WO2019135324A1 - 温度センサ素子 - Google Patents

温度センサ素子 Download PDF

Info

Publication number
WO2019135324A1
WO2019135324A1 PCT/JP2018/042038 JP2018042038W WO2019135324A1 WO 2019135324 A1 WO2019135324 A1 WO 2019135324A1 JP 2018042038 W JP2018042038 W JP 2018042038W WO 2019135324 A1 WO2019135324 A1 WO 2019135324A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
layer
temperature sensor
sensor element
resistance pattern
Prior art date
Application number
PCT/JP2018/042038
Other languages
English (en)
French (fr)
Inventor
正浩 下平
克哉 三浦
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Publication of WO2019135324A1 publication Critical patent/WO2019135324A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient

Definitions

  • the present invention relates to a temperature sensor element used for temperature measurement at high temperatures.
  • a platinum temperature sensor for high temperature measurement is attached to a high temperature area such as an automobile engine room.
  • a platinum temperature sensor one formed by covering a resistive film of a platinum thin film provided on a ceramic substrate with a protective film made of ceramic is known (see Patent Documents 1 and 2). Since platinum is chemically stable, it is difficult to cause characteristic variations even at high temperatures, making it a sensor suitable for high temperature applications.
  • the ceramic substrate used for the platinum temperature sensor is obtained by firing an inorganic substance to be a ceramic material at a high temperature of 1000 ° C. or higher to densify it, thereby forming a dense sintered body.
  • the firing is performed in a state where a sintering aid such as SiO 2 is added to the inorganic substance of the ceramic material (for example, patent document 3).
  • Patent No. 5976186 gazette JP 2005-241568 A Japanese Patent Application Publication No. 2003-277132
  • high measurement accuracy can be maintained by preventing the reaction between the resistance pattern and the sintering aid.
  • FIG. 13A is a diagram of a temperature sensor element (alumina 99.99 mass%) observed from above.
  • FIG. 13B is a view of the temperature sensor element (99.50% by mass of alumina) observed from above.
  • an inorganic substance to be a material of the ceramic substrate is fired at a high temperature of 1000 ° C. or more to form a dense sintered body.
  • a mixture of SiO 2 , MgO, CaO or the like which can form a liquid phase having a low melting point by a eutectic reaction with alumina is generally used to lower the firing temperature and promote the densification of the ceramic. It is added to the inorganic substance of the material and calcination is performed.
  • the ceramic does not densify, and the sintered density can not be increased, so that the number of voids in the ceramic increases or cracks occur in the ceramic substrate during firing. There is. As a result, the platinum of the resistance pattern is exposed to the high temperature atmosphere and deteriorates.
  • the heat resistance of the glass is inferior to that of the ceramic substrate made of alumina, so the glass is activated and reacted at high temperature firing. There is a problem that the resistance increases and it reacts with platinum in the resistance pattern.
  • the ceramic substrate is sealed using glass, the glass is broken at the time of measurement of high temperature, and the resistance pattern is exposed to the high temperature air.
  • the ceramic substrate uses high purity alumina and does not contain a sintering aid, the sintering aid and impurities such as Si react with platinum of the resistance pattern. It is prevented. Thereby, the drift of the resistance value of the resistance pattern is suppressed. Moreover, since it is formed of high purity alumina, it is more excellent in heat resistance than the case of being formed of glass, and the generation of cracks in the ceramic substrate at high temperatures is suppressed. In addition, by forming the ceramic substrate from a plurality of types of alumina particles having different average particle sizes, the ceramic substrate is densified, and the occurrence of cracks in the ceramic substrate at the time of firing is prevented.
  • the pair of electrodes 16 is formed by firing an electrode paste containing platinum.
  • the resistance pattern 18 is a thin film resistance film containing platinum as a main component.
  • the alumina sintered body 11 contains 99.70% by mass or more of alumina (Al 2 O 3 ).
  • the alumina sintered body 11 can be obtained by firing alumina particles having a purity of 99.90-99.99%.
  • the material of the sintered body covering the resistance pattern 18 has a good sealing function, suppresses oxidation, volatilization, decomposition, etc. due to high temperature, is hard to be reduced, hardly reacts with platinum, and has a similar linear expansion coefficient to the resistance pattern 18
  • alumina particles are preferably used. However, other than alumina particles may be included as long as they have these characteristics. For example, a single magnesia may be included.
  • the alumina sintered body 11 does not contain a sintering aid.
  • the sintering aid SiO 2, CaO, MgO, TiO 2, B 2 O 3 and the like.
  • the sintering aid and the impurities described later react with the platinum of the highly reactive resistance pattern 18 at high temperatures to cause a drift of the resistance value.
  • the alumina-based sintered body 11 does not contain the sintering aid and contains high-purity alumina, the sintering aid does not react with the platinum of the resistance pattern 18 during the firing of the alumina, and the alumina Since the impurities contained in the particles are prevented from reacting with the platinum of the resistance pattern 18 and the drift of the resistance value is suppressed, the high measurement accuracy of the temperature sensor element 10 is maintained. Further, the alumina sintered body 11 is more excellent in heat resistance than the glass sintered body, and the generation of the cracks of the alumina sintered body 11 at high temperature at the time of firing or measurement is suppressed. For this reason, the resistance pattern 18 is disposed in the alumina sintered body 11, whereby the platinum of the resistance pattern 18 is prevented from being exposed to high temperature air.
  • FIG. 4 is a view showing another example of the temperature sensor element according to the first embodiment.
  • At least one of the first sintered layer 21 and the second sintered layer 24 is configured by using a plurality of types of alumina particles having different average particle sizes within the range of 0.1 to 10.0 ⁇ m. ing.
  • the average particle diameter of the alumina particles of the alumina sintered body 11 is 10 to 100 particles on the screen of the photograph taken by observing the cross section of the alumina sintered body 11 with a scanning electron microscope The maximum diameter is measured, and the cumulative value of the maximum diameter is divided by the number of particles to calculate.
  • the alumina sintered body 11 is composed of a plurality of types of alumina particles having different average particle sizes, the gaps among the particles become smaller, and the alumina sintered body 11 is densified, and at the time of firing The occurrence of cracks in the alumina sintered body 11 is prevented. For this reason, the platinum of the resistance pattern 18 is prevented from being deteriorated by the high temperature atmosphere at the time of firing.
  • the alumina particle which comprises at least one of the 1st sintered layer 21 and said 2nd sintered layer 24 consists of an alumina particle of an average particle diameter of at least 3 or more types.
  • the first sintered layer 21 and the second sintered layer 24 may be made of a green sheet.
  • FIG. 5A, FIG. 5B, and FIG. 5C are each a figure which shows the other example of the temperature sensor element based on 1st Embodiment.
  • the upper views of FIGS. 5A-5C are views of the temperature sensor element 10 observed by a scanning electron microscope, and the lower views correspond to cross-sectional views taken along the line AA in FIG.
  • the first sintered layer 21 forms a substrate having the resistive pattern 18 formed on the main surface, and the second sintered layer 24 protects the resistive pattern 18.
  • the protective layer 24 stacked on the main surface of the substrate 21 may be formed.
  • the resistor pattern 18 can be disposed in the alumina sintered body 11 with a simple configuration.
  • the protective layer 24 is constituted by the trap layer 22 formed so as to cover the resistance pattern 18 and the overcoat layer 23 formed so as to cover the trap layer 22. Good.
  • the overcoat layer 23 covers the entire trap layer 22, and its peripheral portion is in close contact with the main surface of the substrate 21. From the upper view of FIG. 5A, it can be seen that the platinum portion of the resistance pattern 18 is observed in white. By covering the resistance pattern 18 with the two protective layers 24, the resistance pattern 18 is effectively sealed, so that the platinum of the resistance pattern 18 is prevented from being exposed to high temperature air. Therefore, the drift of the resistance value of the resistance pattern 18 is suppressed.
  • the average particle diameter of the alumina particles constituting the overcoat layer 23 is preferably larger than the average particle diameter of the alumina particles constituting the trap layer 22.
  • the alumina sintered body 11 is effectively densified by increasing the average particle diameter of the alumina particles in the direction of separating from the resistance pattern 18.
  • the trap layer 32 may be formed to contain platinum. From the upper view of FIG. 5B, it can be seen that platinum contained in the trap layer 32 is observed in the form of white dots around the resistance pattern 18 observed in white.
  • the trap layer 32 covering the resistance pattern 18 contains platinum, so that even if the reactivity of the platinum of the resistance pattern 18 becomes high when firing or when using the temperature sensor element 10 under high temperature, the trap The platinum in the layer 32 reacts with oxygen in the air and impurities in the alumina sintered body 11. Thereby, since the reaction of platinum of the resistance pattern 18 is suppressed, the deterioration of the resistance pattern 18 is prevented, and the drift of the resistance value is effectively suppressed.
  • the trap layer 32 preferably contains 2% by volume or more and 30% by volume or less of platinum.
  • the trap layer 32 can effectively exhibit the function of suppressing the reaction of platinum of the resistance pattern 18. If it is 30% by volume or less, the platinum of the trap layer 32 can be prevented from conducting and the resistance value of the resistance pattern 18 can be prevented from decreasing.
  • the trap layer 42 is formed of a first trap layer 42a formed so as to cover the resistance pattern 18 and a second trap layer 42b laminated on the first trap layer 42a. It may be done.
  • the platinum content of the first trap layer 42a is lower than the platinum content of the second trap layer 42b. From the upper view of FIG. 5C, platinum contained in the second trap layer 42b stacked on the first trap layer 42a is observed as white dots above the resistance pattern 18 observed in white. I understand that.
  • the conduction by the platinum contained in the trap layer 42 can be suppressed. it can.
  • the platinum of the second trap layer 42b having a high content of platinum is reacted with oxygen in the air and impurities of the sintered alumina 11 while suppressing a decrease in the resistance value of the resistance pattern 18, thereby the resistance pattern 18 Reaction can be effectively suppressed.
  • the drift of the resistance value of the resistor pattern 18 is effectively suppressed.
  • the first trap layer 42a contains 0 vol% to 10 vol% of platinum
  • the second trap layer 42 b contains 2 vol% to 30 vol% of platinum.
  • the resistance of the second trap layer 42b having a relatively high platinum content is reduced while the decrease in the resistance value of the resistor pattern 18 is effectively suppressed by the first trap layer 42a having a relatively low platinum content.
