WO2019138449A1 - 合成ポリイソプレン共重合体及びその製造方法 - Google Patents

合成ポリイソプレン共重合体及びその製造方法 Download PDF

Info

Publication number
WO2019138449A1
WO2019138449A1 PCT/JP2018/000217 JP2018000217W WO2019138449A1 WO 2019138449 A1 WO2019138449 A1 WO 2019138449A1 JP 2018000217 W JP2018000217 W JP 2018000217W WO 2019138449 A1 WO2019138449 A1 WO 2019138449A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic polyisoprene
latex
graft
rubber
copolymer
Prior art date
Application number
PCT/JP2018/000217
Other languages
English (en)
French (fr)
Inventor
中村 典彦
河原 成元
Original Assignee
Toyo Tire株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire株式会社 filed Critical Toyo Tire株式会社
Priority to JP2019565096A priority Critical patent/JP7017589B2/ja
Priority to PCT/JP2018/000217 priority patent/WO2019138449A1/ja
Priority to US16/954,382 priority patent/US20210079148A1/en
Publication of WO2019138449A1 publication Critical patent/WO2019138449A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C2/00Treatment of rubber solutions
    • C08C2/02Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/16Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/20Concentration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation

Definitions

  • the present invention relates to synthetic polyisoprene copolymers and methods of making the same.
  • Patent Document 2 discloses that natural rubber latex is deproteinized and then a natural monomer is formed in a continuous phase having a thickness of 1 to 100 nm formed by graft chains by graft copolymerization of a vinyl monomer on the surface of natural rubber particles. It is disclosed that a natural rubber graft copolymer having a nanomatrix structure in which rubber particles are dispersed in a phase separated state is obtained.
  • the present inventors obtained a synthetic polyisoprene copolymer having a nanomatrix structure by graft copolymerizing a vinyl monomer thereto using a commercially available synthetic polyisoprene rubber latex instead of a natural rubber latex. Thought.
  • embodiments of the present invention aim to provide a novel production method capable of graft copolymerizing a vinyl monomer to a synthetic polyisoprene rubber latex.
  • Another object of the present invention is to provide a synthetic polyisoprene copolymer having a nanomatrix structure obtained thereby.
  • the method for producing a synthetic polyisoprene copolymer according to an embodiment of the present invention comprises purifying the synthetic polyisoprene rubber latex by stirring under a heating condition of 50 ° C. or higher and centrifuging, and the obtained purification And graft copolymerizing a synthetic polyisoprene rubber latex with a vinyl monomer.
  • the synthetic polyisoprene copolymer according to an embodiment of the present invention comprises a synthetic polyisoprene copolymer in which a vinyl monomer is graft-copolymerized on the surface of synthetic polyisoprene rubber particles, and the thickness 1 to 5 formed by the graft chain. It has a nanomatrix structure in which synthetic polyisoprene rubber particles are dispersed in a phase separated state in a continuous phase of 100 nm.
  • synthetic polyisoprene rubber latex can be graft copolymerized with vinyl monomers.
  • a synthetic isoprene graft copolymer having a nanomatrix structure can be obtained.
  • the present inventors copolymerize synthetic polyisoprene rubber latex and vinyl monomer by stirring under heating conditions when purifying commercially available synthetic polyisoprene rubber latex prior to copolymerization with vinyl monomer. I found it easier. The reason why the graft copolymerization proceeds by stirring under heating conditions is not clear and is not limited thereby, but it is considered as follows.
  • the rosin surfactant Since the rosin surfactant has a high softening point of about 80 ° C., it is difficult to remove only by purification by centrifugation. By heating and stirring before centrifugation, the rosin surfactant can be removed from the surface of the rubber particles, and thus it is considered that graft copolymerization tends to proceed.
  • a rubber latex containing cis-1,4-polyisoprene rubber is used as a synthetic polyisoprene rubber (IR) latex (hereinafter sometimes referred to simply as IR latex) as a starting material. It can be used.
  • IR latex synthetic polyisoprene rubber
  • IR latex for example, commercially available one may be used as IR latex. Since a commercially available IR latex is synthesized using a rosin surfactant as an emulsifying agent, the IR latex contains a rosin surfactant, so it is considered that the effect according to the present embodiment is likely to be exhibited.
  • rosin surfactants include rosin acid soaps and disproportionated rosin acid soaps.
  • the amount of the rosin surfactant contained in the IR latex is not particularly limited, and may be, for example, 0.05 to 2 parts by mass with respect to 100 parts by mass of the synthetic isoprene rubber.
  • the IR latex is purified by stirring under heating conditions of 50 ° C. or higher and centrifuging. By heating and stirring the IR latex at 50 ° C. or higher, the copolymerization reaction with the vinyl monomer can be facilitated.
  • the said heating conditions ie, the heating temperature at the time of stirring IR latex, are 60 degreeC or more.
  • the heating conditions are 60 ° C. to 70 ° C., or 85 ° C. to less than 100 ° C.
  • the temperature is preferably 85 ° C. or more and 95 ° C. or less.
  • the stirring time for stirring the IR latex is not particularly limited, and may be, for example, 10 to 200 minutes, or 20 to 120 minutes. Also, the stirring conditions are not particularly limited, and for example, the rubber latex may be stirred at 50 to 1000 rpm using a stirrer having a stirring blade capable of stirring, or 100 to 500 rpm.
  • the concentration of the IR latex when stirring the IR latex is not particularly limited, and may be, for example, 10 to 60% by mass or 20 to 50% by mass in terms of rubber concentration (DRC: Dry Rubber Content).
  • a surfactant which does not inhibit the copolymerization reaction with the vinyl monomer may be added to the IR latex.
  • various anionic surfactants, nonionic surfactants and cationic surfactants listed below can be used.
  • an anionic surfactant a carboxylic acid type, a sulfonic acid type, a sulfuric ester type, a phosphoric ester type etc. are mentioned, for example.
  • carboxylic acid type anionic surfactants examples include carboxylic acid salts having 6 to 30 carbon atoms, such as fatty acid salts, polyvalent carboxylic acid salts, dimer acid salts, polymeric acid salts, tall oil fatty acid salts, etc. . Among them, carboxylic acid salts having 10 to 20 carbon atoms are preferable.
  • the carbon number of the carboxylic acid type anionic surfactant is 6 or more, the dispersing / emulsifying action of the protein and the impurities can be improved, and when the carbon number is 30 or less, it is dispersed in water. It can be made easy.
  • sulfonic acid-based anionic surfactants include alkyl benzene sulfonates, alkyl sulfonates, alkyl naphthalene sulfonates, naphthalene sulfonates, diphenyl ether sulfonates and the like.
  • sulfuric acid ester type surfactant for example, an alkyl sulfuric acid ester salt, a polyoxyalkylene alkyl sulfuric acid ester salt, a polyoxyalkylene alkyl phenyl ether sulfuric acid salt, a tristyrenated phenol sulfuric acid ester salt, a polyoxyalkylene distyrene styrenated phenolic sulfuric acid ester salt Etc.
  • phosphate ester type anionic surfactant examples include alkyl phosphate ester salts and polyoxyalkylene phosphate ester salts.
  • metal salt Na, K, Ca, Mg, Zn etc.
  • ammonium salt amine salt (triethanolamine salt etc.) etc.
  • nonionic surfactants include polyoxyalkylene ether type, polyoxyalkylene ester type, polyhydric alcohol fatty acid ester type, sugar fatty acid ester type, alkyl polyglycoside type and the like.
  • polyoxyalkylene ether nonionic surfactant for example, polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenyl ether, polyoxyalkylene polyol alkyl ether, polyoxyalkylene styrenated phenol ether, polyoxyalkylene distyrene styrenated phenol ether And polyoxyalkylene tristyrenated phenol ethers.
  • the polyol include polyhydric alcohols having 2 to 12 carbon atoms, such as propylene glycol, glycerin, sorbitol, sucrose, pentaerythritol, sorbitan and the like.
  • polyoxyalkylene ester nonionic surfactants include polyoxyalkylene fatty acid esters and the like.
  • polyhydric alcohol fatty acid ester-based nonionic surfactants include fatty acid esters of polyhydric alcohols having 2 to 12 carbon atoms or fatty acid esters of polyoxyalkylene polyhydric alcohols. More specifically, examples thereof include sorbitol fatty acid ester, sorbitan fatty acid ester, fatty acid monoglyceride, fatty acid diglyceride, polyglycerin fatty acid ester and the like.
  • these polyalkylene oxide adducts for example, polyoxyalkylene sorbitan fatty acid ester, polyoxyalkylene glycerin fatty acid ester, etc. can also be used.
  • sugar fatty acid ester-based nonionic surfactants include sucrose, glucose, maltose, fructose, fatty acid esters of polysaccharides and the like, and polyalkylene oxide adducts of these can also be used.
  • alkylpolyglycoside nonionic surfactant examples include alkyl glucoside, alkyl polyglucoside, polyoxyalkylene alkyl glucoside, polyoxyalkylene alkyl polyglucoside and the like, and fatty acid esters thereof are also mentioned. Moreover, these polyalkylene oxide adducts can also be used.
  • the alkyl group in the nonionic surfactant includes, for example, an alkyl group having 4 to 30 carbon atoms.
  • the polyoxyalkylene group one having an alkylene group having 2 to 4 carbon atoms can be mentioned, and for example, one having an addition mole number of ethylene oxide of about 1 to 50 moles can be mentioned.
  • fatty acids include linear or branched saturated or unsaturated fatty acids having 4 to 30 carbon atoms.
  • the cationic surfactant includes, for example, alkylamine salt type, alkylamine derivative type and quaternized compounds thereof, and imidazolinium salt type.
  • Cationic surfactants of the alkylamine salt type include salts of primary amines, secondary amines and tertiary amines.
  • the cationic surfactant of the alkylamine derivative type has at least one of an ester group, an ether group and an amide group in the molecule, and for example, polyoxyalkylene (AO) alkylamine and its salt, alkyl ester Amines (including AO adducts) and salts thereof, alkyl ether amines (including AO adducts) and salts thereof, alkylamidoamines (including AO adducts) and salts thereof, alkyl ester amidoamines (including AO adducts) and Its salts, alkyletheramidoamines (including AO adducts), and their salts, etc.
