WO2019136945A1 - 碳纳米管材料的自修复方法、碳纳米管复合材料及其应用 - Google Patents

碳纳米管材料的自修复方法、碳纳米管复合材料及其应用 Download PDF

Info

Publication number
WO2019136945A1
WO2019136945A1 PCT/CN2018/095016 CN2018095016W WO2019136945A1 WO 2019136945 A1 WO2019136945 A1 WO 2019136945A1 CN 2018095016 W CN2018095016 W CN 2018095016W WO 2019136945 A1 WO2019136945 A1 WO 2019136945A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
branched
nanotube aggregate
region
self
Prior art date
Application number
PCT/CN2018/095016
Other languages
English (en)
French (fr)
Inventor
张骁骅
张鑫
李清文
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Publication of WO2019136945A1 publication Critical patent/WO2019136945A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present application relates to a carbon nanotube material, in particular to a self-repairable carbon nanotube material, a preparation method thereof and an application thereof.
  • Self-healing materials are a class of smart materials with structural self-healing capabilities that can repair themselves after structural damage, and the repair process must be attended without human intervention. Due to this property of the self-healing material, it can have a long service life and can reduce the loss due to material scrap.
  • the self-healing materials that have been reported so far mainly include some polymer materials and ceramic materials.
  • the self-repairing methods of traditional polymer materials mainly include microcapsule repair and reversible self-repair.
  • the microcapsule repair technology mainly uses microcapsules to encapsulate or incorporate a healing agent to achieve self-healing. When the damage crack occurs, the microcapsule rupture and exudation healing agent can be polymerized under the action of catalyst or light, electricity and heat. , to achieve the repair effect. Since the type and amount of the repair agent must be selected according to the matrix resin and the capsule material, this greatly limits the development of this repair form.
  • the reversible self-repairing technology is mainly based on polymer hydrogen bonding or self-repairing by chemical bond recombination such as polymerization reaction and complexation reaction of coordination compound. This self-repairing technology is generally applicable to flexible polymer material systems, such as gelatinous.
  • the material system has a mechanical strength of less than a few megapascals and is mainly used in repairable electrodes, sensors, electronic skin, packaging and other fields.
  • one of the main purposes of the present application is to provide a self-repairing method of carbon nanotube materials.
  • the second object of the present application is to provide a method of joining carbon nanotube materials.
  • the third main purpose of the present application is to provide a carbon nanotube composite material having self-repairing ability.
  • the fourth object of the present application is to provide a method of preparing the carbon nanotube composite material.
  • a fifth object of the present application is to provide the use of the carbon nanotube composite.
  • the technical solution adopted by the present application includes:
  • the embodiment of the present application provides a self-repairing method for a carbon nanotube material, including:
  • the self-healing method further comprises: contacting a first fracture end at a split of the carbon nanotube aggregate with a second fracture end, and at the first fracture end and the second fracture The branched macromolecule and/or the branched polymer is applied at the interface of the end.
  • the self-healing method can include: driving the branched macromolecule and/or the branched polymer to occur by using at least one of hydrazine, pressing, rubbing, and tapping. The movement.
  • the self-healing method may further include removing the branched macromolecules distributed in the carbon nanotube aggregates and/or after self-repairing of the carbon nanotube aggregates is completed. Or branched polymer.
  • the embodiment of the present application further provides a method for connecting carbon nanotube materials, including:
  • the branched macromolecule and/or the branched polymer are driven to move, thereby inducing the carbon nanotube aggregate structure distributed in the first region and the second region to form an integrated network structure by reconstitution.
  • the joining method may specifically include: driving the branched macromolecule and/or the branched polymer to occur by using at least one of hydrazine, pressing, rubbing, and tapping. The movement.
  • the joining method may further include: after completing the joining of the first carbon nanotube aggregate and the second carbon nanotube aggregate, removing the first carbon nanotube aggregate and the first The branched macromolecule and/or branched polymer of the junction region of the two carbon nanotube aggregates.
  • the embodiment of the present application further provides a carbon nanotube composite material formed by any one of the foregoing self-repairing methods or by any one of the foregoing connection methods, the carbon nanotube composite material comprising carbon nanotube aggregates and distributed on the carbon A branched macromolecule and/or a branched polymer in a localized region of the nanotube aggregate.
  • the embodiment of the present application further provides a self-repairable carbon nanotube composite material, including:
  • a branched macromolecule and/or a branched polymer distributed in a connection region of the adjacent two carbon nanotube aggregation regions is a branched macromolecule and/or a branched polymer distributed in a connection region of the adjacent two carbon nanotube aggregation regions.
  • the carbon nanotube aggregate includes a first carbon nanotube aggregate and a second carbon nanotube aggregate, the first carbon nanotube aggregate including a first carbon nanotube aggregate region,
  • the second carbon nanotube aggregate includes a second carbon nanotube aggregation region, and the first carbon nanotube aggregation region is connected to the second carbon nanotube aggregation region, the branched macromolecule and/or the branched polymer And distributed in a connection region of the first carbon nanotube aggregation region and the second carbon nanotube aggregation region.
  • the embodiment of the present application further provides a preparation method for preparing the foregoing carbon nanotube composite material, which comprises:
  • the embodiments of the present application also provide the use of the carbon nanotube composite material, for example, in the preparation of a vibration damping functional material.
  • the present invention enables the carbon nanotube network to be reconstructed after damage by the induction of branched macromolecules and/or branched polymers, thereby achieving high strength (mechanical strength at several hundred MPa). And even more than GPa), the self-repair of high modulus carbon nanotube materials, and the composite materials of such branched macromolecules and/or branched polymers and carbon nanotube networks also exhibit high viscoelasticity and high damping. The characteristics can be applied as a new damping function material.
  • FIG. 1 is a schematic view showing the principle of repairing a carbon nanotube material by using a branched macromolecule and/or a branched polymer in an embodiment of the present application.
  • 2a is a physical photograph of a carbon nanotube film material before and after repair using an edge-to-edge method in an embodiment of the present application.
  • FIG. 2b is a photograph of a physical object before and after repair of a carbon nanotube film material by a superposition method according to an embodiment of the present application.
  • FIG. 3 is a test diagram of mechanical properties of a carbon nanotube film material repaired by an edge-to-edge method and a superposition method in some embodiments of the present application.
  • 4a-4b are structural views of a carbon nanotube network structure before and after drawing with polyethyleneimine in an embodiment of the present application.
