信号τffを生成する。
 これにより、フィードフォワード制御系によるフィードフォワードトルク演算において、負荷加速度フィードバックによる加減速トルクの減算分を予め補償することで、指令追従性能を保ちつつ、負荷加速度フィードバックによる振動抑制効果を高める得ることができる。よって、指令追従性能を保ちつつ、負荷加速度フィードバックによる振動抑制効果が得られるので、整定性と振動抑制の両立が可能となる。
 また、フィードフォワード制御部1001は、フィードフォワード位置指令信号θffの二階微分によって算出されたフィードフォワード加速度指令信号Affに対し、電動機のイナーシャと被制御対象の負荷のイナーシャと負荷加速度フィードバックゲインKaccの加算値を乗じることによって、フィードフォワードトルク指令信号τffを生成してもよい。
 (実施の形態2)
 図4は、本発明の実施の形態2の電動機の制御装置の構成の一例を示す図である。図4は、図1に対し、加速度検出器206とフィードフォワードトルク指令生成部307が異なる。これ以外の構成要素の働きは図1に示した本発明の実施の形態1の電動機の制御装置と同じであるため、説明を省略する。
 加速度検出器206では、負荷204の加速度に対し、検出雑音成分を除去することなどを目的に、ローパスフィルタまたはハイパスフィルタ処理を施したものを負荷加速度信号ALとして出力する。加速度検出器206でフィルタ処理が施される場合、負荷加速度フィードバックによる見かけ上のイナーシャ変化は、フィルタ処理の影響を受けることになる。このため、フィードフォワードトルク指令生成部307におけるフィードフォワードトルク指令信号τffの算出処理上で、加速度検出器206におけるフィルタ処理を考慮する必要がある。
 次に、フィードフォワードトルク指令生成部307の構成について説明する。図5は、本発明の実施の形態2におけるフィードフォワードトルク指令生成部307の構成の一例を示すものである。
 フィードフォワードトルク指令生成部307は、内部に、イナーシャ乗算部3071と、フィルタ部3072と、負荷加速度フィードバックゲイン乗算部3073とを有している。
 イナーシャ乗算部3071は、フィードフォワード加速度信号Affを入力する。イナーシャ乗算部3071は、電動機イナーシャJmと負荷イナーシャJLの加算値を重み係数としてフィードフォワード加速度信号Affに乗じたものを、第1フィードフォワードトルク指令信号τff1として出力する。
 フィルタ部3072は、同様にフィードフォワード加速度信号Affを入力する。フィルタ部3072は、入力されたフィードフォワード加速度信号Affに対し、加速度検出器206において負荷の加速度に為されたフィルタ処理と等価なフィルタ処理を施し、フィードフォワード加速度指令補正信号Affcを出力する。
 負荷加速度フィードバックゲイン乗算部3073は、フィードフォワード加速度指令補正信号Affcを入力し、これに負荷加速度フィードバックゲインKaccを乗じたものを第2フィードフォワードトルク指令信号τff2として出力する。
 第1フィードフォワードトルク指令信号τff1と、第2フィードフォワードトルク指令信号τff2との加算値が、フィードフォワードトルク指令信号τffとして、フィードフォワードトルク指令生成部307から出力される。
