WO2019131953A1 - パターン形成方法及び感放射線性組成物 - Google Patents

パターン形成方法及び感放射線性組成物 Download PDF

Info

Publication number
WO2019131953A1
WO2019131953A1 PCT/JP2018/048341 JP2018048341W WO2019131953A1 WO 2019131953 A1 WO2019131953 A1 WO 2019131953A1 JP 2018048341 W JP2018048341 W JP 2018048341W WO 2019131953 A1 WO2019131953 A1 WO 2019131953A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
structural unit
polymer
pattern
atom
Prior art date
Application number
PCT/JP2018/048341
Other languages
English (en)
French (fr)
Inventor
仁視 大▲崎▼
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2019562474A priority Critical patent/JPWO2019131953A1/ja
Publication of WO2019131953A1 publication Critical patent/WO2019131953A1/ja
Priority to US16/905,946 priority patent/US20210318614A9/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/026Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising acrylic acid, methacrylic acid or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Definitions

  • the present invention relates to a pattern formation method and a radiation sensitive composition.
  • a resist film is formed on a substrate by a resin composition containing a polymer having an acid-dissociable group, and the resist film is formed via a mask pattern. It is performed to form a fine resist pattern by irradiating and exposing radiation with short wavelength radiation such as an excimer laser and removing the exposed portion with an alkali developer.
  • the chemical amplification type resist which made the resin composition contain the radiation sensitive acid generator which generate
  • the miniaturization of patterns is required.
  • the present invention has been made based on the above circumstances, and an object thereof is to form a fine pattern simply, and further to form a fine pattern in the case of performing induced self-assembly using a chemoepitaxy method. It is an object of the present invention to provide a pattern formation method and a radiation sensitive composition capable of forming a guide pattern which can improve the throughput in the process and is excellent in the alignment orientation of the phase separation structure by self assembly.
  • R 1 is a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
  • A is a monovalent organic group having a nitrogen atom.
  • R 1 is a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
  • A is a monovalent organic group having a nitrogen atom.
  • organic group refers to a group containing at least one carbon atom.
  • main chain refers to the longest of the polymer atomic chains.
  • pattern refers to a patterned fine structure obtained by the pattern formation method, and also includes a guide pattern.
  • end of the main chain refers to a portion including the end of the main chain.
  • the pattern formation method and radiation sensitive composition of the present invention since it is not a chemical amplification type, there is no diffusion of acid, and a fine pattern can be easily formed.
  • the throughput in the fine pattern formation process can be improved, and a guide pattern excellent in the alignment orientation of the phase separation structure by the self-assembly can be formed.
  • the pattern formation method of this invention it is a schematic diagram which shows an example of the state after laminating
  • the pattern formation method of this invention it is a schematic diagram which shows an example of the state after forming the pattern for masks for performing an exposure process.
  • the said pattern formation method contains on the surface of a base material a polymer (hereinafter, also referred to as "[A] polymer”) and a radiation sensitive acid generator (hereinafter, also referred to as “[B] acid generator”) Radiation-sensitive composition (hereinafter also referred to as “radiation-sensitive composition (I)”) (hereinafter also referred to as “coating step”) and the radiation-sensitive layer formed by the coating step A step of exposing the coating film of the photosensitive composition (hereinafter also referred to as “exposure step”) and a step of developing the coating film of the exposed radiation sensitive composition (hereinafter also referred to as "development step”)
  • the [A] polymer has a first structural unit (hereinafter, also referred to as "structural unit (I)”) represented by the following formula (1).
  • R 1 is a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
  • A is a monovalent organic group having a nitrogen atom (hereinafter, also referred to as “side chain group (I)").
  • the pattern forming method further includes a step (hereinafter, also referred to as a “heating step”) of heating the coating film formed in the coating step before the exposure step or after the exposure step and before the development step. Is preferred.
  • the said pattern formation method makes a pattern formed by the said pattern formation method a guide pattern, The process of forming the fine pattern comprised from the self-organization material containing a block copolymer (following, "It is based on a guide pattern
  • the method may further include "a fine pattern forming step”.
  • a fine pattern can be simply formed because the said each process is provided and radiation sensitive composition (I) contains a [A] polymer.
  • radiation sensitive composition (I) contains a [A] polymer.
  • the throughput in the fine pattern formation process can be improved, and a guide pattern excellent in the alignment orientation of the phase separation structure by the self-assembly can be formed.
  • Examples of the substrate include silicon and silicon-containing oxides.
  • Examples of silicon-containing oxides include silicon oxides, hydrolytic condensates of hydrolyzable silanes, silicon oxide carbides, silicon oxide nitrides, and the like.
  • Examples of the silicon oxide for example, SiO 2 (silicon dioxide) and the like.
  • Examples of the hydrolytic condensate of the hydrolyzable silane include hydrolytic condensates of tetraalkoxysilanes such as tetraethoxysilane (TEOS).
  • TEOS tetraethoxysilane
  • As a silicon oxide carbide, SiOC etc. are mentioned, for example.
  • As a silicon oxide nitride, SiON etc. are mentioned, for example. Of these, silicon dioxide is preferred.
  • a plate shape, spherical shape, etc. can be made into a desired shape suitably.
  • the size of the substrate is not particularly limited, and can be appropriately set to a desired size.
  • the radiation sensitive composition (I) contains an [A] polymer and a [B] acid generator.
  • the radiation sensitive composition (I) may contain a [C] solvent as a suitable component in addition to the [A] polymer and the [B] acid generator, as long as the effects of the present invention are not impaired, It may contain other ingredients. Each component will be described below.
  • the polymer is a polymer having a structural unit (I).
  • the polymer preferably has a second structural unit (hereinafter also referred to as “structural unit (II)”) described later.
  • the polymer may have other structural units other than the structural unit (I) and the structural unit (II).
  • the polymer may have one or more of each structural unit.
  • structural unit (I), structural unit (II), etc. are demonstrated.
  • the polymer [A] preferably has the first structural unit at at least one end of the main chain. [A] Since the polymer has an interaction with the substrate by having the first structural unit at at least one end of the main chain, a pattern excellent in position selectivity to a desired location can be easily formed. .
  • Structural unit (I) Structural unit (I) is represented by the following formula (I).
  • R 1 is a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
  • A is a side chain group (I).
  • R 1 is preferably a hydrogen atom or a methyl group, more preferably a methyl group.
  • the side chain group (I) is a monovalent organic group having a nitrogen atom.
  • the nitrogen atom (A) in the side chain group (I) preferably has a noncovalent electron pair.
  • Examples of the nitrogen atom (A) having an unshared electron pair include a nitrogen atom in which an atom other than 1 to 3 hydrogen atoms are bonded by a single bond, and a nitrogen atom in an aromatic heterocyclic group.
  • the side chain group (I) for example, a group ( ⁇ ) containing a divalent nitrogen atom-containing group between carbon and carbon of a monovalent hydrocarbon group having 1 to 20 carbon atoms, the above hydrocarbon group and a group ( ⁇ And groups in which a part or all of the hydrogen atoms possessed by) are substituted with monovalent nitrogen-containing groups.
  • the side chain group (I) may further contain a divalent group containing a hetero atom other than a nitrogen atom between carbon and carbon of the above-mentioned hydrocarbon group, and the hydrogen which the above-mentioned hydrocarbon group and group ( ⁇ ) have Some or all of the atoms may be further substituted by monovalent groups containing heteroatoms other than nitrogen atoms.
  • the "hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • “Chain chain hydrocarbon group” refers to a hydrocarbon group that does not contain a cyclic structure and is composed only of a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • Alicyclic hydrocarbon group means a hydrocarbon group containing only an alicyclic structure as a ring structure and not containing an aromatic ring structure, and a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group Includes both hydrocarbon groups.
  • aromatic hydrocarbon group refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed of only an aromatic ring structure, and a chain structure or an alicyclic structure may be included in part thereof.
  • Numberer of ring members means the number of atoms constituting the ring of an alicyclic structure, aromatic ring structure, aliphatic heterocyclic structure and aromatic heterocyclic structure, and in the case of a polycyclic ring, the number of atoms constituting this polycyclic ring Say
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms includes a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 to 6 carbon atoms. 20 monovalent aromatic hydrocarbon groups and the like can be mentioned.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl, ethyl, n-propyl and i-propyl; Alkenyl groups such as ethenyl, propenyl and butenyl; And alkynyl groups such as ethynyl group, propynyl group and butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include monocyclic alicyclic saturated hydrocarbon groups such as a cyclopentyl group and a cyclohexyl group; A monocyclic alicyclic unsaturated hydrocarbon group such as cyclopentenyl group and cyclohexenyl group; Polycyclic alicyclic saturated hydrocarbon groups such as norbornyl group, adamantyl group, tricyclodecyl group; And polycyclic alicyclic unsaturated hydrocarbon groups such as norbornenyl group and tricyclodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and anthryl group; And aralkyl groups such as benzyl, phenethyl, naphthylmethyl and anthrylmethyl.
  • R ' is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • Examples of monovalent nitrogen atom-containing groups include —NH 2 , —NHR ′ ′, —NR ′ ′ 2 and the like.
  • R ′ ′ is a monovalent hydrocarbon group of 1 to 10 carbon atoms. In the above —NR ′ ′ 2 , two R ′ ′ may be combined with each other to form a ring structure with the carbon chain to which they are attached.
  • hetero atom which comprises monovalent
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned.
  • Examples of the divalent group containing a hetero atom other than a nitrogen atom include -O-, -CO-, -S-, -CS-, and a group obtained by combining two or more of them. Among these, -O- is preferred.
  • halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, a carboxy group, a sulfanyl group etc. are mentioned, for example.
  • X is a single bond, -COO-, -CO-, -O-, -NH-, -NHCO- or -CONH-.
  • Q is a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • R A is a monovalent primary, secondary or tertiary amino group having 0 to 20 carbon atoms or a monovalent nitrogen-containing heterocyclic group having 5 to 20 ring members.
  • n is an integer of 0 to 10. However, when n is 1 or more, Q is not a single bond.
  • * Represents a bonding site to a carbon atom to which R 1 in the above formula (1) is bonded.
  • X a single bond or -COO- is preferable, and -COO- is more preferable.
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms represented by Q include the same groups as the divalent hydrocarbon groups having 1 to 20 carbon atoms exemplified in A of the formula (1), and the like.
  • a divalent hydrocarbon group is preferable, an alkanediyl group is more preferable, and an ethanediyl group is more preferable.
  • the monovalent primary, secondary or tertiary amino group having 0 to 20 carbon atoms which is represented by R A includes, for example, a primary amino group which is represented by —NH 2 ; Secondary amino groups such as methylamino, ethylamino, cyclohexylamino and phenylamino; Tertiary amino groups such as dimethylamino, diethylamino, dicyclohexylamino, diphenylamino and the like can be mentioned.
  • Examples of the monovalent nitrogen-containing heterocyclic group having 5 to 20 ring members represented by R A include azacyclopentyl group, azacyclohexyl group, 3,3,5,5-tetramethylazacyclohexyl group, N-methyl- Nitrogen-containing aliphatic heterocyclic groups such as 3,3,5,5-tetramethylazacyclohexyl; And nitrogen-containing aromatic heterocyclic groups such as pyridyl, pyrazyl, pyrimidyl, pyridazyl, quinolyl, isoquinolyl and carbazolyl.
  • RA a tertiary amino group is preferable, and a dimethylamino group is more preferable.
  • n 0 to 2 is preferable, and 0 or 1 is more preferable.
  • structural unit (I) for example, structural units represented by the following formulas (1-1) to (1-15) (hereinafter, also referred to as “structural units (I-1) to (I-15)”) etc. Can be mentioned.