  • AO polyoxyalkylene
  • the type of the salt includes, for example, hydrochloride, phosphate, acetate, alkyl sulfate, alkylbenzene sulfonic acid, alkyl naphthalene sulfonic acid, fatty acid, organic acid, alkyl phosphate, alkyl ether carboxylic acid, alkyl amide ether carboxylic acid An acid, an anionic oligomer, an anionic polymer, etc. are mentioned.
  • specific examples of the acetate include, for example, coconut amine acetate, stearylamine acetate and the like.
  • the alkyl group in the above-mentioned alkylamine salt type and alkylamine derivative type cationic surfactant is not particularly limited, but usually includes linear, branched or Guerbet having 8 to 22 carbon atoms. .
  • the above alkylamine salt and alkylamine derivative may be quaternary such as methyl chloride, methyl bromide, dimethyl sulfate, diethyl sulfate and the like. Can be mentioned.
  • alkyltrimethyl ammonium halides such as lauryl trimethyl ammonium halide, cetyl trimethyl ammonium halide, stearyl trimethyl ammonium halide, etc .
  • dialkyl dimethyl ammonium halides such as distearyl dimethyl ammonium halide; trialkyl methyl ammonium halides; dialkyl benzyl methyl ammonium halides; Alkyl benzyl dimethyl ammonium halide etc. are mentioned.
  • imidazolinium salt type cationic surfactant examples include 2-heptadecenyl-hydroxylethyl imidazoline and the like.
  • the surfactants exemplified above may be used alone or in combination of two or more.
  • nonionic surfactants such as polyoxyethylene nonyl phenyl ether, anionic interface
  • examples thereof include sodium polyoxyethylene alkylphenyl ether sulfate which is an activator.
  • the addition amount of the above surfactant may be 0.01 to 3% by mass, or 0.05 to 2% by mass in the concentration in the IR latex.
  • the mixture After heating and stirring as described above, the mixture is centrifuged to separate into a cream component containing synthetic polyisoprene rubber and a serum component which is a serum. Water is added to the obtained cream and redispersed to obtain a purified synthetic polyisoprene rubber latex (purified IR latex).
  • Heating and stirring and centrifugation may be repeated several times. That is, after IR latex is heated, stirred and centrifuged, water and a surfactant are added to the cream when redispersing the cream, stirring is performed under the above heating conditions, and then centrifugation is performed, and this operation is carried out It may be repeated several times.
  • the number of repetitions is not particularly limited, and, for example, heating, stirring and centrifugation may be performed 2 to 5 times.
  • the conditions for centrifuging the IR latex are not particularly limited as long as they can be separated into cream and serum, and for example, the centrifugal acceleration may be 5000 to 50000 G (that is, 49000 to 490000 m / s 2 ), or 7000 to 30000 G ( That is, 68600 to 294000 m / s 2 ) may be used.
  • the time of centrifugation may be, for example, 10 to 60 minutes, or 20 to 40 minutes.
  • the temperature during centrifugation may be, for example, 10 to 40 ° C. or 20 to 35 ° C.
  • the concentration of the purified IR latex prepared as described above is not particularly limited, and may be, for example, 10 to 60% by mass or 20 to 50% by mass in terms of rubber concentration (DRC). Moreover, you may add the various surfactant mentioned above as surfactant which does not inhibit the copolymerization reaction with a vinyl monomer to refinement
  • a vinyl monomer is added to the purified IR latex obtained above to graft copolymerize it.
  • the purified IR latex may be reacted by adding a vinyl monomer and an appropriate polymerization initiator.
  • the vinyl monomer is not particularly limited as long as it can be grafted onto the surface of synthetic polyisoprene rubber particles.
  • synthetic polyisoprene rubber particles For example, styrene, alkyl styrene such as styrene, methyl styrene, ethyl styrene, propyl styrene, butyl styrene, pentyl styrene, etc.
  • Vinyl alkoxysilane monomers such as vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, vinylmethyldimethoxysilane, etc .
  • (Meth) acrylic acid based monomers such as (meth) acrylates
  • (meth) acrylamide based monomers such as (meth) acrylamides and alkyl (meth) acrylamides
  • vinyl ester based monoesters such as vinyl acetate Chromatography
  • nitrile vinyl monomers such as acrylonitrile; vinylpyrrolidone, and the like.
  • (meth) acrylic acid means one or both of acrylic acid and methacrylic acid
  • (meth) acrylate means one or both of acrylate and methacrylate
  • (Meth) acrylamide means one or both of acrylamide and methacrylamide.
  • the addition amount of the vinyl monomer is not particularly limited, but is preferably 5 to 30 parts by mass, more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene rubber. With such addition amount, the grafting amount of the vinyl monomer can be secured to enhance the modification effect, and the formation of the homopolymer can be suppressed to enhance the grafting efficiency.
  • polymerization initiator examples include benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, di-tert-butyl peroxide, 2,2-azobisisobutyronitrile, and potassium persulfate.
  • An oxide is mentioned, and especially a polymerization initiator of a redox system is preferred in order to reduce polymerization temperature.
  • examples of the reducing agent to be combined with the peroxide include tetraethylenepentamine, mercaptans, sodium acid sulfite, reducing metal ions, ascorbic acid and the like.
  • Examples of combinations of polymerizable initiators of the redox system include tert-butyl hydroperoxide and tetraethylenepentamine, hydrogen peroxide and Fe 2+ salt, K 2 SO 2 O 8 and NaHSO 3 and the like.
  • the addition amount of the polymerization initiator is not particularly limited, and may be, for example, 0.3 to 10 mol% with respect to 100 mol of the vinyl monomer.
  • a synthetic polyisoprene is obtained by graft copolymerization of a vinyl monomer on the surface of synthetic polyisoprene rubber particles by charging a purified IR latex, a vinyl monomer and a polymerization initiator in a reaction vessel and reacting at 25 to 80 ° C. for 1 to 10 hours.
  • a latex comprising the isoprene copolymer is obtained.
  • a solid synthetic polyisoprene copolymer can be recovered by adding methanol to the obtained latex and coagulating.
  • a film (i.e., sheet or film) of a synthetic polyisoprene copolymer may be produced by cast molding using the above latex.
  • the synthetic polyisoprene copolymer according to this embodiment obtained as described above is obtained by graft copolymerizing a vinyl monomer on the surface of synthetic polyisoprene rubber particles, and is also referred to as a synthetic polyisoprene graft copolymer.
  • the synthetic polyisoprene copolymer has a nanomatrix structure in which synthetic polyisoprene rubber particles are dispersed in a phase separated state in a continuous phase having a thickness of 1 to 100 nm formed by graft chains.
  • the synthetic polyisoprene copolymer according to the present embodiment may be composed only of a synthetic polyisoprene copolymer having a nanomatrix structure, but it may contain a homopolymer comprising the above vinyl monomer together with the synthetic polyisoprene copolymer. Good. That is, in the above-mentioned graft copolymerization, not only a graft copolymer but also a homopolymer is usually produced from a vinyl monomer, and therefore, a mixture containing such homopolymers in a mixed state may be used. Therefore, the polymer obtained by the above-mentioned production method can also be said to be a rubber material containing a synthetic polyisoprene copolymer.
  • a rubber material means the rubber used as a material when manufacturing a rubber product.
  • the particle diameter of the synthetic polyisoprene rubber particles depends on the particle diameter of the IR latex of the raw material and is not particularly limited, but the average particle diameter is 0.01 It may be up to 20 ⁇ m or 0.04 to 3.0 ⁇ m.
  • the average particle size is determined as the arithmetic mean by measuring the diameters of 100 randomly selected particles from an image of a transmission electron microscope (TEM). The diameter of the particles can be determined, for example, by connecting two points on the outer periphery of the particles using the image processing software “Image-Pro Plus” of MediaCybernetics, and the diameter passing through the center of gravity, with the average value of values measured in steps of 2 degrees. can do.
  • the particle diameter of synthetic polyisoprene rubber particles is measured using IR latex which is a raw material, the value of D50 measured using a laser diffraction type particle size distribution measuring device may be used.
  • a graft chain which is a polymer of vinyl monomer forms a continuous phase (that is, matrix phase) having a thickness of 1 to 100 nm.
  • the continuous phase intervenes between particles of the synthetic polyisoprene rubber particles to phase-separate these rubber particles, and is formed in layers between the rubber particles.
  • the continuous phase can be referred to as a nanomatrix phase because the thickness of the continuous phase is 1 to 100 nm and on the order of nanometers.
  • the thickness of the continuous phase is more preferably 5 to 50 nm.
  • the thickness of the continuous phase can be determined by measuring the thickness of graft chains formed between 100 randomly selected rubber particles from an image of a transmission electron microscope (TEM). It is determined as an average.
  • TEM transmission electron microscope
  • the content of the graft chain composed of a vinyl monomer is not particularly limited, and may be, for example, 3 to 30% by mass, 5 to 25% by mass, or 8 to 20% by mass.
  • the graft chain content is the ratio of the mass of the graft chain portion to the mass of the entire synthetic polyisoprene copolymer.
  • the thickness of the film is not particularly limited, and may be, for example, 10 to 1000 ⁇ m, or 10 to 500 ⁇ m.
  • the synthetic polyisoprene copolymer according to the present embodiment has the above-mentioned nanomatrix structure formed by graft copolymerization of a vinyl monomer, thereby having the excellent properties of the synthetic polyisoprene rubber, and the unmodified synthetic polyisoprene. It is possible to improve breaking strain and breaking strength as compared with rubber.
  • the application of the synthetic polyisoprene copolymer according to this embodiment is not particularly limited, and it is used as a material of various rubber products such as tires such as pneumatic tires, anti-vibration rubbers, medical fields such as condoms and rubber gloves, and household items. It can be used.
