WO2019138809A1 - 電動機の制御装置 - Google Patents

電動機の制御装置 Download PDF

Info

Publication number
WO2019138809A1
WO2019138809A1 PCT/JP2018/046684 JP2018046684W WO2019138809A1 WO 2019138809 A1 WO2019138809 A1 WO 2019138809A1 JP 2018046684 W JP2018046684 W JP 2018046684W WO 2019138809 A1 WO2019138809 A1 WO 2019138809A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
signal
speed
motor
acceleration
Prior art date
Application number
PCT/JP2018/046684
Other languages
English (en)
French (fr)
Inventor
弘 藤原
田澤 徹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019138809A1 publication Critical patent/WO2019138809A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load

Definitions

  • the present invention relates to a motor and a control device for a motor that controls driving operation such as speed or position of the motor with respect to a motor and a mechanical load driven by the motor.
  • the present invention relates to a control device of a motor provided with a control configuration that suppresses vibration caused by anti-resonance of a mechanical load generated at the time of driving or the like.
  • the control device of this type of motor has a feedback control system inside so that the position command input from the host controller matches the position of the motor and the load (mechanical load) to be controlled.
  • the controller for such a motor calculates a torque command value for matching the position command and the motor position from the position command and the position detection value of the motor, and fixes the motor so that the same torque as the torque command value is generated in the motor.
  • the positions of the motor and the load to be controlled (mechanical load) are controlled.
  • vibration is likely to occur in the load to be controlled (mechanical load) during acceleration / deceleration or disturbance application, and settling occurs. It has been recognized as a problem to further improve the quality and the disturbance reducibility than before.
  • the conventional feed control device installs an acceleration sensor on a slider which is a load to be controlled (mechanical load), and an acceleration which is a weighting factor to an acceleration detection value of the load to be controlled (mechanical load)
  • An acceleration feedback loop is provided that subtracts the product of the feedback gain from the torque command value.
  • An object of the present invention is to provide a control device of a motor in which a vibration suppression effect by acceleration feedback from a load side is enhanced while maintaining stability of a feedback control system. That is, the present invention reduces or avoids the trade-off relationship between the acceleration feedback gain (acceleration feedback amount) and the stability of the feedback control system, and suppresses the vibration suppression effect by the acceleration feedback from the load side. To provide an enhanced motor control device.
  • a first aspect for solving the problem is a control device of a motor for driving a load (mechanical load), which includes a load speed calculation unit, a position control unit, a speed control unit, and a subtractor.
  • the load speed calculation unit generates a load speed signal from a load acceleration signal indicating the acceleration of the load (machine load).
  • the position control unit inputs a position command signal specifying a target position of a load (machine load) and a motor position signal indicating the position of a motor driving the load (machine load), and outputs a speed command signal.
  • the speed control unit inputs a motor speed correction signal, which is the sum of a motor speed signal indicating the speed of the motor driving the load (machine load) and the load speed signal, and a speed command signal, and outputs a torque command signal.
  • a motor speed correction signal which is the sum of a motor speed signal indicating the speed of the motor driving the load (machine load) and the load speed signal, and a speed command signal, and outputs a torque command signal.
  • the subtractor subtracts the torque command signal by a signal obtained by multiplying the load acceleration signal by a predetermined gain, and outputs a torque command correction signal.
  • the torque command correction signal controls the current supplied to the stator winding of the motor.
  • the load speed calculation unit generates a load speed signal by integrating and calculating a load acceleration signal.
  • the load speed calculation unit integrates the load acceleration signal and multiplies the weight coefficient to generate a load speed signal.
  • the load speed calculation unit integrates the load acceleration signal and generates a load speed signal by passing through a phase lead compensator.
  • the control device of the motor having the load acceleration feedback can enhance the vibration suppression effect by the load acceleration feedback while maintaining the control stability by the load acceleration feedback. Therefore, coexistence of high speed operation and vibration suppression is realizable.
  • the motor control device of the present invention adds a load speed estimated value calculated from an acceleration detection value of load (machine load) to a motor speed detection value input to a speed control unit.
  • the controller of the motor according to the present invention can suppress the vibration suppressing effect by the load acceleration feedback while maintaining the stability of the feedback control system in the band below the vibration frequency due to the low rigidity of the load (mechanical load) and the joint of the motor. It is possible to raise. Therefore, it has great industrial value.
  • amendment part in embodiment of this invention The figure which shows an example of a structure of the load speed calculation part in embodiment of this invention
  • the closed loop characteristic of the transfer characteristic of the motor speed correction signal to the speed command signal of the speed control system of the motor control device shows a Bode diagram when the motor speed signal is corrected by the load speed signal.
  • Figure showing a Bode diagram for the speed correction signal In the open loop characteristic of the transfer characteristic of the motor speed correction signal with respect to the speed command signal of the speed control system of the motor control device in the embodiment of the present invention, the speed command signal when the motor speed signal is corrected by the load speed signal.
  • Figure showing a Bode diagram for the motor speed correction signal A figure showing another example of composition of a load speed calculation part in an embodiment of the invention A figure showing another example of composition of a load speed calculation part in an embodiment of the invention
  • FIG. 1 is a diagram showing an example of a configuration of a control device of a motor according to an embodiment of the present invention.
  • the control device 100 of the motor shown in FIG. 1 detects the acceleration of the load 204 which is a driving target connected to the motor 201 via the joint portion 203 and the position detector 202 which detects the position of the motor 201, the position of the motor 201. Is connected to the acceleration detector 205.
  • the stator winding of the motor is energized such that the position command signal is input from a host controller (not shown), and the position command signal matches the position of the motor and the load (mechanical load) to be controlled. Control the current flow.
  • Position detector 202 detects the position of the motor 201, and outputs to the controller 100 of the motor as a motor position signal theta m.
  • Acceleration detector 205 detects the acceleration of the load, and outputs to the controller 100 of the electric motor as a load acceleration signal A L.
  • the configuration of the motor control device 100 will be described.
  • the control device 100 for the motor includes therein a position control unit 101, a speed control unit 102, a torque control unit 103, a speed conversion unit 104, a load acceleration correction unit 105, a load speed calculation unit 106, and a subtractor 107.