  • R 1 has the same meaning as the above formula (1).
  • structural unit (I-9) is preferred.
  • Examples of the monomer giving the structural unit (I) include vinyl compounds containing a side chain group (I) such as vinylpyridine, vinylpyrazine, vinylquinoline, vinylaniline and vinylpiperidine; Styrene compounds containing a side chain group (I) such as aminostyrene and dimethylaminostyrene; Containing a side chain group (I) such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, N-methyl-3,3,5,5-tetramethylazacyclohexane-1-yl (meth) acrylate ( Meta) acrylic acid ester etc. are mentioned.
  • vinyl compounds containing a side chain group (I) such as vinylpyridine, vinylpyrazine, vinylquinoline, vinylaniline and vinylpiperidine
  • Styrene compounds containing a side chain group (I) such as aminostyrene and dimethylaminostyrene
  • the content ratio of the structural unit (I) to the total structural units in the polymer is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, and still more preferably 1 mol% or more. Particularly preferred is mol% or more. Moreover, 30 mol% or less is preferable, 20 mol% or less is more preferable, 10 mol% or less is more preferable, and 5 mol% or less is particularly preferable.
  • the structural units (I) are preferably arranged in blocks.
  • the polymer [A] preferably has the block of the structural unit (I) at at least one end of the main chain, and more preferably at one end of the main chain. [A] A finer pattern can be easily formed by the polymer having a block of the structural unit (I) at one end of the main chain.
  • the structural unit (II) is a structural unit different from the above first structural unit, and is a structural unit represented by the following formula (2-1) (hereinafter, also referred to as “structural unit (II-1)”) And a structural unit represented by the following formula (2-2) (hereinafter, also referred to as “structural unit (II-2)”) or a combination thereof.
  • R 2 and R 4 are each independently a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
  • R 3 is a monovalent organic group having 1 to 20 carbon atoms.
  • R 5 is a (1 + b) -valent hydrocarbon group having 1 to 20 carbon atoms.
  • R 6 is a hydrogen atom or a monovalent group having a hetero atom.
  • a is an integer of 0 to 5; When a is 2 or more, plural R 3 's are the same or different from each other.
  • b is an integer of 1 to 3; When b is 2 or more, plural R 6 's are the same or different from each other.
  • R 2 is preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R 3 include a monovalent hydrocarbon group having 1 to 20 carbon atoms, a carboxy group and the like.
  • 0 to 2 is preferable, 0 or 1 is more preferable, and 0 is more preferable.
  • R 4 from the viewpoint of the copolymerizability of the monomer giving the structural unit (II), a hydrogen atom or a methyl group is preferable, and a methyl group is more preferable.
  • Examples of the (1 + b) -valent hydrocarbon group having 1 to 20 carbon atoms represented by R 5 include, for example, those having 1 to 20 carbon atoms among monovalent hydrocarbon groups exemplified in A of the above formula (1) And groups in which b hydrogen atoms have been removed.
  • 1 or 2 is preferable and 1 is more preferable.
  • Examples of the monovalent group having a hetero atom represented by R 6 include groups having an oxygen atom such as hydroxy group and hydroxymethyl group; A group having a sulfur atom such as sulfanyl group and sulfanylmethyl group; Examples thereof include a fluorine atom and a group having a fluorine atom such as a trifluoromethyl group.
  • R 6 a hydrogen atom is preferable.
  • the structural unit (II) preferably contains no acid dissociable group.
  • the acid dissociable group refers to a group which is dissociated by the acid generated from the radiation sensitive acid generator upon exposure to generate a polar group such as a carboxyl group.
  • structural unit (II) for example, structural units represented by the following formulas (2-1-1) to (2-1-3) as the structural unit (II-1) (hereinafter referred to as “structural unit (II-1) Structural units (hereinafter referred to as “1-1) to (II-1-3)” represented by the following formulas (2-2-1) to (2-2-6) as the structural unit (II-2) And “structural units (II-2-1) to (II-2-6)” and the like.
  • R 2 has the same meaning as the above formula (2-1).
  • R 4 has the same meaning as the above formula (2-2).
  • structural units (2-1-1) and (2-2-1) are preferable, and structural unit (2-1-1) is more preferable.
  • the content ratio of the structural unit (II) to the total structural units in the [A] polymer is preferably 50 mol% or more, and more preferably 75 mol% or more.
  • 89 mol% or more is more preferable.
  • 99.9 mol% or less is preferable, 99 mol% or less is more preferable, and 97 mol% or less is more preferable.
  • the desorbing performance can be further improved by setting the content ratio of the structural unit (II) in the above range.
  • the polymer may have other structural units other than the structural unit (I) and the structural unit (II).
  • Examples of other structural units include structural units derived from substituted or unsubstituted ethylene and the like (with the exception of those corresponding to structural unit (I) and structural unit (II)).
  • the content ratio of the other structural units to the total structural units in the [A] polymer is preferably 20 mol% or less, more preferably 5 mol% or less, 1 mol% or less is more preferable.
  • the polymer is suitably selected from, for example, a monomer giving the structural unit (I), a monomer giving the structural unit (II) if necessary, etc. by anionic polymerization, cationic polymerization, radical polymerization etc. It can be synthesized by polymerization in a solvent. Among these, in order to obtain a polymer having a block of the structural unit (I), living anionic polymerization in anionic polymerization, reversible chain transfer polymerization in radical polymerization, atom transfer radical polymerization, nitroxide, etc. Control radical polymerization and the like in the presence are more preferred.
  • an anionic polymerization initiator used for living anionic polymerization for example, alkyllithium, alkylmagnesium halide, naphthalene sodium, alkylated lanthanoid compounds; potassium alkoxides such as t-butoxy potassium; Alkyl zinc such as dimethyl zinc; Alkyl aluminum such as trimethyl aluminum; Aromatic metal compounds such as benzyl potassium and the like can be mentioned. Of these, alkyllithium is preferred.
  • Examples of the solvent used for living anionic polymerization include alkanes such as n-hexane; Cycloalkanes such as cyclohexane; Aromatic hydrocarbons such as toluene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate, methyl propionate; Ketones such as 2-butanone and cyclohexanone; Examples thereof include ethers such as tetrahydrofuran and dimethoxyethane. These solvents may be used alone or in combination of two or more.
  • the reaction temperature in the living anionic polymerization can be appropriately selected depending on the type of the anionic polymerization initiator, but is preferably -150 ° C. or more, and more preferably -80 ° C. or more. Moreover, 50 degrees C or less is preferable, and 40 degrees C or less is more preferable. As reaction time, 5 minutes or more are preferable and 20 minutes or more are more preferable. Moreover, 24 hours or less are preferable, and 12 hours or less are more preferable.
  • the polymer [A] formed by polymerization is preferably recovered by reprecipitation. That is, after completion of the reaction, the target polymer is recovered as a powder by charging the reaction solution into a reprecipitation solvent.
  • a reprecipitation solvent alcohol, ultrapure water, alkane and the like can be used alone or in combination of two or more.
  • low molecular weight components such as monomers and oligomers can be removed by liquid separation operation, column operation, ultrafiltration operation, etc. to recover the polymer.
  • Mn number average molecular weight
  • 2,000 or more are more preferable
  • 3,000 or more are more preferable
  • 4,000 or more are especially preferable.
  • 100,000 or less is preferable, 70,000 or less is more preferable, 50,000 or less is more preferable, 30,000 or less is especially preferable.
  • the ratio (dispersion degree) of the weight average molecular weight (Mw) to the Mn of the polymer (A) is preferably 5 or less, more preferably 2 or less, more preferably 1.5 or less, and particularly preferably 1.1 or less.
  • content of a polymer 60 mass% or more is preferable with respect to all the components other than the solvent in radiation sensitive composition (I), and 80 mass% or more is more preferable. Moreover, it is preferable that it is 99 mass% or less.
  • the acid generator is a component that generates an acid by the action of radiation.
  • the radiation sensitive composition (I) contains an acid generator (B)
  • an acid is generated by irradiation with radiation. Therefore, by causing the acid generated from the acid generator to act on the surface of the substrate on which the polymer [A] is supported, the side group (I) having nitrogen atoms and the surface of the substrate are mutually interacted. The action is inhibited, and the [A] polymer on the surface of the substrate can be selectively peeled off.
  • the radiation sensitive composition (I) may contain one or more acid generators [B].
  • Examples of the acid generator (B) include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, and diazoketone compounds.
  • onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, ammonium salts, phosphonium salts, diazonium salts, pyridinium salts and the like.
  • Examples of the acid generator [B] include compounds described in paragraphs [0176] to [0202] of JP-A-2015-114341, for example.
  • sulfonium salts include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, 4-cyclohexylphenyldiphenylsulfonium trifluoromethanesulfonate and the like.
  • tetrahydrothiophenium salts include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nona And fluoro-n-butane sulfonate and the like.
  • iodonium salts include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoro Ethane sulfonate, bis (4-t-butylphenyl) iodonium trifluoromethane sulfonate and the like can be mentioned.
  • ammonium salts include triethylammonium trifluoromethanesulfonate, triethylammonium nonafluoro-n-butanesulfonate and the like.
  • Examples of phosphonium salts include (1-6- ⁇ -cumene) ( ⁇ -cyclopentadienyl) iron hexafluorophosphonate and the like.
  • N-sulfonyloxyimide compound examples include N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide and the like.
  • an onium salt compound is preferable, a sulfonium salt is more preferable, and triphenylsulfonium nonafluoro-n-butanesulfonate is more preferable.
  • the acid generator When the acid generator is contained in an amount of 50 mol% to 200 mol% with respect to the nitrogen atom-containing side group (I) in the polymer [A], selective peeling of the polymer [A] can be obtained. It is preferable because it can be performed efficiently.
  • the content of the acid generator (B) is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and still more preferably 10 parts by mass or more with respect to 100 parts by mass of the polymer [A]. Moreover, 50 mass parts or less are preferable, 30 mass parts or less are more preferable, and 20 mass parts or less are more preferable.
  • the solvent [C] is not particularly limited as long as it can dissolve or disperse at least the polymer [A] and the acid generator [B].
  • the said resin composition may contain 1 type, or 2 or more types of [C] solvent.
  • Examples of the solvent (C) include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents and the like.
  • ester solvents and ketone solvents are preferable, and polyhydric alcohol partial ether carboxylate solvents and cyclic ketone solvents are more preferable.
  • Polyhydric alcohol partial alkyl ether acetate and cycloalkanone are more preferable, and propylene glycol monomethyl ether acetate and cyclohexanone are particularly preferable.
  • Other components include, for example, crosslinking agents and surfactants.
  • the crosslinking agent is a component which forms a crosslink between components such as the polymer [A] by the action of heat or an acid, or a component which itself forms a crosslinked structure.
  • the radiation sensitive composition (I) contains a crosslinking agent, the hardness of the coating film of the radiation sensitive composition (I) to be formed can be increased.
  • the radiation sensitive composition (I) may contain one or more crosslinking agents.
  • crosslinking agent for example, polyfunctional (meth) acrylate compounds, epoxy compounds, hydroxymethyl group-substituted phenol compounds, alkoxyalkyl group-containing phenol compounds, compounds having alkoxyalkylated amino groups, acenaphthylene and hydroxymethylacenaphthylene Random copolymers and the like.
  • polyfunctional (meth) acrylate compound examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol penta (meth) acrylate.
  • a novolak-type epoxy resin a bisphenol type epoxy resin, an alicyclic epoxy resin, an aliphatic epoxy resin etc. are mentioned, for example.
  • hydroxymethyl group-substituted phenol compound examples include 2-hydroxymethyl-4,6-dimethylphenol, 3,5-dihydroxymethyl-4-methoxytoluene (2,6-bis (hydroxymethyl) -p-cresol), etc. Can be mentioned.
  • alkoxyalkyl group-containing phenol compounds examples include 4,4 ′-(1- (4- (1- (4-hydroxy-3,5-bis (methoxymethyl) phenyl) -1-methylethyl) phenyl) Ethylidene) bis (2,6-bis (methoxymethyl) phenol etc. may be mentioned.
  • Examples of the compound having an alkoxyalkylated amino group include (poly) methylolated melamine, (poly) methylolated glycoluril and the like.