 このように、フィードフォワードトルク指令生成部307において、フィードフォワード加速度指令信号Affからフィードフォワードトルク指令τffを算出する際に、電動機と負荷のイナーシャに加え、負荷加速度フィードバックゲインを考慮し、更に負荷加速度に対して為されるフィルタ処理もする。これにより、トルク指令信号τsから見た被制御対象の、負荷加速度フィードバックによる総イナーシャ変化を加味したフィードフォワードトルク指令が算出される。よって、加減速動作時の動作指令と電動機動作との差異が小さくなり、停止間際の動作遅れ、オーバーシュート、またはアンダーシュートなどを改善することができる。
 以上のように、本実施の形態においてはフィードフォワード制御系によるフィードフォワードトルク演算において、加速度検出器内部の負荷加速度に対するフィルタ処理を踏まえて、負荷加速度フィードバックによる加減速トルクの減算分を予め補償することで、指令追従性能を保ちつつ、負荷加速度フィードバックによる振動抑制効果を高める得ることができる。よって、指令追従性能を保ちつつ、負荷加速度フィードバックによる振動抑制効果が得られるので、整定性と振動抑制の両立が可能となる。
 以上のように、本実施の形態の電動機の制御装置100において、加減算器108は、トルク指令信号τsから、被制御対象の負荷の加速度を示す負荷加速度信号ALにフィルタ処理を施した信号に負荷加速度フィードバックゲインKaccを乗じた負荷加速度フィードバックトルクを減算することで、トルク指令補正信号τinを生成する。また、フィードフォワード制御部1001は、フィードフォワード位置指令信号θffの二階微分によって算出されたフィードフォワード加速度指令信号Affに電動機のイナーシャと被制御対象の負荷のイナーシャの加算値を乗じた信号と、フィードフォワード加速度指令信号Affにフィルタ処理と等価なフィルタ処理を施した信号に負荷加速度フィードバックゲインKaccを乗じた信号と、を加算することによってフィードフォワードトルク指令信号τffを生成する。
 これにより、加減速動作時の動作指令と電動機動作との差異が小さくなり、停止間際の動作遅れ、オーバーシュート、またはアンダーシュートなどを改善することができる。
 また、本実施の形態では、加速度検出器において負荷加速度にフィルタ処理を施す構成としたが、電動機の制御装置内で負荷加速度にフィルタ処理を施す構成としても良い。
 以上のように、本発明にかかる電動機の制御装置は、指令追従性能を保ちつつ、負荷加速度フィードバックによる振動抑制効果が得られる。よって、整定性と振動抑制の両立が可能となる。負荷加速度フィードバックゲイン(加速度フィードバック量)と指令追従性能との間の、トレードオフの関係を、緩和、或いは回避を図ることで、指令追従性能を保ちつつ、負荷側からの加速度フィードバックによる振動抑制効果を高めた電動機の制御装置を提供可能である。したがって、半導体製造装置や電子部品実装機等で使用される電動機の制御装置等の用途に好適である。
 100 電動機の制御装置
 1001 フィードフォワード制御部
 1002 フィードバック制御部
 101 位置制御部
 102 速度制御部
 103 トルク制御部
 104 速度変換部
 105 負荷加速度補正部
 106 フィードフォワード動作指令生成部
 107 フィードフォワードトルク指令生成部
 108 加減算器
 201 電動機
 202 位置検出器
 203 接合部
 204 負荷
 205 加速度検出器
 206 加速度検出器
 307 フィードフォワードトルク指令生成部
 3071 イナーシャ乗算部
 3072 フィルタ部
 3073 負荷加速度フィードバックゲイン乗算部