  • Position control unit 101 receives a position command signal theta S and the motor position signal theta m, and outputs a speed command signal omega S.
  • the torque command signal ⁇ S is output.
  • the torque control unit 103 inputs a torque command correction signal ⁇ in obtained by subtracting a load acceleration feedback torque signal ⁇ acc to be described later from the torque command signal ⁇ S so that the same torque as the torque command correction signal ⁇ in is generated by the motor.
  • the current to be supplied to the stator winding of the motor 201 is controlled.
  • Load acceleration correcting unit 105 receives the load acceleration signal A L, and outputs the load acceleration feedback torque signal tau acc.
  • Load speed calculation unit 106 receives the load acceleration signal A L, and outputs a load speed signal omega L.
  • the controller 100 of the motor internally has a cascaded feedback control system that feeds back the motor position, the motor speed and the load speed so that the position command and the position of the motor and the load match. There is.
  • Position control unit 101 receives a position command signal theta S and the motor position signal theta m, and outputs a speed command signal omega S to reduce the difference between them.
  • Position control unit 101 for example, are multiplied by weighting factors to the position command signal theta S and the motor position signal theta m, performs proportional control operation for outputting a speed command signal omega S.
  • Position control unit 101 receives a position command signal theta S and the motor position signal theta m, and outputs a speed command signal omega S to reduce the difference between them. Position control unit 101 performs, for example, proportional control operation for outputting a multiplied by a weighting factor to the difference value of the position command signal theta S and the motor position signal theta m as a speed command signal omega S.
  • the speed control unit 102 receives the speed command signal ⁇ S and the motor speed correction signal ⁇ ′ m , and outputs a torque command signal ⁇ S for reducing the difference between the two.
  • Speed control unit 102 for example, the speed command signal omega S and the motor speed correction signal omega 'multiplied by the weighting factor to the difference value of m and the speed command signal omega S and the motor speed correction signal omega' difference value m of a proportional integral operation for outputting a sum of the multiplied by a weighting factor to the integral value as the torque command signal tau S performed.
  • Speed conversion section 104 receives the motor position signal theta m, and outputs a motor speed signal omega m indicating the motor speed. Speed conversion section 104, for example, performs a differential operation on the motor position signal theta m, outputs the operation result as a motor speed signal omega m.
  • Load acceleration correcting unit 105 receives the load acceleration signal A L, and outputs a value obtained by multiplying the weighting factor as the load acceleration feedback torque signal tau acc load acceleration signal A L.
  • a value obtained by subtracting the load acceleration feedback torque signal ⁇ acc from the torque command signal ⁇ S in the subtractor 107 is input to the torque control unit 103 as a torque command correction signal ⁇ in .
  • Load speed calculation unit 106 receives the load acceleration signal A L, and outputs a load speed signal omega L indicating the loading rate. Loading rate calculation unit 106, for example, performs an integration operation on the load acceleration signal A L, and outputs the operation result as a load speed signal omega L.
  • the adder 108 performs a motor speed signal omega m of addition of the load speed signal omega L, and outputs a motor speed correction signal omega 'm.
  • the motor speed correction signal ⁇ ′ m and the speed command signal ⁇ S are input to the speed control unit 102.
  • FIG. 2 is a diagram showing an example of a configuration of the load acceleration correction unit 105 in the embodiment of the present invention.
  • the load acceleration correction unit 105 receives the load acceleration signal A L and outputs a value obtained by multiplying the load acceleration signal A L by the load acceleration feedback gain K acc , which is a weighting factor, as a load acceleration feedback torque signal ⁇ acc .
  • the transfer function G ⁇ S ⁇ ⁇ m of the motor position signal theta m with respect to the torque command signal ⁇ S (S), and the torque transmission of the load position theta L with respect to the command signal tau S function G ⁇ S ⁇ ⁇ L (S) is, It shows by Formula (1) and Formula (2).
  • S is the Laplace operator.
  • J m is the motor inertia of the motor 201.
  • J L is the load inertia of the load 204.
  • ⁇ ′ P is a resonant frequency in the transfer characteristic from the torque command signal ⁇ S to the motor position signal ⁇ m .
  • ⁇ Z is an antiresonance frequency in the transfer characteristic from the torque command signal ⁇ S to the motor position signal ⁇ m .
  • the relationship between the motor inertia J m , the load inertia J L and the load acceleration feedback gain K acc and the resonance frequency ⁇ ′ P is shown by the equation (3).
  • Equation (1) Focusing on equation (1), it can be seen that when the load acceleration feedback gain K acc is increased, the resonance frequency ⁇ ′ P is increased and the antiresonance frequency ⁇ Z is not changed. The greater the difference between the resonant frequency and the antiresonant frequency, the smaller the gain at the antiresonant frequency, so the effect of the antiresonance becomes smaller.
  • equation (1) and (2) with respect to the torque command signal tau S, the relationship between the motor position signal theta m and the load position theta L It can be seen that the relationship of Equation (5).
  • feedback of the load acceleration by the load acceleration correction unit 105 has an effect of reducing the gain at the antiresonance frequency, that is, the sensitivity, as shown by the above equations.
  • the total inertia is: motor inertia J m , load inertia J L and load It is an addition value of the acceleration feedback gain K acc . That is, it is understood that the total inertia is increased as the load acceleration feedback gain K acc is increased.
  • FIG. 3 is a diagram showing an example of the configuration of the load speed calculation unit 106 according to the embodiment of the present invention.
  • Load speed calculation unit 106 receives the load acceleration signal A L, after integration operation the input load acceleration signal A L, and outputs a load speed signal omega L.
  • the stability of the feedback control system is determined based on the phase margin and gain margin of the open loop characteristic of the output with respect to the input of the feedback control system.
  • the feedback control system is stabilized as the phase margin and the gain margin become larger, and as the phase margin and the gain margin become smaller, the control system becomes unstable.
  • FIG. 4 is a diagram showing an example of a configuration of a speed control system of control device 100 of the motor in the embodiment of the present invention. That is, this shows an example of the configuration of the motor control device 300 in consideration of the speed control unit 102, and the position control unit 101 is removed from the control device 100.
  • FIG. 4 since each component has the same function and operation as FIG. 1 showing the configuration of the control device 100 of the motor, the description of the operation is omitted.
  • the Bode diagram of the closed loop characteristics is shown in FIGS. 5A and 5B
  • the Bode diagram of the open loop characteristics is shown in FIG. Shown in 6B.
  • FIGS. 5A, 5B, 6A and 6B Reference is made in detail to FIGS. 5A, 5B, 6A and 6B.
  • the motor speed signal omega m is the load speed signal omega L It is a Bode diagram in the case of not being carried out.
  • FIG. 5B shows that the motor speed signal ⁇ m is corrected by the load speed signal ⁇ L in the closed loop characteristic of the transfer characteristic of the motor speed correction signal with respect to the speed command signal of the speed control system of the motor control device 300 according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing a Bode diagram relating to motor speed correction signal ⁇ ′ m with respect to speed command signal ⁇ S when correction is not performed.