  • the reaction of the pattern 18 with oxygen and impurities can be suppressed more effectively.
  • FIG. 6 is an explanatory view of a manufacturing process of the temperature sensor element according to the first embodiment.
  • a ceramic substrate 21 (see FIG. 5C) formed of high purity alumina is prepared.
  • the ceramic substrate 21 preferably contains 99.70% by mass or more of alumina, and more preferably 99.99% by mass or more.
  • a resistance pattern 18 is formed. Platinum is vapor-deposited on the surface of the ceramic substrate 21 and stabilized by heat treatment. Then, the platinum film is patterned by photolithography and etching to form meander-shaped resistance patterns 18 (see FIG. 1) in each chip region of the ceramic substrate 21.
  • the electrode 16 (see FIG. 3) is formed.
  • An electrode paste containing platinum is screen-printed on the surface of the ceramic substrate 21 so as to cover both ends of the resistance pattern 18. Then, this is dried and fired at about 1400 ° C. to form a pair of electrodes 16 connected to both ends of the resistance pattern 18. Then, the resistance value of the resistance pattern 18 is adjusted.
  • the material of the protective layer 24 (see FIG. 5C) is weighed. Specifically, alumina particles are mixed with appropriate amounts of an organic binder, an organic solvent and the like to prepare an alumina paste. By screen-printing the alumina paste, the first trap layer 42a, the second trap layer 42b, and the overcoat layer 23 (see FIG. 5C) are formed.
  • the alumina paste used to form the first trap layer 42a is referred to as alumina paste A
  • the alumina paste used for the second trap layer 42b is referred to as alumina paste B
  • the alumina paste used for the overcoat layer 23 is referred to as alumina paste C.
  • the alumina particles used for the alumina pastes AC are preferably prepared from alumina particles having a purity of 99.90-99.99%.
  • the alumina contained in the alumina-based sintered body 11 obtained by firing can be made to be preferably 99.70% by mass or more, more preferably 99.90% by mass or more.
  • the reaction between the impurities and the resistance pattern 18 can be prevented at the time of firing of the alumina particles.
  • the alumina particles are preferably 0.1-10.0 ⁇ m plural kinds of different average particle diameter alumina particles, more preferably at least three kinds of average particle diameter alumina particles are used. Thereby, the alumina-based sintered body 11 obtained by firing the alumina particles can be densified, and the occurrence of cracks in the alumina-based sintered body 11 during firing can be prevented.
  • No sintering aid is added to the alumina pastes AC. This prevents the sintering aid from reacting with the platinum of the resistor pattern 18 at the time of firing of the alumina particles, and the drift of the resistance value of the resistor pattern 18 is suppressed.
  • the alumina paste A preferably contains platinum in an amount of 0% to 30% by volume, and more preferably 0% to 10% by volume.
  • the alumina paste A is mixed so as to be 98 volume% of alumina particles and 2 volume% of platinum.
  • the alumina paste A preferably contains platinum at a lower content than the alumina paste B described later.
  • the first trap layer 42a having a low platinum content can be formed between the resistance pattern 18 and the second trap layer 42b. Therefore, in the temperature sensor element 10, while the decrease in the resistance value of the resistance pattern 18 is suppressed in the first trap layer 42a, the second trap layer 42b having a high content of platinum with the impurities and oxygen of the resistance pattern 18 The reaction can be effectively suppressed.
  • the alumina paste B preferably contains 2% by volume or more and 30% by volume or less of platinum.
  • the alumina paste B is mixed so as to be 90 volume% of alumina particles and 10 volume% of platinum.
  • the alumina paste B preferably contains platinum at a higher content than the alumina paste A.
  • the alumina paste C preferably contains alumina particles having a larger average particle size than the alumina pastes A and B.
  • the average particle size of the alumina particles of the overcoat layer 23 covering the trap layer 42 can be made larger than the average particle size of the alumina particles of the trap layer 42 close to the resistance pattern 18. It can be effectively densified.
  • the first trap layer 42a (see FIG. 5C) is formed.
  • Alumina paste A is screen printed on the surface of the ceramic substrate 21 so as to cover a part of the resistance pattern 18 and the pair of electrodes 16. Then, it is dried and fired at 800-1500 ° C. Thereby, the first trap layer 42 a covering the resistance pattern 18 is formed. The first trap layer 42 a adheres to the surface of the ceramic substrate 21 exposed around the resistance pattern 18 while covering the resistance pattern 18.
  • the second trap layer 42b is formed.
  • Alumina paste B is screen printed on the first trap layer 42a.
  • it is dried and fired at 1400-1700 ° C.
  • the second trap layer 42b is stacked on the first trap layer 42a.
  • the peripheral portion of the second trap layer 42b may be in close contact with the surface of the ceramic substrate 21 exposed to the outside of the first trap layer 42a.
  • the trap layer 42 is formed by the first trap layer 42 a and the second trap layer 42 b.
  • the overcoat layer 23 is formed.
  • Alumina paste C is screen printed on the second trap layer 42b. Then, it is dried and fired at 1400-1700 ° C. Thereby, the overcoat layer 23 is formed to cover the trap layer 42.
  • the peripheral portion of the overcoat layer 23 is in close contact with the surface of the ceramic substrate 21 exposed to the outside of the trap layer 42.
  • a protective layer 24 of a laminated structure comprising the trap layer 42 of the inner layer containing platinum as the main component of alumina and the overcoat layer 23 of the outer layer containing no platinum as the main component of alumina.
  • the temperature sensor element 10 is obtained by welding a lead wire to a pair of electrodes 16 formed on each chip, covering the welding portion with a reinforcing film such as potting glass and baking it.
  • the alumina-based sintered body 11 surrounding the resistance pattern 18 preferably contains 99.70% by mass or more, more preferably 99.99% by mass or more of alumina.
  • the alumina sintered body 11 can be formed.
  • the sintering aid does not react with the platinum of the resistance pattern 18 and impurities are prevented from reacting with the resistance pattern 18, so that the drift of the resistance value of the resistance pattern 18 is suppressed and the temperature sensor element 10 is High measurement accuracy is maintained even when used continuously at high temperatures.
  • FIG. 7 is a cross-sectional view of the temperature sensor element according to the second embodiment.
  • FIG. 7 corresponds to a cross-sectional view along the line BB in FIG.
  • a plurality of laminates in which the resistance patterns 78 are disposed between the green sheets 61 to 67 are formed by being laminated.
  • the green sheets 61-67 are in close contact with each other to form an alumina sintered body, and the green sheets 62, 63, 64, 65, 66 of the inner layer are disposed between the upper and lower green sheets 61, 67.
  • the stacked resistance patterns 78 are connected to each other by a through conductor 79 penetrating the alumina sintered body 11 (see FIG. 1).
  • An electrode 76 is formed on the upper end or the lower end of the laminated resistance pattern 78 via a through conductor 79, and a lead wire is joined to the electrode 76.
  • the electrode 76 and the resistance pattern 78 are sealed by a sintered body 75. Sealing of the resistance pattern 78 is preferably performed using an alumina sintered body from the viewpoint of heat resistance, but may be performed using a glass sintered body as long as the heat resistance can be maintained.
  • the alumina sintered body 11 By forming the alumina sintered body 11 surrounding the resistance pattern 78 with the green sheets 61 to 67, the alumina sintered body 11 is effectively sintered, and the resistance pattern 78 is effectively sealed. This effectively prevents the platinum of the resistor pattern 78 from being exposed to a high temperature atmosphere.
  • the green sheets 61 to 67 used for the alumina-based sintered body 11 are formed by forming a mixture of alumina particles together with an organic binder and an organic solvent into a sheet and firing the sheet.
  • the average particle diameter of the alumina particles constituting the upper and lower layer green sheets 61 and 67 is the same as that of the alumina particles constituting the inner layer green sheets 62, 63, 64, 65 and 66. Preferably, it is larger than the average particle size.
  • the alumina sintered body is effectively densified by increasing the average particle size of the alumina particles from the inner green sheets 62, 63, 64, 65, 66 to the upper and lower green sheets 61, 67. It will be in the
  • FIG. 8 is an explanatory view of a manufacturing process of the temperature sensor element according to the second embodiment.
  • the material of the green sheet is weighed. Then, alumina particles and an appropriate amount of an organic binder, an organic solvent, a plasticizer, a dispersant and the like are mixed to prepare a slurry. As described later, the slurry is dried to obtain green sheets 61-67 (see FIG. 7).
  • the alumina particles are preferably prepared from alumina particles having a purity of 99.90-99.99%.
  • the alumina contained in the alumina-based sintered body 11 (see FIG. 1) obtained by firing can be made to be preferably 99.70 mass% or more, more preferably 99.90 mass% or more.
  • the alumina particles are preferably 0.1-10.0 ⁇ m plural kinds of different average particle diameter alumina particles, more preferably at least three kinds of average particle diameter alumina particles are used. Thereby, the alumina-based sintered body 11 obtained by firing the alumina particles can be densified. Also, no sintering aid is added to the slurry.
  • green sheets 61 to 67 are formed.
  • the slurry is formed into a sheet and dried to obtain a green sheet.
  • the green sheets 61 to 67 are cut and processed into predetermined dimensions. Further, the green sheet is punched to form through holes at predetermined positions of the green sheet.
  • a resistance pattern 78 is formed by printing.
  • a conductor paste mainly composed of platinum is screen-printed and dried at predetermined positions of the green sheets 61 to 67 to form a resistance pattern 78.
  • the green sheets 61 to 67 are superimposed.
  • the conductive paste is filled in the through holes by screen printing and dried to form the through conductors 79.
  • the green sheets 61 to 67 laminated as described above are pressed.
  • the green sheets 62, 63, 64, 65, 66 of the inner layer are laminated, and then integrated by thermocompression bonding, and the green sheet 61 of the lower layer, the green sheet 62, 63, 64, 65, 66, of the fired inner layer.
  • the upper green sheets 67 are superposed, they are integrated by thermocompression bonding. And it bakes at 1400-1700 ° C.
  • the electrode 76 is formed.
  • An electrode paste containing platinum is screen-printed on the resistance pattern 78 formed on the upper or lower green sheets 61 and 67 among the stacked green sheets 61 to 67. Then, this is dried, debinded, and fired at about 1400 ° C. to form an electrode 76 connected to the resistance pattern 78. Adjust the resistance while measuring the resistance.
  • the green sheets 61 to 67 are singulated.
  • the temperature sensor element 70 is obtained.
  • the sealing of the resistance pattern 78 is preferably performed with the alumina sintered body 75 from the viewpoint of heat resistance, but may be performed with a glass sintered body as long as the heat resistance can be maintained.
  • the alumina-based sintered body 11 surrounding the resistance pattern 78 contains 99.70% by mass or more, more preferably 99.99% by mass or more of alumina.
  • Alumina-based sintered body 11 can be formed.