  • Example 1 As a raw material IR latex, cis-1,4-polyisoprene rubber latex “ME1100” (TSC (total solid content): about 56.4 mass%) manufactured by Nippon Zeon Co., Ltd. was used. In addition, as a vinyl monomer, after washing styrene three times with a 10% by mass aqueous sodium hydroxide solution, one washed with neutral water until neutral was used.
  • the IR latex was purified and graft copolymerization of styrene was performed according to the procedure shown in FIG. The details are as follows.
  • IR latex sodium dodecyl sulfate (SDS) (first grade, manufactured by Kishda Kagaku Co., Ltd.) and distilled water were added to adjust the concentration of SDS to 1% by mass and TSC to 30% by mass.
  • SDS sodium dodecyl sulfate
  • the stirring temperature was set to 50 ° C. with respect to the obtained TSC 30 mass% IR latex, and the mixture was stirred for 60 minutes at normal pressure and 200 rpm using a stirrer. Then, the IR latex was centrifuged (10000 G, 30 ° C., 30 minutes) to separate into cream and serum.
  • Distilled water and SDS are added to this cream component, and redispersed so that the concentration of SDS is 0.5% by mass and the DRC is 30% by mass. After stirring for 60 minutes at 200 rpm, centrifugation (10000 G, 30 ° C., 30 minutes) was performed. After repeating this redispersion, heating, stirring and centrifugation once more, distilled water and SDS are added to the cream fraction obtained by the final centrifugation, and the concentration of SDS is 0.1 mass% and the DRC is 30. It was redispersed so as to be% by mass to obtain a purified IR latex.
  • the purified IR latex was purged with nitrogen for 1 hour while stirring at 30 ° C. and 200 rpm. Thereafter, as a polymerization initiator, tert-butyl hydroperoxide (TBHPO) (purity 67%, manufactured by Kishda Chemical Co., Ltd.) and tetraethylenepentamine (TEPA) (content 95%, manufactured by Kishida Chemical Co., Ltd.), respectively. It dripped one by one in 6.6 * 10 ⁇ -2> mol with respect to 1 kg of rubbers in IR latex. Furthermore, 1.5 mol of styrene was dropped to 1 kg of rubber in the IR latex. The polymerization reaction was conducted for 2 hours at 30 ° C.
  • Example 2 (Examples 2 to 4)
  • the stirring temperature in the purification step of the IR latex is changed to 65 ° C. in Example 2, 80 ° C. in Example 3, 90 ° C. in Example 4 as in Table 1 below, and others are Example 1
  • a synthetic polyisoprene copolymer was produced in the same manner as in.
  • the grafting efficiency was determined as follows. Some samples were confirmed to be grafted by FT-IR and NMR measurement. The latex containing the synthetic polyisoprene copolymer was cast on a petri dish and vacuum dried for 1 week to obtain an as-cast film of 1 mm in thickness. Approximately 1 g of the as-cast film obtained is finely cut into about 1 mm squares, and refluxing acetone / 2-butanone mixed solution (3: 1) solution under a nitrogen atmosphere with a Soxhlet light shield for 24 hours for 24 hours Extraction was done. The soluble styrene homopolymer was thereby removed from the insoluble graft copolymer. The grafting efficiency was calculated by the following formula. Here, Wb is the sample mass (g) before Soxhlet extraction, Wa is the sample mass (g) after Soxhlet extraction, and Ym is the styrene content (%).
  • the heating condition is more preferably 50 ° C. or more and 70 ° C. or less, or 85 ° C. or more and less than 100 ° C.
  • a predetermined glass type was immersed in the latex containing the synthetic polyisoprene copolymer obtained in Examples 1 to 4, and dried by heating to prepare a rubber film (cast film) having a thickness of about 1 mm.
  • the obtained rubber membrane is stained with OsO 4 and then an ultrathin section is prepared using a cryomicrotome (Ultracut N manufactured by Reichert-Nissi), and a transmission electron microscope (TEM, JEM Co., Ltd. JEM-2100)
  • the phase separation structure was observed at an acceleration voltage of 200 kV.
  • the synthetic polyisoprene rubber particles are phase-separated from the grafted polystyrene, and the diameter is about 1 ⁇ m in the graft styrene continuous phase having a thickness of several nm to several tens of nm.
  • Some degree of synthetic polyisoprene rubber particles was dispersed, and phase separation between the graft styrene continuous phase and the synthetic polyisoprene rubber particle dispersed phase was observed.
  • FIG. 2 is a transmission electron micrograph of the rubber film obtained in Example 4. The black phase indicates synthetic polyisoprene rubber particles, and the white phase indicates polystyrene.
  • Example 3 A tensile test (uniaxial elongation test) according to JIS K6251 was performed on the rubber film of Example 3 produced above and the rubber film (Comparative Example 1) produced from the raw material IR latex, and the relationship between tensile strain and tensile stress I examined.
  • Comparative Example 1 a raw material IR latex is used as the latex, and in the same manner as in Example 3 except that a predetermined glass type is immersed in the raw material IR latex and dried by heating, a rubber film (casted about 1 mm thick) Film was produced.
  • FIG. 3 shows a strain-stress curve of one of five tensile tests.
  • Example 1 As a result, in Comparative Example 1, the breaking strain and the breaking stress were 850% and 0.12 MPa, respectively. On the other hand, in Example 3, the breaking strain and the breaking stress were respectively 1000% and 0.52 MPa, which were higher than Comparative Example 1. From these results, it was found that the strain at break and the breaking strength of the synthetic polyisoprene rubber are increased by graft copolymerization of styrene to the synthetic polyisoprene rubber to form a nanomatrix structure.
  • Example 3 the tensile stress did not drop, and the physical properties significantly changed depending on the presence or absence of the nanomatrix structure.
  • Example 5 We tried graft copolymerization on synthetic polyisoprene rubber latex using vinyl triethoxysilane (VTES) which is a silicon-containing vinyl monomer as a vinyl monomer. Since vinyltriethoxysilane forms silica by polymerization, the nanomatrix structure obtained by graft copolymerization is a synthetic polyisoprene having an average diameter of about 1 ⁇ m in a matrix in which silica nanoparticles having a thickness of several nm to several tens of nm are filled. It becomes a nano phase separation structure formed by dispersing rubber particles. An attempt was made to prepare a synthetic polyisoprene graft copolymer (IR-graft-PVTES) having such a silica nanomatrix structure.
  • VTES vinyl triethoxysilane
  • the purified IR latex was obtained at a stirring temperature of 80 ° C. in the same manner as in Example 3 (however, DRC was 20% by mass).
  • the purified IR latex was placed in a separable flask, purged with nitrogen for 30 minutes, and further purged with nitrogen for 30 minutes while stirring at 200 rpm.
  • THPO tert-butyl hydroperoxide
  • TEPA tetraethylenepentamine
  • VTES vinyltriethoxysilane
  • the monomer reaction rate and the silica content of the adjusted IR-graft-PVTES sample were calculated by the following formula.
  • the ash content is the content of ash contained in a film (IR sample) prepared from a purified IR latex, and 1 g of the IR sample is shredded and transferred to a crucible which has reached a constant weight, without being covered Heated on low heat using a gas burner. After the white smoke stopped rising, the lid was closed, and after about 30 minutes of intense heat, it was repeatedly ignited until constant weight was reached.
  • the ash content of the IR sample was calculated from the weight of the obtained residue (mass of ash after heating).
  • the silica content was calculated by subtracting the ash content of the IR sample from the residue weight (total solid mass after heating) obtained in the same manner as the IR sample for the IR-graft-PVTES sample.
  • the monomer conversion of the IR-graft-PVTES sample obtained in Example 5 was 50%, and the silica content was 5.66% by mass.
  • the gel content of IR and IR-graft-PVTES samples was determined. 40 mg of a sample was weighed, immersed in 40 ml of dry toluene, and allowed to stand in the dark for one week. Then, the toluene insoluble matter (gel fraction) was separated from the toluene soluble matter (sol fraction) by centrifuging at 10,000 G for 30 minutes. The gel was dried under reduced pressure for one week and then precisely weighed. And gel content rate was computed by the following formula.
  • the gel content of the raw material IR sample was 3.58%
  • the gel content of the IR-graft-PVTES sample was 18.17%, greatly increasing. This is considered to be due to the rubber particles and the monomers being grafted and the rubber particles being crosslinked.
  • FIG. 4 shows TEM images taken at 5000 ⁇ and 10000 ⁇ of the IR-graft-PVTES sample.
  • the white areas in the image are the rubber phase and the black areas are the silica phase.
  • the silica particles are probably considered to be non-grafted homopolymer masses.
  • image (B) at a magnification of 10000 it can be seen that the thin aggregated phase formed by the silica particles of several nm in diameter is present between the rubber particles to some extent and is the silica of graft chains constituting the matrix.
  • IR-graft-PVTES sample a tensile test was carried out according to JIS K6251 using a Toyo Seika strograph VG10E.
  • the IR-graft-PVTES sample was punched out in a dumbbell shape, and a tensile test was performed at room temperature under a tensile speed of 200 mm / min.
  • FIG. 5 shows stress-strain curves of the IR sample and the IR-graft-PVTES sample. Since these samples were not vulcanized, molecular chains flowed when pulled, so smooth curves were not obtained. Furthermore, since the breaking stress is too low, the testing machine could not sense even when the sample piece was cut, so that it was not possible to measure a reliable breaking stress. However, overall, the stress-strain curve of IR-graft-PVTES exceeded that of the IR sample. The stress of the IR-graft-PVTES sample was about twice as high as that of the IR sample at a constant strain. Also, looking at the rising curve, the elastic modulus of the IR-graft-PVTES sample was higher than that of the IR sample. It is considered that this is because the formation of a small amount of nanomatrix and the packing of the silica particles revealed from the TEM image showed a certain degree of reinforcing effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