  • FIGS. 6A and 6B are in an open loop characteristic of the transfer characteristic of the motor speed correction signal with respect to the speed command signal of the speed control system of the control device 300 of the electric motor in the embodiment of the present invention, the motor speed signal omega m load speed signal omega L It is a figure showing the Bode diagram about motor speed amendment signal ⁇ ' m to speed instruction signal ⁇ S in the case of being amended.
  • the stability of the control system is reduced by the feedback of the load acceleration by the load acceleration correction unit 105.
  • FIG. 6B shows the open loop characteristic of the motor speed correction signal ⁇ ′ m with respect to the speed command signal ⁇ S when the motor speed signal ⁇ m is corrected by the load speed calculation unit 106 with the load speed signal ⁇ L.
  • the gain characteristic does not decrease and the gain crossover frequency does not decrease in the low frequency band below the antiresonance frequency, so the phase margin does not decrease. I understand that.
  • the motor speed correction signal ⁇ ′ m is used in which the influence of the increase in total inertia due to the load acceleration feedback is reduced.
  • FIG. 5B shows the motor speed correction signal ⁇ ′ with respect to the speed command signal ⁇ S when the load speed signal ⁇ L output from the load speed calculation unit 106 is added to the motor speed signal ⁇ m and input to the speed control unit 102.
  • FIG. 5B it can be seen that the peak gain does not increase and the stability of the control system does not decrease even when the load acceleration feedback gain K acc is set from 0 to non-zero.
  • the load speed signal ⁇ L output from the load speed calculation unit 106 is added to the motor speed signal ⁇ m and is input to the speed control unit 102, thereby reducing the gain crossover frequency and the phase margin thereby.
  • the stability of the control system can be maintained without causing any deterioration.
  • the load speed calculation unit 106 stabilizes the speed control system inside the motor control device 100, that is, the speed control system shown by the motor control device 300, and the position control system shown by the motor control device 100 also becomes stable. Become.
  • the control stability of the motor control device by the load acceleration feedback is obtained by inputting the addition value of the motor speed signal ⁇ m and the load speed signal ⁇ L to the speed control unit 102. You can keep it. As a result, the vibration suppression effect by the load acceleration feedback can be obtained while maintaining the stability of the feedback control system. Therefore, coexistence of high speed operation and vibration suppression is realizable.
  • the load speed calculation unit 106 calculates the load speed signal ⁇ L by performing integral arithmetic processing on the input load acceleration signal A L.
  • the input load acceleration signal A L may be integrated and processed, and may be multiplied by a predetermined weighting factor so that the gain characteristic below the antiresonance frequency is equal to or less than that in the case where there is no load acceleration feedback.
  • FIG. 7 is a diagram showing another example of the configuration of the load speed calculation unit 106 in the embodiment of the present invention.
  • the input load acceleration signal A L is subjected to integral calculation in the integral calculator 111.
  • the signal output from the integration calculator 111 is multiplied by a predetermined weighting coefficient in a weighting coefficient multiplier 112, and a load speed signal ⁇ L is output.
  • the load speed calculation unit 106 in the present embodiment performs integral calculation processing of the input load acceleration signal AL so that the gain characteristic below the antiresonance frequency becomes equal to or less than that in the case where there is no load acceleration feedback.
  • the phase lead compensator may be further passed after being multiplied by a predetermined weighting factor.
  • FIG. 8 is a diagram showing another example of the configuration of the load speed calculation unit 106 in the embodiment of the present invention.
  • the input load acceleration signal A L is subjected to integral calculation in the integral calculator 111.
  • the signal output from the integration calculator 111 is multiplied by a predetermined weighting coefficient in a weighting coefficient multiplier 112.
  • the signal output from the weight coefficient multiplier 112 passes through the phase lead compensator 113 and is output as the load speed signal ⁇ L.
  • the load acceleration correcting unit 105 and the load speed calculation unit 106 which is passed through a low pass filter or high pass filter to the load acceleration signal A L
  • the configuration may be such that the load acceleration correction unit 105 and the load velocity calculation unit 106 are input. With such a structure, less susceptible to detection noise component of the load acceleration detector superimposed on the load acceleration signal A L. Therefore, it is possible to further reduce the vibration.
  • motor control device 100 includes load speed calculation unit 106, position control unit 101, speed control unit 102, and subtractor 107.
  • the load speed calculation unit 106 generates a load speed signal ⁇ L from a load acceleration signal A L indicating the acceleration of the load (machine load).
  • the position control unit 101 inputs a position command signal ⁇ S for specifying a target position of a load (machine load) and a motor position signal ⁇ m indicating the position of a motor for driving a load (machine load).
  • the speed control unit 102 calculates a motor speed correction signal ⁇ ' m which is an addition value of the motor speed signal ⁇ m indicating the speed of the motor driving the load (machine load) and the load speed signal ⁇ L , and the speed command signal ⁇ S And the torque command signal ⁇ S is output.
  • Subtractor 107 subtracts a signal obtained by multiplying a predetermined gain to the torque command signal tau S to the load acceleration signal A L, and outputs a torque command correction signal tau in.
  • the torque command correction signal ⁇ in controls the current supplied to the stator winding of the motor.
  • the load speed calculation unit 106 may generate the load speed signal ⁇ L by integrating the load acceleration signal A L.
  • the load speed calculation unit 106 may generate the load speed signal ⁇ L by performing integral calculation of the load acceleration signal A L and multiplying by a weighting factor.
  • the load speed calculation unit 106 may generate the load speed signal ⁇ L by integrating the load acceleration signal A L and passing it through the phase lead compensator.
  • the motor control device can obtain the vibration suppression effect by the load acceleration feedback while maintaining the stability of the feedback control system. Therefore, both high speed operation and vibration suppression can be achieved.
  • a control device of a motor that alleviates or avoids the trade-off relationship between load acceleration feedback gain (acceleration feedback amount) and the stability of a feedback control system, and enhances the vibration suppression effect by acceleration feedback from the load side Can be provided. Therefore, it is suitable for applications such as a control device of a motor used in a semiconductor manufacturing apparatus or an electronic component mounter.
  • Reference Signs List 100 motor control device 101 position control unit 102 speed control unit 103 torque control unit 104 speed conversion unit 105 load acceleration correction unit 106 load speed calculation unit 107 subtractor 108 adder 111 integral calculator 112 weight coefficient multiplier 113 phase lead compensation 201 Motor 202 Position detector 203 Joint 204 Load 205 Acceleration detector 300 Motor control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