  • FIG. 5 is a carbon nanotube film original film according to an embodiment of the present invention and after drawing 22% of the film, the carbon nanotube film original film is stretched by 40% after being impregnated with polyethyleneimine, and 40% is drawn after being impregnated and heated. Mechanical test curve after removal of polyethyleneimine.
  • 6a-6b are graphs showing the cyclic tensile test of the carbon nanotube film before and after impregnation with polyethyleneimine in an embodiment of the present application.
  • FIG. 1 is mainly used to introduce a branched macromolecule or a polymer at a fracture or a crack of a carbon nanotube material, and utilizes a large branched shape.
  • the flow characteristics of molecules or polymers drive the reconstitution of carbon nanotube networks. More specifically, they use the induction of branched macromolecules or macromolecules to improve the mobility of carbon nanotubes at fractures or cracks. The reconfiguration of the carbon nanotube network finally completes the self-repair of the carbon nanotube material.
  • the self-healing method may further include: contacting a first fracture end at a split of the carbon nanotube aggregate with a second fracture end, and at the first fracture end and the second The branched macromolecule and/or the branched polymer is applied between the fracture ends.
  • the self-repairing method may specifically include: splicing a first fracture end and a second fracture end at a split of the carbon nanotube aggregate, and splicing at the first fracture end and the second fracture end
  • the branched macromolecule and/or the branched polymer is applied.
  • the self-repairing method may specifically include: overlapping (or fitting) the first fracture end at the split of the carbon nanotube aggregate with the second fracture end, and overlapping the two The branched macromolecule and/or the branched polymer is applied at a location (or a fit).
  • the self-healing method can include: being in the form of a fluid or a paste under set temperature conditions (eg, at room temperature or at a melting temperature of a branched macromolecule and/or a branched polymer)
  • set temperature conditions eg, at room temperature or at a melting temperature of a branched macromolecule and/or a branched polymer
  • the branched macromolecules and/or branched polymers are directly applied to the breaks of the carbon nanotube aggregates to be repaired.
  • the self-healing method can include applying the branched macromolecular and/or branched polymer fluid or paste to the fracture of the carbon nanotube aggregate to be repaired.
  • the self-healing method may specifically include: applying a solution of the branched macromolecule and/or a branched polymer to a fracture of the carbon nanotube aggregate to be repaired.
  • the self-repairing method may specifically include: driving the branched macromolecule and/or the branched polymer by using at least one of hydrazine, pressing, rubbing, and tapping. The movement described.
  • branched macromolecule and/or the branched polymer may include polyethyleneimine, polyethylene polyamine or polypropyleneimine, and the like, and is not limited thereto.
  • the carbon nanotube aggregates may be in various forms, such as a film shape, a sheet shape, a block shape, a fiber shape, and the like, and are not limited thereto.
  • the self-healing method may further include removing the branched macromolecules distributed in the carbon nanotube aggregates and/or after self-repairing of the carbon nanotube aggregates is completed. Or a branched polymer, so as to avoid the possible side effects of the remaining polymer, so that the self-healing carbon nanotube material still at least substantially maintains the original comprehensive properties, such as mechanical and electrical properties.
  • the self-healing method may further include: stretching the carbon nanotube aggregate after the self-repair of the carbon nanotube aggregate is completed.
  • most of the carbon nanotubes are caused by the action of the branched macromolecules and/or branched polymers. It is oriented.
  • the branched macromolecule and/or the branched polymer distributed in the carbon nanotube aggregate may be removed.
  • the self-repairing method may specifically include: removing at least a heat source to heat the carbon nanotube aggregates to a sufficiently high temperature or removing a sufficiently large current in the carbon nanotube aggregates.
  • the branched macromolecule and/or the branched polymer may specifically include: removing at least a heat source to heat the carbon nanotube aggregates to a sufficiently high temperature or removing a sufficiently large current in the carbon nanotube aggregates.
  • the branched macromolecule and/or the branched polymer are driven to move, thereby inducing the carbon nanotube aggregate structure distributed in the first region and the second region to form an integrated network structure by reconstitution.
  • first carbon nanotube aggregate and the second carbon nanotube aggregate each comprise a network structure formed by aggregation of a plurality of carbon nanotubes.
  • the connecting method may specifically include: splicing the first region and the second region, and applying the branched macromolecule and/or the branched polymer at a joint of the two.
  • the connecting method may specifically include: fitting (or overlapping) the first region and the second region, and applying the branching at a joint (or a lap joint) of the two.
  • Macromolecules and/or branched polymers may specifically include: fitting (or overlapping) the first region and the second region, and applying the branching at a joint (or a lap joint) of the two.
  • the connecting method may specifically include: forming a fluid or paste branch under a set temperature condition (for example, a room temperature or a melting temperature of a branched macromolecule and/or a branched polymer)
  • a set temperature condition for example, a room temperature or a melting temperature of a branched macromolecule and/or a branched polymer
  • the macromolecule and/or the branched polymer are directly applied at the interface between the first region and the second region.
  • the connecting method may specifically include: applying the branched macromolecule and/or the branched polymer fluid or paste between the first region and the second region.
  • the joining method may include applying a solution of the branched macromolecule and/or a branched polymer between the first region and the second region.
  • the joining method may specifically include: driving, for example, but not limited to, rubbing, pressing, rubbing, or tapping, to drive the branched macromolecule and/or the branched polymer to occur. The movement described.
  • branched macromolecule and/or the branched polymer may include polyethyleneimine, polyethylene polyamine or polypropyleneimine, and the like, and is not limited thereto.
  • the carbon nanotube aggregates may be in various forms such as a film shape, a sheet shape, a block shape, a fiber shape, and the like, and are not limited thereto.
  • the joining method may further include: after completing the joining of the first carbon nanotube aggregate and the second carbon nanotube aggregate, removing the first carbon nanotube aggregate and the first The branched macromolecule and/or branched polymer of the junction region of the two carbon nanotube aggregates.
  • the joining method may further include: after completing the joining of the first carbon nanotube aggregate and the second carbon nanotube aggregate, the obtained connecting body is subjected to a stretching treatment.
  • the branched macromolecule and/or the branched polymer distributed in the linker are removed.
  • the connecting method may include: heating at least a connection region of the first carbon nanotube aggregate and the second carbon nanotube aggregate to a sufficiently high temperature or aggregating at the first carbon nanotube
  • the branched region of the body and the second carbon nanotube aggregate is passed through a sufficiently large current to remove the branched macromolecule and/or the branched polymer.
  • first carbon nanotube aggregate and the second carbon nanotube aggregate may also be integrally provided, but the first region of the first carbon nanotube aggregate and the second carbon nanotube aggregate The second area is not directly connected.
  • the first carbon nanotube aggregate and the second carbon nanotube aggregate may belong to the same carbon nanotube paper or carbon nanotube film, and the first region and the second region may be the carbon nanotube paper.
  • the carbon nanotube paper or the carbon nanotube film can be formed by connecting the first region and the second region with the branched macromolecule and/or the branched polymer at both ends of the carbon nanotube film.
  • a carbon nanotube member having a specific shape such as a seamless cylindrical shape or a ring structure is formed, thereby satisfying the needs of practical special applications.
  • the first carbon nanotube aggregate and the second carbon nanotube aggregate are discrete, and the carbon nanotube aggregates can be seamlessly spliced, overlapped, or The combination can realize the preparation of large-area and large-volume carbon nanotube materials which maintain high strength, high modulus and the like conveniently, efficiently and at low cost.
  • the embodiment of the present application further provides a carbon nanotube composite material formed by any one of the foregoing self-repairing methods or by any one of the foregoing connection methods, the carbon nanotube composite material comprising carbon nanotube aggregates and distributed on the carbon A branched macromolecule and/or a branched polymer in a localized region of the nanotube aggregate.
  • a carbon nanotube aggregate comprising two carbon nanotube aggregation regions in proximity or contact with each other;
  • the carbon nanotube aggregate includes a first carbon nanotube aggregate and a second carbon nanotube aggregate, the first carbon nanotube aggregate including a first carbon nanotube aggregate region,
  • the second carbon nanotube aggregate includes a second carbon nanotube aggregate region that is in close contact or contact with the second carbon nanotube aggregate region, the branched macromolecule and/or branch
  • the polymer is distributed between the first carbon nanotube aggregation region and the second carbon nanotube aggregation region.
  • first carbon nanotube aggregation region is spliced, overlapped or bonded to the second carbon nanotube aggregation region.
  • the carbon nanotube aggregates comprise a network structure formed by aggregation of a plurality of carbon nanotubes.
  • branched macromolecule and/or the branched polymer may include polyethyleneimine, polyethylene polyamine or polypropyleneimine, and the like, and is not limited thereto.
  • the carbon nanotube aggregates may be in various forms such as a film shape, a sheet shape, a block shape, a fiber shape, and the like, and are not limited thereto.
  • the carbon nanoparticle is improved by a branched macromolecule or a branched polymer.
  • the mechanical properties of the tube network reconstruction can realize the viscoelasticity of the carbon nanotube network and give it high damping characteristics, so that it can be applied to vibration damping and other fields.
  • the embodiments of the present application provide the use of the carbon nanotube composite material in preparing a vibration damping functional material.
  • the embodiment of the present application further provides a vibration damping functional material including the carbon nanotube composite material.
  • the embodiment of the present application further provides a device comprising the carbon nanotube composite material or the vibration damping functional material.
  • the embodiment of the present application further provides a method for preparing the carbon nanotube composite material, including:
  • branched polyethyleneimine (molecular weight of about 1K-50k Daltons) can be dissolved in ethanol to prepare a polyethyleneimine solution having a concentration of 0.05 wt/% to 1 wt/%. Then, these polyethyleneimine solutions are used to perform self-healing or joining of carbon nanotube materials, such as carbon nanotube films.
  • the fracture of the carbon nanotube film can be spliced side to side, and the aforementioned polyethyleneimine solution is applied to the splicing portion, and then gently pressed and/or appropriately raked,
  • the self-repair of the carbon nanotube film can be achieved by friction and the thermal movement of the branched polyethyleneimine polymer at the auxiliary splicing, and there is no splicing trace at the fracture.
  • the self-repairing carbon nanotube material may be heated or a sufficiently large current may be introduced into the self-repairing carbon nanotube material to remove the branched macromolecules remaining therein and/or Branched polymer.
  • the introduced branching polymerization can be removed.
  • Ethylene imine polymer for the aforementioned self-repairing carbon nanotube film material, after appropriate temperature treatment (300-350 ° C) or current treatment (for example, the current density may be about 350 A/cm 2 ), the introduced branching polymerization can be removed. Ethylene imine polymer.
  • Fig. 3 is a view showing the mechanical properties of some of the carbon nanotube film materials (the branched polyethyleneimine polymer from which the self-repairing has been removed) by the aforementioned edge-to-edge method and the superposition method in the foregoing embodiment.
  • the self-repairing carbon nanotube material may be subjected to a stretching treatment, and the inventors have found that in the carbon nanotube network structure reconstructed at the repairing portion, the carbon nanotubes are highly oriented after the stretching treatment.
  • the structure may be attributed to the stretching effect of the branched polyethyleneimine polymer on the carbon nanotubes.
  • 4a-4b respectively show the morphology of the above-mentioned restructured carbon nanotube network structure after being subjected to stretching treatment, stretching treatment, and removing the branched polyethyleneimine polymer by the foregoing scheme.
  • the carbon nanotube network structure reconstructed here exhibits high viscoelastic properties and high damping properties. It is expected to be applied as a new damping function material.
  • the polyethyleneimine polymer is replaced by a polyethylene polyamine or a polypropylene imine polymer, self-repairing, joining, etc. of the carbon nanotube film and the like can also be achieved, and after self-repairing The carbon nanotube film also exhibits similar mechanical properties to the original carbon nanotube film.
  • the inventors have also prepared some carbon nanotube composite materials using the aforementioned polyethyleneimine solution, and tested their properties. Specifically, the inventor of the present invention impregnates a carbon nanotube film or a commercially available carbon nanotube film which is self-made (using a known filtration method, physical deposition method, etc.) into the polyethyleneimine solution, and then takes it out and takes it. Stretching and drying, a series of carbon nanotube composite materials were obtained.
  • a typical carbon nanotube film (abbreviated as the original film) and a carbon nanotube composite material formed by the same, the carbon nanotubes are highly oriented, which is distinctly different from the disordered interlacing of carbon nanotubes in the original film. form.
  • FIG. 5 also shows that the original film (before drawing), 22% of the original film drafting, 40% of the original film after being impregnated with the polyethyleneimine solution, and the original film after being impregnated with the polyethyleneimine solution.
  • Figs. 6a to 6b also show cyclic test curves of the foregoing original film before and after impregnation with a polyethyleneimine solution.
  • the carbon nanotube film is treated by replacing the polyethyleneimine solution with a polyethylene polyamine or a polypropylene imine solution, the treated carbon nanotube film also has similar performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

一种碳纳米管材料的自修复方法,包括:在待修复的碳纳米管聚集体的断裂处施加分枝状大分子或高分子;驱使所述分枝状大分子和/或分枝状高分子发生移动,从而诱导分布于所述断裂处的碳纳米管聚集结构通过再构形成一体网络结构,进而实现碳纳米管聚集体的自修复。一种碳纳米管材料的连接方法、一种可自修复的碳纳米管材料、碳纳米管复合材料及其制备方法与应用等。可以实现高强度、高模量的碳纳米管材料的自修复,同时还可获得展示出高粘弹性和高阻尼特性等的碳纳米管复合材料,其可以应用为新型减振功能材料。

Description

碳纳米管材料的自修复方法、碳纳米管复合材料及其应用 技术领域
本申请涉及一种碳纳米管材料,特别是一种可自修复的碳纳米管材料、其制备方法及应用。
背景技术
自修复材料是一类拥有结构上自愈合能力的智能材料,其在结构受损后能自行修复,且修复过程必须不需要人参与。由于自修复材料的这种特性,使得其可以具有很长的使用寿命,并可以减少由于材料报废而造成的损失。目前已见报道的自修复材料主要有一些高分子材料、陶瓷材料等。
传统高分子材料的自修复手段主要包括微胶囊修复以及可逆自修复等。其中,微胶囊修复技术主要是利用微胶囊包裹或掺入愈合剂实现自愈合,当损伤裂纹产生时,微胶囊破裂渗出愈合剂可在催化剂或光、电、热等作用下发生聚合反应,达到修复效果。由于修复剂的种类和数量必须根据基体树脂和囊体材料选择,这就大大限制了这种修复形式的发展。可逆自修复技术主要是基于高分子氢键作用或者通过聚合反应、配位化合物发生络合反应等化学键重构完成自修复,这种自修复技术一般适用于柔性高分子材料体系,例如凝胶状材料体系,其力学强度基本在几个兆帕以内,主要应用于可修复电极、传感器、电子皮肤、封装等领域。
近年来,也有一些研究报道是利用碳纳米管实现自修复材料,其主要通过在以高分子为主体结构的材料体系中添加碳纳米管粉体等,利用碳纳米管的导电、导热特性等来诱导高分子的网络修复。
然而,对于以碳纳米管等作为主要成分形成的高模料或高强度(例如强度大于数百兆帕)的结构材料等来说,前述的各种自修复方式都是不适用的,而且迄今也未见相关的研究报道。因此,业界亟待发展出一种碳纳米管材料的自修复技术。
发明内容
为解决现有技术存在的问题,本申请的主要目的之一在于提供一种碳纳米管材料的自修复方法。
本申请的主要目的之二在于提供一种碳纳米管材料的连接方法。
本申请的主要目的之三在于提供一种碳纳米管复合材料,其具有自修复能力。
本申请的主要目的之四在于提供一种制备所述碳纳米管复合材料的方法。
本申请的主要目的之五在于提供所述碳纳米管复合材料的用途。
为实现前述发明目的,本申请采用的技术方案包括:
本申请实施例提供了一种碳纳米管材料的自修复方法,其包括:
在待修复的碳纳米管聚集体的断裂处施加分枝状大分子和/或分枝状高分子,
驱使所述分枝状大分子和/或分枝状高分子发生移动,从而诱导分布于所述断裂处的碳纳米管聚集结构通过再构形成一体网络结构,进而实现碳纳米管聚集体的自修复。
在一些实施方案中,所述的自修复方法还包括:使所述碳纳米管聚集体的裂口处的第一断裂端与第二断裂端接触,并在所述第一断裂端与第二断裂端的界面处施加所述分枝状大分子和/或分枝状高分子。
在一些实施方案中,所述的自修复方法可以包括:至少采用揉搓、按压、摩擦、敲击中的任一种方式驱使所述分枝状大分子和/或分枝状高分子发生所述的移动。
在一些实施方案中,所述的自修复方法还可以包括:在完成碳纳米管聚集体的自修复后,除去分布于在所述碳纳米管聚集体中的所述分枝状大分子和/或分枝状高分子。
本申请实施例还提供了一种碳纳米管材料的连接方法,其包括:
提供第一碳纳米管聚集体和第二碳纳米管聚集体;
使第一碳纳米管聚集体的第一区域与第二碳纳米管聚集体的第二区域接触,并至少在所述第一区域与第二区域之间施加分枝状大分子和/或分枝状高分子;
驱使所述分枝状大分子和/或分枝状高分子进行移动,从而诱导分布于第一区域及第二区域的碳纳米管聚集结构通过再构形成一体网络结构。
在一些实施方案中,所述的连接方法具体可以包括:至少采用揉搓、按压、摩擦、敲击中的任一种方式驱使所述分枝状大分子和/或分枝状高分子发生所述的移动。
在一些实施方案中,所述的连接方法还可以包括:在完成第一碳纳米管聚集体和第二碳纳米管聚集体的连接后,除去分布于所述第一碳纳米管聚集体与第二碳纳米管聚集体的连接区域的所述分枝状大分子和/或分枝状高分子。
本申请实施例还提供了由前述任一种自修复方法或由前述任一种连接方法形成的碳纳米管复合材料,所述碳纳米管复合材料包括碳纳米管聚集体及分布于所述碳纳米管聚集体的局部区域内的分枝状大分子和/或分枝状高分子。
本申请实施例还提供了一种可自修复的碳纳米管复合材料,其包括:
碳纳米管聚集体,其包括相邻的两个碳纳米管聚集区域;以及
分枝状大分子和/或分枝状高分子,其分布在所述相邻的两个碳纳米管聚集区域的连接区域内。
在一些实施方案中,所述碳纳米管聚集体包括第一碳纳米管聚集体和第二碳纳米管聚集体,所述第一碳纳米管聚集体包括第一碳纳米管聚集区域,所述第二碳纳米管聚集体包括第二碳纳米管聚集区域,所述第一碳纳米管聚集区域与第二碳纳米管聚集区域连接,所述分枝状大分子和/或分枝状高分子分布于所述第一碳纳米管聚集区域与第二碳纳米管聚集区域的连接区域内。
本申请实施例还提供了一种制备前述碳纳米管复合材料的制备方法,其包括:
将第一碳纳米管聚集体与第二碳纳米管聚集体贴合,并在该两者的贴合处施加分枝状大分子和/或分枝状高分子;
驱使所述分枝状大分子和/或分枝状高分子进行移动,从而诱导分布于所述第一碳纳米管聚集体与第二碳纳米管聚集体贴合处的碳纳米管聚集结构通过再构形成一体网络结构。
本申请实施例还提供了所述碳纳米管复合材料的用途,例如于制备减振功能材料中的用途。
较之现有技术,本申请通过分枝状大分子和/或分枝状高分子的诱导作用,使碳纳米管网络在损伤后能够重新构筑,进而实现高强度(力学强度在几百兆帕乃至GPa以上)、高模量的碳纳米管材料的自修复,同时此类分枝状大分子和/或分枝状高分子与碳纳米管网络的复合材料还呈现出高粘弹性和高阻尼特性,可以应用为新型减振功能材料。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施方案中利用分枝状大分子和/或分枝状高分子修复碳纳米管材料的原理示意图。
图2a是本申请一实施例中利用边对边方式进行碳纳米管薄膜材料修复前后的实物照片。
图2b是本申请一实施例中利用叠加方式进行碳纳米管薄膜材料修复前后的实物照片。
图3是本申请一些实施例中利用边对边方式以及叠加方式进行修复的碳纳米管薄膜材料的力学性能测试图。
图4a-图4b是本申请一实施例中碳纳米管网络结构在利用聚乙烯亚胺牵伸前后的结构图。
图5是本申请一实施例中碳纳米管薄膜原膜及将其牵伸22%之后,碳纳米管薄膜原膜经聚乙烯亚胺浸渍后牵伸40%以及浸渍后牵伸40%并电热去除聚乙烯亚胺后的力学测试曲线图。
图6a-图6b是本申请一实施例中碳纳米管薄膜经过聚乙烯亚胺浸渍前后的循环拉伸测试曲线图。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案,如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本申请实施例提供的一种碳纳米管材料的自修复方法包括:
在待修复的碳纳米管聚集体的断裂处施加分枝状大分子和/或分枝状高分子,
驱使所述分枝状大分子和/或分枝状高分子发生移动,从而诱导分布于所述断裂处的碳纳米管聚集结构通过再构形成一体网络结构,进而实现碳纳米管聚集体的自修复。
具体地讲,本申请所述自修复方法的原理可以参阅图1所示,其主要是通过在碳纳米管材料的断口或裂口处引入分枝状大分子或高分子等,利用分枝状大分子或高分子的流动特性带动碳纳米管网络实现再构,更确切地说,是利用分枝状大分子或高分子的诱导作用,提高断口或裂口处碳纳米管的可移动能力,从而实现碳纳米管网络的再构,最终完成碳纳米管材料的自修复。
在一些实施方案中,所述的自修复方法还可包括:使所述碳纳米管聚集体的裂口处的第一断裂端与第二断裂端接触,并在所述第一断裂端与第二断裂端之间施加所述分枝状大分子和/或分枝状高分子。
进一步地,所述的自修复方法具体可以包括:将所述碳纳米管聚集体的裂口处的第一断裂端与第二断裂端拼接,并在所述第一断裂端与第二断裂端的拼接处施加所述分枝状大分子和/或分枝状高分子。
进一步地,所述的自修复方法具体可以包括:将所述碳纳米管聚集体的裂口处的第一断裂端与第二断裂端搭接(或贴合),并在该两者的搭接处(或贴合处)施加所述分枝状大分子和/或分枝状高分子。
在一些实施方案中,所述的自修复方法可以包括:将在设定温度条件(例如室温或分枝状大分子和/或分枝状高分子的熔融温度下)下呈流体状或膏状的分枝状大分子和/或分枝状高分子直接施加在待修复的碳纳米管聚集体的断裂处。
在一些实施方案中,所述的自修复方法可以包括:将含有所述分枝状大分子和/或分枝状高分子流体或膏施加在待修复的碳纳米管聚集体的断裂处。
例如,所述的自修复方法具体可以包括:将所述分枝状大分子和/或分枝状高分子的溶液施加在待修复的碳纳米管聚集体的断裂处。
在一些实施方案中,所述的自修复方法具体可以包括:至少采用揉搓、按压、摩擦、敲击中的任一种方式驱使所述分枝状大分子和/或分枝状高分子发生所述的移动。
进一步地,所述分枝状大分子和/或分枝状高分子可以包括聚乙烯亚胺、聚乙烯聚胺或聚丙烯亚胺等,且不限于此。
进一步地,所述碳纳米管聚集体可以是多种形态的,例如膜状、片状、块状、纤维状等,且不限于此。
在一些实施方案中,所述的自修复方法还可以包括:在完成碳纳米管聚集体的自修复后,除去分布于在所述碳纳米管聚集体中的所述分枝状大分子和/或分枝状高分子,如此可以避免余留的高分子的可能带来的副作用,而使自修复后的碳纳米管材料仍至少是基本保持原有的综合性能,例如力学、电学性能等。
在一些实施方案中,所述的自修复方法还可以包括:在完成碳纳米管聚集体的自修复后,对所述碳纳米管聚集体进行拉伸处理。
在所述的拉伸处理过程中,至少在所述的再构形成的一体网络结构内,因所述分枝状大分子和/或分枝状高分子的作用,使得大部分的碳纳米管是取向排布的。
进一步地,还可在完成所述的拉伸处理后,除去分布于在所述碳纳米管聚集体中的所述分枝状大分子和/或分枝状高分子。
例如,所述的自修复方法具体可以包括:至少采用以热源将所述碳纳米管聚集体加热至足够高的温度或在所述碳纳米管聚集体通入足够大的电流的方式,去除其中的所述分枝状大分子和/或分枝状高分子。
本申请实施例提供的一种碳纳米管材料的连接方法包括:
提供第一碳纳米管聚集体和第二碳纳米管聚集体;
使第一碳纳米管聚集体的第一区域与第二碳纳米管聚集体的第二区域接触,并至少在所述第一区域与第二区域之间施加分枝状大分子和/或分枝状高分子;
驱使所述分枝状大分子和/或分枝状高分子进行移动,从而诱导分布于第一区域及第二区域的碳纳米管聚集结构通过再构形成一体网络结构。
进一步地,所述第一碳纳米管聚集体、第二碳纳米管聚集体均包含有多根碳纳米管聚集形成的网络结构。
进一步地,所述的连接方法具体可以包括:将所述第一区域与第二区域拼接,并在两者的拼接处施加所述分枝状大分子和/或分枝状高分子。
进一步地,所述的连接方法具体可以包括:将所述第一区域与第二区域贴合(或搭接),并在两者的贴合处(或搭接处)施加所述分枝状大分子和/或分枝状高分子。
进一步地,所述的连接方法具体可以包括:将在设定温度条件(例如室温或分枝状大分子和/或分枝状高分子的熔融温度下)下呈流体状或膏状的分枝状大分子和/或分枝状高分子直接施加在所述第一区域与第二区域的界面处。
进一步地,所述的连接方法具体可以包括:将含有所述分枝状大分子和/或分枝状高分子流体或膏施加在所述第一区域与第二区域之间。
例如,所述的连接方法可以包括:将所述分枝状大分子和/或分枝状高分子的溶液施加在所述第一区域与第二区域之间。
在一些实施方案中,所述的连接方法具体可以包括:选取但不限于揉搓、按压、摩擦、敲击中的任一种方式驱使所述分枝状大分子和/或分枝状高分子发生所述的移动。
进一步地,所述分枝状大分子和/或分枝状高分子可以包括聚乙烯亚胺、聚乙烯聚胺或聚丙烯亚胺等,且不限于此。
进一步地,所述碳纳米管聚集体可以是多种形态,例如膜状、片状、块状、纤维状,等等,且不限于此。
在一些实施方案中,所述的连接方法还可以包括:在完成第一碳纳米管聚集体和第二碳纳米管聚集体的连接后,除去分布于所述第一碳纳米管聚集体与第二碳纳米管聚集体的连接区域的所述分枝状大分子和/或分枝状高分子。
在一些实施方案中,所述的连接方法还可以包括:在完成第一碳纳米管聚集体和第二碳纳米管聚集体的连接后,对所获的连接体进行拉伸处理。
进一步地,在完成所述的拉伸处理后,除去分布于在所述连接体中的所述分枝状大分子和/或分枝状高分子。
例如,所述的连接方法具体可以包括:至少采用将所述第一碳纳米管聚集体与第二碳纳米管聚集体的连接区域加热至足够高的温度或在所述第一碳纳米管聚集体与第二碳纳米管聚集体的连接区域通入足够大的电流的方式,去除其中的所述分枝状大分子和/或分枝状高分子。
在一些实施方案中,所述第一碳纳米管聚集体、第二碳纳米管聚集体也可以是一体设置的,但第一碳纳米管聚集体的第一区域与第二碳纳米管聚集体的第二区域不直接连接。
例如,在一些实施例中,第一碳纳米管聚集体、第二碳纳米管聚集体可以属于同一碳纳米管纸或碳纳米管膜,第一区域、第二区域可以是该碳纳米管纸或碳纳米管膜的两端部,通过将第一区域与第二区域利用分枝状大分子和/或分枝状高分子进行连接再构,可以将该碳纳米管纸或碳纳米管膜制成无缝的筒状、环状结构等具有特定形态的碳纳米管构件,进而满足实际的一些特殊应用的需求。
在一些实施方案中,所述第一碳纳米管聚集体、第二碳纳米管聚集体是分立的,而通过所述的连接方法,可以将这些碳纳米管聚集体无缝拼接、搭接或者贴合,从而可以方便、高效、低成本的实现保持高强度、高模量等性能的大面积、大体积碳纳米管材料的制备。
本申请实施例还提供了由前述任一种自修复方法或由前述任一种连接方法形成的碳纳米管复合材料,所述碳纳米管复合材料包括碳纳米管聚集体及分布于所述碳纳米管聚集体的局部区域内的分枝状大分子和/或分枝状高分子。
本申请实施例提供的一种可自修复的碳纳米管复合材料包括:
碳纳米管聚集体,其包括相互抵近或接触的两个碳纳米管聚集区域;以及
分枝状大分子和/或分枝状高分子,其分布在所述两个碳纳米管聚集区域之间。
在一些实施方案中,所述碳纳米管聚集体包括第一碳纳米管聚集体和第二碳纳米管聚集体,所述第一碳纳米管聚集体包括第一碳纳米管聚集区域,所述第二碳纳米管聚集体包括第二碳纳米管聚集区域,所述第一碳纳米管聚集区域与第二碳纳米管聚集区域抵近或接触,所述分枝状大分子和/或分枝状高分子分布在所述第一碳纳米管聚集区域与第二碳纳米管聚集区域之间。
进一步地,所述第一碳纳米管聚集区域与第二碳纳米管聚集区域拼接、搭接或贴合。
进一步地,所述碳纳米管聚集体包含有多根碳纳米管聚集形成的网络结构。
进一步地,所述分枝状大分子和/或分枝状高分子可以包括聚乙烯亚胺、聚乙烯聚胺或聚丙烯亚胺等,且不限于此。
进一步地,所述碳纳米管聚集体可以是多种形态,例如膜状、片状、块状、纤维状,等等,且不限于此。
在利用前述自修复方法或连接方法形成的、且未去除分枝状大分子或分枝状高分子 的碳纳米管复合材料中,因分枝状大分子或分枝状高分子改进了碳纳米管网络重构处的力学特性,可以实现碳纳米管网络的粘弹性化,赋予其高阻尼特性,使之可以应用于减振等领域。
相应的,本申请实施例提供了所述碳纳米管复合材料于制备减振功能材料中的用途。
进一步地,本申请实施例还提供了一种减振功能材料,其包含所述碳纳米管复合材料。
进一步地,本申请实施例还提供了一种装置,其包含所述的碳纳米管复合材料或所述的减振功能材料。
此外,本申请实施例还提供了一种制备所述碳纳米管复合材料的方法,其包括:
将第一碳纳米管聚集体与第二碳纳米管聚集体贴合,并在该两者或贴合处施加分枝状大分子和/或分枝状高分子;
驱使所述分枝状大分子和/或分枝状高分子进行移动,从而诱导分布于所述第一碳纳米管聚集体与第二碳纳米管聚集体的贴近或贴合处的碳纳米管聚集结构通过再构形成一体网络结构。
以下将结合若干实施例及相应附图对本申请的技术方案作进一步的解释说明。
在本申请的如下一些实施例中,可以将枝化聚乙烯亚胺(分子量约1K-50k道尔顿)溶于乙醇,制成浓度为0.05wt/%~1wt/%的聚乙烯亚胺溶液,继而利用这些聚乙烯亚胺溶液进行碳纳米管材料,例如碳纳米管薄膜的自修复或者连接。
例如,请参阅图2a所示,可以将碳纳米管薄膜的断口以边对边的方式拼接,并在拼接处涂覆前述的聚乙烯亚胺溶液,再轻轻按压和/或适当揉动、摩擦,辅助拼接处枝化聚乙烯亚胺高分子的热移动,即可实现碳纳米管薄膜的自修复,且断口处无拼接痕迹。
例如,请参阅图2b所示,也可以将完全断裂的碳纳米管薄膜的断口以叠加方式搭接,并在搭接处涂覆前述的聚乙烯亚胺溶液,再轻轻按压和/或适当揉动、摩擦或敲击,辅助拼接处枝化聚乙烯亚胺高分子的热移动,即可实现碳纳米管薄膜的自修复,且断口处无搭接痕迹。
进一步地,还可以对完成自修复的碳纳米管材料进行加热或者在完成自修复的碳纳米管材料中通入足够大的电流的方式,去除余留于其中的分枝状大分子和/或分枝状高分 子。
例如,对于前述的完成自修复的碳纳米管薄膜材料,经过适当的温度处理(300-350℃)或电流处理(例如电流密度可以是约350A/cm2),即可以去除所引入的枝化聚乙烯亚胺高分子。
图3示出了前述的实施例中利用前述边对边方式以及叠加方式完成自修复后的一些碳纳米管薄膜材料(已经去除了其中的枝化聚乙烯亚胺高分子)的力学性能。
进一步地,还可以对完成自修复的碳纳米管材料进行拉伸处理,本案发明人发现,在修复处再构的碳纳米管网络结构中,经拉伸处理后,碳纳米管会形成高度取向的结构,其可能是归因于枝化聚乙烯亚胺高分子等对于碳纳米管的拉伸作用。参阅图4a-图4b分别示出了前述再构的碳纳米管网络结构未经拉伸处理、经拉伸处理后且利用前述方案去除枝化聚乙烯亚胺高分子后的形貌。
而若在拉伸后,选择保留再构的碳纳米管网络结构的枝化聚乙烯亚胺高分子等,则此处再构的碳纳米管网络结构还呈现出高粘弹特性和高阻尼特性,有望应用为新型减振功能材料。
在前述的实施例中,若以聚乙烯聚胺或聚丙烯亚胺高分子替代前述聚乙烯亚胺高分子,同样也可实现碳纳米管薄膜等材料的自修复、连接等,且自修复后的碳纳米管薄膜也呈现出与原始碳纳米管薄膜相近的力学性能。
在本申请的另一些实施例中,本案发明人还利用前述的聚乙烯亚胺溶液制备了一些碳纳米管复合材料,并对其性能进行了测试。具体地,本案发明人将一些自制(采用业界已知的过滤法、物理沉积法等工艺)的碳纳米管薄膜或市购的碳纳米管薄膜以前述聚乙烯亚胺溶液浸渍,之后取出、牵伸、干燥,获得了一系列碳纳米管复合材料。
其中,一种典型碳纳米管薄膜(简称原膜)及利用其形成的一种碳纳米管复合材料中,碳纳米管是高度取向的,其明显区别于原膜中碳纳米管无序交织的形态。
进一步地,图5还示出了前述原膜(牵伸前)、原膜牵伸22%、原膜经聚乙烯亚胺溶液浸渍后牵伸40%、原膜经聚乙烯亚胺溶液浸渍后牵伸40%并电去除PEI后的力学测试曲线。
更进一步地,图6a-图6b还示出了前述原膜经过聚乙烯亚胺溶液浸渍前后的循环拉 伸测试曲线。
其中,若以聚乙烯聚胺或聚丙烯亚胺溶液替代前述聚乙烯亚胺溶液对碳纳米管薄膜进行处理,则处理后的碳纳米管薄膜亦有相似的性能显现。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
应当理解,以上所述仅是本申请的具体实施方式,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (36)

  1. 一种碳纳米管材料的自修复方法,其特征在于包括:
    在待修复的碳纳米管聚集体的断裂处施加分枝状大分子和/或分枝状高分子,
    驱使所述分枝状大分子和/或分枝状高分子发生移动,从而诱导分布于所述断裂处的碳纳米管聚集结构通过再构形成一体网络结构,进而实现碳纳米管聚集体的自修复。
  2. 根据权利要求1所述的自修复方法,其特征在于还包括:使所述碳纳米管聚集体的裂口处的第一断裂端与第二断裂端接触,并在所述第一断裂端与第二断裂端之间施加所述分枝状大分子和/或分枝状高分子。
  3. 根据权利要求2所述的自修复方法,其特征在于还包括:将所述碳纳米管聚集体的裂口处的第一断裂端与第二断裂端拼接,并在所述第一断裂端与第二断裂端的拼接处施加所述分枝状大分子和/或分枝状高分子。
  4. 根据权利要求2所述的自修复方法,其特征在于还包括:将所述碳纳米管聚集体的裂口处的第一断裂端与第二断裂端搭接,并在该两者的搭接处施加所述分枝状大分子和/或分枝状高分子。
  5. 根据权利要求1所述的自修复方法,其特征在于具体包括:将在设定温度条件下呈流体状或膏状的分枝状大分子和/或分枝状高分子直接施加在待修复的碳纳米管聚集体的断裂处。
  6. 根据权利要求1所述的自修复方法,其特征在于具体包括:将含有所述分枝状大分子和/或分枝状高分子流体或膏施加在待修复的碳纳米管聚集体的断裂处。
  7. 根据权利要求6所述的自修复方法,其特征在于具体包括:将所述分枝状大分子和/或分枝状高分子的溶液施加在待修复的碳纳米管聚集体的断裂处。
  8. 根据权利要求1所述的自修复方法,其特征在于具体包括:至少采用揉搓、按压、摩擦、敲击中的任一种方式驱使所述分枝状大分子和/或分枝状高分子发生所述的移动。
  9. 根据权利要求1-8中任一项所述的自修复方法,其特征在于:所述分枝状大分子和/或分枝状高分子包括聚乙烯亚胺或聚丙烯亚胺;和/或,所述碳纳米管聚集体的形状包括膜状、纤维状、带状或块状。
  10. 根据权利要求1所述的自修复方法,其特征在于还包括:在完成碳纳米管聚集体的自修复后,除去分布于在所述碳纳米管聚集体中的所述分枝状大分子和/或分枝状高分子。
  11. 根据权利要求1所述的自修复方法,其特征在于还包括:在完成碳纳米管聚集体的自修复后,对所述碳纳米管聚集体进行拉伸处理。
  12. 根据权利要求11所述的自修复方法,其特征在于还包括:在完成所述的拉伸处理后,除去分布于在所述碳纳米管聚集体中的所述分枝状大分子和/或分枝状高分子。
  13. 根据权利要求10或12所述的自修复方法,其特征在于具体包括:至少采用以热源将所述碳纳米管聚集体加热至足够高的温度或在所述碳纳米管聚集体通入足够大的电流的方式,去除其中的所述分枝状大分子和/或分枝状高分子。
  14. 一种碳纳米管材料的连接方法,其特征在于包括:
    提供第一碳纳米管聚集体和第二碳纳米管聚集体;
    使第一碳纳米管聚集体的第一区域与第二碳纳米管聚集体的第二区域接触,并至少在所述第一区域与第二区域之间施加分枝状大分子和/或分枝状高分子;
    驱使所述分枝状大分子和/或分枝状高分子发生移动,从而诱导分布于分布于第一区域及第二区域的碳纳米管聚集结构通过再构形成一体网络结构。
  15. 根据权利要求14所述的连接方法,其特征在于:所述第一碳纳米管聚集体、第二碳纳米管聚集体均包含有多根碳纳米管聚集形成的网络结构。
  16. 根据权利要求14所述的连接方法,其特征在于具体包括:将所述第一区域与第二区域拼接,并在两者的拼接处施加所述分枝状大分子和/或分枝状高分子。
  17. 根据权利要求14所述的连接方法,其特征在于具体包括:将所述第一区域与第二区域贴合,并在两者的贴合处施加所述分枝状大分子和/或分枝状高分子。
  18. 根据权利要求14所述的连接方法,其特征在于具体包括:将在设定温度条件下呈流体状或膏状的分枝状大分子和/或分枝状高分子直接施加在所述第一区域与第二区域的界面处。
  19. 根据权利要求14所述的连接方法,其特征在于具体包括:将含有所述分枝状大分子和/或分枝状高分子流体或膏施加在所述第一区域与第二区域之间。
  20. 根据权利要求19所述的连接方法,其特征在于具体包括:将所述分枝状大分子和/或分枝状高分子的溶液施加在所述第一区域与第二区域之间。
  21. 根据权利要求14所述的连接方法,其特征在于具体包括:至少采用揉搓、按压、摩擦、敲击中的任一种方式驱使所述分枝状大分子和/或分枝状高分子发生所述的移动。
  22. 根据权利要求14-21中任一项所述的连接方法,其特征在于:所述分枝状大分子和/或分枝状高分子包括聚乙烯亚胺、聚乙烯聚胺或聚丙烯亚胺;和/或,所述第一碳纳米管聚集体、第二碳纳米管聚集体的形状包括膜状、纤维状、带状或块状。
  23. 根据权利要求14所述的连接方法,其特征在于还包括:在完成第一碳纳米管聚集体和第二碳纳米管聚集体的连接后,除去分布于所述第一碳纳米管聚集体与第二碳纳米管聚集体的连接区域的所述分枝状大分子和/或分枝状高分子。
  24. 根据权利要求14所述的连接方法,其特征在于还包括:在完成第一碳纳米管聚集体和第二碳纳米管聚集体的连接后,对所获的连接体进行拉伸处理。
  25. 根据权利要求24所述的连接方法,其特征在于还包括:在完成所述的拉伸处理后,除去分布于在所述连接体中的所述分枝状大分子和/或分枝状高分子。
  26. 根据权利要求23或25所述的连接方法,其特征在于具体包括:至少采用以热源将所述第一碳纳米管聚集体与第二碳纳米管聚集体的连接区域加热至足够高的温度或在所述第一碳纳米管聚集体与第二碳纳米管聚集体的连接区域通入足够大的电流的方式,去除其中的所述分枝状大分子和/或分枝状高分子。
  27. 根据权利要求14所述的连接方法,其特征在于:所述第一碳纳米管聚集体、第二碳纳米管聚集体一体设置,但第一碳纳米管聚集体的第一区域与第二碳纳米管聚集体的第二区域不直接连接。
  28. 由权利要求1-9、11中任一项所述自修复方法或由权利要求14-22、24中任一项所述连接方法形成的碳纳米管复合材料,所述碳纳米管复合材料包括碳纳米管聚集体及分布于所述碳纳米管聚集体的局部区域内的分枝状大分子和/或分枝状高分子。
  29. 一种可自修复的碳纳米管复合材料,其特征在于包括:
    碳纳米管聚集体,其包括相互接触的两个碳纳米管聚集区域;以及
    分枝状大分子和/或分枝状高分子,其分布在所述两个碳纳米管聚集区域之间。
  30. 根据权利要求29所述的碳纳米管复合材料,其特征在于:所述碳纳米管聚集体包括第一碳纳米管聚集体和第二碳纳米管聚集体,所述第一碳纳米管聚集体包括第一碳纳米管聚集区域,所述第二碳纳米管聚集体包括第二碳纳米管聚集区域,所述第一碳纳米管聚集区域与第二碳纳米管聚集区域接触,所述分枝状大分子和/或分枝状高分子分布在所述第一碳纳米管聚集区域与第二碳纳米管聚集区域之间。
  31. 根据权利要求30所述的碳纳米管复合材料,其特征在于:所述第一碳纳米管聚集区域与第二碳纳米管聚集区域拼接、搭接或贴合。
  32. 根据权利要求29所述的碳纳米管复合材料,其特征在于:所述碳纳米管聚集体包含有多根碳纳米管聚集形成的网络结构。
  33. 根据权利要求29-32中任一项所述的碳纳米管复合材料,其特征在于:所述分枝状大分子和/或分枝状高分子包括聚乙烯亚胺、聚乙烯聚胺或聚丙烯亚胺;和/或,所述碳纳米管聚集体的形状包括膜状、纤维状、带状或块状。
  34. 权利要求28所述的碳纳米管复合材料于制备减振功能材料中的用途。
  35. 一种减振功能材料,其特征在于包含权利要求28所述的碳纳米管复合材料。
  36. 一种装置,其特征在于包含权利要求28所述的碳纳米管复合材料或权利要求35所述的减振功能材料。
PCT/CN2018/095016 2018-01-12 2018-07-09 碳纳米管材料的自修复方法、碳纳米管复合材料及其应用 WO2019136945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810030562.9 2018-01-12
CN201810030562.9A CN110028056B (zh) 2018-01-12 2018-01-12 碳纳米管材料的自修复方法、碳纳米管复合材料及其应用

Publications (1)

Publication Number Publication Date
WO2019136945A1 true WO2019136945A1 (zh) 2019-07-18

Family

ID=67218804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095016 WO2019136945A1 (zh) 2018-01-12 2018-07-09 碳纳米管材料的自修复方法、碳纳米管复合材料及其应用

Country Status (2)

Country Link
CN (1) CN110028056B (zh)
WO (1) WO2019136945A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778857A (zh) * 2020-12-30 2021-05-11 山东富海材料科技有限公司 一种具有自修复功能的彩色涂覆层钢板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992748A (zh) * 2015-06-16 2015-10-21 复旦大学 一种可拼接的平面柔性电极及其制备方法
CN104992844A (zh) * 2015-06-24 2015-10-21 复旦大学 一种可拼接的超级电容器及其制备方法
CN106223008A (zh) * 2016-09-06 2016-12-14 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管纤维自修复或焊接方法
US20160362542A1 (en) * 2012-09-28 2016-12-15 Applied Nanostructured Solutions, Llc Composite materials formed by shear mixing of carbon nanostructures and related methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321595B (zh) * 2014-05-29 2017-10-20 华南理工大学 制备自修复透明触摸电极的组合物及制备自修复透明触摸电极的方法
KR101610890B1 (ko) * 2014-08-18 2016-04-11 한국과학기술연구원 탄소나노튜브 복합체 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160362542A1 (en) * 2012-09-28 2016-12-15 Applied Nanostructured Solutions, Llc Composite materials formed by shear mixing of carbon nanostructures and related methods
CN104992748A (zh) * 2015-06-16 2015-10-21 复旦大学 一种可拼接的平面柔性电极及其制备方法
CN104992844A (zh) * 2015-06-24 2015-10-21 复旦大学 一种可拼接的超级电容器及其制备方法
CN106223008A (zh) * 2016-09-06 2016-12-14 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管纤维自修复或焊接方法

Also Published As

Publication number Publication date
CN110028056A (zh) 2019-07-19
CN110028056B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
Wang et al. Super‐strong, super‐stiff macrofibers with aligned, long bacterial cellulose nanofibers
US3926904A (en) Curable crack-resistant epoxy resin
WO2019136945A1 (zh) 碳纳米管材料的自修复方法、碳纳米管复合材料及其应用
CN105658705B (zh) 制备塑料复合部件(ck)的方法
Sui et al. Tough nanocomposites: the role of carbon nanotube type
CN103965491B (zh) 一种丝素蛋白复合凝胶的制备方法
JP2015068485A (ja) 真空断熱材用コア材及び真空断熱材
RU2019101205A (ru) Ультразвуковая сварка усиленных волокном секций термоотверждаемой смолы
JPWO2013118689A1 (ja) 炭素繊維複合材料
JP2021504513A5 (zh)
Yang et al. Modulation of assembly and dynamics in colloidal hydrogels via ionic bridge from cellulose nanofibrils and poly (ethylene glycol)
JP2018529853A5 (zh)
JP7039588B2 (ja) 新規効果的負荷移動機構を含む、効率的な繊維からナノファイバーへの接着を通じた、ハイブリッド(繊維-ナノファイバー)テキスタイルを作製するためのプロセス
Kong et al. A novel strategy for construction of multiple dynamic hybrid crosslinking network for polyethylene pipes and self-healing behavior via thermal stimulation
CN105854639A (zh) 一种聚四氟乙烯中空纤维膜组件的浇注方法
CN107531989B (zh) 树脂组合物和电绝缘片
JP2633989B2 (ja) パイプおよびケーブル接続用熱収縮性スリーブ
Nawalakhe et al. Plasma-assisted preparation of high-performance chitosan nanofibers/gauze composite bandages
JP2021185045A (ja) ポリグルタミン酸ナノファイバー複合シート
Huang et al. Filament winding of bicomponent fibers consisting of polypropylene and a liquid crystalline polymer
Zhang et al. Hydrogels with Self-Healing Attribute
JPS5854021A (ja) 繊維の融着防止方法
CN108997622B (zh) 具有水诱导形变记忆功能的gop/cnf复合材料的制备方法和测试方法
CN218615770U (zh) Bopp防静电拉伸薄膜
Rahy et al. A simple/green process for the preparation of composite carbon nanotube fibers/yarns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899091

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18899091

Country of ref document: EP

Kind code of ref document: A1