Claims (3)

  1. 被制御対象の負荷を駆動する電動機の制御装置であって、
    前記被制御対象の負荷目標位置を指定する位置指令信号を入力し、前記電動機の目標位置を示すフィードフォワード位置指令信号と、前記電動機の目標速度を示すフィードフォワード速度指令信号と、前記電動機で前記目標位置または前記目標速度が示す動作を為すために必要なトルクを示すフィードフォワードトルク指令信号と、を出力するフィードフォワード制御部と、
    前記フィードフォワード位置指令信号と、前記フィードフォワード速度指令信号と、前記電動機の位置を示す電動機位置信号と、前記電動機の速度を示す電動機速度信号とを入力し、前記電動機位置信号と前記フィードフォワード位置指令信号が一致するようにフィードバック制御するためのトルク指令を示すフィードバックトルク指令信号を出力するフィードバック制御部と、
    前記フィードフォワードトルク指令信号と前記フィードバックトルク指令信号を加算したトルク指令信号から、前記被制御対象の負荷の加速度を示す負荷加速度信号に負荷加速度フィードバックゲインを乗じた負荷加速度フィードバックトルク信号を減算し、トルク指令補正信号として出力する加減算器と、
    を備え、
    前記フィードフォワード制御部は、加減速動作時に前記トルク指令信号から減算される前記負荷加速度フィードバックトルク信号の影響を予め補償するように前記フィードフォワードトルク指令信号を生成する、電動機の制御装置。
  2. 前記フィードフォワード制御部は、前記フィードフォワード位置指令信号の二階微分によって算出されたフィードフォワード加速度指令信号に対し、前記電動機のイナーシャと前記被制御対象の負荷のイナーシャと前記負荷加速度フィードバックゲインの加算値を乗じることによって、前記フィードフォワードトルク指令信号を生成する、請求項1に記載の電動機の制御装置。
  3. 前記加減算器は、前記トルク指令信号から、前記被制御対象の負荷の加速度を示す負荷加速度信号にフィルタ処理を施した信号に前記負荷加速度フィードバックゲインを乗じた負荷加速度フィードバックトルク信号を減算することで、トルク指令補正信号を生成し、
    前記フィードフォワード制御部は、前記フィードフォワード位置指令信号の二階微分によって算出されたフィードフォワード加速度指令信号に前記電動機のイナーシャと前記被制御対象の負荷のイナーシャの加算値を乗じた信号と、前記フィードフォワード加速度指令信号に前記フィルタ処理と等価なフィルタ処理を施した信号に前記負荷加速度フィードバックゲインを乗じた信号と、を加算することによって、前記フィードフォワードトルク指令信号を生成する、請求項1に記載の電動機の制御装置。
PCT/JP2018/046903 2018-01-09 2018-12-20 電動機の制御装置 WO2019138825A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18899132.7A EP3739747A4 (en) 2018-01-09 2018-12-20 DEVICE FOR CONTROLLING AN ELECTRIC MOTOR
CN201880085810.8A CN111587530B (zh) 2018-01-09 2018-12-20 电动机的控制装置
JP2019564606A JP7178561B2 (ja) 2018-01-09 2018-12-20 電動機の制御装置
US16/912,774 US11415948B2 (en) 2018-01-09 2020-06-26 Device for controlling electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-000988 2018-01-09
JP2018000988 2018-01-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/912,774 Continuation US11415948B2 (en) 2018-01-09 2020-06-26 Device for controlling electric motor

Publications (1)

Publication Number Publication Date
WO2019138825A1 true WO2019138825A1 (ja) 2019-07-18

Family

ID=67218949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046903 WO2019138825A1 (ja) 2018-01-09 2018-12-20 電動機の制御装置

Country Status (5)