電動機の制御装置は、負荷速度算出部と、位置制御部と、速度制御部と、減算器と、を含む。負荷速度算出部は、負荷(機械負荷)の加速度を示す負荷加速度信号から負荷速度信号を生成する。位置制御部は、負荷(機械負荷)の目標位置を指定する位置指令信号と、負荷(機械負荷)を駆動する電動機の位置を示す電動機位置信号とを入力し、速度指令信号を出力する。速度制御部は、負荷(機械負荷)を駆動する電動機の速度を示す電動機速度信号と負荷速度信号との加算値である電動機速度補正信号と、速度指令信号とを入力し、トルク指令信号を出力する。減算器は、トルク指令信号を負荷加速度信号に所定のゲインを乗じて得られる信号で減算し、トルク指令補正信号を出力する。トルク指令補正信号は、電動機の固定子巻線に通電する電流を制御する。

Description

電動機の制御装置
 本発明は、電動機及び電動機で駆動される機械負荷に対し、電動機の速度または位置などの駆動動作を制御する電動機の制御装置に関する。特に、駆動時などに発生する機械負荷の反共振に起因する振動を抑制する制御構成を備えた電動機の制御装置に関する。
 この種の電動機の制御装置は、上位コントローラから入力された位置指令と電動機及び被制御対象の負荷(機械負荷)の位置とが一致するように、内部にフィードバック制御系を有している。このような電動機の制御装置は、位置指令と電動機の位置検出値から、位置指令と電動機位置を一致させるためのトルク指令値を算出し、電動機でトルク指令値と同じトルクが生じるよう電動機の固定子巻線に通電する電流を制御することで、電動機及び被制御対象の負荷(機械負荷)の位置を制御している。しかしながら、電動機と被制御対象の負荷(機械負荷)との接合部の機械剛性が低い場合は、加減速時または外乱印加時において、被制御対象の負荷(機械負荷)に振動が生じ易く、整定性及び外乱抑圧性を従来よりも更に高めることが課題として認識されていた。
 この課題に対し、従来の送り制御装置は、被制御対象の負荷(機械負荷)であるスライダに加速度センサを設置し、被制御対象の負荷(機械負荷)の加速度検出値に重み係数である加速度フィードバックゲインを乗じたものを、トルク指令値から減算する加速度フィードバックループを備える。これにより、加減速時または外乱印加時に被制御対象の負荷(機械負荷)に生じる振動を抑制する(例えば、特許文献1を参照)。
 特許文献1等で代表される構成では、加速度フィードバックゲインを大きくするほど機械剛性に起因する振動が小さくなる。一方、電動機の制御装置内で構成されるフィードバック制御系が不安定化することで、振動が生じてしまう。換言すると、加速度フィードバックゲイン(加速度フィードバック量)とフィードバック制御系の安定性との間には、トレードオフの関係がある。したがって、制御安定性と振動抑制効果の両立については、更なる改良が希求されていた。
特開平6-91482号公報
 本発明は、上述の課題を解決する。本発明は、フィードバック制御系の安定性を保ちつつ、負荷側からの加速度フィードバックによる振動抑制効果を高めた電動機の制御装置を提供することを目的とする。即ち、本発明は、加速度フィードバックゲイン(加速度フィードバック量)とフィードバック制御系の安定性との間の、トレードオフの関係を、緩和、或いは回避を図り、負荷側からの加速度フィードバックによる振動抑制効果を高めた電動機の制御装置を提供する。
 上述の課題を解決するために、本出願の発明者らは、試行錯誤を重ね且つ鋭意検討を行った。そして、負荷側からの加速度フィードバックによる振動抑制効果を高めた新規な電動機の制御装置を見出した。その詳細を下記に述べる。
 課題を解決するための第1の態様は、負荷(機械負荷)を駆動する電動機の制御装置であって、負荷速度算出部と、位置制御部と、速度制御部と、減算器と、を含む。負荷速度算出部は、負荷(機械負荷)の加速度を示す負荷加速度信号から負荷速度信号を生成する。位置制御部は、負荷(機械負荷)の目標位置を指定する位置指令信号と、負荷(機械負荷)を駆動する電動機の位置を示す電動機位置信号とを入力し、速度指令信号を出力する。速度制御部は、負荷(機械負荷)を駆動する電動機の速度を示す電動機速度信号と負荷速度信号との加算値である電動機速度補正信号と、速度指令信号とを入力し、トルク指令信号を出力する。減算器は、トルク指令信号を負荷加速度信号に所定のゲインを乗じて得られる信号で減算し、トルク指令補正信号を出力する。トルク指令補正信号は、電動機の固定子巻線に通電する電流を制御する。
 また、第2の態様は、第1の態様の電動機の制御装置において、負荷速度算出部は、負荷加速度信号を積分演算することによって、負荷速度信号を生成する。
 また、第3の態様は、第1の態様の電動機の制御装置において、負荷速度算出部は、負荷加速度信号を積分演算し、重み係数を乗じることによって、負荷速度信号を生成する。
 また、第4の態様は、第1の態様の電動機の制御装置において、負荷速度算出部は、負荷加速度信号を積分演算し、位相進み補償器を通過させることによって、負荷速度信号を生成する。
 上述の課題解決によって、負荷加速度フィードバックを有する電動機の制御装置は、負荷加速度フィードバックによる制御安定性を保ったまま、負荷加速度フィードバックによる振動抑制効果を高められる。したがって、高速動作と振動抑制の両立が実現可能である。
 本発明の電動機の制御装置は、速度制御部に入力される電動機速度検出値に負荷(機械負荷)の加速度検出値から算出した負荷速度推定値を加算する。本発明の電動機の制御装置は、負荷(機械負荷)と電動機の接合部の低剛性に起因する振動周波数以下の帯域でのフィードバック制御系の安定性を保ちつつ、負荷加速度フィードバックによる振動抑制効果を高めることが可能である。したがって、産業的価値の大いなるものである。
本発明の実施の形態における電動機の制御装置の構成の一例を示す図 本発明の実施の形態における負荷加速度補正部の構成の一例を示す図 本発明の実施の形態における負荷速度算出部の構成の一例を示す図 本発明の実施の形態における電動機の制御装置の速度制御系の構成の一例を示す図 本発明の実施の形態における電動機の制御装置の速度制御系の速度指令信号に対する電動機速度補正信号の伝達特性の閉ループ特性において、電動機速度信号が負荷速度信号によって補正されない場合のボード線図を示す図 本発明の実施の形態における電動機の制御装置の速度制御系の速度指令信号に対する電動機速度補正信号の伝達特性の閉ループ特性において、電動機速度信号が負荷速度信号によって補正される場合のボード線図を示す図 本発明の実施の形態における電動機の制御装置の速度制御系の速度指令信号に対する電動機速度補正信号の伝達特性の開ループ特性において、電動機速度信号が負荷速度信号によって補正されない場合の速度指令信号に対する電動機速度補正信号に関するボード線図を示す図 本発明の実施の形態における電動機の制御装置の速度制御系の速度指令信号に対する電動機速度補正信号の伝達特性の開ループ特性において、電動機速度信号が負荷速度信号によって補正される場合の速度指令信号に対する電動機速度補正信号に関するボード線図を示す図 本発明の実施の形態における負荷速度算出部の構成の別の例を示す図 本発明の実施の形態における負荷速度算出部の構成のまた別の例を示す図