合成ポリイソプレンゴムラテックスを50℃以上の加熱条件下で攪拌し、遠心分離することにより精製し、得られた精製合成ポリイソプレンゴムラテックスにビニルモノマーを添加してグラフト共重合させることにより、合成ポリイソプレン共重合体を製造する。合成ポリイソプレン共重合体は、合成ポリイソプレンゴム粒子の表面にビニルモノマーがグラフト共重合されてなり、グラフト鎖により形成された厚さ1~100nmの連続相中に合成ポリイソプレンゴム粒子が相分離した状態で分散したナノマトリックス構造を有する。

Description

合成ポリイソプレン共重合体及びその製造方法
 本発明は、合成ポリイソプレン共重合体及びその製造方法に関するものである。
 従来、ゴムを改質する技術として、ゴムラテックスにスチレン系モノマーやアクリル系モノマーなどのビニルモノマーをグラフト共重合させることが知られている(例えば、特許文献1参照)。
 また、ナノマトリックス構造を持つ天然ゴムのグラフト共重合体が知られている。例えば、特許文献2には、天然ゴムラテックスを脱蛋白質化した後、天然ゴム粒子表面にビニルモノマーをグラフト共重合させることにより、グラフト鎖により形成された厚さ1~100nmの連続相中に天然ゴム粒子が相分離した状態で分散したナノマトリックス構造を持つ天然ゴムグラフト共重合体が得られることが開示されている。
日本国特開2003-012736号公報 日本国特開2004-155884号公報
 本発明者らは、天然ゴムラテックスに代えて市販の合成ポリイソプレンゴムラテックスを用いて、これにビニルモノマーをグラフト共重合させることにより、ナノマトリックス構造を有する合成ポリイソプレン共重合体を得ることを考えた。
 しかしながら、市販の合成ポリイソプレンゴムラテックスを用いた場合、室温で遠心分離による精製を行ったゴムラテックスとビニルモノマーとの共重合が進行しづらく、ナノマトリックス構造を有する合成ポリイソプレン共重合体を得ることはできない。
 本発明の実施形態は、以上の点に鑑み、合成ポリイソプレンゴムラテックスにビニルモノマーをグラフト共重合させることができる新規な製造方法を提供することを目的とする。また、それにより得られるナノマトリックス構造を有する合成ポリイソプレン共重合体を提供することを目的とする。
 本発明の実施形態に係る合成ポリイソプレン共重合体の製造方法は、合成ポリイソプレンゴムラテックスを50℃以上の加熱条件下で攪拌し、遠心分離することにより精製すること、及び、得られた精製合成ポリイソプレンゴムラテックスにビニルモノマーを添加してグラフト共重合させること、を含むものである。
 本発明の実施形態に係る合成ポリイソプレン共重合体は、合成ポリイソプレンゴム粒子の表面にビニルモノマーがグラフト共重合された合成ポリイソプレン共重合体からなり、グラフト鎖により形成された厚さ1~100nmの連続相中に合成ポリイソプレンゴム粒子が相分離した状態で分散したナノマトリックス構造を有するものである。
 本発明の実施形態によれば、合成ポリイソプレンゴムラテックスにビニルモノマーをグラフト共重合させることができる。また、ナノマトリックス構造を有する合成イソプレングラフト共重合体を得ることができる。
実施例1~4に係る合成ポリイソプレン共重合体の作製工程のフローチャート 実施例4で得られたゴム膜の透過型電子顕微鏡写真 実施例3と比較例1のゴム膜の引張試験における歪み-応力曲線のグラフ 実施例5で得られたゴム膜の5000倍と10000倍の透過型電子顕微鏡写真 実施例5で得られたゴム膜の引張試験における歪み-応力曲線のグラフ
 以下、本発明の実施に関連する事項について詳細に説明する。
 本発明者らは、市販の合成ポリイソプレンゴムラテックスをビニルモノマーとの共重合に先立って精製する際に、加熱条件下で攪拌することにより、合成ポリイソプレンゴムラテックスとビニルモノマーとが共重合しやすくなることを見出した。加熱条件下で攪拌することによりグラフト共重合が進行する理由は明らかでなく、これにより限定されるものではないが、次のように考えられる。
 市販の合成ポリイソプレンゴムラテックスを用いた場合における共重合反応が進みにくい1つの仮説として、合成ポリイソプレンゴムラテックスに含まれるロジン系界面活性剤がゴム粒子を覆っていることによる反応の阻害が考えられる。すなわち、下里錠次他「スチレンゴム乳化重合におけるロジン酸セッケン」有機合成化学、第16巻第11号(1958)、p630-636に記載され、またISO2303:2000にも規定されているように、市販の合成ポリイソプレンゴムラテックスにはロジン系界面活性剤が不可避的に含まれている。ロジン系界面活性剤は軟化点が約80℃と高いため、遠心分離による精製だけでは除去することが困難である。遠心分離前に加熱して攪拌することにより、ロジン系界面活性剤をゴム粒子表面から除去することができ、そのためグラフト共重合が進行しやすくなると考えられる。
(原料ラテックス)
 本実施形態に係る製造方法において、出発原料とする合成ポリイソプレンゴム(IR)ラテックス(以下、単にIRラテックスということがある。)としては、シス-1,4-ポリイソプレンゴムを含むゴムラテックスを用いることができる。
 一実施形態として、IRラテックスとしては、例えば、市販のものを用いてもよい。市販のIRラテックスは乳化剤としてロジン系界面活性剤を用いて合成されることから、当該IRラテックスにはロジン系界面活性剤が含まれており、そのため、本実施形態による効果が発揮されやすいと考えられる。ロジン系界面活性剤としては、ロジン酸石鹸、不均化ロジン酸石鹸などが挙げられる。IRラテックスに含まれるロジン系界面活性剤の量は、特に限定されず、例えば、合成イソプレンゴム100質量部に対して0.05~2質量部でもよい。
(IRラテックスの精製)
 本実施形態では、IRラテックスを50℃以上の加熱条件下で攪拌し、遠心分離することにより精製する。IRラテックスを50℃以上で加熱攪拌するにより、ビニルモノマーとの共重合反応を進みやすくすることができる。
 上記加熱条件、即ちIRラテックスを攪拌する際の加熱温度は、60℃以上であることが好ましい。後述する実施例に示されているように、共重合反応の反応率は80℃で低下する傾向があるので、加熱条件としては、60℃以上70℃以下、又は、85℃以上100℃未満であることが好ましく、より好ましくは85℃以上95℃以下である。
 IRラテックスを攪拌する際の攪拌時間は、特に限定されず、例えば、10~200分間でもよく、20~120分間でもよい。また、攪拌条件も、特に限定されず、例えば、ゴムラテックスを攪拌可能な攪拌翼を持つ攪拌機を用いて、50~1000rpmで攪拌してもよく、100~500rpmで攪拌してもよい。
 IRラテックスを攪拌する際のIRラテックスの濃度は、特に限定されず、例えば、ゴム濃度(DRC:Dry Rubber Content)で10~60質量%でもよく、20~50質量%でもよい。
 IRラテックスを攪拌する際には、ビニルモノマーとの共重合反応を阻害しない界面活性剤をIRラテックスに添加しておいてもよい。そのような界面活性剤としては、以下に列挙する様々なアニオン界面活性剤、ノニオン界面活性剤、カチオン界面活性剤を用いることができる。
 アニオン界面活性剤としては、例えば、カルボン酸系、スルホン酸系、硫酸エステル系、リン酸エステル系等が挙げられる。
 カルボン酸系のアニオン界面活性剤としては、炭素数が6~30であるカルボン酸塩、例えば、脂肪酸塩、多価カルボン酸塩、ダイマー酸塩、ポリマー酸塩、トール油脂肪酸塩などが挙げられる。中でも、炭素数10~20のカルボン酸塩が好適である。カルボン酸系のアニオン界面活性剤の炭素数が6以上であることにより、蛋白質および不純物の分散・乳化作用を向上することができ、また、炭素数が30以下であることにより、水に分散させやすくすることができる。
 スルホン酸系のアニオン界面活性剤としては、例えばアルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、ジフェニルエーテルスルホン酸塩等が挙げられる。
 硫酸エステル系界面活性剤としては、例えばアルキル硫酸エステル塩、ポリオキシアルキレンアルキル硫酸エステル塩、ポリオキシアルキレンアルキルフェニルエーテル硫酸塩、トリスチレン化フェノール硫酸エステル塩、ポリオキシアルキレンジスチレン化フェノール硫酸エステル塩等が挙げられる。
 リン酸エステル系のアニオン界面活性剤としては、アルキルリン酸エステル塩、ポリオキシアルキレンリン酸エステル塩等が挙げられる。
 アニオン界面活性剤における上記化合物の塩としては、金属塩(Na,K,Ca,Mg,Zn等)、アンモニウム塩、アミン塩(トリエタノールアミン塩等)などが挙げられる。
 ノニオン界面活性剤としては、例えば、ポリオキシアルキレンエーテル系、ポリオキシアルキレンエステル系、多価アルコール脂肪酸エステル系、糖脂肪酸エステル系、アルキルポリグリコシド系等が挙げられる。
 ポリオキシアルキレンエーテル系のノニオン界面活性剤としては、例えばポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンポリオールアルキルエーテル、ポリオキシアルキレンスチレン化フェノールエーテル、ポリオキシアルキレンジスチレン化フェノールエーテル、ポリオキシアルキレントリスチレン化フェノールエーテル等が挙げられる。前記ポリオールとしては炭素数2~12の多価アルコールが挙げられ、例えばプロピレングリコール、グリセリン、ソルビトール、シュクロース、ペンタエリトリトール、ソルビタン等が挙げられる。
 ポリオキシアルキレンエステル系のノニオン界面活性剤としては、例えばポリオキシアルキレン脂肪酸エステル等が挙げられる。多価アルコール脂肪酸エステル系のノニオン界面活性剤としては、炭素数2~12の多価アルコールの脂肪酸エステルまたはポリオキシアルキレン多価アルコールの脂肪酸エステルが挙げられる。より具体的には、例えばソルビトール脂肪酸エステル、ソルビタン脂肪酸エステル、脂肪酸モノグリセライド、脂肪酸ジグリセライド、ポリグリセリン脂肪酸エステル等が挙げられる。また、これらのポリアルキレンオキサイド付加物(例えばポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレングリセリン脂肪酸エステル等)も使用可能である。
 糖脂肪酸エステル系のノニオン界面活性剤としては、例えばショ糖、グルコース、マルトース、フラクトース、多糖類の脂肪酸エステル等が挙げられ、これらのポリアルキレンオキサイド付加物も使用可能である。
 アルキルポリグリコシド系のノニオン界面活性剤としては、例えばアルキルグルコシド、アルキルポリグルコシド、ポリオキシアルキレンアルキルグルコシド、ポリオキシアルキレンアルキルポリグルコシド等が挙げられ、これらの脂肪酸エステル類も挙げられる。また、これらのポリアルキレンオキサイド付加物も使用可能である。
 ノニオン界面活性剤におけるアルキル基としては、例えば炭素数4~30のアルキル基が挙げられる。また、ポリオキシアルキレン基としては、炭素数2~4のアルキレン基を有するものが挙げられ、例えば酸化エチレンの付加モル数が1~50モル程度のものが挙げられる。脂肪酸としては、例えば炭素数が4~30の直鎖または分岐した飽和または不飽和の脂肪酸が挙げられる。
 カチオン界面活性剤としては、例えば、アルキルアミン塩型、アルキルアミン誘導体型およびそれらの第4級化物、ならびにイミダゾリニウム塩型等が挙げられる。
 アルキルアミン塩型のカチオン界面活性剤としては、第1級アミン、第2級アミンおよび第3級アミンの塩が挙げられる。アルキルアミン誘導体型のカチオン界面活性剤は、エステル基、エーテル基、アミド基のうちの少なくとも1つを分子内に有するものであって、例えばポリオキシアルキレン(AO)アルキルアミンおよびその塩、アルキルエステルアミン(AO付加物を含む)およびその塩、アルキルエーテルアミン(AO付加物を含む)およびその塩、アルキルアミドアミン(AO付加物を含む)およびその塩、アルキルエステルアミドアミン(AO付加物を含む)およびその塩、アルキルエーテルアミドアミン(AO付加物を含む)およびその塩等が挙げられる。前記塩の種類としては、例えば塩酸塩、リン酸塩、酢酸塩、アルキル硫酸エステル、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、脂肪酸、有機酸、アルキルリン酸エステル、アルキルエーテルカルボン酸、アルキルアミドエーテルカルボン酸、アニオン性オリゴマー、アニオン性ポリマー等が挙げられる。アルキルアミン誘導体型カチオン界面活性剤のうち、酢酸塩の具体例としては、例えばココナットアミンアセテート、ステアリルアミンアセテート等が挙げられる。上記アルキルアミン塩型およびアルキルアミン誘導体型カチオン界面活性剤におけるアルキル基は特に限定されるものではないが、通常炭素数8~22の、直鎖状、分岐鎖状またはゲルベ状のものが挙げられる。
 上記アルキルアミン塩型およびアルキルアミン誘導体型のカチオン界面活性剤の第4級化物としては、上記アルキルアミン塩およびアルキルアミン誘導体を、例えばメチルクロライド、メチルブロマイド、ジメチル硫酸、ジエチル硫酸等で第4級化したものが挙げられる。具体的には、ラウリルトリメチルアンモニウムハライド、セチルトリメチルアンモニウムハライド、ステアリルトリメチルアンモニウムハライド等のアルキルトリメチルアンモニウムハライド; ジステアリルジメチルアンモニウムハライド等のジアルキルジメチルアンモニウムハライド; トリアルキルメチルアンモニウムハライド; ジアルキルベンジルメチルアンモニウムハライド; アルキルベンジルジメチルアンモニウムハライド等が挙げられる。
 イミダゾリニウム塩型のカチオン界面活性剤としては、例えば2-ヘプタデセニル-ヒドロキシルエチルイミダゾリン等が挙げられる。
 上記例示の界面活性剤は、いずれか1種単独用いてもよく、2種以上組み合わせて用いてもよい。上記例示の界面活性剤の中でも、特に、pHが6.5~8.5の範囲において安定した界面活性を示すものとしては、例えば、ノニオン界面活性剤であるポリオキシエチレンノニルフェニルエーテル、アニオン界面活性剤であるポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム等が挙げられる。
 以上の界面活性剤の添加量としては、IRラテックス中での濃度で0.01~3質量%でもよく、0.05~2質量%でもよい。
 上記のように加熱攪拌した後、遠心分離を行うことにより、合成ポリイソプレンゴムが含まれるクリーム分と漿液であるセラム分とに分離する。得られたクリーム分に水を加えて再分散させることにより、精製合成ポリイソプレンゴムラテックス(精製IRラテックス)が得られる。
 加熱攪拌と遠心分離は複数回繰り返して実施してもよい。すなわち、IRラテックスを加熱攪拌し、遠心分離した後、クリーム分を再分散させる際にクリーム分に水と界面活性剤を加えて上記加熱条件下で攪拌し、次いで遠心分離を行い、この操作を複数回繰り返すようにしてもよい。繰り返し回数は特に限定されず、例えば、加熱攪拌及び遠心分離を2~5回実施してもよい。
 IRラテックスを遠心分離する条件は、クリーム分とセラム分に分離することができれば特に限定されず、例えば、遠心加速度は、5000~50000G(即ち49000~490000m/s)でもよく、7000~30000G(即ち68600~294000m/s)でもよい。また、遠心分離の時間は、例えば10~60分間でもよく、20~40分間でもよい。遠心分離の際の温度は、例えば10~40℃でもよく、20~35℃でもよい。
 上記のようにして調製する精製IRラテックスの濃度は、特に限定されず、例えば、ゴム濃度(DRC)で10~60質量%でもよく、20~50質量%でもよい。また、精製IRラテックスには、ビニルモノマーとの共重合反応を阻害しない界面活性剤として、上述した各種界面活性剤を添加してもよい。該界面活性剤の添加量としては、精製IRラテックス中での濃度で0.01~3質量%でもよく、0.05~2質量%でもよい。
(グラフト共重合)
 本実施形態では、上記で得られた精製IRラテックスにビニルモノマーを添加してグラフト共重合させる。精製IRラテックス中に含まれる合成ポリイソプレンゴム粒子表面にビニルモノマーをグラフトさせるためには、精製IRラテックスにビニルモノマーを加えるとともに適当な重合開始剤を加えて反応させればよい。
 ビニルモノマーとしては、合成ポリイソプレンゴム粒子表面にグラフト可能なものであれば特に限定されず、例えば、スチレン、メチルスチレン、エチルスチレン、プロピルスチレン、ブチルスチレン、ペンチルスチレン等のアルキルスチレンなどのスチレン系モノマー; ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルメチルジメトキシシランなどのビニルアルコキシシランモノマー; (メタ)アクリル酸、(メタ)アクリル酸メチル、2-ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸系モノマー; (メタ)アクリルアミド、アルキル(メタ)アクリルアミドなどの(メタ)アクリルアミド系モノマー; 酢酸ビニルなどのビニルエステル系モノマー; アクリロニトリルなどのニトリル系ビニルモノマー; ビニルピロリドン等が挙げられる。これらはいずれか1種用いてもよく、2種以上組み合わせて用いてもよい。ここで、「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸のうちの一方又は両方を意味し、「(メタ)アクリレート」とは、アクリレート及びメタクリレートのうちの一方又は両方を意味し、「(メタ)アクリルアミド」とは、アクリルアミド及びメタクリルアミドのうちの一方又は両方を意味する。
 ビニルモノマーの添加量は、特に限定されないが、合成ポリイソプレンゴム100質量部に対して5~30質量部であることが好ましく、より好ましくは10~20質量部である。このような添加量とすることで、ビニルモノマーのグラフト量を確保して改質効果を高めるとともに、ホモポリマーの生成を抑制してグラフト効率を高めることができる。
 重合開始剤としては、例えば、過酸化ベンゾイル、過酸化水素、クメンヒドロペルオキシド、tert-ブチルヒドロペルオキシド、ジ-tert-ブチルペルオキシド、2,2-アゾビスイソブチロニトリル、過硫酸カリウムなどの過酸化物が挙げられ、特にレドックス系の重合開始剤が重合温度を低減させる上で好ましい。レドックス系の重合開始剤において、過酸化物と組み合わされる還元剤としては、例えばテトラエチレンペンタミン、メルカプタン類、酸性亜硫酸ナトリウム、還元性金属イオン、アスコルビン酸などが挙げられる。レドックス系の重合性開始剤における組み合わせ例としては、tert-ブチルヒドロペルオキシドとテトラエチレンペンタミン、過酸化水素とFe2+塩、KSOとNaHSOなどが挙げられる。重合開始剤の添加量は、特に限定されず、例えば、ビニルモノマー100モルに対して0.3~10モル%でもよい。
 精製IRラテックス、ビニルモノマー及び重合開始剤を反応容器に仕込み、25~80℃で1~10時間反応を行わせることにより、合成ポリイソプレンゴム粒子表面にビニルモノマーをグラフト共重合してなる合成ポリイソプレン共重合体を含むラテックスが得られる。
 得られたラテックスにメタノールを加えて凝固させることにより固形状の合成ポリイソプレン共重合体を回収することができる。あるいはまた、上記ラテックスを用いてキャスト成形により、合成ポリイソプレン共重合体の膜(即ち、シートないしフィルム)を作製してもよい。
(合成ポリイソプレン共重合体)
 上記により得られる本実施形態に係る合成ポリイソプレン共重合体は、合成ポリイソプレンゴム粒子の表面にビニルモノマーがグラフト共重合されたものであり、合成ポリイソプレングラフト共重合体とも称される。該合成ポリイソプレン共重合体は、グラフト鎖により形成された厚さ1~100nmの連続相中に合成ポリイソプレンゴム粒子が相分離した状態で分散したナノマトリックス構造を有する。
 本実施形態に係る合成ポリイソプレン共重合体は、ナノマトリックス構造を有する合成ポリイソプレン共重合体のみからなるものでもよいが、該合成ポリイソプレン共重合体とともに上記ビニルモノマーからなるホモポリマーを含んでもよい。すなわち、上記のグラフト共重合に際しては、グラフト共重合体だけでなく、ビニルモノマーからホモポリマーも通常生成されるので、そのようなホモポリマーを混在した状態で含む混合物でもよい。従って、上記製造方法により得られる重合体は、合成ポリイソプレン共重合体を含むゴム材料ということもできる。ここで、ゴム材料とは、ゴム製品を製造する際に材料として用いるゴムのことをいう。
 かかるナノマトリックス構造を有する合成ポリイソプレン共重合体において、合成ポリイソプレンゴム粒子の粒径は、原料のIRラテックスの粒径に依存し、特に限定するものではないが、平均粒径が0.01~20μmでもよく、0.04~3.0μmでもよい。ここで、平均粒径は、透過型電子顕微鏡(TEM)の画像から、無作為抽出された100個の粒子の直径を計測することにより、その相加平均として求められる。粒子の直径は、例えば、MediaCybernetics社の画像処理ソフト「Image-Pro Plus」を用いて、粒子の外周の2点を結び、かつ重心を通る径を、2度刻みに測定した値の平均値とすることができる。なお、原料であるIRラテックスを用いて合成ポリイソプレンゴム粒子の粒径を測定する場合、レーザ回折式粒度分布測定装置を用いて測定したD50の値を用いればよい。
 上記ナノマトリックス構造において、ビニルモノマーの重合体であるグラフト鎖は、厚さ1~100nmの連続相(即ち、マトリックス相)を形成している。連続相は、合成ポリイソプレンゴム粒子の粒子間に介在してこれらゴム粒子を相分離するものであり、ゴム粒子の間に層状に形成されている。連続相の厚さが1~100nmであり、ナノメートルオーダーであるため、連続相はナノマトリックス相と称することができる。連続相の厚さは、より好ましくは5~50nmである。ここで、連続相の厚さは、透過型電子顕微鏡(TEM)の画像から、無作為抽出された100組のゴム粒子間に形成されたグラフト鎖の厚さを計測することにより、その相加平均として求められる。
 合成ポリイソプレン共重合体において、ビニルモノマーからなるグラフト鎖の含有率は、特に限定されず、例えば3~30質量%でもよく、5~25質量%でもよく、8~20質量%でもよい。ここで、グラフト鎖の含有率は、合成ポリイソプレン共重合体全体の質量に対するグラフト鎖部分の質量の比率である。
 一実施形態において、合成ポリイソプレン共重合体の膜を形成する場合、その膜の厚さは特に限定されず、例えば10~1000μmでもよく、10~500μmでもよい。
 本実施形態に係る合成ポリイソプレン共重合体は、ビニルモノマーがグラフト共重合されてなる上記のナノマトリックス構造を持つことにより、合成ポリイソプレンゴムの優れた性質を有するとともに、未変性の合成ポリイソプレンゴムと比較して、破断歪みと破断強度を向上することができる。
 本実施形態に係る合成ポリイソプレン共重合体の用途は、特に限定されず、空気入りタイヤなどのタイヤ、防振ゴム、コンドームやゴム手袋などの医療分野や家庭用品等の各種ゴム製品の材料として用いることができる。
 以下、実施例により合成ポリイソプレン共重合体及びその製造方法についてより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 原料IRラテックスとして、日本ゼオン(株)製のシス-1,4-ポリイソプレンゴムラテックス「ME1100」(TSC(全固形分):約56.4質量%)を用いた。また、ビニルモノマーとして、スチレンを10質量%水酸化ナトリウム水溶液で3回洗浄後、蒸留水で中性になるまで洗浄したものを用いた。
 図1に示す手順に従い、IRラテックスを精製し、スチレンのグラフト共重合を行った。詳細は以下の通りである。
 原料IRラテックスに、ドデシル硫酸ナトリウム(SDS)(1級、キシダ化学(株)製)と蒸留水を加えて、SDSの濃度を1質量%かつTSCを30質量%に調製した。得られたTSC30質量%のIRラテックスに対し、攪拌温度を50℃に設定した上で、攪拌機を用いて、常圧、200rpmで60分攪拌した。その後、IRラテックスに遠心分離(10000G、30℃、30分)を行い、クリーム分とセラム分に分離した。このクリーム分に対し、蒸留水とSDSを加えて、SDSの濃度が0.5質量%かつDRCが30質量%となるように再分散させ、得られたIRラテックスに対し、常圧、50℃、200rpmで60分攪拌した後、遠心分離(10000G、30℃、30分)を行った。この再分散、加熱攪拌及び遠心分離をもう一回繰り返した後、最後の遠心分離によって得られたクリーム分に、蒸留水とSDSを加えて、SDSの濃度が0.1質量%かつDRCが30質量%となるように再分散させて、精製IRラテックスを得た。
 精製IRラテックスを30℃かつ200rpmで撹拌しながら1時間窒素置換した。その後、重合開始剤としてtert-ブチルヒドロペルオキシド(TBHPO)(純度67%、キシダ化学(株)製)及びテトラエチレンペンタミン(TEPA)(含有率95%、キシダ化学(株)製)を、それぞれIRラテックス中のゴム1kgに対して6.6×10-2モルにて順次滴下した。更に、IRラテックス中のゴム1kgに対して1.5モルのスチレンを滴下した。窒素雰囲気下、30℃かつ400rpmで2時間重合反応を行った。反応終了後のラテックスに対してロータリーエバポレーターを用いて90℃で未反応のスチレンモノマーを取り除き、合成ポリイソプレン共重合体を含むラテックス(IR-graft-PSラテックス)を得た。その後、反応装置内に残ったゴム分をメタノールで凝固させて回収することにより、合成ポリイソプレン共重合体を得た。
(実施例2~4)
 実施例1において、IRラテックスの精製工程での攪拌温度を下記表1の通り、実施例2では65℃、実施例3では80℃、実施例4では90℃に変更し、その他は実施例1と同様にして、合成ポリイソプレン共重合体を作製した。
(スチレン含有率、スチレン反応率、グラフト効率)
 実施例1~4について、スチレン含有率、スチレン反応率、及びグラフト効率を表1に示す。スチレン含有量及びスチレン反応率の計算式は以下の通りである。
Figure JPOXMLDOC01-appb-M000001
 グラフト効率は次のようにして求めた。なお、いくつかの試料については、FT-IRおよびNMR測定によりグラフトされていることを確認した。合成ポリイソプレン共重合体を含むラテックスをシャーレにキャストし、1週間真空乾燥させ、厚さ1mmのアズキャストフィルムを得た。得られたアズキャストフィルムの約1gを約1mm四方に細かく切り、ソックスレー抽出器を用いて遮光しながら窒素雰囲気下でアセトン/2-ブタノン混合溶液(3:1)溶液を還流することにより24時間抽出を行った。これにより可溶であるスチレンホモポリマーを不溶であるグラフト共重合体から取り除いた。下記計算式によりグラフト効率を算出した。ここで、Wbはソックスレー抽出前のサンプル質量(g)、Waはソックスレー抽出後のサンプル質量(g)、Ymはスチレン含有率(%)である。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-T000003
 表1に示されたように、より高い温度で撹拌した精製IRラテックスは反応率及びグラフト効率がより高いことが分かる。この結果から、精製工程において高温で撹拌するとIRラテックスに含まれているロジン系界面活性剤を除去できていることが考えられる。また、撹拌温度を90℃にしたものは最も高い反応率及びグラフト効率を示し、57.1質量%のスチレンがグラフト反応した合成イソプレングラフト共重合体を得ることができた。
 撹拌温度80℃の場合、50℃の場合よりも反応率が低かった。その理由は明らかではないが、ロジン酸の軟化点が80℃近傍であることから、軟化点で何かしらの反応が起きている可能性が考えられる。この結果より、加熱条件としては、50℃以上70℃以下、又は、85℃以上100℃未満であることがより好ましいといえる。
(モルフォロジー観察)
 実施例1~4で得られた合成ポリイソプレン共重合体を含むラテックスに所定のガラス型を浸漬し、加熱乾燥して厚さ約1mmのゴム膜(キャストフィルム)を作製した。得られたゴム膜をOsOにて染色してからクライオミクロトーム(Reichert-Nissi製Ultracut N)を用いて超薄切片を作製し、透過型電子顕微鏡(TEM,日本電子(株)製JEM-2100、加速電圧200kV)にて相分離構造を観察した。
 その結果、実施例1~4のゴム膜中では、合成ポリイソプレンゴム粒子はグラフトしているポリスチレンと相分離しており、厚さ数nm~数十nmのグラフトスチレン連続相中に直径約1μm程度の合成ポリイソプレンゴム粒子が分散したものであり、グラフトスチレン連続相と合成ポリイソプレンゴム粒子分散相との相分離状態が観察された。図2は、実施例4で得られたゴム膜の透過型電子顕微鏡写真である。黒い相が合成ポリイソプレンゴム粒子、白い相がポリスチレンを示す。
(引張試験)
 上記で作製した実施例3のゴム膜と、原料IRラテックスから作製したゴム膜(比較例1)について、JIS K6251に準拠した引張試験(一軸伸長試験)を行い、引張歪みと引張応力との関係を調べた。比較例1では、ラテックスとして原料IRラテックスを用い、その他は実施例3と同様にして、該原料IRラテックスに所定のガラス型を浸漬し、加熱乾燥することにより厚さ約1mmのゴム膜(キャストフィルム)を作製した。
 引張試験の結果を図3に示す。引張試験は、実施例3及び比較例2のそれぞれについて5回行い、破断時の引張応力(破断応力)及び破断時の引張歪み(破断歪み)について5回の平均値を算出した。図3は5回の引張試験のうちの1回の歪み-応力曲線を示す。
 その結果、比較例1では破断歪み及び破断応力がそれぞれ850%及び0.12MPaであった。これに対し、実施例3では破断歪み及び破断応力がそれぞれ1000%及び0.52MPaであり、比較例1よりも高かった。この結果から、合成ポリイソプレンゴムにスチレンをグラフト共重合させてナノマトリックス構造が形成されたことにより、合成ポリイソプレンゴムの破断歪みと破断強度が大きくなることが分かった。
 また、比較例1の歪み-応力曲線において歪み150%あたりで引張応力が大きく下がったのに対し、実施例3では引張応力が下がっておらず、ナノマトリックス構造の形成の有無により物性が大きく変化していた。
(実施例5)
 ビニルモノマーとしてケイ素含有ビニルモノマーであるビニルトリエトキシシラン(VTES)を用い、合成ポリイソプレンゴムラテックスに対するグラフト共重合を試みた。ビニルトリエトキシシランは重合によりシリカを生成するため、グラフト共重合により得られるナノマトリックス構造は、厚さ数nm~数十nmのシリカナノ粒子が充填されたマトリックスに、平均直径1μm程度の合成ポリイソプレンゴム粒子を分散させることによって形成されるナノ相分離構造となる。かかるシリカナノマトリックス構造を有する合成ポリイソプレングラフト共重合体(IR-graft-PVTES)の調製を試みた。
 実施例3と同様に攪拌温度を80℃として、精製IRラテックスを得た(但し、DRCは20質量%とした)。該精製IRラテックスをセパラブルフラスコに入れ、30分間窒素置換し、更に200rpmで撹拌しながら30分間窒素置換を行った。窒素雰囲気下において200rpmで撹拌しながら、重合開始剤としてtert-ブチルヒドロペルオキシド(TBHPO)(純度67%、キシダ化学(株)製)及びテトラエチレンペンタミン(TEPA)(含有率95%、キシダ化学(株)製)を、それぞれIRラテックス中のゴム1kgに対して6.6×10-2モルにて順次滴下した。更に、IRラテックス中のゴム1kgに対して1.05モルのビニルトリエトキシシラン(VTES)モノマーを順次滴下し、30℃で2時間重合を行った。反応終了後、未反応モノマーを80℃で減圧除去し、ラテックスをシャーレ上にキャスト、風乾してから、50℃で減圧乾燥することにより、合成ポリイソプレン-ポリビニルトリエトキシシラングラフト共重合体(IR-graft-PVTES)のフィルムを成膜した。
 調整したIR-graft-PVTES試料のモノマー反応率及びシリカ含有率を下記計算式で算出した。
Figure JPOXMLDOC01-appb-M000004
 灰分含有率は、精製IRラテックスから作製したフィルム(IR試料)中に含まれる灰分の含有率であり、該IR試料1gを細断してから恒量に達したるつぼに移し、蓋をしない状態でガスバーナーを用いて弱火で加熱した。白煙が上がらなくなってから蓋をし、30分間程度強熱後、恒量に達するまで繰り返し強熱した。得られた残留物重量(加熱後灰分の質量)からIR試料の灰分含有率を算出した。シリカ含有率は、IR-graft-PVTES試料に対して、IR試料と同様に求めた残留物重量(加熱後全固体質量)からIR試料の灰分量を減算することにより算出した。
 その結果、実施例5で得られたIR-graft-PVTES試料のモノマー反応率は50%、シリカ含有率は5.66質量%であった。
 IR試料とIR-graft-PVTES試料のゲル含有率を測定した。試料40mgを秤とり、乾燥トルエン40mlに浸漬してから暗所で一週間静置した。その後、10,000Gで30分間遠心分離することにより、トルエン不溶分(ゲル分)をトルエン可溶分(ゾル分)から分離した。ゲル分は、一週間減圧乾燥してから、精秤した。そして、下記計算式によりゲル含有率を算出した。
Figure JPOXMLDOC01-appb-M000005
 その結果、原料であるIR試料のゲル含有率が3.58%に対して、IR-graft-PVTES試料のゲル含有率は18.17%であり、大きく増加した。これは、ゴム粒子とモノマーをグラフトし、ゴム粒子が架橋されたことによると考えられる。
 IR-graft-PVTES試料について、クライオミクロトーム(Reichert-Nissi製Ultracut N)を用いて超薄切片を作製し、透過型電子顕微鏡(TEM,日本電子(株)製JEM-2100、加速電圧200kV)にてモルフォロジー観察を行った。図4にIR-graft-PVTES試料の5000倍及び10000倍で撮影したTEM画像を示す。画像中の白い領域がゴム相、黒い領域がシリカ相である。5000倍の画像(A)には、全体的に明確なナノマトリックス構造を確認できなかったが、一部のシリカ粒子がゴム粒子の周りに存在していることを観察できた。該シリカ粒子はおそらくグラフトしてないホモポリマーの塊であると考えられる。10000倍の画像(B)では、直径数nmのシリカ粒子により形成した薄い凝集相が多少ゴム粒子の間に存在しており、マトリックスを構成するグラフト鎖のシリカであることが分かる。
 IR-graft-PVTES試料について、東洋精機製ストログラフVG10Eを用いてJIS K6251に準じて引張試験を行った。IR-graft-PVTES試料をダンベル状7号形で打ち抜き、室温下、引張速度200mm/分で引張試験を行った。
 図5にIR試料とIR-graft-PVTES試料の応力―歪曲線を示す。これらの試料は加硫されていないため、引っ張られるとき分子鎖が流れてしまい、そのため滑らかな曲線を得られなかった。更に、破断応力が低すぎるので、試料片が切られても試験機が感知しなかったことから、確実な破断応力を測定できなかった。しかしながら、全体的にIR-graft-PVTESの応力―歪曲線はIR試料を上回っていた。一定の歪でIR-graft-PVTES試料の応力がIR試料の応力より2倍ほど高くなった。また立ち上がり部分の曲線を見ると、IR-graft-PVTES試料の弾性率はIR試料より高くなった。これは、TEM画像からわかった少量のナノマトリックスの形成およびシリカ粒子の充填によりある程度の補強効果を示したためと考えられる。
 以上、本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその省略、置き換え、変更などは、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (6)

  1.  合成ポリイソプレンゴムラテックスを50℃以上の加熱条件下で攪拌し、遠心分離することにより精製すること、及び、
     得られた精製合成ポリイソプレンゴムラテックスにビニルモノマーを添加してグラフト共重合させること、
     を含む合成ポリイソプレン共重合体の製造方法。
  2.  前記合成ポリイソプレンゴムラテックスが、ロジン系界面活性剤を含む合成ポリイソプレンゴムラテックスである、請求項1に記載の製造方法。
  3.  前記ビニルモノマーが、スチレン系モノマー及びビニルアルコキシシランモノマーからなる群から選択される少なくとも1種である、請求項1又は2に記載の製造方法。
  4.  前記加熱条件が、60℃以上70℃以下、又は、85℃以上100℃未満である、請求項1~3のいずれか1項に記載の製造方法。
  5.  合成ポリイソプレンゴム粒子の表面にビニルモノマーがグラフト共重合された合成ポリイソプレン共重合体からなり、グラフト鎖により形成された厚さ1~100nmの連続相中に合成ポリイソプレンゴム粒子が相分離した状態で分散したナノマトリックス構造を有する、合成ポリイソプレン共重合体。
  6.  前記ビニルモノマーが、スチレン系モノマー及びビニルアルコキシシランモノマーからなる群から選択される少なくとも1種である、請求項5に記載の合成ポリイソプレン共重合体。
PCT/JP2018/000217 2018-01-09 2018-01-09 合成ポリイソプレン共重合体及びその製造方法 WO2019138449A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019565096A JP7017589B2 (ja) 2018-01-09 2018-01-09 合成ポリイソプレン共重合体及びその製造方法
PCT/JP2018/000217 WO2019138449A1 (ja) 2018-01-09 2018-01-09 合成ポリイソプレン共重合体及びその製造方法
US16/954,382 US20210079148A1 (en) 2018-01-09 2018-01-09 Synthetic polyisoprene copolymer and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000217 WO2019138449A1 (ja) 2018-01-09 2018-01-09 合成ポリイソプレン共重合体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2019138449A1 true WO2019138449A1 (ja) 2019-07-18

Family

ID=67218936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000217 WO2019138449A1 (ja) 2018-01-09 2018-01-09 合成ポリイソプレン共重合体及びその製造方法

Country Status (3)

Country Link
US (1) US20210079148A1 (ja)
JP (1) JP7017589B2 (ja)
WO (1) WO2019138449A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021257482A1 (en) * 2020-06-14 2021-12-23 Bridgestone Corporation Methods for producing polyisoprene latex dispersions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845778B (zh) * 2021-10-14 2023-01-06 上海云橡油脂工业有限公司 一种高弹耐磨高分子橡胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301947A (ja) * 1995-05-08 1996-11-19 Denki Kagaku Kogyo Kk ゴム強化熱可塑性樹脂組成物の製造方法
JP2003012736A (ja) * 2001-04-25 2003-01-15 Sumitomo Rubber Ind Ltd ゴム製品
JP2004155884A (ja) * 2002-11-06 2004-06-03 Nagaoka Univ Of Technology ナノマトリックス分散天然ゴム及びその製造方法
JP2008214481A (ja) * 2007-03-02 2008-09-18 Toyota Motor Corp ナノマトリックス分散天然ゴム及びその製造方法
WO2017159534A1 (ja) * 2016-03-15 2017-09-21 日本ゼオン株式会社 重合体ラテックスの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3409719B1 (en) 2016-01-27 2021-09-01 Zeon Corporation Latex composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301947A (ja) * 1995-05-08 1996-11-19 Denki Kagaku Kogyo Kk ゴム強化熱可塑性樹脂組成物の製造方法
JP2003012736A (ja) * 2001-04-25 2003-01-15 Sumitomo Rubber Ind Ltd ゴム製品
JP2004155884A (ja) * 2002-11-06 2004-06-03 Nagaoka Univ Of Technology ナノマトリックス分散天然ゴム及びその製造方法
JP2008214481A (ja) * 2007-03-02 2008-09-18 Toyota Motor Corp ナノマトリックス分散天然ゴム及びその製造方法
WO2017159534A1 (ja) * 2016-03-15 2017-09-21 日本ゼオン株式会社 重合体ラテックスの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021257482A1 (en) * 2020-06-14 2021-12-23 Bridgestone Corporation Methods for producing polyisoprene latex dispersions

Also Published As

Publication number Publication date
JP7017589B2 (ja) 2022-02-08
US20210079148A1 (en) 2021-03-18
JPWO2019138449A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
EP1711536B1 (fr) Procede de polymerisation radicalaire en emulsion mettant en oeuvre des alcoxyamines hydrosolubles
Chinthamanipeta et al. Synthesis of poly (methyl methacrylate)–silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization
EP0249554B1 (fr) Procédé d'agglomération d'un latex, latex aggloméré obtenu et son application à la modification de matrices thermoplastiques pour les rendre résistantes au choc
JP6595603B2 (ja) ゴム質重合体とその製造方法、グラフト共重合体及び熱可塑性樹脂組成物
CN109642054A (zh) 橡胶组合物
US20160137755A1 (en) Surfactant composition
WO2019138449A1 (ja) 合成ポリイソプレン共重合体及びその製造方法
JP5270101B2 (ja) ナノマトリックス分散天然ゴム及びその製造方法
JP5658169B2 (ja) 乳化重合における単量体転化率の増加方法
Watcharakul et al. In situ silica reinforcement of methyl methacrylate grafted natural rubber by sol–gel process
WO2015121224A1 (fr) Procédé de préparation de polymères diéniques porteurs de fonctions phosphorées, produits issus de ce procédé et composition les contenant.
Yimmut et al. Poly (butyl acrylate-co-fluorinated acrylate)-graft-natural rubber: Synthesis and application as compatibilizer for natural rubber/poly (butyl acrylate-co-fluorinated acrylate) films
Jaimuang et al. Kinetic studies of styrene-grafted natural rubber emulsion copolymerization using transmission electron microscope and thermal gravimetric analysis
WO2008090119A1 (en) Process for preparing high impact monovinylaromatic polymers in the presence of a borane complex
JPH035405B2 (ja)
KR101487573B1 (ko) 개질 천연고무입자, 이의 제조방법, 및 개질 천연고무 라텍스
EP3105260A1 (fr) Polymère polyphosphoré fonctionnalisé thiol en extrémité de chaîne et son procédé d'obtention
TW201714899A (zh) 被覆聚合物粒子、樹脂改質劑、橡膠組成物及輪胎
JPS61148213A (ja) 耐衝撃性ポリスチレン系樹脂およびその製造法
JP2022087684A (ja) 合成ポリイソプレン共重合体の製造方法
US20140031495A1 (en) Novel composition for the production of vinylaromatic materials with impact strength improved by a structure-modifying additive
JPS5845212A (ja) 新規エラストマ−の製造方法
CN113880987A (zh) 一种橡胶用无机填料大分子改性剂及其制备方法、改性无机填料及应用
WO2009091124A2 (en) Impact strength modifiers for thermoplastic polyester and thermoplastic polyester resin composition containing the same
JPH0827227A (ja) ゴムラテックスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565096

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899288

Country of ref document: EP

Kind code of ref document: A1