  • FIG. 9 is a cross-sectional view of a temperature sensor element according to a third embodiment.
  • FIG. 9 corresponds to a cross-sectional view along the line BB in FIG.
  • the first sintered layer 21 forms a substrate 81 on which a resistive pattern 88 is formed on the main surface, and
  • the sintered layer 24 may form a protective plate 82 mounted on the resistance pattern 88.
  • An electrode 86 is formed on the main surface of the substrate 81, and the electrode 86 and the resistance pattern 88 are connected by a wire 89.
  • the resistor pattern 88 and the protective plate 82 are sealed by a sintered body 83.
  • Sealing of the resistance pattern 88 is preferably performed using an alumina sintered body from the viewpoint of heat resistance, but may be performed using a glass sintered body as long as heat resistance can be maintained.
  • the alumina-based sintered body is more excellent in heat resistance than the glass-based sintered body, and generation of cracks in the alumina-based sintered body is suppressed at high temperatures, so that the resistance pattern 88 is disposed in the alumina-based sintered body.
  • the platinum of the resistance pattern 88 is prevented from being exposed to the high temperature atmosphere and deteriorating.
  • the resistance pattern 18 formed on the ceramic substrate 21 was covered with a protective layer 24 to produce the temperature sensor element 10 (see FIG. 5A).
  • Ceramic substrate 21 A ceramic substrate 21 containing 99.99% by mass or more of alumina was prepared.
  • alumina paste The alumina paste (1) used to form the trap layer 22 and the alumina paste (2) used to form the overcoat layer 23 were produced.
  • Each alumina paste contains alumina particles having a purity of 99.90-99.99%, and the protective layer 24 (alumina-based sintered body) obtained by firing contains 93.97% by mass of alumina, 94.90 Mass%, 98.50 mass%, 98.10 mass%, 99.00 mass%, 99.20 mass%, 99.50 mass%, 99.70 mass%, 99.90 mass%, 99.95 mass%
  • the alumina particles were adjusted to contain 99.99% by mass.
  • each alumina paste alumina particles of three different average particle sizes in the range of 0.1-10.0 ⁇ m were mixed with appropriate amounts of the organic binder and the organic solvent.
  • alumina paste (2) alumina particles having a larger average particle size than the alumina paste (1) were used.
  • content of the impurity of the alumina particle was adjusted and the sintering auxiliary agent was not added.
  • sintering aids of MgO, SiO 2 and CaO were added to adjust the purity.
  • a platinum film was formed on the surface of the ceramic substrate 21 by sputter deposition and patterned to form a meander-shaped resistance pattern 18 (see FIGS. 1 and 5A). Then, a pair of electrodes 16 was formed at both ends of the resistance pattern 18. Next, alumina paste (1) was screen-printed so as to cover the resistance pattern 18 and the pair of electrodes 16, and this was fired to form a trap layer 22. Then, alumina paste (2) was screen-printed on the trap layer 22 and fired to form an overcoat layer 23. Next, the ceramic substrate 21 was separated into pieces, and lead wires were welded to the pair of electrodes 16 to obtain the temperature sensor element 10.
  • the produced alumina sintered body of the protective layer 24 contains 93.97% by mass, 94.90% by mass, 98.50% by mass, 98.10% by mass, 99.00% by mass, and 99.20% by mass of alumina.
  • the conduction test was carried out using the temperature sensor element 10 containing%, 99.50 mass%, 99.70 mass%, 99.90 mass%, 99.95 mass%, 99.99 mass%.
  • the temperature sensor element 10 was energized, and the temperature reached 1100 ° C., and the resistance value of the resistance pattern 18 was measured in a stable state. Starting from this resistance value, the rate of change of the resistance value with time from this resistance value was calculated.
  • FIG. 10 shows the result of the energization test of the temperature sensor element according to the example.
  • the target value is that the rate of change of the resistance value of the resistor pattern 18 after 250 hours is less than 2%.
  • the change in resistance after 62 hours, which is one-fourth of the target time, is less than 2% in the temperature sensor element 10 in which the alumina of the protective layer 24 is 99.70% by mass or more.
  • FIG. 12 is a view showing alumina particles constituting a protective layer containing 99.99% by mass of alumina according to an example.
  • the right and left views of FIG. 12 show other positions of the protective layer 24, respectively, and alumina particles having an average particle diameter of about 2-3 ⁇ m are circled.
  • the protective layer 24 contained alumina particles having an average particle diameter of about 2-3 ⁇ m and alumina particles having an average particle diameter smaller than those of these alumina particles in the periphery thereof. . It was found that the protective layer 24 was densified by being composed of a plurality of types of alumina particles having different average particle sizes.
  • the resistance pattern 18 is contained in the alumina sintered body 11. By being disposed, platinum is prevented from being exposed to the high temperature atmosphere and deteriorating.
  • the resistance pattern 18 has a configuration in which a plurality of straight portions extending in the longitudinal direction of the temperature sensor element 10 are arranged in parallel in the short direction at predetermined intervals. As long as the temperature sensor element 10 is formed, the plurality of linear portions 18a extending in the short direction of the temperature sensor element 10 may be arranged in parallel at predetermined intervals in the longitudinal direction. Further, although the pair of electrodes 16 is disposed at both ends in the short direction, it may be disposed at both ends in the longitudinal direction.
  • the temperature sensor element of the present embodiment includes an alumina sintered body, and a resistance pattern disposed inside the alumina sintered body, the main component of the resistance pattern being platinum, the alumina
  • the quality sintered body is characterized by containing 99.70% by mass or more of alumina and containing no sintering aid.
  • the alumina of the alumina sintered body has high purity and does not contain a sintering aid. For this reason, at the time of firing of alumina, the sintering aid does not react with the platinum of the resistance pattern, and the impurities contained in the alumina are prevented from reacting with the platinum of the resistance pattern. As a result, the TCR of platinum is maintained, and the drift of the resistance value is suppressed, whereby high measurement accuracy is maintained.
  • the alumina sintered body is more excellent in heat resistance than the glass sintered body and the generation of cracks in the alumina sintered body is suppressed at high temperature, the resistance pattern is disposed in the alumina sintered body. Thus, platinum is prevented from being exposed to the high temperature atmosphere and deteriorating.
  • the alumina-based sintered body comprises a first sintered layer and a second sintered layer, and the first sintered layer and the second sintered layer.
  • the resistance pattern is disposed between the sintered layer and the sintered layer.
  • the alumina particles are preferably composed of alumina particles of at least three types of average particle sizes.
  • the alumina contained in at least one of the first sintered layer and the second sintered layer is preferably 99.99% by mass or more. This effectively prevents the impurities contained in the alumina from reacting with platinum in the resistance pattern.
  • the first sintered layer forms a substrate on which the resistance pattern is formed on the main surface, and the second sintered layer protects the resistance pattern.
  • a protective layer laminated on the main surface of the substrate is formed.
  • the resistance pattern is disposed in the alumina sintered body with a simple configuration.
  • the second sintered layer includes: a trap layer formed to cover the resistance pattern; and an overcoat layer formed to cover the trap layer. It is preferable to have. As a result, the resistance pattern is effectively sealed by the two protective layers, so that the platinum is effectively prevented from being exposed to the high temperature atmosphere.
  • the average particle diameter of the alumina particles constituting the overcoat layer is preferably larger than the average particle diameter of the alumina particles constituting the trap layer.
  • the trap layer preferably contains 2% by volume or more and 30% by volume or less of platinum.
  • the trap layer covering the resistance pattern contains platinum, and when the reactivity of the platinum in the resistance pattern becomes high under high temperature use, the platinum in the trap layer is oxygen in the atmosphere, and the alumina is burned off. Reacts with impurities in the body. Thereby, the reaction of the resistance pattern is suppressed and the deterioration of platinum is prevented, so that the drift of the resistance value is suppressed.
  • the trap layer includes a first trap layer formed so as to cover the resistance pattern, and a second trap layer stacked on the first trap layer.
  • the first trap layer preferably contains platinum at a lower content than the second trap layer.
  • the first trap layer contains platinum in an amount of 0% to 10% by volume
  • the second trap layer includes platinum in an amount of 2% to 30% by volume. It is preferable to contain. Thereby, the reaction of the resistance pattern can be more effectively suppressed in the second trap layer while effectively suppressing the decrease in the resistance value of the resistance pattern in the first trap layer.
  • the first sintered layer and the second sintered layer be formed of a green sheet.
  • a plurality of stacked bodies in which the resistance patterns are disposed between the green sheets are stacked, and the stacked resistance patterns are formed of the alumina sintered body. It is preferable that they are connected by a through conductor which penetrates the body. As a result, the green sintered body is effectively densified by using the green sheet, and the resistance pattern is effectively sealed, so that the platinum is effectively prevented from being exposed to the high temperature air. Be done.
  • the temperature sensor element of the present embodiment it is preferable that no crack is formed in the alumina sintered body.
  • the temperature sensor element of the present embodiment is a temperature sensor element formed by firing a laminate having a plurality of green sheets and a plurality of resistance patterns disposed between the green sheets,
  • the alumina sintered body obtained by firing the green sheet contains 99.70% by mass or more of alumina, does not contain a sintering aid, the resistance pattern is made of a platinum film, and the alumina sintered body is The average particle diameter of the contained alumina particles is characterized by becoming larger as it goes from the inner layer to the upper layer and the lower layer. This is a preferred form of the temperature sensor element shown in FIG.
  • the temperature sensor element of the present embodiment comprises a substrate made of an alumina sintered body containing 99.70% by mass or more of alumina and not containing a sintering aid, and a platinum film formed on the substrate And a protective plate made of an aluminous sintered body formed on and in contact with the resistive pattern and containing 99.70 mass% or more of alumina and containing no sintering aid, and the substrate from above the substrate And a glass sintered body formed on the protective plate and sealing the resistance pattern.
  • the present invention can also be applied to other devices in which a resistance pattern made of platinum is sealed with a sintered body.
  • the present invention has the effect that high measurement accuracy can be maintained by preventing the reaction between the resistance pattern and the sintering aid, and in particular, a temperature sensor element used for temperature measurement at high temperatures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