 以下、本発明について、図面を参照しながら説明する。なお、以下の実施の形態及び各実施の態様によって本発明が限定されるものではない。
 (実施の形態)
 図1は、本発明の実施の形態における電動機の制御装置の構成の一例を示す図である。図1に示す電動機の制御装置100は、電動機201と、電動機201の位置を検出する位置検出器202と、接合部203を介して電動機201に繋がれた駆動対象である負荷204の加速度を検出する加速度検出器205に接続されている。電動機の制御装置100は、図示しない上位コントローラから位置指令信号が入力され、位置指令信号と電動機及び被制御対象の負荷(機械負荷)の位置が一致するように、電動機の固定子巻線に通電する電流を制御する。
 位置検出器202は、電動機201の位置を検出し、電動機位置信号θとして電動機の制御装置100へ出力する。加速度検出器205は、負荷の加速度を検出し、負荷加速度信号ALとして電動機の制御装置100へ出力する。
 電動機の制御装置100の構成を説明する。電動機の制御装置100は、内部に位置制御部101、速度制御部102、トルク制御部103、速度変換部104、負荷加速度補正部105、負荷速度算出部106、減算器107を有している。
 位置制御部101は、位置指令信号θと電動機位置信号θを入力し、速度指令信号ωを出力する。速度制御部102は、速度指令信号ωと、電動機位置信号θから速度変換部104によって算出された電動機速度信号ωから後述する負荷速度信号ωを加算した電動機速度補正信号ω‘を入力し、トルク指令信号τを出力する。トルク制御部103は、トルク指令信号τから後述する負荷加速度フィードバックトルク信号τaccを減じたトルク指令補正信号τinを入力し、電動機でトルク指令補正信号τinと同じトルクが生じるように、電動機201の固定子巻線に通電する電流を制御する。
 負荷加速度補正部105は、負荷加速度信号Aを入力し、負荷加速度フィードバックトルク信号τaccを出力する。負荷速度算出部106は、負荷加速度信号Aを入力し、負荷速度信号ωを出力する。
 このようにして、電動機の制御装置100は内部に、位置指令と電動機及び負荷の位置が一致するにように、電動機位置と電動機速度と負荷速度をフィードバックしたカスケード型のフィードバック制御系を有している。
 次に、電動機の制御装置の詳細を説明する。位置制御部101は、位置指令信号θと電動機位置信号θを入力し、両者の差異を小さくするための速度指令信号ωを出力する。位置制御部101は、例えば、位置指令信号θと電動機位置信号θに重み係数を乗じたものを、速度指令信号ωとして出力する比例制御演算を行う。
 位置制御部101は、位置指令信号θ と電動機位置信号θを入力し、両者の差異を小さくするための速度指令信号ω を出力する。位置制御部101は、例えば、位置指令信号θと電動機位置信号θの差分値に重み係数を乗じたものを速度指令信号ωとして出力する比例制御演算を行う。
 速度制御部102は、速度指令信号ωと電動機速度補正信号ω’を入力し、両者の差異を小さくするためのトルク指令信号τを出力する。速度制御部102は、例えば、速度指令信号ωと電動機速度補正信号ω’の差分値に重み係数を乗じたものと、速度指令信号ωと電動機速度補正信号ω’の差分値の積分値に重み係数を乗じたものとの加算値をトルク指令信号τとして出力する比例積分演算を行う。
 速度変換部104は、電動機位置信号θを入力し、電動機速度を示す電動機速度信号ωを出力する。速度変換部104は、例えば、電動機位置信号θに対して微分演算を行い、その演算結果を電動機速度信号ωとして出力する。
 負荷加速度補正部105は、負荷加速度信号Aを入力し、負荷加速度信号Aに重み係数を乗じた値を負荷加速度フィードバックトルク信号τaccとして出力する。減算器107においてトルク指令信号τから負荷加速度フィードバックトルク信号τaccを減じられた値が、トルク指令補正信号τinとしてトルク制御部103に入力される。
 負荷速度算出部106は、負荷加速度信号Aを入力し、負荷速度を示す負荷速度信号ωを出力する。負荷速度算出部106は、例えば、負荷加速度信号Aに対して積分演算を行い、その演算結果を負荷速度信号ωとして出力する。加算器108は、電動機速度信号ωと負荷速度信号ωの加算を行い、電動機速度補正信号ω‘を出力する。電動機速度補正信号ω‘と速度指令信号ω が速度制御部102に入力される。
 負荷加速度補正部105の動作原理とその作用、効果について説明する。図2は、本発明の実施の形態における負荷加速度補正部105の構成の一例を示す図である。負荷加速度補正部105は、負荷加速度信号Aを入力し、負荷加速度信号Aに重み係数である負荷加速度フィードバックゲインKaccを乗じた値を、負荷加速度フィードバックトルク信号τaccとして出力する。このとき、トルク指令信号τに対する電動機位置信号θの伝達関数Gτ→θm(S)、及びトルク指令信号τに対する負荷位置θの伝達関数Gτ→θL(S)は、式(1)、式(2)で示される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 各式における変数及び演算子について説明する。Sはラプラス演算子である。Jは電動機201の電動機イナーシャである。Jは負荷204の負荷イナーシャである。ω’Pはトルク指令信号τから電動機位置信号θへの伝達特性における共振周波数である。ωはトルク指令信号τから電動機位置信号θへの伝達特性における反共振周波数である。電動機イナーシャJ、負荷イナーシャJ及び負荷加速度フィードバックゲインKaccと共振周波数ω’との関係は、式(3)で示される。負荷イナーシャJと反共振周波数ωとの関係は式(4)の式で示される。式(3)及び式(4)において、Kは接合部203の弾性係数を示している。電動機の制御装置100で電動機201を介して負荷204を駆動する場合は、加減速動作によって負荷204に反共振周波数ωの振動が励起され、停止時の整定性を妨げる要因となる。
 式(1)に着目すると、負荷加速度フィードバックゲインKaccを大きくすると、共振周波数ω’は大きくなり、反共振周波数ωは変化しないことが分かる。共振周波数と反共振周波数の差異が大きくなるほど、反共振周波数におけるゲインは小さくなるので、反共振の影響は小さくなる。一方、式(1)と式(2)とによって、トルク指令信号τに対する、電動機位置信号θと負荷位置θとの関係は、式(5)の関係にあることが分かる。