Country Link
US (1) US11415948B2 (ja)
EP (1) EP3739747A4 (ja)
JP (1) JP7178561B2 (ja)
CN (1) CN111587530B (ja)
WO (1) WO2019138825A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021087276A (ja) * 2019-11-27 2021-06-03 株式会社日立産機システム モータ制御装置、およびその自動調整方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220149083A (ko) * 2021-04-30 2022-11-08 현대자동차주식회사 모빌리티 조종에 대한 피드백 제공 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691482A (ja) 1992-09-16 1994-04-05 Toyoda Mach Works Ltd 送り制御装置
JPH06309008A (ja) * 1993-04-20 1994-11-04 Mitsubishi Heavy Ind Ltd サーボ制御装置
JP2014176291A (ja) * 2014-03-03 2014-09-22 Makino Milling Mach Co Ltd 工作機械の送り軸制御方法および送り軸制御装置
JP2015230617A (ja) * 2014-06-05 2015-12-21 ファナック株式会社 機械先端点のたわみを低減するサーボ制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145886A (ja) * 1990-10-02 1992-05-19 Toshiba Corp 電動機の速度制御装置
JP3740189B2 (ja) * 1995-07-18 2006-02-01 株式会社日立グローバルストレージテクノロジーズ 位置決め適応制御装置並びに情報記憶装置
EP1496412B1 (en) * 2000-05-15 2008-08-27 Kabushiki Kaisha Yaskawa Denki Positioning servocontroller
US6744590B2 (en) * 2000-09-14 2004-06-01 Samsung Electronics Co., Inc. Seek trajectory adaptation in sinusoidal seek servo hard disk drives
JP2004129416A (ja) * 2002-10-03 2004-04-22 Yaskawa Electric Corp モータ制御装置の制振制御方法および装置
JP4289299B2 (ja) * 2003-04-11 2009-07-01 三菱電機株式会社 サーボ制御器
CN101180789B (zh) * 2005-05-31 2012-09-05 三菱电机株式会社 电动机控制装置
DE112011101670B9 (de) * 2010-05-17 2018-11-15 Mitsubishi Electric Corporation Motorregler
JP2012130214A (ja) * 2010-12-17 2012-07-05 Sanyo Denki Co Ltd モータ制御装置及びモータ制御方法
DE102012017015B4 (de) 2012-08-20 2015-03-19 Luphos Gmbh Verfahren und Vorrichtung zur hochpräzisen Vermessung von Oberflächen
KR101597085B1 (ko) * 2013-04-10 2016-02-23 파나소닉 아이피 매니지먼트 가부시키가이샤 모터 구동 장치
WO2015136696A1 (ja) 2014-03-14 2015-09-17 株式会社牧野フライス製作所 送り軸の制御方法および数値制御工作機械
JP6221981B2 (ja) * 2014-07-25 2017-11-01 株式会社デンソー 回転電機の制御装置
US9419553B2 (en) * 2014-07-25 2016-08-16 Denso Corporation Apparatus for controlling rotary machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691482A (ja) 1992-09-16 1994-04-05 Toyoda Mach Works Ltd 送り制御装置
JPH06309008A (ja) * 1993-04-20 1994-11-04 Mitsubishi Heavy Ind Ltd サーボ制御装置
JP2014176291A (ja) * 2014-03-03 2014-09-22 Makino Milling Mach Co Ltd 工作機械の送り軸制御方法および送り軸制御装置
JP2015230617A (ja) * 2014-06-05 2015-12-21 ファナック株式会社 機械先端点のたわみを低減するサーボ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3739747A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021087276A (ja) * 2019-11-27 2021-06-03 株式会社日立産機システム モータ制御装置、およびその自動調整方法
JP7312684B2 (ja) 2019-11-27 2023-07-21 株式会社日立産機システム モータ制御装置、およびその自動調整方法

Also Published As

Publication number Publication date
US11415948B2 (en) 2022-08-16
US20200326665A1 (en) 2020-10-15
JPWO2019138825A1 (ja) 2021-01-07
JP7178561B2 (ja) 2022-11-28
EP3739747A4 (en) 2021-01-20
CN111587530B (zh) 2023-12-22
EP3739747A1 (en) 2020-11-18
CN111587530A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
JP4685071B2 (ja) モータ制御装置及びモータ制御方法
US8040098B2 (en) Position controller
JP4760912B2 (ja) サーボ制御装置
JP3850363B2 (ja) モータの位置制御装置
JP6106582B2 (ja) モータ制御装置
US20160209829A1 (en) Motor controlling apparatus for suppressing vibrations
WO2019138825A1 (ja) 電動機の制御装置
JP2009303432A (ja) モータによる位置制御装置
JP4867105B2 (ja) 数値制御装置
JP6604157B2 (ja) 多慣性共振システムにおける共振抑制制御装置
WO2019138808A1 (ja) 電動機の制御装置
US8082048B2 (en) Position controlling device
JP2007060767A (ja) 機械定数同定装置を備えたモータ制御装置
JP3892824B2 (ja) モータの位置制御装置
WO2019138809A1 (ja) 電動機の制御装置
JP5263143B2 (ja) 電動機制御装置
US11831262B2 (en) Motor control device
WO2020235130A1 (ja) モータ駆動装置及びモータ駆動装置の制御方法
WO2023276198A1 (ja) モータ制御装置
JP5084196B2 (ja) 電動機制御装置および電動機制御方法
JP2005115586A (ja) フィードバック制御装置およびその振動抑制方法
JP2017147704A (ja) 位置指令制御装置およびバンド除去フィルタ
JP2003264986A (ja) 電動機の位置制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018899132

Country of ref document: EP

Effective date: 20200810