  • an alkoxyalkyl group-containing phenol compound is preferable, 4,4 '-(1- (4- (1- (4-hydroxy-3,5-bis (methoxymethyl) phenyl) -1-methylethyl) More preferred is phenyl) ethylidene) bis (2,6-bis (methoxymethyl) phenol.
  • radiation sensitive composition (I) contains a crosslinking agent
  • 1 mass part or more is preferable with respect to 100 mass parts of [A] polymer, and, as for content of a crosslinking agent, 10 mass parts or more are more preferable. Moreover, 70 mass parts or less are preferable, and 30 mass parts or less are more preferable.
  • the surfactant is a component capable of improving the coatability of the radiation sensitive composition (I) on the surface of the substrate.
  • radiation sensitive composition (I) contains surfactant, 10 mass parts or less are preferable with respect to 100 mass parts of [A] polymer, and, as for the content, 1 mass part or less is more preferable. Moreover, it is 0.1 mass part or more normally.
  • the radiation sensitive composition (I) is obtained, for example, preferably by mixing other components such as [A] polymer, [B] acid generator and, if necessary, [C] solvent at a predetermined ratio.
  • the mixed solution can be prepared by filtering with a filter having a pore size of 0.2 ⁇ m or less.
  • the said pattern formation method is further equipped with the heating process before the exposure process mentioned later. At this process, the coating film formed of the said coating process is heated. It is considered that the surface of the substrate and the [A] polymer of the radiation sensitive composition (I) interact by hydrogen bonding by the heating step, and the radiation sensitive compound containing the [A] polymer on the surface of the substrate A coating of the composition is laminated.
  • the heating temperature is preferably 80 ° C. or higher, more preferably 150 ° C. or higher, and still more preferably 180 ° C. or higher. Moreover, 400 degrees C or less is preferable, 300 degrees C or less is more preferable, 250 degrees C or less is more preferable.
  • the heating time is preferably 10 seconds or more, more preferably 1 minute or more, and still more preferably 3 minutes or more. Moreover, 120 minutes or less are preferable, 30 minutes or less are more preferable, and 10 minutes or less are more preferable.
  • the heating step it is preferable to wash the coating of the radiation sensitive composition after heating using an organic solvent such as PGMEA.
  • the average thickness of the coating film of the radiation sensitive composition to be formed is the kind and concentration of the polymer [A] in the radiation sensitive composition (I), and the conditions such as heating temperature and heating time in the heating step, and removal A desired value can be obtained by appropriately selecting the type, concentration, number of times of washing, and the like of the organic solvent in the step. 5 nm or more is preferable, as for the film thickness of the coating film of the said radiation sensitive composition in the surface of a base material, 10 nm or more is more preferable, and 20 nm or more is more preferable. Moreover, 200 nm or less is preferable, 100 nm or less is more preferable, and 50 nm or less is more preferable.
  • the exposure step radiation is applied to a desired region of the coating film through a mask of a specific pattern to perform exposure.
  • the radiation include ultraviolet light, far ultraviolet light, X-rays, charged particle beams and the like.
  • far-ultraviolet light represented by ArF excimer laser light and KrF excimer laser light is preferable, and ArF excimer laser light is more preferable.
  • liquid immersion exposure can also be performed.
  • the acid generator generates an acid from the acid generator in the exposed area by irradiation of radiation, and the acid causes the side chain group of the polymer derived from the structural unit (I) of the polymer [A] carried on the surface of the substrate.
  • Post exposure bake may be performed after exposure for the purpose of promoting peeling of the polymer derived from the structural unit (I) of the polymer [A] by the acid generated from the acid generator.
  • the said pattern formation method may comprise the heating process which heats the coating film formed of the said coating process after the said exposure process.
  • the heating step is performed after the exposure step, only the polymer derived from the structural unit (I) of the unexposed area of the [A] polymer in which the side group (I) remains active is supported on the surface of the substrate be able to.
  • the coating film after the heating step and the exposure step is developed.
  • the [A] polymer in the exposed area on the surface of the substrate can be selectively peeled off by the development step. As a result, a fine pattern can be easily formed.
  • organic solvents such as a propylene glycol monomethyl ether acetate (PGMEA), are used preferably, for example.
  • the static contact angle with the pure water in the surface of a pattern 80 degrees or more are preferable and, as for the static contact angle with the pure water in the surface of a pattern, 90 degrees or more are more preferable. Moreover, 120 degrees or less are preferable and 110 degrees or less are more preferable.
  • the coating film is heated in the heating step to obtain the substrate 1.
  • the coating film 2 is laminated on the surface.
  • the mask pattern 3 is formed in the required region of the coating film 2 and an exposure process is performed.
  • the coating film 2 is etched through the mask pattern 3.
  • the base material 10 in which the guide pattern 21 was formed can be obtained by etching the pattern 3 for masks.
  • the pattern formation method may further include a fine pattern formation step using a guide pattern.
  • a fine pattern composed of a self-organizing material containing a block copolymer is formed using the pattern formed by the pattern forming method described above as a guide pattern.
  • the said pattern formation method can improve the through-put in a fine pattern formation process when performing induced self-organization using a chemoepitaxy method by providing the fine pattern formation process by the above-mentioned guide pattern, and also phase separation by self-organization. It is possible to form a guide pattern excellent in the alignment and alignment of the structure.
  • the shape of the pattern obtained by the phase separation of the self-assembled material is controlled by the guide pattern, and a desired fine pattern can be formed. That is, since the guide pattern and the self-assembled film interact appropriately with the components in the guide pattern, the guide pattern has an affinity for the guide pattern among the blocks contained in the block copolymer contained in the self-assembled material. The high-quality blocks form a phase along the guide pattern, and the low-affinity blocks form a phase away from the guide pattern. Thereby, a desired pattern can be formed.
  • the structure of the pattern obtained by phase separation of the self-assembled material can be finely controlled by the material, size, shape and the like of the guide pattern.
  • the shape, size, and the like of the guide pattern can be appropriately selected according to the pattern to be finally formed, and for example, a line and space pattern, a hole pattern, or the like can be used.
  • a fine pattern can be easily formed.
  • the throughput in the fine pattern formation process can be improved, and a guide pattern excellent in the alignment orientation of the phase separation structure by the self-assembly can be formed.
  • the chemical amplification effect with the radiation sensitive acid generator which generates an acid upon exposure is not utilized, a high resolution pattern can be formed.
  • the radiation sensitive composition of the present invention contains a polymer having the first structural unit represented by the above formula (1) at at least one end of the main chain, and the above radiation sensitive acid generator. Since the said radiation sensitive composition contains the polymer which has the said 1st structural unit in the at least one edge part of a principal chain, and the said radiation sensitive acid generator, the use which forms a fine pattern simply Can be suitably used.
  • a structural unit different from the first structural unit which is a structural unit represented by the formula (2-1), a structural unit represented by the formula (2-2), or a combination thereof It is preferable that the polymer further have.
  • the said radiation sensitive composition is mentioned above as radiation sensitive composition (I) in the said pattern formation method.
  • Mw and Mn The Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) using a Tosoh GPC column (two “G2000 HXL”, one “G3000 HXL” and one “G 4000 H XL”) under the following conditions: did.
  • Eluent Tetrahydrofuran (Wako Pure Chemical Industries, Ltd.)
  • Flow rate 1.0 mL / min
  • Sample concentration 1.0% by mass
  • Sample injection volume 100 ⁇ L
  • Detector Differential Refractometer Standard substance: Monodispersed polystyrene
  • the 13 C-NMR analysis was performed using a nuclear magnetic resonance apparatus (“JNM-EX400” manufactured by JEOL Ltd.) using DMSO-d 6 as a measurement solvent.
  • the content ratio of each structural unit in the polymer was calculated from the area ratio of peaks corresponding to each structural unit in the spectrum obtained by 13 C-NMR.
  • reaction solution was warmed to room temperature, the obtained reaction solution was concentrated, and the solvent was replaced with methyl isobutyl ketone.
  • 500 g of ultrapure water was poured into this solution and stirred, and after standing, the operation of removing the lower aqueous layer was repeated six times, and it was confirmed that the aqueous layer became neutral. Thereafter, the remaining solution was concentrated and dropped into 500 g of methanol to precipitate a polymer, and a solid was recovered by a Buchner funnel. The solid was dried under reduced pressure at 60 ° C. to obtain 11.3 g of a white polymer represented by the following formula (A-1).
  • the polymer (A-1) had Mw of 30,000, Mn of 28,000 and Mw / Mn of 1.07. According to 13 C-NMR analysis, the content ratio of the structural unit is 97 mol% of the block derived from styrene and 3 mol% of the block derived from N, N-dimethylaminoethyl methacrylate, and the polymer (A-1) has the following formula As shown in (A-1), it was a polymer in which a block derived from N, N-dimethylaminoethyl methacrylate was bonded adjacent to a block derived from styrene.
  • the component (C) is mixed with 16,500 parts by mass of propylene glycol monomethyl ether acetate (PGMEA) as a solvent, and the resulting mixed solution is filtered through a membrane filter with a pore size of 200 nm to obtain a radiation sensitive composition (I-1).
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 1 Two silicon dioxide (SiO 2 ) substrates were prepared, and the radiation sensitive composition (I-1) was applied on the surface of each substrate using spin coating (1500 rpm, 30 seconds) to form a film. When the film thickness of the coating film at this time was measured by an ellipsometer (alpha-SE manufactured by JA Woollam), it was confirmed that a coating film of 30 nm was formed on SiO 2 .
  • One of the two substrates on which the coating film is formed is baked at 175 ° C. for 5 minutes and then washed with PGMEA, and the film thickness is measured again by an ellipsometer. The thickness was 7.3 nm.
  • the static contact angle with pure water on the surface of the coating film was measured using a contact angle meter, it was 91 °.
  • the other substrate was irradiated with light of a wavelength of 254 nm for 10 mJ using an apparatus for exposure without mounting a mask holder, baked at 175 ° C. for 5 minutes, and washed with PGMEA. After washing, it was confirmed that no coating film remained on the surface of the substrate. Furthermore, it was 52 degrees when the static contact angle with the pure water in the surface of a base material was measured using the contact angle meter.
  • Example 1 the [A] polymer was carried on the surface of the substrate in the unexposed area, while no coating film remained in the exposed area. Therefore, the radiation-sensitive composition used in Example 1 was used. It was shown that (I-1) functions as a radiation sensitive composition suitable for the pattern formation method. In addition, since the static contact angle of the surface of the unexposed area of the coating was 91 ° and the static contact angle of the surface of the exposed area of the coating was 52 °, the pattern obtained in Example 1 was obtained. It has been shown to function as a guide pattern for forming a fine pattern composed of a self-assembled material containing a block copolymer such as PS (polystyrene) -block-PMMA (polymethyl methacrylate).
  • PS polystyrene
  • block-PMMA polymethyl methacrylate
  • the pattern formation method and the radiation sensitive composition of the present invention a fine pattern can be easily formed.
  • the throughput in the fine pattern formation process can be improved, and a guide pattern excellent in the alignment orientation of the phase separation structure by the self-assembly can be formed. Therefore, the pattern formation method can be suitably used for a process of processing semiconductor devices, etc. for which further miniaturization is expected to progress in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本発明は、基材の表面に、重合体及び感放射線性酸発生剤を含有する感放射線性組成物を塗工する工程と、上記塗工工程により形成された当該感放射線性組成物の塗膜を露光する工程と、上記露光された当該感放射線性組成物の塗膜を現像する工程とを備え、上記重合体が下記式(1)で表される第1構造単位を有するパターン形成方法である。下記式(1)中、R1は、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子を有する1価の有機基である。

Description

パターン形成方法及び感放射線性組成物
 本発明は、パターン形成方法及び感放射線性組成物に関する。
 集積回路素子の製造に代表される微細加工の分野においては、従来、酸解離性基を有する重合体を含む樹脂組成物によって基板上にレジスト被膜を形成し、マスクパターンを介してそのレジスト被膜にエキシマレーザー等の短波長の放射線を照射して露光させ、露光部をアルカリ現像液で除去することにより微細なレジストパターンを形成することが行われている。この際、樹脂組成物中に放射線照射により酸を発生する感放射線性酸発生剤を含有させ、その酸の作用により感度を向上させた化学増幅型レジストが利用されている。
 この分野においては、半導体デバイス、液晶デバイス等の各種電子デバイスの構造の微細化に伴ってパターンの微細化が要求されている。
 一方、このような要求に対し、秩序パターンを自発的に形成するいわゆる自己組織化による相分離構造を利用した自己組織化リソグラフィープロセスが提案されている。かかる自己組織化リソグラフィープロセスとして、互いに性質が異なる単量体が共重合してなるブロック共重合体を用い、自己組織化により超微細パターンを形成する方法が知られている(特開2008-149447号公報参照)。さらに、近年、上述したレジストパターンをガイドパターンとして、そのガイドパターンで規定される空間配置でブロック共重合体のドメインの配置を制御するケモエピタキシー法(Chemo-Epitaxy Process)による誘導自己組織化(Directed Self-Assembly:DSA)リソグラフィープロセスにより、より微細なパターンを形成することも検討されている(特表2014-528015号公報参照)。
特開2008-149447号公報 特表2014-528015号公報
 しかしながら、上記化学増幅型レジストを用いたパターン形成においては、感放射線性酸発生剤由来の酸の拡散長をコントロールすることが難しく、さらなる微細化を進める上でのネックとなっている。また、誘導自己組織化リソグラフィープロセスでは基材作製において複数回の工程が必要とされており、微細パターン形成プロセスにおけるスループットの向上及びガイドパターンの欠陥抑制についてはさらなる向上が求められる。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、微細なパターンを簡便に形成でき、さらに、ケモエピタキシー法を用いる誘導自己組織化を行う場合に、微細パターン形成プロセスにおけるスループットを向上できるとともに、自己組織化による相分離構造の整列配向性に優れるガイドパターンを形成できるパターン形成方法及び感放射線性組成物を提供することにある。
 上記課題を解決するためになされた発明は、基材の表面に、重合体及び感放射線性酸発生剤を含有する感放射線性組成物を塗工する工程と、上記塗工工程により形成された当該感放射線性組成物の塗膜を露光する工程と、上記露光された当該感放射線性組成物の塗膜を現像する工程とを備え、上記重合体が下記式(1)で表される第1構造単位を有するパターン形成方法である。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子を有する1価の有機基である。)
 上記課題を解決するためになされた別の発明は、主鎖の少なくとも一方の端部に下記式(1)で表される第1構造単位を有する重合体と、感放射線性酸発生剤とを含有する感放射線性組成物である。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子を有する1価の有機基である。)
 ここで、「有機基」とは、少なくとも1個の炭素原子を含む基をいう。「主鎖」とは、重合体の原子鎖のうち最も長いものをいう。「パターン」とは、当該パターン形成方法により得られるパターニングされた微細な構造体をいい、ガイドパターンも含まれる。「主鎖の端部」とは、主鎖の末端を含む部分をいう。
 本発明のパターン形成方法及び感放射線性組成物によれば、化学増幅型ではないため酸の拡散が無く、微細なパターンを簡便に形成できる。また、ケモエピタキシー法を用いる誘導自己組織化を行う場合に、微細パターン形成プロセスにおけるスループットを向上できるとともに、自己組織化による相分離構造の整列配向性に優れるガイドパターンを形成できる。
本発明のパターン形成方法による重合体の基材の表面への担持機構を説明する図である。 本発明のパターン形成方法において、基材上に塗膜を積層した後の状態の一例を示す模式図である。 本発明のパターン形成方法において、露光工程を行うためのマスク用パターンを形成した後の状態の一例を示す模式図である。 本発明のパターン形成方法において、マスク用パターンを介して塗膜をエッチングした後の状態の一例を示す模式図である 本発明のパターン形成方法において、ガイドパターンが形成された基材の状態の一例を示す模式図である
 以下、当該パターン形成方法及び感放射線性組成物について詳述する。
<パターン形成方法>
 当該パターン形成方法は、基材の表面に、重合体(以下、「[A]重合体」ともいう)及び感放射線性酸発生剤(以下、「[B]酸発生剤」ともいう)を含有する感放射線性組成物(以下、「感放射線性組成物(I)」ともいう)を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成された感放射線性組成物の塗膜を露光する工程(以下、「露光工程」ともいう)と、上記露光された感放射線性組成物の塗膜を現像する工程(以下、「現像工程」ともいう)とを備え、上記[A]重合体が下記式(1)で表される第1構造単位(以下、「構造単位(I)」ともいう)を有する。
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子を有する1価の有機基(以下、「側鎖基(I)」ともいう)である。
 当該パターン形成方法は、上記露光工程前又は上記露光工程後かつ上記現像工程前に、上記塗工工程により形成された塗膜を加熱する工程(以下、「加熱工程」ともいう)をさらに備えることが好ましい。また、当該パターン形成方法は、当該パターン形成方法により形成されたパターンをガイドパターンとして、ブロック共重合体を含有する自己組織化材料から構成される微細パターンを形成する工程(以下、「ガイドパターンによる微細パターン形成工程」ともいう)をさらに備えてもよい。
 当該パターン形成方法によれば、上記各工程を備え、感放射線性組成物(I)が[A]重合体を含有することで、微細なパターンを簡便に形成できる。また、ケモエピタキシー法を用いる誘導自己組織化を行う場合に、微細パターン形成プロセスにおけるスループットを向上できるとともに、自己組織化による相分離構造の整列配向性に優れるガイドパターンを形成できる。さらに、酸解離性官能基を有する成分と放射線の照射(以下、「露光」という場合がある)により酸を発生する感放射線性酸発生剤との間の化学増幅効果を利用しないため、高解像度のパターンを形成できる。当該パターン形成方法が上記構成を備えることで、上記効果を奏する理由については、必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、図1に示すように、[A]重合体の基材の表面への担持機構は、[A]重合体の構造単位(I)の側鎖基(I)と基材の表面との水素結合に基づく相互作用と推測され、[A]重合体は、構造単位(I)の側鎖基(I)中の窒素原子により、基材の表面に対して担持力が非常に強いと考えられる。一方、[A]重合体が担持された基材の表面に、露光により酸発生剤から発生した酸を作用させることで、窒素原子を有する側鎖基(I)と基材の表面との相互作用を阻害し、基材の表面上の[A]重合体を選択的に剥離できる。その結果、微細なパターンを簡便に形成でき、上記効果を奏すると考えられる。なお、図1において、「x」は、[A]重合体中の全構造単位に対する構造単位(I)の含有割合(モル%)を表し、「y」は、[A]重合体中の全構造単位に対するその他の構造単位の含有割合(モル%)を表す。
 以下、各工程について説明する。
[塗工工程]
 本工程では、[A]重合体及び[B]酸発生剤を含有する感放射線性組成物(I)を塗工する。
 基材としては、例えばケイ素やケイ素含有酸化物が挙げられる。ケイ素含有酸化物としては、例えばケイ素酸化物、加水分解性シランの加水分解縮合物、ケイ素酸化物炭化物、ケイ素酸化物窒化物等が挙げられる。
 ケイ素酸化物としては、例えばSiO(二酸化ケイ素)等が挙げられる。
 加水分解性シランの加水分解縮合物としては、例えばテトラエトキシシラン(TEOS)等のテトラアルコキシシランの加水分解縮合物などが挙げられる。
 ケイ素酸化物炭化物としては、例えばSiOC等が挙げられる。
 ケイ素酸化物窒化物としては、例えばSiON等が挙げられる。
 これらの中で、二酸化ケイ素が好ましい。
 基材の形状としては、特に限定されず、板状、球状等、適宜所望の形状とすることができる。基材の大きさは特に限定されず、適宜所望の大きさの領域とすることができる。
 基材は、例えば5質量%程度のクエン酸水溶液で、表面を洗浄しておくことが好ましい。
 感放射線性組成物(I)の塗工方法としては、例えばスピンコート法等が挙げられる。
[感放射線性組成物(I)]
 感放射線性組成物(I)は、[A]重合体及び[B]酸発生剤を含有する。感放射線性組成物(I)は、[A]重合体及び[B]酸発生剤以外に、好適成分として、[C]溶媒を含有してもよく、本発明の効果を損なわない範囲において、他の成分を含有していてもよい。以下、各成分について説明する。
([A]重合体)
 [A]重合体は、構造単位(I)を有する重合体である。[A]重合体は、後述する第2構造単位(以下、「構造単位(II)」ともいう)を有することが好ましい。また、[A]重合体は構造単位(I)及び構造単位(II)以外のその他の構造単位を有していてもよい。[A]重合体は、各構造単位を1種又は2種以上有していてもよい。以下、構造単位(I)、構造単位(II)等について説明する。
 上記[A]重合体は、主鎖の少なくとも一方の端部に上記第1構造単位を有することが好ましい。[A]重合体が主鎖の少なくとも一方の端部に上記第1構造単位を有することで、基板とのインタラクションを有するため、所望の箇所への位置選択性に優れたパターンを簡便に形成できる。
(構造単位(I))
 構造単位(I)は、下記式(I)で表される。
Figure JPOXMLDOC01-appb-C000008
 上記式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、側鎖基(I)である。
 Rとしては、構造単位(I)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。
 側鎖基(I)は、窒素原子を有する1価の有機基である。側鎖基(I)における窒素原子(A)は、非共有電子対を有することが好ましい。
 非共有電子対を有する窒素原子(A)としては、例えば1~3個の水素原子以外の原子が一重結合で結合している窒素原子、芳香族複素環基中の窒素原子等が挙げられる。
 側鎖基(I)としては、例えば炭素数1~20の1価の炭化水素基の炭素-炭素間に2価の窒素原子含有基を含む基(α)、上記炭化水素基及び基(α)が有する水素原子の一部又は全部を1価の窒素原子含有基で置換した基等が挙げられる。側鎖基(I)は、上記炭化水素基の炭素-炭素間に窒素原子以外のヘテロ原子を含む2価の基をさらに含んでいてもよく、上記炭化水素基及び基(α)が有する水素原子の一部又は全部を、窒素原子以外のヘテロ原子を含む1価の基でさらに置換していてもよい。
 「炭化水素基」とは、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。「環員数」とは、脂環構造、芳香環構造、脂肪族複素環構造及び芳香族複素環構造の環を構成する原子数をいい、多環の場合は、この多環を構成する原子数をいう。
 炭素数1~20の1価の炭化水素基としては、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 炭素数1~20の1価の鎖状炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 炭素数3~20の1価の脂環式炭化水素基としては、例えば
 シクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基;
 シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環の脂環式飽和炭化水素基;
 ノルボルネニル基、トリシクロデセニル基等の多環の脂環式不飽和炭化水素基などが挙げられる。
 炭素数6~20の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
 2価の窒素原子含有基としては、例えば-NH-、-NR’-、-CH=N-等が挙げられる。R’は、炭素数1~10の1価の炭化水素基である。
 1価の窒素原子含有基としては、例えば-NH、-NHR”、-NR”等が挙げられる。R”は、炭素数1~10の1価の炭化水素基である。上記-NR”において、2つのR”は互いに合わせられこれらが結合する炭素鎖と共に環構造を形成してもよい。
 窒素原子以外のヘテロ原子を含む1価又は2価の基を構成するヘテロ原子としては、例えば酸素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 窒素原子以外のヘテロ原子を含む2価の基としては、例えば-O-、-CO-、-S-、-CS-、これらのうちの2つ以上を組み合わせた基等が挙げられる。これらの中で、-O-が好ましい。
 窒素原子以外のヘテロ原子を含む1価の基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、スルファニル基等が挙げられる。
 側鎖基(I)としては、下記式(i)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記式(i)中、Xは、単結合、-COO-、-CO-、-O-、-NH-、-NHCO-又は-CONH-である。Qは、単結合又は炭素数1~20の2価の炭化水素基である。Rは、炭素数0~20の1価の1級、2級若しくは3級のアミノ基又は環員数5~20の1価の窒素含有複素環基である。nは、0~10の整数である。但し、nが1以上の場合、Qが単結合である場合はない。*は、上記式(1)におけるRが結合する炭素原子との結合部位を示す。
 Xとしては、単結合又は-COO-が好ましく、-COO-がより好ましい。
 Qで表される炭素数1~20の2価の炭化水素基としては、例えば上記式(1)のAにおいて例示した炭素数1~20の2価の炭化水素基と同様の基等が挙げられる。
 Qとしては、2価の炭化水素基が好ましく、アルカンジイル基がより好ましく、エタンジイル基がさらに好ましい。
 Rで表される炭素数0~20の1価の1級、2級若しくは3級のアミノ基としては、例えば
 -NHで表される1級アミノ基;
 メチルアミノ基、エチルアミノ基、シクロヘキシルアミノ基、フェニルアミノ基等の2級アミノ基;
 ジメチルアミノ基、ジエチルアミノ基、ジシクロヘキシルアミノ基、ジフェニルアミノ基等の3級アミノ基などが挙げられる。
 Rで表される環員数5~20の1価の窒素含有複素環基としては、例えば
 アザシクロペンチル基、アザシクロヘキシル基、3,3,5,5-テトラメチルアザシクロヘキシル基、N-メチル-3,3,5,5-テトラメチルアザシクロヘキシル基等の窒素含有脂肪族複素環基;
 ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、キノリル基、イソキノリル基、カルバゾリル基等の窒素含有芳香族複素環基などが挙げられる。
 Rとしては、3級アミノ基が好ましく、ジメチルアミノ基がより好ましい。
 nとしては、0~2が好ましく、0又は1がより好ましい。
 構造単位(I)としては、例えば下記式(1-1)~(1-15)で表される構造単位(以下、「構造単位(I-1)~(I-15)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 
 上記式(1-1)~(1-15)中、Rは、上記式(1)と同義である。
 これらの中で、構造単位(I-9)が好ましい。
 構造単位(I)を与える単量体としては、例えば
 ビニルピリジン、ビニルピラジン、ビニルキノリン、ビニルアニリン、ビニルピペリジン等の側鎖基(I)を含むビニル化合物;
 アミノスチレン、ジメチルアミノスチレン等の側鎖基(I)を含むスチレン化合物;
 ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、N-メチル-3,3,5,5-テトラメチルアザシクロヘキサン-1-イル(メタ)アクリレート等の側鎖基(I)を含む(メタ)アクリル酸エステルなどが挙げられる。
 [A]重合体中の全構造単位に対する構造単位(I)の含有割合としては、0.1モル%以上が好ましく、0.5モル%以上がより好ましく、1モル%以上がさらに好ましく、2モル%以上が特に好ましい。また、30モル%以下が好ましく、20モル%以下がより好ましく、10モル%以下がさらに好ましく、5モル%以下が特に好ましい。上記構造単位(I)の含有割合を上記範囲とすることで、より微細なパターンを簡便に形成できる。
 構造単位(I)は、ブロック配列していることが好ましい。[A]重合体は、この構造単位(I)のブロックを主鎖の少なくとも一方の端部に有することが好ましく、主鎖の一方の端部に有することがより好ましい。[A]重合体が構造単位(I)のブロックを主鎖の一方の端部に有することで、より微細なパターンを簡便に形成できる。
(構造単位(II))
 構造単位(II)としては、上記第1構造単位とは異なる構造単位であって、下記式(2-1)で表される構造単位(以下、「構造単位(II-1)」ともいう)、下記式(2-2)で表される構造単位(以下、「構造単位(II-2)」ともいう)又はこれらの組み合わせであることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記式(2-1)及び(2-2)中、R及びRは、それぞれ独立して、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Rは、炭素数1~20の1価の有機基である。Rは、炭素数1~20の(1+b)価の炭化水素基である。Rは、水素原子又はヘテロ原子を有する1価の基である。aは、0~5の整数である。aが2以上の場合、複数のRは互いに同一又は異なる。bは、1~3の整数である。bが2以上の場合、複数のRは互いに同一又は異なる。
 Rとしては、構造単位(II)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましく、水素原子がより好ましい。
 Rで表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、カルボキシ基等が挙げられる。
 aとしては、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。
 Rとしては、構造単位(II)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。
 Rで表される炭素数1~20の(1+b)価の炭化水素基としては、例えば上記式(1)のAにおいて例示した1価の炭化水素基のうち、炭素数1~20のものからb個の水素原子を除いた基等が挙げられる。
 bとしては、1又は2が好ましく、1がより好ましい。
 Rで表されるヘテロ原子を有する1価の基としては、例えば
 ヒドロキシ基、ヒドロキシメチル基等の酸素原子を有する基;
 スルファニル基、スルファニルメチル基等の硫黄原子を有する基;
 フッ素原子、トリフルオロメチル基等のフッ素原子を有する基などが挙げられる。
 Rとしては、水素原子が好ましい。
 構造単位(II)としては、酸解離性基を含まないことが好ましい。ここで、酸解離性基とは、露光によって上記感放射線性酸発生剤から発生した酸により解離して、カルボキシル基等の極性基を生じる基をいう。
 構造単位(II)としては、例えば構造単位(II-1)として下記式(2-1-1)~(2-1-3)で表される構造単位(以下、「構造単位(II-1-1)~(II-1-3)」ともいう)が、構造単位(II-2)として下記式(2-2-1)~(2-2-6)で表される構造単位(以下、「構造単位(II-2-1)~(II-2-6)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式(2-1-1)~(2-1-3)中、Rは、上記式(2-1)と同義である。
 上記式(2-2-1)~(2-2-6)中、Rは、上記式(2-2)と同義である。
 これらの中で、構造単位(2-1-1)及び(2-2-1)が好ましく、構造単位(2-1-1)がより好ましい。
 [A]重合体が構造単位(II)を有する場合、[A]重合体中の全構造単位に対する構造単位(II)の含有割合としては、50モル%以上が好ましく、75モル%以上がより好ましく、89モル%以上がさらに好ましい。また、99.9モル%以下が好ましく、99モル%以下がより好ましく、97モル%以下がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、脱着性能をより向上させることができる。
(その他の構造単位)
 [A]重合体には、構造単位(I)及び構造単位(II)以外のその他の構造単位を有していても良い。その他の構造単位としては、例えば置換又は非置換のエチレンに由来する構造単位等が挙げられる(但し、構造単位(I)及び構造単位(II)に該当するものを除く)。
 [A]重合体がその他の構造単位を有する場合、[A]重合体中の全構造単位に対するその他の構造単位の含有割合としては、20モル%以下が好ましく、5モル%以下がより好ましく、1モル%以下がさらに好ましい。
([A]重合体の合成方法)
 [A]重合体は、例えば構造単位(I)を与える単量体、必要に応じて構造単位(II)を与える単量体等を用い、アニオン重合、カチオン重合、ラジカル重合等により、適当な溶媒中で重合することにより合成することができる。これらの中で、構造単位(I)のブロックを有する重合体を得るには、アニオン重合のうちのリビングアニオン重合、ラジカル重合のうちの可逆的連鎖移動重合、原子移動ラジカル重合若しくはニトロオキサイド等の存在下でのコントロールラジカル重合などがより好ましい。
 リビングアニオン重合に用いるアニオン重合開始剤としては、例えば
 アルキルリチウム、アルキルマグネシウムハライド、ナフタレンナトリウム、アルキル化ランタノイド化合物;
 t-ブトキシカリウム等のカリウムアルコキシド;
 ジメチル亜鉛等のアルキル亜鉛;
 トリメチルアルミニウム等のアルキルアルミニウム;
 ベンジルカリウム等の芳香族系金属化合物などが挙げられる。これらの中で、アルキルリチウムが好ましい。
 リビングアニオン重合に用いる溶媒としては、例えば
 n-ヘキサン等のアルカン;
 シクロヘキサン等のシクロアルカン;
 トルエン等の芳香族炭化水素;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル;
 2-ブタノン、シクロヘキサノン等のケトン;
 テトラヒドロフラン、ジメトキシエタン等のエーテルなどが挙げられる。これらの溶媒は、1種又は2種以上を用いることができる。
 リビングアニオン重合における反応温度は、アニオン重合開始剤の種類に応じて適宜選択することができるが、-150℃以上が好ましく、-80℃以上がより好ましい。また、50℃以下が好ましく、40℃以下がより好ましい。反応時間としては、5分以上が好ましく、20分以上がより好ましい。また、24時間以下が好ましく、12時間以下がより好ましい。
 重合により形成された[A]重合体は、再沈殿法により回収することが好ましい。すなわち反応終了後、反応液を再沈溶媒に投入することにより、目的の重合体を粉体として回収する。再沈溶媒としては、アルコール、超純水、アルカン等を単独で又は2種以上を混合して使用することができる。再沈殿法の他に分液操作やカラム操作、限外濾過操作等により、単量体、オリゴマー等の低分子量成分を除去して重合体を回収することもできる。
 [A]重合体の数平均分子量(Mn)は、1,000以上が好ましく、2,000以上がより好ましく、3,000以上がさらに好ましく、4,000以上が特に好ましい。また、100,000以下が好ましく、70,000以下がより好ましく、50,000以下がさらに好ましく、30,000以下が特に好ましい。
 [A]重合体の重量平均分子量(Mw)のMnに対する比(分散度)は、5以下が好ましく、2以下がより好ましく、1.5以下がより好ましく、1.1以下が特に好ましい。
 [A]重合体の含有量としては、感放射線性組成物(I)における溶媒以外の全成分に対して、60質量%以上が好ましく、80質量%以上がより好ましい。また、99質量%以下であることが好ましい。
([B]酸発生剤)
 [B]酸発生剤は、放射線の作用により酸を発生する成分である。感放射線性組成物(I)が[B]酸発生剤を含有することにより、放射線の照射により酸が発生する。従って、[A]重合体が担持された基材の表面に、露光により酸発生剤から発生した酸を作用させることで、窒素原子を有する側鎖基(I)と基材の表面との相互作用を阻害し、基材の表面上の[A]重合体を選択的に剥離できる。感放射線性組成物(I)は[B]酸発生剤を1種又は2種以上を含有していてもよい。
 [B]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、アンモニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 [B]酸発生剤の具体例としては、例えば特開2015-114341号公報の段落[0176]~[0202]に記載されている化合物等が挙げられる。
 スルホニウム塩としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート等が挙げられる。
 テトラヒドロチオフェニウム塩としては、例えば1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート等が挙げられる。
 ヨードニウム塩としては、例えばジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等が挙げられる。
 アンモニウム塩としては、例えばトリエチルアンモニウムトリフルオロメタンスルホネート、トリエチルアンモニウムノナフルオロ-n-ブタンスルホネート等が挙げられる。
 ホスホニウム塩としては、例えば(1-6-η-クメン)(η-シクロペンタジエニル)鉄ヘキサフルオロホスホネート等が挙げられる。
 N-スルホニルオキシイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等が挙げられる。
 [B]酸発生剤としては、オニウム塩化合物が好ましく、スルホニウム塩がより好ましく、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネートがさらに好ましい。
 [B]酸発生剤は、[A]重合体における窒素原子を有する側鎖基(I)に対して50モル%~200モル%含有されていると、[A]重合体の選択的剥離を効率的に行うことができるので好ましい。
 [B]酸発生剤の含有量としては、[A]重合体100質量部に対して、1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上がさらに好ましい。また、50質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下がさらに好ましい。感放射線性酸発生剤の含有量を上記範囲とすることで、感放射線性組成物(I)の塗膜形成の選択性をより向上させることができる。
([C]溶媒)
 [C]溶媒は、少なくとも[A]重合体及び[B]酸発生剤等を溶解又は分散可能な溶媒であれば特に限定されない。当該樹脂組成物は、[C]溶媒を1種又は2種以上含有していてもよい。
 [C]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系有機溶媒、アミド系溶媒、エステル系有機溶媒、炭化水素系溶媒等が挙げられる。
 これらの中で、感放射線性組成物(I)に含有される[C]溶媒としては、エステル系溶媒、ケトン系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒、環状ケトン系溶媒がより好ましく、多価アルコール部分アルキルエーテルアセテート、シクロアルカノンがさらに好ましく、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノンが特に好ましい。
(他の成分)
 他の成分としては、例えば架橋剤、界面活性剤等が挙げられる。
〈架橋剤〉
 架橋剤は、熱や酸の作用により、[A]重合体等の成分同士の架橋結合を形成するか、又は自らが架橋構造を形成する成分である。感放射線性組成物(I)が架橋剤を含有すると、形成される感放射線性組成物(I)の塗膜の硬度を高めることができる。感放射線性組成物(I)は、架橋剤を1種又は2種以上含有していてもよい。
 架橋剤としては、例えば多官能(メタ)アクリレート化合物、エポキシ化合物、ヒドロキシメチル基置換フェノール化合物、アルコキシアルキル基含有フェノール化合物、アルコキシアルキル化されたアミノ基を有する化合物、アセナフチレンとヒドロキシメチルアセナフチレンとのランダム共重合体等が挙げられる。
 上記多官能(メタ)アクリレート化合物としては、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 上記エポキシ化合物としては、例えばノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂等が挙げられる。
 上記ヒドロキシメチル基置換フェノール化合物としては、例えば2-ヒドロキシメチル-4,6-ジメチルフェノール、3,5-ジヒドロキシメチル-4-メトキシトルエン(2,6-ビス(ヒドロキシメチル)-p-クレゾール)等が挙げられる。
 上記アルコキシアルキル基含有フェノール化合物としては、例えば、4,4’-(1-(4-(1-(4-ヒドロキシ-3,5-ビス(メトキシメチル)フェニル)-1-メチルエチル)フェニル)エチリデン)ビス(2,6-ビス(メトキシメチル)フェノール等が挙げられる。
 上記アルコキシアルキル化されたアミノ基を有する化合物としては、例えば(ポリ)メチロール化メラミン、(ポリ)メチロール化グリコールウリル等が挙げられる。
 架橋剤としては、アルコキシアルキル基含有フェノール化合物が好ましく、4,4’-(1-(4-(1-(4-ヒドロキシ-3,5-ビス(メトキシメチル)フェニル)-1-メチルエチル)フェニル)エチリデン)ビス(2,6-ビス(メトキシメチル)フェノールがより好ましい。
 感放射線性組成物(I)が架橋剤を含有する場合、架橋剤の含有量は、[A]重合体100質量部に対して、1質量部以上が好ましく、10質量部以上がより好ましい。また、70質量部以下が好ましく、30質量部以下がより好ましい。架橋剤の含有量を上記範囲とすることで、感放射線性組成物(I)の塗膜の硬度をより高めることができる。
〈界面活性剤〉
 界面活性剤は、感放射線性組成物(I)の基材の表面への塗工性を向上させることができる成分である。
 感放射線性組成物(I)が界面活性剤を含有する場合、その含有量は、[A]重合体100質量部に対して、10質量部以下が好ましく、1質量部以下がより好ましい。また、通常0.1質量部以上である。
[感放射線性組成物(I)の調製方法]
 感放射線性組成物(I)は、例えば[A]重合体、[B]酸発生剤及び必要に応じて[C]溶媒等の他の成分を所定の割合で混合し、好ましくは、得られた混合溶液を孔径0.2μm以下のフィルターでろ過することにより調製することができる。
[加熱工程]
 当該パターン形成方法は、後述する露光工程前に加熱工程をさらに備えていることが好ましい。本工程では、上記塗工工程により形成された塗膜を加熱する。加熱工程により、基材の表面と感放射線性組成物(I)の[A]重合体とが水素結合により相互作用すると考えられ、基材の表面に[A]重合体を含む当該感放射線性組成物の塗膜が積層される。
 加熱の手段としては、例えばオーブン、ホットプレート等が挙げられる。加熱温度は、80℃以上が好ましく、150℃以上がより好ましく、180℃以上がさらに好ましい。また、400℃以下が好ましく、300℃以下がより好ましく、250℃以下がさらに好ましい。加熱時間は、10秒以上が好ましく、1分以上がより好ましく、3分以上がさらに好ましい。また、120分以下が好ましく、30分以下がより好ましく、10分以下がさらに好ましい。
 加熱工程において、加熱の後に、PGMEA等の有機溶媒などを用いて当該感放射線性組成物の塗膜を洗浄することが好ましい。
 形成される当該感放射線性組成物の塗膜の平均厚みは、感放射線性組成物(I)における[A]重合体の種類及び濃度、並びに加熱工程における加熱温度、加熱時間等の条件、除去工程における有機溶媒の種類、濃度、洗浄回数等を適宜選択することで、所望の値にすることができる。基材の表面における当該感放射線性組成物の塗膜の膜厚は、5nm以上が好ましく、10nm以上がより好ましく、20nm以上がさらに好ましい。また、200nm以下が好ましく、100nm以下がより好ましく、50nm以下がさらに好ましい。
[露光工程]
 次に、露光工程では、上記塗膜の所望の領域に特定パターンのマスクを介して放射線を照射し、露光を行う。上記放射線としては、例えば、紫外線、遠紫外線、X線、荷電粒子線等が挙げられる。これらのうち、ArFエキシマレーザー光やKrFエキシマレーザー光に代表される遠紫外線が好ましく、ArFエキシマレーザー光がより好ましい。また、露光方法としては液浸露光を行うこともできる。露光工程により、露光部では放射線の照射により酸発生剤から酸が発生し、この酸により、基材の表面に担持された[A]重合体の構造単位(I)由来のポリマーの側鎖基(I)は不活性化し、[A]重合体は基材の表面に担持されなくなる。一方、未露光部の[A]重合体は基材の表面に担持されたままとなるので、基材の表面にパターンが形成される。
 なお、酸発生剤から発生した酸による[A]重合体の構造単位(I)由来のポリマーの剥離を促進する目的で、露光後にポストエクスポージャーベーク(PEB)をおこなってもよい。
 当該パターン形成方法は、上記露光工程後に上記塗工工程により形成された塗膜を加熱する加熱工程を備えてもよい。上記露光工程後に加熱工程を行う場合、側鎖基(I)が活性のままである未露光部の[A]重合体の構造単位(I)由来のポリマーのみが基材の表面に担持されることができる。
[現像工程]
 現像工程では、加熱工程及び露光工程後の塗膜を現像する。現像工程により基材の表面上の露光部の[A]重合体を選択的に剥離できる。その結果、微細なパターンを簡便に形成できる。本発明のパターン形成方法に用いられる現像液としては、例えばプロピレングリコールモノメチルエーテルアセテート(PGMEA)等の有機溶剤が好ましく用いられる。
 パターンの表面における純水との静的接触角は、80°以上が好ましく、90°以上がより好ましい。また、120°以下が好ましく、110°以下がより好ましい。塗膜の表面の静的接触角を上記範囲とすることで、上記パターンをガイドパターンとして用いた場合に、自己組織化による相分離構造の整列配向性をより向上させることができる。
 以下、本発明のパターン形成方法におけるガイドパターンの具体的な製造例を、図2~図5を用いて説明する。
 始めに図2に示すように、上記塗工工程において基材1上に感放射線性組成物(I)が塗工された後、塗膜が加熱工程で加熱されることにより、基材1の表面に塗膜2が積層される。次に、図3に示すように塗膜2の所用領域にマスク用パターン3が形成され、露光工程が行われる。次に、現像工程において、図4に示すように、マスク用パターン3を介して塗膜2をエッチングする。そして、図5に示すように、マスク用パターン3をエッチングすることによりガイドパターン21が形成された基材10を得ることができる。
[ガイドパターンによる微細パターン形成工程]
 当該パターン形成方法は、ガイドパターンによる微細パターン形成工程をさらに備えてもよい。本工程は、上述の当該パターン形成方法により形成されたパターンをガイドパターンとして、ブロック共重合体を含有する自己組織化材料から構成される微細パターンを形成する。当該パターン形成方法は、上記ガイドパターンによる微細パターン形成工程を備えることで、ケモエピタキシー法を用いる誘導自己組織化を行う場合に、微細パターン形成プロセスにおけるスループットを向上できるとともに、自己組織化による相分離構造の整列配向性に優れるガイドパターンを形成できる。
 ガイドパターンによる微細パターン形成工程においては、上記ガイドパターンによって自己組織化材料の相分離によって得られるパターン形状が制御され、所望の微細パターンを形成することができる。即ち、上記ガイドパターンは上記ガイドパターン中の成分によりガイドパターンと自己組織化膜とが適度に相互作用するため、自己組織化材料が含有するブロック共重合体が有するブロックのうち、ガイドパターンと親和性が高いブロックはガイドパターンに沿って相を形成し、親和性の低いブロックはガイドパターンから離れた位置に相を形成する。これにより所望のパターンを形成することができる。また、ガイドパターンの材質、サイズ、形状等により、自己組織化材料の相分離によって得られるパターンの構造を細かく制御することができる。なお、ガイドパターンの形状、大きさ等は最終的に形成したいパターンに合わせて適宜選択することができ、例えばラインアンドスペースパターン、ホールパターン等を用いることができる。
 当該パターン形成方法によれば、微細なパターンを簡便に形成できる。また、ケモエピタキシー法を用いる誘導自己組織化を行う場合に、微細パターン形成プロセスにおけるスループットを向上できるとともに、自己組織化による相分離構造の整列配向性に優れるガイドパターンを形成できる。さらに、露光により酸を発生する感放射線性酸発生剤との間の化学増幅効果を利用しないため、高解像度のパターンを形成できる。
<感放射線性組成物>
 本発明の感放射線性組成物は、主鎖の少なくとも一方の端部に上記式(1)で表される第1構造単位を有する重合体と、上記感放射線性酸発生剤とを含有する。当該感放射線性組成物は、主鎖の少なくとも一方の端部に上記第1構造単位を有する重合体と、上記感放射線性酸発生剤とを含有するので、微細なパターンを簡便に形成する用途に好適に用いることができる。
 また、上記第1構造単位とは異なる構造単位であって、上記式(2-1)で表される構造単位、上記式(2-2)で表される構造単位又はこれらの組み合わせを、上記重合体がさらに有することが好ましい。
 当該感放射線性組成物については、当該パターン形成方法における感放射線性組成物(I)として上述している。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各物性値の測定方法を下記に示す。
[Mw及びMn]
 重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により東ソー社のGPCカラム(「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、以下の条件により測定した。
 溶離液:テトラヒドロフラン(和光純薬工業社)
 流量:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 カラム温度:40℃
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
13C-NMR分析]
 13C-NMR分析は、核磁気共鳴装置(日本電子社の「JNM-EX400」)を使用し、測定溶媒としてDMSO-dを用いて行った。重合体における各構造単位の含有割合は、13C-NMRで得られたスペクトルにおける各構造単位に対応するピークの面積比から算出した。
<[A]重合体の合成>
[合成例1](重合体(A-1)の合成)
 500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったテトラヒドロフラン120gを注入し、-78℃まで冷却した。次に、このテトラヒドロフランにsec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液0.42mLを注入した。その後、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン13.3mLを30分間かけて滴下注入した後に30分間攪拌した。さらに、1,1-ジフェニルエチレン0.17mL及び0.5N塩化リチウムテトラヒドロフラン溶液1.64mLを加え、暗赤色な溶液であることを確認してからN,N-ジメチルアミノエチルメタクリレート0.60mLを加えて1時間撹拌した後、メタノール1mLを注入し重合末端の停止反応を行った。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮して、溶媒をメチルイソブチルケトンで置換した。この液に超純水500gを注入撹拌し、静置後、下層の水層を取り除く作業を6回繰り返し、水層が中性になったことを確認した。その後、残った溶液を濃縮してメタノール500g中に滴下することで重合体を析出させ、ブフナーロートにて固体を回収した。この固体を60℃で減圧乾燥させることで白色の下記式(A-1)で表される重合体11.3gを得た。
 この重合体(A-1)は、Mwが30,000、Mnが28,000、Mw/Mnが1.07であった。13C-NMR分析により、構造単位の含有割合は、スチレン由来のブロックが97mol%、N,N-ジメチルアミノエチルメタクリレート由来のブロックが3mol%であり、重合体(A-1)は、下記式(A-1)で表されるように、スチレン由来のブロックに隣接してN,N-ジメチルアミノエチルメタクリレート由来のブロックが結合した重合体であった。
Figure JPOXMLDOC01-appb-C000013
<感放射線性組成物(I)の調製>
 [A]重合体として上記合成例1で得られた重合体(A-1)100質量部、[B]酸発生剤として感放射線性酸発生剤としてトリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート20質量部、[C]溶媒としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)16,500質量部を混合し、得られた混合溶液を孔径200nmのメンブランフィルターで濾過して、感放射線性組成物(I-1)を調製した。
<塗膜の形成>
[実施例1]
 二酸化ケイ素(SiO)基材を2枚用意し、それぞれの基材の表面にスピンコート(1500rpm、30秒間)を用いて感放射線性組成物(I-1)を塗布し、成膜した。この時の塗膜の膜厚をエリプソメーター(J.A.Woollam社のalpha-SE)により測定したところ、SiO上に30nmの塗膜が形成されていることが確認できた。上記塗膜が形成された2枚の基材のうち一方の基材を、175℃で5分間ベークした後にPGMEAを用いて洗浄し、再びエリプソメーターにより膜厚を測定したところ、塗膜の膜厚は7.3nmであった。次に、接触角計を用いて塗膜の表面における純水との静的接触角を測定したところ、91°であった。また、他方の基材については、マスクホルダーを装着せずに露光を行う装置を用いて254nmの波長の光を10mJ照射し、175℃で5分間ベークした後にPGMEAを用いて洗浄した。洗浄後、基材の表面に塗膜が残っていないことが確認された。さらに、接触角計を用いて基材の表面における純水との静的接触角を測定したところ、52°であった。
 実施例1においては、未露光部では[A]重合体が基材の表面に担持され、一方、露光部では塗膜が残っていなかったことから、実施例1に用いた感放射線性組成物(I-1)がパターン形成方法に好適な感放射線性組成物として機能していることが示された。また、塗膜の未露光部の表面の静的接触角が91°であり、塗膜の露光部の表面の静的接触角が52°であったことから、実施例1で得られたパターンは、PS(ポリスチレン)-block-PMMA(ポリメチルメタクリレート)のようなブロックコポリマーを含有する自己組織化材料からなる微細パターンを形成するためのガイドパターンとして機能することが示された。
 本発明のパターン形成方法及び感放射線性組成物によれば、微細なパターンを簡便に形成できる。また、ケモエピタキシー法を用いる誘導自己組織化を行う場合に、微細パターン形成プロセスにおけるスループットを向上できるとともに、自己組織化による相分離構造の整列配向性に優れるガイドパターンを形成できる。従って、当該パターン形成方法は、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。

Claims (7)

  1.  基材の表面に、重合体及び感放射線性酸発生剤を含有する感放射線性組成物を塗工する工程と、
     上記塗工工程により形成された塗膜を露光する工程と、
     上記露光された塗膜を現像する工程と
     を備え、
     上記重合体が下記式(1)で表される第1構造単位を有するパターン形成方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子を有する1価の有機基である。)
  2.  上記重合体が、主鎖の少なくとも一方の端部に上記第1構造単位を有する請求項1に記載のパターン形成方法。
  3.  上記第1構造単位とは異なる構造単位であって、下記式(2-1)で表される構造単位、下記式(2-2)で表される構造単位又はこれらの組み合わせを、上記重合体がさらに有する請求項1又は請求項2に記載のパターン形成方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(2-1)及び(2-2)中、R及びRは、それぞれ独立して、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Rは、炭素数1~20の1価の有機基である。Rは、炭素数1~20の(1+b)価の炭化水素基である。Rは、水素原子又はヘテロ原子を有する1価の基である。aは、0~5の整数である。aが2以上の場合、複数のRは互いに同一又は異なる。bは、1~3の整数である。bが2以上の場合、複数のRは互いに同一又は異なる。)
  4.  上記露光工程前又は上記露光工程後かつ上記現像工程前に、上記塗工工程により形成された塗膜を加熱する工程をさらに備える請求項1、請求項2又は請求項3に記載のパターン形成方法。
  5.  請求項1から請求項4のいずれか1項に記載のパターン形成方法により形成されたパターンをガイドパターンとして、ブロック共重合体を含有する自己組織化材料から構成される微細パターンを形成する工程をさらに備えるパターン形成方法。
  6.  主鎖の少なくとも一方の端部に下記式(1)で表される第1構造単位を有する重合体と、
     感放射線性酸発生剤と
     を含有する感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子を有する1価の有機基である。)
  7.  上記第1構造単位とは異なる構造単位であって、下記式(2-1)で表される構造単位、下記式(2-2)で表される構造単位又はこれらの組み合わせを、上記重合体がさらに有する請求項6に記載の感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(2-1)及び(2-2)中、R及びRは、それぞれ独立して、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Rは、炭素数1~20の1価の有機基である。Rは、炭素数1~20の(1+b)価の炭化水素基である。Rは、水素原子又はヘテロ原子を有する1価の基である。aは、0~5の整数である。aが2以上の場合、複数のRは互いに同一又は異なる。bは、1~3の整数である。bが2以上の場合、複数のRは互いに同一又は異なる。)
PCT/JP2018/048341 2017-12-27 2018-12-27 パターン形成方法及び感放射線性組成物 WO2019131953A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019562474A JPWO2019131953A1 (ja) 2017-12-27 2018-12-27 パターン形成方法及び感放射線性組成物
US16/905,946 US20210318614A9 (en) 2017-12-27 2020-06-19 Pattern-forming method and radiation-sensitive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762610653P 2017-12-27 2017-12-27
US62/610,653 2017-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/905,946 Continuation US20210318614A9 (en) 2017-12-27 2020-06-19 Pattern-forming method and radiation-sensitive composition

Publications (1)

Publication Number Publication Date
WO2019131953A1 true WO2019131953A1 (ja) 2019-07-04

Family

ID=67067634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048341 WO2019131953A1 (ja) 2017-12-27 2018-12-27 パターン形成方法及び感放射線性組成物

Country Status (3)

Country Link
US (1) US20210318614A9 (ja)
JP (1) JPWO2019131953A1 (ja)
WO (1) WO2019131953A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403458B (zh) * 2020-03-27 2023-04-07 深圳市华星光电半导体显示技术有限公司 色转换层及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148806A (ja) * 2000-08-31 2002-05-22 Fuji Photo Film Co Ltd ネガ型レジスト組成物
JP2008149447A (ja) * 2006-08-11 2008-07-03 Rohm & Haas Denmark Finance As ナノ構造化されたパターン製造方法
WO2011108665A1 (ja) * 2010-03-04 2011-09-09 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法
JP2014528015A (ja) * 2011-09-23 2014-10-23 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション 誘導自己組織化ブロックコポリマーのための中性層の組成物及びそれの方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9291909B2 (en) * 2013-05-17 2016-03-22 Az Electronic Materials (Luxembourg) S.A.R.L. Composition comprising a polymeric thermal acid generator and processes thereof
US10259907B2 (en) * 2015-02-20 2019-04-16 Az Electronic Materials (Luxembourg) S.À R.L. Block copolymers with surface-active junction groups, compositions and processes thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148806A (ja) * 2000-08-31 2002-05-22 Fuji Photo Film Co Ltd ネガ型レジスト組成物
JP2008149447A (ja) * 2006-08-11 2008-07-03 Rohm & Haas Denmark Finance As ナノ構造化されたパターン製造方法
WO2011108665A1 (ja) * 2010-03-04 2011-09-09 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法
JP2014528015A (ja) * 2011-09-23 2014-10-23 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション 誘導自己組織化ブロックコポリマーのための中性層の組成物及びそれの方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIHARA, NAOKO: "Directed Self-Assembly Lithography Technology", TOSHIBA REVIEW, vol. 67, no. 4, 1 April 2012 (2012-04-01), pages 44 - 47, XP055623406 *

Also Published As

Publication number Publication date
US20210318614A9 (en) 2021-10-14
US20200379348A1 (en) 2020-12-03
JPWO2019131953A1 (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
JP4297408B2 (ja) 厚膜フォトレジストとこれらの使用方法
KR100301354B1 (ko) 레지스트조성물및레지스트패턴형성방법
TW578036B (en) Chemically amplified resist material and process for the formation of resist patterns
TWI282797B (en) Photoresist polymer and photoresist composition containing the same
KR101457076B1 (ko) 광가교 경화에 의한 레지스트 하층막을 이용하는 반도체 장치의 제조방법
JP5835123B2 (ja) パターン形成用自己組織化組成物及びパターン形成方法
TW201702744A (zh) 圖案形成方法、積層體以及有機溶劑顯影用抗蝕劑組成物
JP6474528B2 (ja) レジスト塗布における光酸発生剤としてのスルホン酸誘導体化合物
JP2000029215A (ja) 新規なポリマー及びフォトレジスト組成物
JP7071661B2 (ja) カバー膜形成方法
TW201602141A (zh) 光阻上層膜形成組成物及使用其之半導體裝置之製造方法
TW200829665A (en) Coating compositions for photolithography
JPH0950126A (ja) レジスト組成物及びレジストパターン形成方法
JP4102010B2 (ja) 有機反射防止膜用組成物とその製造方法
WO2020066342A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP4002057B2 (ja) 有機反射防止膜用組成物、及び有機反射防止膜パターン形成方法
JP3587770B2 (ja) フォトレジスト用共重合体とその製造方法、フォトレジスト組成物、フォトレジストパターン形成方法、及び半導体素子
JP4144957B2 (ja) レジスト組成物及びレジストパターンの形成方法
WO2019131953A1 (ja) パターン形成方法及び感放射線性組成物
JP7135554B2 (ja) 下層膜形成用組成物、自己組織化膜の下層膜及びその形成方法並びに自己組織化リソグラフィープロセス
JP7298428B2 (ja) パターン形成方法及びパターン化された基板
WO2022030316A1 (ja) レジストパターン形成方法及びレジスト下層膜形成用組成物
JP2006513455A (ja) シリコン含有レジスト組成物、およびパターニングされた材料を基板上に形成する方法(2層式リソグラフィ用の低シリコン・ガス放出レジスト)
JP4127937B2 (ja) レジスト組成物及びレジストパターンの形成方法
WO2010007874A1 (ja) 第1膜の改質方法及びこれに用いる酸転写樹脂膜形成用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894696

Country of ref document: EP

Kind code of ref document: A1