Figure JPOXMLDOC01-appb-M000005
 式(5)より、電動機位置信号θと負荷位置θとの関係は、負荷加速度フィードバックゲインKaccに関わらず、常に一定である。よって、式(1)において、負荷加速度フィードバックゲインKaccを上げることで、トルク指令信号τに対する電動機位置信号θの伝達特性の反共振周波数ωにおけるゲインが小さくなると、トルク指令信号τに対する負荷位置θの伝達特性の反共振周波数ωにおけるゲインも同様に小さくなる。よって、加減速動作によって生じる負荷204の反共振周波数ωの振動も小さくなる。
 上述のとおり、負荷加速度補正部105によって負荷加速度をフィードバックすることで、上記の各式で示されるように、反共振周波数におけるゲイン、つまり感度を下げる作用がある。これによって、電動機の制御装置100によって電動機201または負荷204を駆動する際に、加減速動作時に負荷204に生じる反共振振動を減じることができる。
 式(1)及び式(2)よって、トルク指令τに対する電動機位置信号θ及び負荷位置θの伝達関数から分かるように、その総イナーシャは、電動機イナーシャJ、負荷イナーシャJ及び負荷加速度フィードバックゲインKaccの加算値となっている。つまり、負荷加速度フィードバックゲインKaccを大きくするほど、総イナーシャが大きくなることが分かる。
 負荷加速度補正部105による負荷加速度のフィードバックによって総イナーシャが大きくなるように変化した結果によって生じる作用と、その影響について、負荷速度算出部106の動作原理と合わせて説明する。
 負荷速度算出部106の詳細を説明する。図3は、本発明の実施の形態における負荷速度算出部106の構成の一例を示す図である。負荷速度算出部106は、負荷加速度信号Aを入力し、入力された負荷加速度信号Aを積分演算した後に、負荷速度信号ωを出力する。
 一般にフィードバック制御系の安定性は、フィードバック制御系の入力に対する出力の開ループ特性の位相余裕及びゲイン余裕をもとに判断される。位相余裕及びゲイン余裕が大きくなるほどフィードバック制御系は安定化し、位相余裕及びゲイン余裕が小さくなるほど、制御系は不安定化する。
 解析及び考察を簡素化するため、図1で示した電動機の制御装置の構成の一例に対し、速度制御部までを考慮した場合の開ループ特性を確認する。
 図4は、本発明の実施の形態における電動機の制御装置100の速度制御系の構成の一例を示す図である。即ち、速度制御部102までを考慮した電動機の制御装置300の構成の一例を示すもので、制御装置100から位置制御部101を除いたものである。図4において、各構成要素は電動機の制御装置100の構成を示す図1と同じ機能及び動作をするものであるため、その動作説明については省略する。電動機の制御装置300における速度指令信号ωに対する電動機速度補正信号ω’の伝達特性について、閉ループ特性のボード線図を図5A、図5Bに、開ループ特性のボード線図を図6A、図6Bに示す。
 図5A、図5B、図6A及び図6Bに関して、詳細に説明する。
 図5Aは、本発明の実施の形態における電動機の制御装置300の速度制御系の速度指令信号に対する電動機速度補正信号の伝達特性の閉ループ特性において、電動機速度信号ωが負荷速度信号ωによって補正されない場合のボード線図である。図5Bは、本発明の実施の形態における電動機の制御装置300の速度制御系の速度指令信号に対する電動機速度補正信号の伝達特性の閉ループ特性において、電動機速度信号ωが負荷速度信号ωによって補正される場合のボード線図である。点線は負荷加速度フィードバックゲインKacc=0の場合、実線は負荷加速度フィードバックゲインKacc≠0の場合をそれぞれ示している。図6Aは、本発明の実施の形態における電動機の制御装置300の速度制御系の速度指令信号に対する電動機速度補正信号の伝達特性の開ループ特性において、電動機速度信号ωが負荷速度信号ωによって補正されない場合の速度指令信号ωに対する電動機速度補正信号ω’に関するボード線図を示す図である。図6Bは、本発明の実施の形態における電動機の制御装置300の速度制御系の速度指令信号に対する電動機速度補正信号の伝達特性の開ループ特性において、電動機速度信号ωが負荷速度信号ωによって補正される場合の速度指令信号ωに対する電動機速度補正信号ω’に関するボード線図を示す図である。図6A及び図6Bにおける縦線はゲイン交差周波数を示している。点線は負荷加速度フィードバックゲインKacc=0の場合、実線は負荷加速度フィードバックゲインKacc≠0の場合をそれぞれ示している。
 図5Aに着目すると、電動機速度信号ωが負荷速度信号ωによって補正されない場合に、負荷加速度フィードバックゲインKaccを0から非0とすることで、速度指令信号ωに対する電動機速度補正信号ω’の閉ループ特性のゲインの最大値を示すピークゲインが増加することが分かる。
 図6Aに示した、電動機速度信号ωが負荷速度信号ωによって補正されない場合の速度指令信号ωに対する電動機速度補正信号ω’の開ループ特性を見ると、反共振周波数以下の低域の周波数帯域において、負荷加速度フィードバックゲインKaccの分だけ総イナーシャが増加することで、ゲイン特性が低下していることが分かる。これによって、ゲイン交差周波数も低下し、位相余裕も低下している。
 つまり、負荷加速度補正部105による負荷加速度のフィードバックによって、制御系の安定性が低下していることが分かる。
 制御系の安定性が低下した場合、一般には速度制御部内の重み係数を小さくすることで、位相余裕やゲイン余裕を向上する手段が取られる。しかし、速度制御部内の重み係数を小さくしてしまうと、速度指令信号ωに対する電動機速度信号ω及び負荷速度ωの伝達特性である指令追従性も低下してしまう。つまり、高速動作及びと低振動化をいずれも満足することは難しい。
 図6Bは、負荷速度算出部106による負荷速度信号ωによって電動機速度信号ωを補正した場合の、速度指令信号ωに対する電動機速度補正信号ω’の開ループ特性を示している。図6Bでは、負荷加速度フィードバックゲインKacc≠0の場合でも、反共振周波数以下の低域の周波数帯域において、ゲイン特性が低下しておらず、ゲイン交差周波数も下がらないため、位相余裕も低下しないことが分かる。
 これは、電動機速度信号ωに負荷速度算出部106の出力である負荷速度信号ωを加算した電動機速度補正信号ω’を速度制御部102に入力することにより、負荷加速度補正部105による負荷加速度フィードバックによる総イナーシャ増加によるゲイン特性低下の影響を低減しているためである。
 つまり、速度制御部102に入力する情報として、負荷加速度補正部105による負荷加速度フィードバックによる総イナーシャ増加によるゲイン特性低下の影響を受ける電動機速度信号ωではなく、電動機速度ωに負荷速度信号ωを加算することで負荷加速度フィードバックによる総イナーシャ増加の影響を低減した電動機速度補正信号ω’を用いる。これにより、制御系の安定性を向上させ、制御系の不安定化を回避することができる。