抵抗パターンと焼結助剤の反応が防止されることにより、高い測定精度を維持すること。温度センサ素子(10)は、アルミナ質焼結体(11)と、アルミナ質焼結体の内側に配設された抵抗パターン(18)と、を備える。抵抗パターンの主成分は白金であり、アルミナ質焼結体は、アルミナを99.70質量%以上含有し、焼結助剤を含有しない。アルミナ質焼結体のアルミナが高純度であり、焼結助剤を含有しない。このため、アルミナの焼成時に、焼結助剤が抵抗パターンの白金と反応することがなく、アルミナに含まれる不純物が、抵抗パターンの白金と反応することが防止される。これにより、白金のTCRが維持され、抵抗値のドリフトが抑制される。

Description

温度センサ素子
 この発明は、高温における温度測定に用いられる温度センサ素子に関する。
 自動車のエンジンルーム等の高温領域には、高温測定用の白金温度センサが取り付けられている。白金温度センサとして、セラミックス基板上に設けられた白金薄膜の抵抗パターンを、セラミックスからなる保護膜で覆って形成されているものが知られている(特許文献1、2参照)。白金は化学的に安定しているため、高温下においても特性変動が生じ難く、高温用途に適したセンサとなっている。
 白金温度センサに用いられるセラミックス基板は、セラミックスの材料となる無機物を1000℃以上の高温で焼成して高密度化し、緻密な焼結体を形成することにより得られる。焼成を安定化させるとともに、セラミックスの緻密化を促進して、生産効率を上げるため、セラミックス材料の無機物にSiO等の焼結助剤を添加した状態で、焼成が行われる(例えば、特許文献3参照)。
特許第5976186号公報 特開2005-241568号公報 特開2003-277132号公報
 しかしながら、焼成が行われる高温下においては、抵抗パターンの白金の反応性が高くなるため、セラミックス基板の焼結助剤と白金が反応する。これにより、白金のTCR(Temperature Coefficient of Resistance、抵抗温度係数)が変化し、抵抗値のドリフトが引き起こされる問題がある。
 本発明はかかる点に鑑みてなされたものであり、抵抗パターンと焼結助剤の反応が防止されることにより、高い測定精度を維持できる温度センサ素子を提供することを目的の一つとする。
 本発明の一態様の温度センサ素子は、アルミナ質焼結体と、前記アルミナ質焼結体の内側に配設された抵抗パターンと、を備え、前記抵抗パターンの主成分は白金であり、前記アルミナ質焼結体は、アルミナを99.70質量%以上含有し、焼結助剤を含有しないことを特徴とする。
 本発明によれば、抵抗パターンと焼結助剤の反応が防止されることにより、高い測定精度を維持できる。
第1の形態に係る温度センサ素子の平面図である。 図1のA-A線に沿う断面図である。 図1のB-B線に沿う断面図である。 第1の実施の形態に係る温度センサ素子の他の例を示す図である。 図5Aは第1の実施の形態に係る温度センサ素子の他の例を示す図である。図5Bは第1の実施の形態に係る温度センサ素子の他の例を示す図である。図5Cは第1の実施の形態に係る温度センサ素子の他の例を示す図である。 第1の実施の形態に係る温度センサ素子の製造工程の説明図である。 第2の実施の形態に係る温度センサ素子の断面図である。 第2の実施の形態に係る温度センサ素子の製造工程の説明図である。 第3の実施の形態に係る温度センサ素子の断面図である。 実施例に係る温度センサ素子の通電試験の結果を示す。 実施例に係るアルミナ質焼結体のアルミナが99.99質量%の温度センサ素子を示す図である。 実施例に係る99.99質量%のアルミナが含まれる保護層を構成するアルミナ粒子を示す図である。 図13Aは温度センサ素子(アルミナ99.99質量%)を上方から観察した図である。図13Bは温度センサ素子(アルミナ99.50質量%)を上方から観察した図である。
 一般に白金温度センサに用いられるセラミックス基板の製造工程においては、セラミックス基板の材料となる無機物を1000℃以上の高温で焼成し、緻密な焼結体を形成している。緻密な焼結体を得ることで、クラックの発生を防いで、白金が高温にさらされることを抑えている。この際、焼成温度を下げるとともに、セラミックスの緻密化を促進するため、一般的には、アルミナとの共晶反応により低融点の液相を形成し得るSiO、MgO、CaO等の混合物がセラミックス材料の無機物に添加されて焼成が行われる。
 しかしながら、焼成が行われる高温下においては、抵抗パターンの白金の反応性が高くなるため、セラミックス基板に含まれる焼結助剤やSi等の不純物と、白金が反応する。さらに、セラミックス基板に含まれる焼結助剤及び不純物のSiと白金が反応して生じるPtSiは、白金よりも低い温度で揮発する問題がある。これにより、抵抗パターンの白金のTCRが変化し、抵抗値のドリフトが引き起こされる問題がある。特許文献3に記載のセンサ素子においては、セラミックス基板の材料となる無機物の含有量を規定しているが、焼結助剤を使用しており、白金と焼結助剤の反応を抑制することができなかった。
 一方で、セラミックス材料に焼結助剤を添加しないと、セラミックスの緻密化が進まず、焼結密度が上げられずセラミックスにボイドが多くなるか、焼成時にセラミックス基板にクラックが発生してしまう問題がある。これにより、抵抗パターンの白金が高温の大気にさらされ、劣化する。
 また、温度センサ素子において、セラミックス基板の材料にガラスが用いられている場合、ガラスの耐熱性は、アルミナを材料とするセラミックス基板よりも劣っているため、高温の焼成時にガラスが活性化して反応性が上がり、抵抗パターンの白金と反応してしまう問題がある。また、ガラスを用いてセラミックス基板が封止される場合、高温の測定時にガラスが破壊され、抵抗パターンが高温の大気にさらされる。
 そこで、本実施の形態においては、セラミックス基板において、高純度のアルミナを用いるとともに、焼結助剤を含有しないため、焼結助剤及び不純物のSi等が、抵抗パターンの白金と反応することが防止される。これにより、抵抗パターンの抵抗値のドリフトが抑制される。また、高純度のアルミナで形成されるため、ガラスで形成される場合よりも耐熱性に優れ、高温におけるセラミックス基板のクラックの発生が抑制される。また、セラミックス基板が平均粒子径の異なる複数種のアルミナ粒子から構成されることにより、セラミックス基板が緻密化され、焼成時のセラミックス基板のクラック発生が防止される。
 以下、添付図面を参照して、第1の実施の形態に係る温度センサ素子について説明する。図1は、第1の形態に係る温度センサ素子の平面図である。図2は、図1のA-A線に沿う断面図である。図3は、図1のB-B線に沿う断面図である。
 図1から図3に示すように、温度センサ素子10は、平面視矩形状のアルミナ質焼結体11の内側に抵抗パターン18が配設されて形成されている。抵抗パターン18は、水平方向にミアンダ形状を有しており、温度センサ素子10の長手方向に延びる複数の直線部18aが、短手方向に所定の間隔で平行に並べられ、隣り合う直線部18aの端部同士が折り返し部18bによって連結されている。抵抗パターン18の両端部には一対の電極16が形成されており、一対の電極16にはリード線(不図示)が接合されている。
 一対の電極16は、白金を含有する電極ペーストが焼成されて形成されている。抵抗パターン18は、白金を主成分とする薄膜抵抗膜である。
 アルミナ質焼結体11は、アルミナ(Al)を99.70質量%以上含有している。アルミナ質焼結体11は、純度が99.90-99.99%のアルミナ粒子を焼成して得ることができる。抵抗パターン18を覆う焼結体の材料としては、良好な封止機能、高温による酸化、揮発、分解等が抑えられる、還元され難い、白金と反応し難い、抵抗パターン18と線膨張率が近い、耐マイグレーション力等の観点から、アルミナ粒子が用いられることが好ましいが、これらの特性を有していれば、アルミナ粒子以外を含めてもよい。例えば、単体のマグネシアを含めてもよい。
 また、アルミナ質焼結体11は焼結助剤を含有しない。焼結助剤としては、SiO、CaO、MgO、TiO、B等が挙げられる。焼結助剤及び後述する不純物は、高温下で反応性が高くなった抵抗パターン18の白金と反応し、抵抗値のドリフトを引き起こす。
 また、アルミナ質焼結体11には微量の不純物が含まれていてもよい。不純物とは材料となるアルミナ粉末に含まれている不純物であり、高純度のアルミナ粒子でも微量の不純物が含まれている。不純物としては、Si、Na、B、Ca、Mg等が挙げられ、特にNa、Siが抵抗パターンと反応し、抵抗値ドリフトを引き起こす。アルミナ質焼結体11の不純物の含有量は、0.3質量%未満が好ましく、0.01質量%未満がより好ましい。
 アルミナ質焼結体11に焼結助剤が含まれておらず、高純度のアルミナが含まれているため、アルミナの焼成時に、焼結助剤が抵抗パターン18の白金と反応せず、アルミナ粒子に含まれる不純物が抵抗パターン18の白金と反応することが防止され、抵抗値のドリフトが抑制されるため、温度センサ素子10の高い測定精度が維持される。また、アルミナ質焼結体11はガラス焼結体よりも耐熱性に優れ、焼成時や測定時の高温におけるアルミナ質焼結体11のクラックの発生が抑制される。このため、抵抗パターン18がアルミナ質焼結体11内に配設されていることで、抵抗パターン18の白金が高温の大気にさらされることが防止される。
 上記のように、アルミナ質焼結体11は、アルミナを99.70質量%以上含有し、焼結助剤を含有しなければ、図4に示すように、第1の焼結層21と、第2の焼結層24とを備え、第1の焼結層21と第2の焼結層24との間に抵抗パターン18が配設される構成としてもよい。図4は、第1の実施の形態に係る温度センサ素子の他の例を示す図である。
 第1の焼結層21及び第2の焼結層24の少なくとも一方は、平均粒子径が0.1-10.0μmの範囲内の異なる平均粒子径のアルミナ粒子が複数種用いられて構成されている。ここで、アルミナ質焼結体11のアルミナ粒子の平均粒子径とは、アルミナ質焼結体11の断面を、走査型電子顕微鏡によって観察し、撮影した写真の画面上で10-100個の粒子について最大径を測定し、この最大径の累積値を粒子の個数で除して算出する。このように、アルミナ質焼結体11が平均粒子径の異なる複数種のアルミナ粒子から構成されることにより、粒子間同士の空隙が小さくなり、アルミナ質焼結体11が緻密化され、焼成時のアルミナ質焼結体11のクラック発生が防止される。このため、焼成時に抵抗パターン18の白金が高温の大気によって劣化されることが防止される。
 第1の焼結層21及び前記第2の焼結層24の少なくとも一方を構成するアルミナ粒子は、少なくとも3種類以上の平均粒子径のアルミナ粒子からなることが好ましい。これにより、アルミナ質焼結体11が効果的に緻密化され、焼成時のアルミナ質焼結体11のクラック発生が効果的に防止される。
 第1の焼結層21及び第2の焼結層24の少なくとも一方において、含有されるアルミナは、99.99質量%以上であることが好ましい。これにより、アルミナ粒子に含まれる不純物が、抵抗パターン18の白金と反応することが効果的に防止される。
 上記の条件を満たせば、第1の焼結層21及び第2の焼結層24は、グリーンシートから構成されていてもよい。
 以下、第1の焼結層21と第2の焼結層24との間に抵抗パターン18が配設されて形成される温度センサ素子10について詳細に説明する。図5A、図5B及び図5Cは、夫々、第1の実施の形態に係る温度センサ素子の他の例を示す図である。図5A-図5Cの上図は、温度センサ素子10を走査型電子顕微鏡で観察した図であり、下図は、図1におけるA-A線に沿う断面図に該当する。
 図5A-図5Cに示すように、第1の焼結層21は、主面上に抵抗パターン18が形成された基板を形成し、第2の焼結層24は、抵抗パターン18を保護するように基板21の主面に積層された保護層24を形成してもよい。これにより、簡易な構成で、アルミナ質焼結体11内に抵抗パターン18を配設できる。
 また、図5Aに示すように、保護層24は、抵抗パターン18を覆うように形成されるトラップ層22と、トラップ層22を覆うように形成されるオーバーコート層23とで構成されていてもよい。オーバーコート層23はトラップ層22の全体を覆っており、その周縁部は基板21の主面に密着している。図5Aの上図から、抵抗パターン18の白金の部分が、白色に観察されていることがわかる。抵抗パターン18が二層の保護層24で覆われることにより、抵抗パターン18が効果的に封止されるため、抵抗パターン18の白金が高温の大気にさらされることが防止される。このため、抵抗パターン18の抵抗値のドリフトが抑制される。
 オーバーコート層23を構成するアルミナ粒子の平均粒子径は、トラップ層22を構成するアルミナ粒子の平均粒子径よりも大きいことが好ましい。保護層24において、アルミナ粒子の平均粒子径を、抵抗パターン18から離間する方向に大きくすることで、アルミナ質焼結体11が効果的に緻密化された状態となる。
 図5Bに示すように、トラップ層32は、白金を含有するように形成されていてもよい。図5Bの上図から、白色に観察される抵抗パターン18の周辺に、トラップ層32に含有される白金が白い点状に観察されていることがわかる。抵抗パターン18を覆うトラップ層32が白金を含有することで、焼成時や高温下での温度センサ素子10の使用時に、抵抗パターン18の白金の反応性が高くなった場合であっても、トラップ層32の白金が、大気中の酸素やアルミナ質焼結体11の不純物と反応する。これにより、抵抗パターン18の白金の反応が抑えられるため、抵抗パターン18の劣化が防止され、抵抗値のドリフトが効果的に抑制される。
 トラップ層32は、白金を2体積%以上30体積%以下含有することが好ましい。トラップ層32の白金が2体積%以上であれば、トラップ層32が抵抗パターン18の白金の反応を抑える機能を効果的に発揮できる。30体積%以下であれば、トラップ層32の白金が導通することを防止し、抵抗パターン18の抵抗値が低下することを防止できる。
 図5Cに示すように、トラップ層42は、抵抗パターン18を覆うように形成される第1のトラップ層42aと、第1のトラップ層42a上に積層される第2のトラップ層42bとで形成されていてもよい。第1のトラップ層42aの白金の含有率は、第2のトラップ層42bの白金の含有率よりも低くなっている。図5Cの上図から、白色に観察される抵抗パターン18の上方に、第1のトラップ層42a上に積層される第2のトラップ層42bに含有される白金が白い点状に観察されていることがわかる。
 このように、抵抗パターン18と第2のトラップ層42bとの間に、白金の含有率が低い第1のトラップ層42aを介在させることで、トラップ層42に含まれる白金による導通を抑えることができる。これにより、抵抗パターン18の抵抗値の低下を抑えながら、白金の含有率の高い第2のトラップ層42bの白金を大気中の酸素やアルミナ質焼結体11の不純物と反応させ、抵抗パターン18の反応を効果的に抑えることができる。これにより、抵抗パターン18の抵抗値のドリフトが効果的に抑制される。
 第1のトラップ層42aは、白金を0体積%以上10体積%以下含有し、第2のトラップ層42bは、白金を2体積%以上30体積%以下含有することが好ましい。これにより、比較的白金の含有率の低い第1のトラップ層42aで抵抗パターン18の抵抗値の低下を効果的に抑えながら、比較的白金の含有率の高い第2のトラップ層42bで、抵抗パターン18と酸素及び不純物との反応をより効果的に抑えることができる。
 次に、上記のように構成された温度センサ素子10の製造工程について説明する。図6は、第1の実施の形態に係る温度センサ素子の製造工程の説明図である。
 まず、高純度のアルミナから形成されるセラミックス基板21(図5C参照)を準備する。セラミックス基板21は、アルミナを99.70質量%以上含有していることが好ましく、99.99質量%以上含有していることがより好ましい。
 次に、抵抗パターン18を形成する。セラミックス基板21の表面に白金を蒸着し、熱処理により安定化する。そして、フォトリソグラフィとエッチングにより白金膜をパターニングすることにより、セラミックス基板21の各チップ領域にミアンダ形状の抵抗パターン18(図1参照)を形成する。
 次に、電極16(図3参照)を形成する。セラミックス基板21の表面に、抵抗パターン18の両端部を覆うように、白金を含有する電極ペーストをスクリーン印刷する。そして、これを乾燥し約1400℃で焼成することにより、抵抗パターン18の両端部に接続する一対の電極16を形成する。そして、抵抗パターン18の抵抗値を調整する。
 次に、保護層24(図5C参照)の材料を秤量する。具体的には、アルミナ粒子と、適量の有機バインダ及び有機溶媒等とを混合し、アルミナペーストを作製する。アルミナペーストをスクリーン印刷することにより、第1のトラップ層42a、第2のトラップ層42b、及びオーバーコート層23(図5C参照)が形成される。
 第1のトラップ層42aの形成に用いられるアルミナペーストをアルミナペーストA、第2のトラップ層42bに用いられるアルミナペーストをアルミナペーストB、オーバーコート層23に用いられるアルミナペーストをアルミナペーストCとする。アルミナペーストA-Cに用いられるアルミナ粒子は、純度が99.90-99.99%のアルミナ粒子から調整されることが好ましい。これにより、焼成して得られるアルミナ質焼結体11に含有されるアルミナを、好ましくは99.70質量%以上、より好ましくは99.90質量%以上にすることができる。また、不純物の含有量を非常に低くできるため、アルミナ粒子の焼成時に不純物と抵抗パターン18とが反応することを防止できる。
 また、アルミナ粒子は、0.1-10.0μmの複数種の異なる平均粒子径のアルミナ粒子が用いられることが好ましく、少なくとも3種類以上の平均粒子径のアルミナ粒子が用いられることがより好ましい。これにより、アルミナ粒子を焼成して得られるアルミナ質焼結体11を緻密化でき、焼成時のアルミナ質焼結体11のクラック発生が防止される。
 アルミナペーストA-Cには、焼結助剤を添加しない。これにより、アルミナ粒子の焼成時に、焼結助剤が抵抗パターン18の白金と反応することが防止され、抵抗パターン18の抵抗値のドリフトが抑制される。
 アルミナペーストAは、白金を0体積%以上30体積%以下含有することが好ましく、0体積%以上10体積%以下含有することがより好ましい。例えば、アルミナペーストAは、アルミナ粒子98体積%、白金2体積%となるように混合される。アルミナペーストAは、後述するアルミナペーストBよりも低い含有率で白金を含有させることが好ましい。これにより、抵抗パターン18と第2のトラップ層42bとの間に、白金の含有率の低い第1のトラップ層42aを形成できる。このため、温度センサ素子10において、第1のトラップ層42aで抵抗パターン18の抵抗値の低下を抑えながら、白金の含有率の高い第2のトラップ層42bで抵抗パターン18の不純物及び酸素との反応を効果的に抑えることができる。
 アルミナペーストBは、白金を2体積%以上30体積%以下含有することが好ましい。例えば、アルミナペーストBは、アルミナ粒子90体積%、白金10体積%となるよう混合される。アルミナペーストBは、アルミナペーストAよりも高い含有量で白金を含有させることが好ましい。
 アルミナペーストCにおいては、アルミナペーストA、Bよりも平均粒子径が大きいアルミナ粒子を含有することが好ましい。これにより、抵抗パターン18に近いトラップ層42のアルミナ粒子の平均粒子径よりも、トラップ層42を覆うオーバーコート層23のアルミナ粒子の平均粒子径を大きくすることでき、アルミナ質焼結体11を効果的に緻密化させることができる。
 次に、第1のトラップ層42a(図5C参照)を形成する。セラミックス基板21の表面に、抵抗パターン18と一対の電極16の一部を覆うように、アルミナペーストAをスクリーン印刷する。そして、これを乾燥して、800-1500℃で焼成する。これにより、抵抗パターン18を覆う第1のトラップ層42aを形成する。第1のトラップ層42aは、抵抗パターン18を覆いながら、抵抗パターン18の周囲に露出するセラミックス基板21の表面に密着する。
 次に、第2のトラップ層42bを形成する。第1のトラップ層42a上に、アルミナペーストBをスクリーン印刷する。そして、これを乾燥して、1400-1700℃で焼成する。これにより、第2のトラップ層42bが第1のトラップ層42a上に積層される。第2のトラップ層42bの周縁部は、第1のトラップ層42aの外側に露出するセラミックス基板21の表面に密着してもよい。第1のトラップ層42aと第2のトラップ層42bでトラップ層42が形成される。
 次に、オーバーコート層23を形成する。第2のトラップ層42b上に、アルミナペーストCをスクリーン印刷する。そして、これを乾燥して、1400-1700℃で焼成する。これにより、トラップ層42を覆うように、オーバーコート層23が形成される。オーバーコート層23の周縁部は、トラップ層42の外側に露出するセラミックス基板21の表面に密着する。この結果、アルミナを主成分として白金を含有する内層のトラップ層42と、アルミナを主成分として白金を含有しない外層のオーバーコート層23からなる積層構造の保護層24が形成される。
 次に、切削して分割し、セラミックス基板21を個片化して、図5Cに示す基板21と同等の大きさのチップを作製する。各チップに形成される一対の電極16にリード線を溶接し、溶接個所をポッティングガラス等の強化膜で覆って焼成することにより、温度センサ素子10が得られる。
 このようにして温度センサ素子10を作製することで、抵抗パターン18を囲うアルミナ質焼結体11が、好ましくはアルミナを99.70質量%以上、より好ましくは99.99質量%以上含有するように、アルミナ質焼結体11を形成できる。これにより、焼結助剤が抵抗パターン18の白金と反応せず、不純物が抵抗パターン18と反応することが防止されるため、抵抗パターン18の抵抗値のドリフトが抑制され、温度センサ素子10を高温下で連続的に使用しても、高い測定精度が維持される。
 次に、第2の実施の形態に係る温度センサ素子70について説明する。第2の実施の形態は、第1の焼結層21及び第2の焼結層24が、グリーンシートから構成される。第1の実施の形態と相違している部分を主に説明する。図7は、第2の実施の形態に係る温度センサ素子の断面図である。図7は、図1におけるB-B線に沿う断面図に該当する。
 図7に示すように、第2の実施形態に係る温度センサ素子70は、抵抗パターン78がグリーンシート61-67の間に配設されて形成される積層体が、複数積層されて形成されている。グリーンシート61-67は互いに密着してアルミナ質焼結体を構成しており、上層及び下層のグリーンシート61、67に挟まれて内層のグリーンシート62、63、64、65、66が配置されている。積層された抵抗パターン78同士は、アルミナ質焼結体11(図1参照)を貫通する貫通導体79によって接続されている。
 積層された抵抗パターン78の上端または下端には貫通導体79を介して電極76が形成されており、電極76にはリード線が接合されている。電極76及び抵抗パターン78は、焼結体75によって封止されている。抵抗パターン78の封止は、耐熱性の観点から、アルミナ質焼結体で行われることが好ましいが、耐熱性が維持できればガラス焼結体で行われてもよい。
 抵抗パターン78を囲むアルミナ質焼結体11がグリーンシート61-67で構成されることにより、アルミナ質焼結体11が効果的に焼結し、抵抗パターン78が効果的に封止される。これにより、抵抗パターン78の白金が高温の大気にさらされることが効果的に防止される。
 アルミナ質焼結体11に用いられるグリーンシート61-67は、アルミナ粒子を有機バインダ及び有機溶媒とともに混合したものをシート状に成形し、これを焼成して形成されている。積層されたグリーンシート61-67のうち、上層及び下層のグリーンシート61、67を構成するアルミナ粒子の平均粒子径は、内層のグリーンシート62、63、64、65、66を構成するアルミナ粒子の平均粒子径よりも大きいことが好ましい。アルミナ粒子の平均粒子径を、内層のグリーンシート62、63、64、65、66から上層及び下層のグリーンシート61、67に向かって大きくすることで、アルミナ質焼結体が効果的に緻密化された状態となる。
 次に、上記のように構成された温度センサ素子70の製造工程について説明する。図8は、第2の実施の形態に係る温度センサ素子の製造工程の説明図である。
 まず、グリーンシートの材料を秤量する。そして、アルミナ粒子と、適量の有機バインダ、有機溶媒、可塑剤、分散剤等とを混合して、スラリーを作製する。後述するように、スラリーが乾燥されてグリーンシート61-67(図7参照)が得られる。
 アルミナ粒子は、純度が99.90-99.99%のアルミナ粒子から調整されることが好ましい。これにより、焼成して得られるアルミナ質焼結体11(図1参照)に含有されるアルミナを、好ましくは99.70質量%以上、より好ましくは99.90質量%以上にすることができる。
 また、アルミナ粒子は、0.1-10.0μmの複数種の異なる平均粒子径のアルミナ粒子が用いられることが好ましく、少なくとも3種類以上の平均粒子径のアルミナ粒子が用いられることがより好ましい。これにより、アルミナ粒子を焼成して得られるアルミナ質焼結体11を緻密化できる。また、スラリーには、焼結助剤を添加しない。
 また、上層及び下層のグリーンシート61、67に用いられるスラリーのアルミナ粒子の平均粒子径は、内層のグリーンシート62、63、64、65、66に用いられるスラリーのアルミナ粒子の平均粒子径よりも大きいことが好ましい。これにより、アルミナ粒子の平均粒子径を、内層のグリーンシート62、63、64、65、66から上層及び下層のグリーンシート61、67に向かって大きくすることができ、アルミナ質焼結体11を効果的に緻密化させることができる。
 次に、グリーンシート61-67を成形する。スラリーをシート状に成形し、乾燥させることで、グリーンシートが得られる。
 次にグリーンシートのカット、穴あけを行う。グリーンシート61-67を切断加工し、所定の寸法にする。また、グリーンシートを打ち抜き加工し、グリーンシートの所定の位置に貫通穴を形成する。
 次に、印刷により抵抗パターン78を形成する。グリーンシート61-67の所定の位置に、白金を主成分とする導体ペーストをスクリーン印刷して乾燥することで、抵抗パターン78を形成する。
 次に、グリーンシート61-67を重ね合わせる。そして、貫通穴内に導体ペーストをスクリーン印刷により充填し乾燥することで、貫通導体79を形成する。
 次に、上記のようにして積層させたグリーンシート61-67をプレスする。最初に、内層のグリーンシート62、63、64、65、66を重ね合わせた後、熱圧着により一体化し、下層のグリーンシート61、焼成した内層のグリーンシート62、63、64、65、66、上層のグリーンシート67を重ね合わせた後、熱圧着により一体化する。そして、1400-1700℃で焼成する。
 次に、電極76を形成する。重ね合わされたグリーンシート61-67のうち上層又は下層のグリーンシート61、67に形成されている抵抗パターン78に、白金を含有する電極ペーストをスクリーン印刷する。そして、これを乾燥、脱バインダし、約1400℃で焼成することにより、抵抗パターン78に接続する電極76を形成する。抵抗値を測定しながら抵抗値を調整する。
 次に、グリーンシート61-67を個片化する。グリーンシート61-67を分割溝に沿って分割してチップを作製し、各チップに形成される電極76にリード線を溶接し、抵抗値調整及び溶接個所を強化膜で覆って焼成することにより、温度センサ素子70が得られる。抵抗パターン78の封止は、耐熱性の観点から、アルミナ質焼結体75で行うことが好ましいが、耐熱性が維持できればガラス焼結体で行ってもよい。
 このようにして温度センサ素子70を作製することで、抵抗パターン78を囲うアルミナ質焼結体11が、好ましくはアルミナを99.70質量%以上、より好ましくは99.99質量%以上含有するようにアルミナ質焼結体11を形成できる。これにより、焼結助剤が抵抗パターン78の白金と反応せず、不純物が抵抗パターン78と反応することが防止されるため、抵抗パターン78の抵抗値のドリフトが抑制される。
 次に、第3の実施の形態に係る温度センサ素子80について説明する。第3の実施の形態は、基板81に形成された抵抗パターン88に保護板82が乗せられて形成されている。第1の実施の形態と相違している部分を主に説明する。図9は、第3の実施の形態に係る温度センサ素子の断面図である。図9は、図1におけるB-B線に沿う断面図に該当する。
 図9に示すように、第3の実施形態に係る温度センサ素子80においては、第1の焼結層21は、主面上に抵抗パターン88が形成された基板81を形成し、第2の焼結層24は、抵抗パターン88に乗せられた保護板82を形成していてもよい。基板81の主面には電極86が形成され、電極86と抵抗パターン88とは配線89によって接続されている。抵抗パターン88と保護板82は、焼結体83によって封止されている。
 抵抗パターン88の封止は、耐熱性の観点から、アルミナ質焼結体で行われることが好ましいが、耐熱性が維持できればガラス焼結体で行われてもよい。アルミナ質焼結体はガラス焼結体よりも耐熱性に優れ、高温におけるアルミナ質焼結体のクラックの発生が抑制されるため、抵抗パターン88がアルミナ質焼結体内に配設されることで、抵抗パターン88の白金が高温の大気にさらされて劣化することが防止される。
 以下、本実施形態を実施例及び比較例を用いてより具体的に説明する。本実施形態は、以下の実施例によって何ら限定されるものではない。
 セラミックス基板21上に形成された抵抗パターン18を保護層24で覆い、温度センサ素子10を作製した(図5A参照)。
 [セラミックス基板]
 アルミナを99.99質量%以上含有しているセラミックス基板21を準備した。
 [アルミナペーストの作製]
 トラップ層22の形成に用いられるアルミナペースト(1)、オーバーコート層23の形成に用いられるアルミナペースト(2)を作製した。各アルミナペーストに、純度が99.90-99.99%のアルミナ粒子を含有させ、焼成して得られる保護層24(アルミナ質焼結体)が、アルミナを93.97質量%、94.90質量%、98.50質量%、98.10質量%、99.00質量%、99.20質量%、99.50質量%、99.70質量%、99.90質量%、99.95質量%、99.99質量%含有するように、アルミナ粒子を調整した。また、各アルミナペーストにおいて、0.1-10.0μmの範囲内で3種類の平均粒子径のアルミナ粒子を、適量の有機バインダ及び有機溶媒とともに混合した。アルミナペースト(2)には、アルミナペースト(1)よりも平均粒子径が大きいアルミナ粒子を用いた。また、99.50質量%以上の純度の各アルミナペーストは、アルミナ粒子の不純物の含有量を調整し焼結助剤を添加しなかった。99.20質量%未満のアルミナペーストにおいては、MgO、SiO、CaOの焼結助剤を添加して純度の調整を行った。
 [温度センサ素子の作製]
 セラミックス基板21の表面に、スパッタ蒸着により白金膜を形成し、パターニングしてミアンダ形状の抵抗パターン18(図1及び図5A参照)を形成した。そして、抵抗パターン18の両端部に一対の電極16を形成した。次に、抵抗パターン18と一対の電極16を覆うように、アルミナペースト(1)をスクリーン印刷し、これを焼成してトラップ層22を形成した。そして、トラップ層22上に、アルミナペースト(2)をスクリーン印刷し、これを焼成してオーバーコート層23を形成した。次に、セラミックス基板21を個片化し、一対の電極16にリード線を溶接して、温度センサ素子10を得た。
 [通電試験]
 作製した、保護層24のアルミナ質焼結体が、アルミナを93.97質量%、94.90質量%、98.50質量%、98.10質量%、99.00質量%、99.20質量%、99.50質量%、99.70質量%、99.90質量%、99.95質量%、99.99質量%含有する温度センサ素子10を用いて、通電試験を実施した。温度センサ素子10に通電し、温度が1100℃に達して安定した状態で抵抗パターン18の抵抗値を測定した。この抵抗値を起点とし、この抵抗値からの時間に伴う抵抗値の変化率を算出した。結果を図10に示す。図10は、実施例に係る温度センサ素子の通電試験の結果を示す。
 目標値は、250時間後における抵抗パターン18の抵抗値の変化率が2%未満である。目標の時間の4分の1である62時間後の抵抗値の変化率が2%未満であるのは、保護層24のアルミナが99.70質量%以上の温度センサ素子10であった。また、62時間後の抵抗値の変化率が0.5%未満であるのは、保護層のアルミナが99.99質量%の温度センサ素子10であった。
 この結果から、温度センサ素子10のアルミナ質焼結体に含まれるアルミナは、99.70質量%以上であることが好ましく、99.99質量%以上であることがより好ましいことがわかった。アルミナ質焼結体のアルミナが高純度であり、焼結助剤を含有しないと、アルミナ粒子の焼成時に、不純物が抵抗パターン18の白金と反応することが防止され、抵抗パターン18の抵抗値のドリフトが抑制されたことが考えられる。
 保護層24のアルミナが99.99質量%である温度センサ素子10の断面を、走査型電子顕微鏡で観察した結果を図11に示す。図11は、実施例に係るアルミナ質焼結体のアルミナが99.99質量%の温度センサ素子を示す図である。図11に示すように、セラミックス基板21の表面に形成される抵抗パターン18がトラップ層22に覆われ、トラップ層22にオーバーコート層23が積層されていることがわかった。比較的平均粒子径が大きいアルミナ粒子が焼成されて形成されたオーバーコート層23は、比較的平均粒子径が小さいアルミナ粒子が焼成されて形成されたトラップ層22よりもボイドが少なく、緻密に形成されていることがわかった。
 図11の保護層24を拡大して、保護層24を構成するアルミナ粒子を走査型電子顕微鏡で観察した結果を図12に示す。図12は、実施例に係る99.99質量%のアルミナが含まれる保護層を構成するアルミナ粒子を示す図である。図12の右図と左図は、それぞれ保護層24の別の位置を示しており、平均粒子径が2-3μm程度のアルミナ粒子が丸で囲まれている。図12に示すように、保護層24に、平均粒子径が2-3μm程度のアルミナ粒子と、その周囲にこれらアルミナ粒子よりも平均粒子径の小さいアルミナ粒子が含まれている様子が観察された。保護層24が平均粒子径の異なる複数種のアルミナ粒子から構成されることにより、保護層24が緻密化されていることがわかった。
 保護層24の表面を観察した結果を図13に示す。図13は、温度センサ素子を上方から観察した図である。図13Aは、アルミナが99.99質量%含まれる保護層24から形成される温度センサ素子10を示し、図13Bは、アルミナが99.50質量%含まれる保護層から形成される温度センサ素子を示している。アルミナが99.99質量%含まれる保護層24及びアルミナが99.50質量%含まれる保護層に夫々染色液を滴下して、表面の状態を観察した。図13に示すように、アルミナが99.99質量%含まれる保護層24の表面にはクラックが発生していなかったが、アルミナが99.50質量%含まれる保護層の表面には複数のクラックが発生していた。
 以上のように、本実施の形態の温度センサ素子10によれば、アルミナ質焼結体11のアルミナが高純度であり、焼結助剤を含有しない。このため、アルミナの焼成時に、焼結助剤が抵抗パターン18の白金と反応することがなく、アルミナに含まれる不純物が、抵抗パターン18の白金と反応することが防止される。これにより、白金のTCRが維持され、抵抗パターン18の抵抗値のドリフトが抑制されるため、高い測定精度が維持される。また、アルミナ質焼結体11はガラス焼結体よりも耐熱性に優れ、高温におけるアルミナ質焼結体11のクラックの発生が抑制されるため、抵抗パターン18がアルミナ質焼結体11内に配設されることで、白金が高温の大気にさらされて劣化することが防止される。
 上記実施の形態においては、抵抗パターン18は、温度センサ素子10の長手方向に延びる複数の直線部が、短手方向に所定の間隔で平行に並べられる構成としたが、抵抗パターン18がミアンダ上に形成されれば、温度センサ素子10の短手方向に延びる複数の直線部18aが、長手方向に所定の間隔で平行に並べられる構成としてもよい。また、一対の電極16は、短手方向両端に配置される構成としたが、長手方向両端に配置されていてもよい。
 本実施の形態の特徴的部分を以下にまとめて記載する。
 本実施の形態の温度センサ素子は、アルミナ質焼結体と、前記アルミナ質焼結体の内側に配設された抵抗パターンと、を備え、前記抵抗パターンの主成分は白金であり、前記アルミナ質焼結体は、アルミナを99.70質量%以上含有し、焼結助剤を含有しないことを特徴とする。
 この構成によれば、アルミナ質焼結体のアルミナが高純度であり、焼結助剤を含有しない。このため、アルミナの焼成時に、焼結助剤が抵抗パターンの白金と反応することがなく、アルミナに含まれる不純物が、抵抗パターンの白金と反応することが防止される。これにより、白金のTCRが維持され、抵抗値のドリフトが抑制されるため、高い測定精度が維持される。また、アルミナ質焼結体はガラス焼結体よりも耐熱性に優れ、高温におけるアルミナ質焼結体のクラックの発生が抑制されるため、抵抗パターンがアルミナ質焼結体内に配設されることで、白金が高温の大気にさらされて劣化することが防止される。
 また、本実施の形態の温度センサ素子においては、前記アルミナ質焼結体は、第1の焼結層と、第2の焼結層とを備え、前記第1の焼結層と前記第2の焼結層との間に前記抵抗パターンが配設されて形成されていることが好ましい。
 本実施の形態の温度センサ素子においては、前記第1の焼結層及び前記第2の焼結層の少なくとも一方は、平均粒子径が0.1-10.0μmの複数種の異なる平均粒子径のアルミナ粒子から構成されることが好ましい。これにより、アルミナ質焼結体が平均粒子径の異なる複数種のアルミナ粒子から構成されることにより、アルミナ質焼結体が緻密化され、焼成時のアルミナ質焼結体のクラック発生が防止されるため、白金が高温の大気により劣化されることが防止される。
 本実施の形態の温度センサ素子においては、前記アルミナ粒子は、少なくとも3種類以上の平均粒子径のアルミナ粒子から構成されることが好ましい。これにより、アルミナ質焼結体が効果的に緻密化され、焼成時のアルミナ質焼結体のクラック発生が効果的に防止される。
 本実施の形態の温度センサ素子においては、前記第1の焼結層及び前記第2の焼結層の少なくとも一方において、含有されるアルミナが、99.99質量%以上であることが好ましい。これにより、アルミナに含まれる不純物が、抵抗パターンの白金と反応することが効果的に防止される。
 本実施の形態の温度センサ素子においては、前記第1の焼結層は、主面上に前記抵抗パターンが形成された基板を形成し、前記第2の焼結層は、前記抵抗パターンを保護するように前記基板の前記主面に積層された保護層を形成することが好ましい。これにより、簡易な構成で、抵抗パターンがアルミナ質焼結体内に配設される。
 本実施の形態の温度センサ素子においては、前記第2の焼結層は、前記抵抗パターンを覆うように形成されるトラップ層と、前記トラップ層を覆うように形成されるオーバーコート層と、を有することが好ましい。これにより、保護層が二層であることにより、抵抗パターンが効果的に封止されるため、白金が高温の大気にさらされることが効果的に防止される。
 本実施の形態の温度センサ素子においては、前記オーバーコート層を構成する前記アルミナ粒子の平均粒子径は、前記トラップ層を構成する前記アルミナ粒子の平均粒子径よりも大きいことが好ましい。これにより、抵抗パターンから離間する方向にアルミナ粒子の平均粒子径を大きくすることで、アルミナ質焼結体が効果的に緻密化された状態となる。
 本実施の形態の温度センサ素子においては、前記トラップ層は、白金を2体積%以上30体積%以下含有することが好ましい。これにより、抵抗パターンを覆うトラップ層が白金を含有することで、高温使用下で抵抗パターンの白金の反応性が高くなった場合に、トラップ層の白金が、大気中の酸素や、アルミナ質焼結体の不純物と反応する。これにより、抵抗パターンの反応が抑えられ白金の劣化が防止されるため、抵抗値のドリフトが抑制される。
 本実施の形態の温度センサ素子においては、前記トラップ層は、前記抵抗パターンを覆うように形成される第1のトラップ層と、前記第1のトラップ層上に積層される第2のトラップ層と、を有し、前記第1のトラップ層は、前記第2のトラップ層よりも低い含有率で白金を含有していることが好ましい。これにより、白金の含有率が低い第1のトラップ層で導通を抑えることができる。このため、抵抗パターンと第2のトラップ層との間に第1のトラップ層を介在させることで、第1のトラップ層で抵抗パターンの抵抗値の低下を抑えながら、白金の含有率の高い第2のトラップ層で抵抗パターンの反応を効果的に抑えて抵抗値ドリフトを抑制できる。
 本実施の形態の温度センサ素子においては、前記第1のトラップ層は、白金を0体積%以上10体積%以下含有し、前記第2のトラップ層は、白金を2体積%以上30体積%以下含有することが好ましい。これにより、第1のトラップ層で抵抗パターンの抵抗値の低下を効果的に抑えながら、第2のトラップ層で抵抗パターンの反応をより効果的に抑えることができる。
 本実施の形態の温度センサ素子においては、前記第1の焼結層及び前記第2の焼結層が、グリーンシートから構成されることが好ましい。
 本実施の形態の温度センサ素子においては、前記抵抗パターンが前記グリーンシートの間に配設されて形成される積層体が複数積層されており、積層された前記抵抗パターン同士が、前記アルミナ質焼結体を貫通する貫通導体によって接続されていることが好ましい。これにより、グリーンシートが用いられることにより、アルミナ質焼結体が効果的に緻密化され、抵抗パターンが効果的に封止されるため、白金が高温の大気にさらされることが効果的に防止される。
 本実施の形態の温度センサ素子においては、前記第1の焼結層は、主面上に前記抵抗パターンが形成された基板を形成し、前記第2の焼結層は、前記抵抗パターンに乗せられた保護板を形成しており、前記抵抗パターンと前記保護板は、アルミナ質焼結体によって封止されていることが好ましい。
 本実施の形態の温度センサ素子においては、前記アルミナ質焼結体にクラックが形成されていないことが好ましい。
 また、本実施の形態の温度センサ素子は、アルミナを99.70質量%以上含有し、焼結助剤を含有しないアルミナ質焼結体からなる基板と、前記基板の主面に形成された白金膜からなる抵抗パターンと、前記抵抗パターンを保護するように前記主面上に形成され、アルミナを99.70質量%以上含有し、焼結助剤を含有しないアルミナ質焼結体からなる保護層と、を有し、前記保護層は、前記抵抗パターンの表面全体を覆うトラップ層と、前記トラップ層の表面を覆うオーバーコート層と、を有し、前記トラップ層及び前記オーバーコート層の周縁部は、夫々、前記主面上に密着しており、前記トラップ層には、前記抵抗パターンから離れた位置に白金を含有し、前記オーバーコート層は、前記トラップ層よりもアルミナ粒子の平均粒子径が大きくボイドが少ないことを特徴とする。これは、図5Cに示す温度センサ素子の好ましい形態である。
 また、本実施の形態の温度センサ素子は、複数のグリーンシートと、各グリーンシートの間に配設される複数の抵抗パターンと、を有する積層体が焼成されてなる温度センサ素子であって、前記グリーンシートを焼成してなるアルミナ焼結体は、アルミナを99.70質量%以上含有し、焼結助剤を含有せず、前記抵抗パターンは、白金膜からなり、前記アルミナ焼結体に含まれるアルミナ粒子の平均粒子径は、内層から上層及び下層に向かうほど大きくなっていることを特徴とする。これは、図7に示す温度センサ素子の好ましい形態である。
 また、本実施の形態の温度センサ素子は、アルミナを99.70質量%以上含有し、焼結助剤を含有しないアルミナ質焼結体からなる基板と、前記基板上に形成された白金膜からなる抵抗パターンと、前記抵抗パターン上に接して形成された、アルミナを99.70質量%以上含有し、焼結助剤を含有しないアルミナ質焼結体からなる保護板と、前記基板上から前記保護板上にかけて形成され、前記抵抗パターンを封止するガラス焼結体と、を有することを特徴とする。これは、図9に示す温度センサ素子の好ましい形態である。
 また、本発明の各実施の形態を説明したが、本発明の他の実施の形態として、上記各実施の形態を全体的又は部分的に組み合わせたものでもよい。
 また、本発明の実施の形態は上記の各実施の形態に限定されるものではなく、本発明の技術的思想の趣旨を逸脱しない範囲において様々に変更、置換、変形されてもよい。さらには、技術の進歩又は派生する別技術によって、本発明の技術的思想を別の仕方で実現することができれば、その方法を用いて実施されてもよい。したがって、特許請求の範囲は、本発明の技術的思想の範囲内に含まれ得る全ての実施態様をカバーしている。
 本実施の形態では、本発明を温度センサ素子に適用した構成について説明したが、白金で構成される抵抗パターンが焼結体で封止される他の装置に適用することも可能である。
 以上説明したように、本発明は、抵抗パターンと焼結助剤の反応が防止されることにより、高い測定精度を維持できるという効果を有し、特に、高温における温度測定に用いられる温度センサ素子に有用である。
 本出願は、2018年1月4日出願の特願2018-000181に基づく。この内容は全てここに含めておく。

Claims (18)

  1.  アルミナ質焼結体と、前記アルミナ質焼結体の内側に配設された抵抗パターンと、を備え、
     前記抵抗パターンの主成分は白金であり、
     前記アルミナ質焼結体は、アルミナを99.70質量%以上含有し、焼結助剤を含有しないことを特徴とする温度センサ素子。
  2.  前記アルミナ質焼結体は、第1の焼結層と、第2の焼結層とを備え、前記第1の焼結層と前記第2の焼結層との間に前記抵抗パターンが配設されて形成されていることを特徴とする請求項1に記載の温度センサ素子。
  3.  前記第1の焼結層及び前記第2の焼結層の少なくとも一方は、平均粒子径が0.1-10.0μmの複数種の異なる平均粒子径のアルミナ粒子から構成されることを特徴とする請求項2に記載の温度センサ素子。
  4.  前記アルミナ粒子は、少なくとも3種類以上の平均粒子径のアルミナ粒子から構成されることを特徴とする請求項3に記載の温度センサ素子。
  5.  前記第1の焼結層及び前記第2の焼結層の少なくとも一方において、含有されるアルミナが、99.99質量%以上であることを特徴とする請求項2から請求項4のいずれかに記載の温度センサ素子。
  6.  前記第1の焼結層は、主面上に前記抵抗パターンが形成された基板を形成し、前記第2の焼結層は、前記抵抗パターンを保護するように前記基板の前記主面に積層された保護層を形成することを特徴とする請求項2から請求項5のいずれかに記載の温度センサ素子。
  7.  前記第2の焼結層は、前記抵抗パターンを覆うように形成されるトラップ層と、前記トラップ層を覆うように形成されるオーバーコート層と、を有することを特徴とする請求項6に記載の温度センサ素子。
  8.  前記オーバーコート層を構成する前記アルミナ粒子の平均粒子径は、前記トラップ層を構成する前記アルミナ粒子の平均粒子径よりも大きいことを特徴とする請求項7に記載の温度センサ素子。
  9.  前記トラップ層は、白金を2体積%以上30体積%以下含有することを特徴とする請求項7または請求項8に記載の温度センサ素子。
  10.  前記トラップ層は、前記抵抗パターンを覆うように形成される第1のトラップ層と、前記第1のトラップ層上に積層される第2のトラップ層と、を有し、
     前記第1のトラップ層は、前記第2のトラップ層よりも低い含有率で白金を含有していることを特徴とする請求項7から請求項9のいずれかに記載の温度センサ素子。
  11.  前記第1のトラップ層は、白金を0体積%以上10体積%以下含有し、前記第2のトラップ層は、白金を2体積%以上30体積%以下含有することを特徴とする請求項10に記載の温度センサ素子。
  12.  前記第1の焼結層及び前記第2の焼結層が、グリーンシートから構成されることを特徴とする請求項2から請求項11のいずれかに記載の温度センサ素子。
  13.  前記抵抗パターンが前記グリーンシートの間に配設されて形成される積層体が複数積層されており、積層された前記抵抗パターン同士が、前記アルミナ質焼結体を貫通する貫通導体によって接続されていることを特徴とする請求項12に記載の温度センサ素子。
  14.  前記第1の焼結層は、主面上に前記抵抗パターンが形成された基板を形成し、前記第2の焼結層は、前記抵抗パターンに乗せられた保護板を形成しており、
     前記抵抗パターンと前記保護板は、アルミナ質焼結体によって封止されていることを特徴とする請求項2から請求項5のいずれか、または請求項12に記載の温度センサ素子。
  15.  前記アルミナ質焼結体にクラックが形成されていないことを特徴とする請求項1から請求項14のいずれかに記載の温度センサ素子。
  16.  アルミナを99.70質量%以上含有し、焼結助剤を含有しないアルミナ質焼結体からなる基板と、
     前記基板の主面に形成された白金膜からなる抵抗パターンと、
     前記抵抗パターンを保護するように前記主面上に形成され、アルミナを99.70質量%以上含有し、焼結助剤を含有しないアルミナ質焼結体からなる保護層と、を有し、
     前記保護層は、前記抵抗パターンの表面全体を覆うトラップ層と、前記トラップ層の表面を覆うオーバーコート層と、を有し、
     前記トラップ層及び前記オーバーコート層の周縁部は、夫々、前記主面上に密着しており、
     前記トラップ層には、前記抵抗パターンから離れた位置に白金を含有し、
     前記オーバーコート層は、前記トラップ層よりもアルミナ粒子の平均粒子径が大きくボイドが少ないことを特徴とする温度センサ素子。
  17.  複数のグリーンシートと、各グリーンシートの間に配設される複数の抵抗パターンと、を有する積層体が焼成されてなる温度センサ素子であって、
     前記グリーンシートを焼成してなるアルミナ焼結体は、アルミナを99.70質量%以上含有し、焼結助剤を含有せず、
     前記抵抗パターンは、白金膜からなり、
     前記アルミナ焼結体に含まれるアルミナ粒子の平均粒子径は、内層から上層及び下層に向かうほど大きくなっていることを特徴とする温度センサ素子。
  18.  アルミナを99.70質量%以上含有し、焼結助剤を含有しないアルミナ質焼結体からなる基板と、
     前記基板上に形成された白金膜からなる抵抗パターンと、
     前記抵抗パターン上に接して形成された、アルミナを99.70質量%以上含有し、焼結助剤を含有しないアルミナ質焼結体からなる保護板と、
     前記基板上から前記保護板上にかけて形成され、前記抵抗パターンを封止するガラス焼結体と、
     を有することを特徴とする温度センサ素子。
PCT/JP2018/042038 2018-01-04 2018-11-13 温度センサ素子 WO2019135324A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-000181 2018-01-04
JP2018000181A JP6567700B2 (ja) 2018-01-04 2018-01-04 温度センサ素子

Publications (1)

Publication Number Publication Date
WO2019135324A1 true WO2019135324A1 (ja) 2019-07-11

Family

ID=67144414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042038 WO2019135324A1 (ja) 2018-01-04 2018-11-13 温度センサ素子

Country Status (2)

Country Link
JP (1) JP6567700B2 (ja)
WO (1) WO2019135324A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112369B2 (ja) * 2019-04-05 2022-08-03 Koa株式会社 温度センサ素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465427A (en) * 1987-09-04 1989-03-10 Murata Manufacturing Co Platinum temperature sensor
JP2001050822A (ja) * 1999-07-21 2001-02-23 Robert Bosch Gmbh 温度センサおよび該温度センサの製造法
JP2010018452A (ja) * 2008-07-08 2010-01-28 Seiko Epson Corp セラミックスの製造方法
JP2014006052A (ja) * 2012-06-21 2014-01-16 Tateyama Kagaku Kogyo Kk 薄膜抵抗体温度センサとその製造方法
JP2017201290A (ja) * 2016-04-27 2017-11-09 日本特殊陶業株式会社 温度センサ素子及び温度センサ並びに温度センサ素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465427A (en) * 1987-09-04 1989-03-10 Murata Manufacturing Co Platinum temperature sensor
JP2001050822A (ja) * 1999-07-21 2001-02-23 Robert Bosch Gmbh 温度センサおよび該温度センサの製造法
JP2010018452A (ja) * 2008-07-08 2010-01-28 Seiko Epson Corp セラミックスの製造方法
JP2014006052A (ja) * 2012-06-21 2014-01-16 Tateyama Kagaku Kogyo Kk 薄膜抵抗体温度センサとその製造方法
JP2017201290A (ja) * 2016-04-27 2017-11-09 日本特殊陶業株式会社 温度センサ素子及び温度センサ並びに温度センサ素子の製造方法

Also Published As

Publication number Publication date
JP2019120575A (ja) 2019-07-22
JP6567700B2 (ja) 2019-08-28

Similar Documents

Publication Publication Date Title
JP5976186B2 (ja) 1200℃膜抵抗体
JP5872998B2 (ja) アルミナ焼結体、それを備える部材、および半導体製造装置
JP6356821B2 (ja) Ntcデバイスおよびその製造のための方法
JP4695002B2 (ja) 絶縁セラミックとそれを用いたセラミックヒータおよびヒータ一体型素子。
US10262778B2 (en) Multilayer component and process for producing a multilayer component
US20120049996A1 (en) Thermistor element
JP5796602B2 (ja) セラミック電子部品およびその製造方法
KR20210153616A (ko) 정전 척을 위한 고밀도 내식층 배열
JP2007042615A (ja) セラミックヒータおよびその製造方法、並びにガスセンサ素子
WO2019135324A1 (ja) 温度センサ素子
JP4730722B2 (ja) 積層型ガスセンサ素子の製造方法及び積層型ガスセンサ素子
JP7112369B2 (ja) 温度センサ素子
JP2008306086A (ja) サーミスタ素子及びサーミスタ素子の製造方法
JP2003344348A (ja) 酸素センサ素子
EP3370049B1 (en) Sensor substrate and detection module
TWI837343B (zh) 用於靜電吸盤之高密度耐腐蝕層佈置
JP5605413B2 (ja) Esd保護デバイスとその製造方法
JP4622887B2 (ja) セラミック焼成体の製造方法
JP2004043197A (ja) セラミックスラリーの製造方法並びにセラミックグリーンシート及びセラミック焼結体
JP2009004515A (ja) セラミック配線基板及びセラミック配線基板の製造方法
JP5303823B2 (ja) 圧電素子
WO2024185449A1 (ja) セラミック電子部品及びその製造方法
JP2004003998A (ja) ガスセンサ用ジルコニア基焼結体及びその製造方法、電気抵抗の調整方法並びにガスセンサ素子
US20240304379A1 (en) Multilayer coil component
WO2024195677A1 (ja) セラミック電子部品及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898796

Country of ref document: EP

Kind code of ref document: A1