 図5Bは、負荷速度算出部106の出力である負荷速度信号ωを電動機速度信号ωに加算して速度制御部102に入力する場合の、速度指令信号ωに対する電動機速度補正信号ω’の閉ループ特性のボード線図を示す。点線は負荷加速度フィードバックゲインKacc=0の場合の、実線は負荷加速度フィードバックゲインKacc≠0の場合の閉ループ特性のボード線図を示している。図5Bに示す通り、負荷加速度フィードバックゲインKaccを0から非0とした場合でもピークゲインは増加しておらず、制御系の安定性は低下していないことが分かる。
 このように、負荷速度算出部106の出力である負荷速度信号ωを電動機速度信号ωに加算して速度制御部102に入力することで、ゲイン交差周波数の低下、及びこれによる位相余裕の低下を招くことも無く、制御系の安定性を保つことができる。
 そして、負荷速度算出部106によって電動機の制御装置100の内部にある速度制御系、つまり電動機の制御装置300で示した速度制御系が安定となり、電動機の制御装置100で示す位置制御系も安定となる。
 以上のように、本実施の形態においては、速度制御部102に電動機速度信号ωと負荷速度信号ωの加算値を入力することによって、負荷加速度フィードバックによる電動機の制御装置の制御安定性を保つことができる。これによって、フィードバック制御系の安定性を保ちつつ、負荷加速度フィードバックによる振動抑制効果が得られる。したがって、高速動作と振動抑制の両立が実現可能である。
 また、本実施の形態では、負荷速度算出部106において、入力された負荷加速度信号Aを積分演算処理することで負荷速度信号ωを算出する構成としたが、入力された負荷加速度信号Aを積分演算処理し、更に、反共振周波数以下のゲイン特性が、負荷加速度フィードバックが無い場合と同等以下となるように、所定の重み係数を乗じる構成としてもよい。図7は、本発明の実施の形態における負荷速度算出部106の構成の別の例を示す図である。入力された負荷加速度信号Aは、積分演算器111において、積分演算される。積分演算器111から出力された信号は、重み係数乗算器112において、所定の重み係数が乗じられ、負荷速度信号ωが出力される。このような構成とすることで、電動機速度信号ωと電動機速度補正信号ω’の差異をより低減しながら、負荷加速度フィードバックによる制御安定性を保ちつつ、更に高速な動作を実現可能である。
 また、本実施の形態における負荷速度算出部106において、入力された負荷加速度信号Aを積分演算処理し、反共振周波数以下のゲイン特性が、負荷加速度フィードバックが無い場合と同等以下となるように、所定の重み係数を乗じたうえで、更に位相進み補償器を通過させる構成としてもよい。図8は、本発明の実施の形態における負荷速度算出部106の構成のまた別の例を示す図である。入力された負荷加速度信号Aは、積分演算器111において、積分演算される。積分演算器111から出力された信号は、重み係数乗算器112において、所定の重み係数が乗じられる。重み係数乗算器112から出力された信号は、位相進み補償器113を通過し、負荷速度信号ωとして出力される。このような構成とすることで、電動機速度信号ωと電動機速度補正信号ω’の差異をより低減しながら、負荷加速度フィードバックによる制御安定性を保ちつつ、更に高速な動作を実現可能である。
 また、本実施の形態では、負荷加速度信号Aを負荷加速度補正部105及び負荷速度算出部106に入力する構成としたが、負荷加速度信号Aにローパスフィルタまたはハイパスフィルタを通過させたものを、負荷加速度補正部105及び負荷速度算出部106に入力する構成としても良い。このような構成とすることで、負荷加速度信号Aに重畳する負荷加速度検出器の検出雑音成分の影響を受けにくくなる。したがって、より低振動化を図ることが可能である。
 以上のように、本実施の形態の電動機の制御装置100は、負荷速度算出部106と、位置制御部101と、速度制御部102と、減算器107と、を含む。負荷速度算出部106は、負荷(機械負荷)の加速度を示す負荷加速度信号ALから負荷速度信号ωを生成する。位置制御部101は、負荷(機械負荷)の目標位置を指定する位置指令信号θと、負荷(機械負荷)を駆動する電動機の位置を示す電動機位置信号θとを入力し、速度指令信号ωを出力する。速度制御部102は、負荷(機械負荷)を駆動する電動機の速度を示す電動機速度信号ωと負荷速度信号ωとの加算値である電動機速度補正信号ω‘と、速度指令信号ω とを入力し、トルク指令信号τを出力する。減算器107は、トルク指令信号τ を負荷加速度信号ALに所定のゲインを乗じて得られる信号で減算し、トルク指令補正信号τinを出力する。トルク指令補正信号τinは、電動機の固定子巻線に通電する電流を制御する。
 これにより、速度制御部102に電動機速度信号ωと負荷速度信号ωの加算値を入力することによって、負荷加速度フィードバックによる電動機の制御装置の制御安定性を保つことができる。これによって、フィードバック制御系の安定性を保ちつつ、負荷加速度フィードバックによる振動抑制効果が得られる。したがって、高速動作と振動抑制の両立が実現可能である。
 また、負荷速度算出部106は、負荷加速度信号ALを積分演算することによって、負荷速度信号ωを生成してもよい。
 また、負荷速度算出部106は、負荷加速度信号ALを積分演算し、重み係数を乗じることによって、負荷速度信号ωを生成してもよい。
 また、負荷速度算出部106は、負荷加速度信号ALを積分演算し、位相進み補償器を通過させることによって、負荷速度信号ωを生成してもよい。
 以上のように、本発明にかかる電動機の制御装置は、フィードバック制御系の安定性を保ったまま、負荷加速度フィードバックによる振動抑制効果を得られる。したがって、高速動作と振動抑制の両立が可能となる。負荷加速度フィードバックゲイン(加速度フィードバック量)とフィードバック制御系の安定性との間の、トレードオフの関係を、緩和、或いは回避し、負荷側からの加速度フィードバックによる振動抑制効果を高めた電動機の制御装置を提供可能である。したがって、半導体製造装置または電子部品実装機等で使用される電動機の制御装置等の用途に好適である。
 100 電動機の制御装置
 101 位置制御部
 102 速度制御部
 103 トルク制御部
 104 速度変換部
 105 負荷加速度補正部
 106 負荷速度算出部
 107 減算器
 108 加算器
 111 積分演算器
 112 重み係数乗算器
 113 位相進み補償器
 201 電動機
 202 位置検出器
 203 接合部
 204 負荷
 205 加速度検出器
 300 電動機の制御装置

Claims (4)

  1. 負荷を駆動する電動機の制御装置であって、
    前記負荷の加速度を示す負荷加速度信号から負荷速度信号を生成する負荷速度算出部と、
    前記負荷の目標位置を指定する位置指令信号と、前記負荷を駆動する前記電動機の位置を示す電動機位置信号とを入力し、速度指令信号を出力する位置制御部と、
    前記負荷を駆動する前記電動機の速度を示す電動機速度信号と前記負荷速度信号との加算値である電動機速度補正信号と、前記速度指令信号とを入力し、トルク指令信号を出力する速度制御部と、
    前記トルク指令信号を前記負荷加速度信号に所定のゲインを乗じて得られる信号で減算し、トルク指令補正信号を出力する減算器と、
    を含み、
    前記トルク指令補正信号は、前記電動機の固定子巻線に通電する電流を制御する
    電動機の制御装置。
  2. 前記負荷速度算出部は、前記負荷加速度信号を積分演算することによって、前記負荷速度信号を生成する、請求項1に記載の電動機の制御装置。
  3. 前記負荷速度算出部は、前記負荷加速度信号を積分演算し、重み係数を乗じることによって、前記負荷速度信号を生成する、請求項1に記載の電動機の制御装置。
  4. 前記負荷速度算出部は、前記負荷加速度信号を積分演算し、位相進み補償器を通過させることによって、前記負荷速度信号を生成する、請求項1に記載の電動機の制御装置。
PCT/JP2018/046684 2018-01-09 2018-12-19 電動機の制御装置 WO2019138809A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018000990 2018-01-09
JP2018-000990 2018-01-09

Publications (1)

Publication Number Publication Date
WO2019138809A1 true WO2019138809A1 (ja) 2019-07-18

Family

ID=67219363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046684 WO2019138809A1 (ja) 2018-01-09 2018-12-19 電動機の制御装置

Country Status (1)

Country Link
WO (1) WO2019138809A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056254A (ja) * 2003-08-06 2005-03-03 Yamazaki Mazak Corp 工作機械の位置制御装置及び工作機械の位置制御方法
JP2006158026A (ja) * 2004-11-26 2006-06-15 Fanuc Ltd 制御装置
WO2006129612A1 (ja) * 2005-05-31 2006-12-07 Mitsubishi Electric Corporation 電動機制御装置
JP2008043132A (ja) * 2006-08-09 2008-02-21 Mitsubishi Electric Corp 機械制御装置
WO2015136696A1 (ja) * 2014-03-14 2015-09-17 株式会社牧野フライス製作所 送り軸の制御方法および数値制御工作機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056254A (ja) * 2003-08-06 2005-03-03 Yamazaki Mazak Corp 工作機械の位置制御装置及び工作機械の位置制御方法
JP2006158026A (ja) * 2004-11-26 2006-06-15 Fanuc Ltd 制御装置
WO2006129612A1 (ja) * 2005-05-31 2006-12-07 Mitsubishi Electric Corporation 電動機制御装置
JP2008043132A (ja) * 2006-08-09 2008-02-21 Mitsubishi Electric Corp 機械制御装置
WO2015136696A1 (ja) * 2014-03-14 2015-09-17 株式会社牧野フライス製作所 送り軸の制御方法および数値制御工作機械

Similar Documents

Publication Publication Date Title
JP5120654B2 (ja) サーボ制御装置
JP4879173B2 (ja) 電動機制御装置
US8040098B2 (en) Position controller
JP3900219B2 (ja) 電動機速度制御装置および同装置のゲイン設定方法
JP3850363B2 (ja) モータの位置制御装置
JP2015115990A (ja) モータ制御装置
CN112334845B (zh) 反馈控制方法和反馈控制装置
WO2019138808A1 (ja) 電動機の制御装置
US11415948B2 (en) Device for controlling electric motor
TWI783961B (zh) 馬達控制裝置
WO2019138809A1 (ja) 電動機の制御装置
JP5017984B2 (ja) サーボ制御装置とその速度追従制御方法
JP2007060767A (ja) 機械定数同定装置を備えたモータ制御装置
JP3892824B2 (ja) モータの位置制御装置
JP2005223960A (ja) 電動機の制御装置
JP5084196B2 (ja) 電動機制御装置および電動機制御方法
JP2005115586A (ja) フィードバック制御装置およびその振動抑制方法
CN118157538A (zh) 用于三相交流电机的控制装置
CN117083792A (zh) 电动机控制装置、电动机控制系统及电动机控制方法
JP2017147704A (ja) 位置指令制御装置およびバンド除去フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP