WO2019131670A1 - 封止組成物及び半導体装置 - Google Patents

封止組成物及び半導体装置 Download PDF

Info

Publication number
WO2019131670A1
WO2019131670A1 PCT/JP2018/047643 JP2018047643W WO2019131670A1 WO 2019131670 A1 WO2019131670 A1 WO 2019131670A1 JP 2018047643 W JP2018047643 W JP 2018047643W WO 2019131670 A1 WO2019131670 A1 WO 2019131670A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing composition
alumina
mass
inorganic filler
phosphine oxide
Prior art date
Application number
PCT/JP2018/047643
Other languages
English (en)
French (fr)
Inventor
拓也 児玉
格 山浦
健太 石橋
東哲 姜
実佳 田中
慧地 堀
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019562047A priority Critical patent/JP7255497B2/ja
Publication of WO2019131670A1 publication Critical patent/WO2019131670A1/ja
Priority to JP2023056632A priority patent/JP2023085411A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5397Phosphine oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a sealing composition and a semiconductor device.
  • Patent 4188634 gazette
  • alumina When alumina is used to increase the thermal conductivity of the sealing material, the fluidity may be deteriorated.
  • a semiconductor package adopting a method called a wire bonding structure in which a semiconductor element and a substrate are connected via a wire uses a resin composition for the semiconductor element, the substrate, and a wire electrically connecting these. It is formed by sealing with a certain sealing material. At this time, pressure is applied to the wire due to the flow of the sealing material, which may cause displacement of the wire (wire flow) or insufficient protection of the semiconductor element.
  • One aspect of the present invention is made in view of the above-mentioned conventional circumstances, and provides a sealing composition having excellent fluidity in the case of using alumina as an inorganic filler and a semiconductor device using the same. To aim.
  • the specific means for achieving the said subject are as follows.
  • the triaryl phosphine oxide comprises triphenyl phosphine oxide.
  • ⁇ 4> The sealing composition according to any one of ⁇ 1> to ⁇ 3>, wherein a content of the tertiary phosphine oxide is 25 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
  • ⁇ 5> The sealing composition according to any one of ⁇ 1> to ⁇ 4>, wherein the content of the alumina in the inorganic filler is 50% by volume or more.
  • ⁇ 6> A sealing composition containing an epoxy resin, a curing agent, an inorganic filler containing alumina, and an alumina fluidizing agent.
  • a semiconductor device comprising: a semiconductor element; and a cured product of the sealing composition according to any one of ⁇ 1> to ⁇ 6>, wherein the semiconductor element is sealed.
  • a sealing composition excellent in fluidity when using alumina as the inorganic filler and a semiconductor device using the same it is possible to provide a sealing composition excellent in fluidity when using alumina as the inorganic filler and a semiconductor device using the same.
  • the present invention is not limited to the following embodiments.
  • the constituent elements including element steps and the like
  • the constituent elements are not essential unless otherwise specified.
  • numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. .
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • particles corresponding to each component may contain a plurality of types. When there are a plurality of particles corresponding to each component in the composition, the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
  • the first sealing composition of the present disclosure contains an epoxy resin, a curing agent, an inorganic filler containing alumina, and a tertiary phosphine oxide.
  • the second sealing composition of the present disclosure contains an epoxy resin, a curing agent, an inorganic filler containing alumina, and an alumina fluidizing agent.
  • the first sealing composition and the second sealing composition of the present disclosure may be collectively referred to as the sealing composition of the present disclosure.
  • the sealing composition of the present disclosure is excellent in fluidity when alumina is used as the inorganic filler. Although the reason is not clear, it is guessed as follows.
  • the sealing composition of the present disclosure contains a tertiary phosphine oxide or an alumina fluidizing agent
  • heating of the sealing composition reduces the viscosity of the tertiary phosphine oxide or promotes fluidization of alumina. It is considered that the overall viscosity of the sealing composition is reduced.
  • the flowability of the sealing composition is improved even when alumina is used as the inorganic filler.
  • alumina when alumina is used as the inorganic filler in order to secure high thermal conductivity, contradictory characteristics such as low fluidization of the sealing composition and high elastic modulus of the cured product occur, and high heat is generated.
  • the sealing composition of the present disclosure by using alumina as the inorganic filler, high thermal conductivity is ensured, and low fluidization is possible. Furthermore, even if alumina is used as the inorganic filler, the elastic modulus of the cured product can be reduced.
  • the first sealing composition of the present disclosure contains an epoxy resin, a curing agent, an inorganic filler containing alumina, and a tertiary phosphine oxide, and may optionally contain other components.
  • the second sealing composition of the present disclosure contains an epoxy resin, a curing agent, an inorganic filler containing alumina, and an alumina fluidizing agent, and optionally contains other components. May be
  • the sealing composition contains an epoxy resin.
  • the type of epoxy resin is not particularly limited, and known epoxy resins can be used. Specifically, for example, it is selected from the group consisting of phenol compounds (for example, phenol, cresol, xylenol, resorcine, catechol, bisphenol A and bisphenol F) and naphthol compounds (for example, ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene) Epoxidized novolak resin obtained by condensation or cocondensation of at least one of the following compounds with an aldehyde compound (eg, formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde) under an acidic catalyst (eg, phenol Novolac type epoxy resin and ortho cresol novolac type epoxy resin); bisphenol (for example, bisphenol A, bisphenol AD, bisphenol F and bisphenol) At least one diglycidy
  • the purity of the epoxy resin is preferably high, and the amount of hydrolyzable chlorine is preferably small.
  • the amount of hydrolyzable chlorine is preferably 500 ppm or less on a mass basis.
  • the amount of hydrolyzable chlorine was determined by potentiometric titration after dissolving 1 g of the epoxy resin of the sample in 30 mL of dioxane, adding 5 mL of 1 mol / L (1 N) -KOH methanol solution and refluxing for 30 minutes It is a value.
  • the content of the epoxy resin in the sealing composition is preferably 2% by mass to 10% by mass, more preferably 3% by mass to 8% by mass, and 4% by mass to 6% by mass. Is more preferred.
  • the content of the epoxy resin in the sealing composition excluding the inorganic filler is preferably 30% by mass to 60% by mass, more preferably 35% by mass to 55% by mass, and 40% by mass to 50%. More preferably, it is mass%.
  • the sealing composition contains a curing agent.
  • the type of curing agent is not particularly limited, and known curing agents can be used. Specifically, for example, it is selected from the group consisting of phenolic compounds (eg, phenol, cresol, resorcine, catechol, bisphenol A and bisphenol F) and naphthol compounds (eg, ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene)
  • Novolak resin obtained by condensation or cocondensation of at least one type with an aldehyde compound (eg, formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde) under an acidic catalyst; phenol / aralkyl resin; and naphthol / aralkyl resin ;
  • the curing agent may be used alone or in combination of two or more.
  • the curing agent is blended such that the equivalent of the functional group of the curing agent (for example, phenolic hydroxyl group in the case of novolak resin) is 0.5 equivalent to 1.5 equivalents to 1 equivalent of epoxy group of the epoxy resin.
  • the curing agent is preferably blended so as to be 0.7 equivalents to 1.2 equivalents.
  • the sealing composition contains an inorganic filler comprising alumina.
  • the hygroscopicity of the sealing composition is reduced, and the strength in the cured state tends to be improved.
  • the inorganic filler may be used alone or in combination of two or more.
  • two or more types of inorganic fillers are used in combination, there may be mentioned, for example, a case where two or more types of inorganic fillers having different components, average particle diameter, shape and the like are used.
  • the shape of the inorganic filler is not particularly limited, and examples thereof include powder, sphere, and fiber. It is preferable that it is spherical shape from the point of the fluidity
  • the inorganic filler may contain alumina, and even if all of the inorganic fillers are alumina, alumina may be used in combination with other inorganic fillers. When the inorganic filler contains alumina, the thermal conductivity of the sealing composition tends to be improved.
  • Other inorganic fillers that can be used in combination with alumina include spherical silica, silica such as crystalline silica, zircon, magnesium oxide, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, boron nitride, beryllia, zirconia, etc. Can be mentioned. Further, examples of the inorganic filler having a flame retardant effect include aluminum hydroxide and zinc borate.
  • the content of alumina in the inorganic filler is preferably 50% by volume or more, more preferably 60% by volume or more, and 70% by volume or more It is further preferred that Further, the content of alumina in the inorganic filler may be 100% by volume or less, and preferably 99% by volume or less.
  • the content of the inorganic filler is preferably 70% by volume or more, 73% by volume, based on the entire sealing composition, from the viewpoints of hygroscopicity, reduction of linear expansion coefficient, strength improvement and solder heat resistance.
  • the above content is more preferably, 76% by volume or more.
  • the content of the inorganic filler may be 85% by volume or less.
  • the average particle diameter (volume average particle diameter) of the inorganic filler is preferably 1 ⁇ m to 30 ⁇ m, more preferably 3 ⁇ m to 20 ⁇ m, and still more preferably 5 ⁇ m to 15 ⁇ m.
  • the average particle size of the inorganic filler is the average particle size of alumina when alumina is used alone as the inorganic filler, and alumina and other inorganic fillers are used in combination as the inorganic filler.
  • the average particle size of the inorganic filler can be measured by the following method.
  • An inorganic filler to be measured is added to a solvent (pure water) in the range of 0.02% by mass to 0.08% by mass, and vibrated for 1 to 10 minutes with a 110 W bath ultrasonic cleaner, Disperse the filler. About 40 mL of the dispersion is injected into the measuring cell and measured at 25 ° C.
  • the measuring apparatus measures the particle size distribution based on volume using a laser diffraction / scattering type particle size distribution measuring apparatus (for example, LA920 (trade name) manufactured by Horiba, Ltd.).
  • the average particle size is determined as the particle size (D 50%) at which the accumulation from the small diameter side in the volume-based particle size distribution is 50%.
  • the refractive index of alumina is used.
  • the refractive index is the refractive index of alumina.
  • the first sealing composition of the present disclosure contains a tertiary phosphine oxide.
  • the tertiary phosphine oxide is not particularly limited, and aliphatic tertiary phosphine oxide, aromatic tertiary phosphine oxide and the like can be used.
  • the tertiary phosphine oxides may be used alone or in combination of two or more.
  • tertiary phosphine oxides include triphenyl phosphine oxide, diphenyl (p-tolyl) phosphine oxide, tris (alkylphenyl) phosphine oxide, tris (alkoxyphenyl) phosphine oxide, tris (alkylalkoxyphenyl) phosphine oxide, tris (Dialkylphenyl) phosphine oxide, tris (trialkylphenyl) phosphine oxide, tris (tetraalkylphenyl) phosphine oxide, tris (dialkoxyphenyl) phosphine oxide, tris (trialkoxyphenyl) phosphine oxide, tris (tetraalkoxyphenyl) phosphine Oxides, etc. triaryl phosphine oxides, trialkyl phosphine oxides, dialkyl aryl phosphites Oxides, alkyl diaryl
  • tertiary phosphine oxides preferably include triaryl phosphine oxides. Moreover, it is more preferable that triaryl phosphine oxide contains triphenyl phosphine oxide.
  • the proportion of triarylphosphine oxide in tertiary phosphine oxide is preferably 30% by mass to 100% by mass, more preferably 50% by mass to 100% by mass, and 70% by mass to 100% by mass. Is more preferred.
  • the proportion of triphenylphosphine oxide in triarylphosphine oxide is preferably 30% by mass to 100% by mass, more preferably 50% by mass to 100% by mass, and 70% by mass to 100% by mass. It is further preferred that
  • the content of the tertiary phosphine oxide is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 15 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
  • the content of the tertiary phosphine oxide may be 1 part by mass or more with respect to 100 parts by mass of the epoxy resin.
  • the second sealing composition of the present disclosure contains an alumina fluidizer.
  • the alumina fluidizing agent refers to a compound satisfying the following characteristics.
  • the first sealing composition is prepared by mixing an epoxy resin, a curing agent and alumina so that the content of alumina is 75% by volume, and the viscosity at 175 ° C. of the first sealing composition is evaluated by the flow characteristics evaluation apparatus. (Measured by Shimadzu Corporation, CFT-100D (trade name)). Then, 5 parts by mass of a predetermined compound is added to 100 parts by mass of the first sealing composition to prepare a second sealing composition, and the viscosity at 175 ° C.
  • the decrease rate of the viscosity of the second sealing composition to the viscosity of the first sealing composition (((viscosity of the first sealing composition-viscosity of the second sealing composition) / viscosity of the first sealing composition)
  • the predetermined compound is regarded as an alumina fluidizing agent when x 100 (%) is 10% or more.
  • the present inventors have found a method of evaluating a compound that can improve the flowability of a sealing composition using alumina as an inorganic filler. According to the above method, it is possible to easily find a compound (alumina fluidizing agent) that improves the flowability of the sealing composition when alumina is used as the inorganic filler.
  • the melting temperature of the alumina fluidizing agent is not particularly limited, and the melting temperature is equal to or lower than the sealing temperature from the viewpoint of becoming liquid at the sealing temperature at the time of sealing the semiconductor package using the sealing composition. Preferably it is 165 degrees C or less, It is more preferable that it is 160 degrees C or less.
  • the alumina fluidizing agent is preferably one that does not contain a functional group that accelerates the curing reaction of the epoxy resin from the viewpoint of storage stability of the sealing composition. As a functional group which promotes the curing reaction of an epoxy resin, a carboxy group, an amino group, a hydroxyl group etc. are mentioned.
  • the content of the alumina fluidizing agent is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 15 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
  • the content of the alumina fluidizing agent may be 1 part by mass or more with respect to 100 parts by mass of the epoxy resin.
  • the sealing composition may further contain a curing accelerator.
  • a hardening accelerator is not restrict
  • the content of the curing accelerator is preferably 0.1% by mass to 8% by mass with respect to the total amount of the epoxy resin and the curing agent.
  • the sealing composition may further contain an ion trapping agent.
  • the ion trap agent that can be used in the present disclosure is not particularly limited as long as it is a generally used ion trap agent in a sealant used for manufacturing a semiconductor device.
  • Examples of the ion trapping agent include compounds represented by the following general formula (II-1) or the following general formula (II-2).
  • Ion trap agents are commercially available.
  • DHT-4A Korean Chemical Industry Co., Ltd., trade name
  • IXE 500 Toagosei Co., Ltd., trade name
  • ion trap agents other than the above, hydrous oxides of elements selected from magnesium, aluminum, titanium, zirconium, antimony and the like can be mentioned.
  • the ion trap agent may be used alone or in combination of two or more.
  • the content of the ion trap agent is preferably at least 1 part by mass with respect to 100 parts by mass of the epoxy resin from the viewpoint of achieving sufficient moisture resistance reliability. . From the viewpoint of sufficiently exhibiting the effects of the other components, the content of the ion trap agent is preferably 15 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
  • the average particle size of the ion trap agent is preferably 0.1 ⁇ m to 3.0 ⁇ m, and the maximum particle size is preferably 10 ⁇ m or less.
  • the average particle size of the ion trapping agent can be measured in the same manner as in the case of the inorganic filler.
  • the sealing composition may further contain a coupling agent.
  • the type of coupling agent is not particularly limited, and known coupling agents can be used.
  • As a coupling agent a silane coupling agent and a titanium coupling agent are mentioned, for example.
  • the coupling agent may be used alone or in combination of two or more.
  • silane coupling agent for example, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane ⁇ -Glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ - [bis ( ⁇ -hydroxyethyl)] aminopropyltriethoxysilane, N - ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ - ( ⁇ -aminoethyl) aminopropyldimethoxymethylsilane, N- (trimethoxysilylpropyl)
  • titanium coupling agent for example, isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra ( 2,2-diallyloxymethyl-1-butyl) bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacrylic iso Stearoyl titanate, isopropyl tridodecyl benzene sulfonyl titanate, isopropyl isostearoyl titanate
  • the content of the coupling agent is preferably 3% by mass or less based on the whole of the sealing composition, and from the viewpoint of exerting the effect, 0
  • the content is preferably 1% by mass or more.
  • the sealing composition may further contain a release agent.
  • a mold release agent is not restrict
  • the mold release agent may be used alone or in combination of two or more.
  • the content of the release agent is preferably 10% by mass or less based on the total amount of the epoxy resin and the curing agent, and from the viewpoint of exerting the effect Is preferably 0.5% by mass or more.
  • the sealing composition may contain a colorant (eg, carbon black).
  • the sealing composition may also contain modifiers such as silicone and silicone rubber.
  • the colorant and the modifier may be used alone or in combination of two or more.
  • electroconductive particles such as carbon black
  • electroconductive particles are 1 mass% or less in content rate of particle
  • the content of the conductive particles is preferably 4% by mass or less based on the total amount of the epoxy resin and the curing agent.
  • the method for producing the sealing composition is not particularly limited, and can be carried out by a known method. For example, after a mixture of raw materials of a predetermined compounding amount is sufficiently mixed by a mixer or the like, it can be manufactured by kneading by a heat roll, an extruder or the like, and subjecting to processing such as cooling or crushing.
  • the state of the sealing composition is not particularly limited, and may be powder, solid, liquid or the like.
  • a semiconductor device of the present disclosure includes a semiconductor element and a cured product of the sealing composition of the present disclosure formed by sealing the semiconductor element.
  • the method for sealing the semiconductor element using the sealing composition is not particularly limited, and a known method can be applied.
  • transfer molding is generally used, but compression molding, injection molding, etc. may be used.
  • the semiconductor device of the present disclosure is suitable as an IC, a large scale integration (LSI) circuit, or the like.
  • LSI large scale integration
  • Examples 1 to 5 and Comparative Examples 1 to 3 After pre-mixing (dry blending) the materials of the formulations shown in Tables 1 and 2, the mixture is kneaded for about 15 minutes with a biaxial roll (roll surface temperature: about 80 ° C.), and is cooled and pulverized to obtain a powdery sealing composition Manufactured.
  • "-" indicates that the corresponding component is not included.
  • the sealing composition was heated at 175 ° C. for 10 minutes to obtain a cured product of 10 mm ⁇ 50 mm ⁇ 3 mm in size.
  • the elastic modulus of the obtained cured product was measured using a dynamic viscoelasticity measuring device ("RSA III" from TA instruments). The measurement was performed at a heating rate of 10 ° C./min from 30 ° C. to 300 ° C.
  • the elastic modulus (MPa) measured at 260 ° C. is shown in Table 3 as a high temperature elastic modulus.
  • the sealing compositions of Examples 1 to 5 containing alumina as an inorganic filler and containing a tertiary phosphine oxide contain alumina as an inorganic filler and contain a tertiary phosphine oxide. It turns out that it is excellent in fluidity compared with the closure composition of comparative example 1 which does not contain. Further, it is found that the sealing compositions of Examples 1 to 5 are superior in thermal conductivity to the sealing compositions of Comparative Examples 2 and 3 which do not contain alumina as an inorganic filler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

封止組成物は、エポキシ樹脂と、硬化剤と、アルミナを含む無機充填材と、3級ホスフィンオキシド又はアルミナ流動化剤と、を含有する。

Description

封止組成物及び半導体装置
 本発明は、封止組成物及び半導体装置に関する。
 近年、半導体パッケージの小型化及び高集積化に伴い、半導体パッケージ内部の発熱が懸念されている。発熱により、半導体パッケージを有する電気部品又は電子部品の性能低下が生じる恐れがある。そのため、半導体パッケージに使用される部材には、高い熱伝導性が求められている。例えば、半導体パッケージの封止材を高熱伝導化することが求められている。
 封止材を高熱伝導化する手法の一つとして、封止材に含まれる無機充填材として、シリカ及び高熱伝導性の無機充填材であるアルミナを用いる方法が挙げられる(例えば、特許文献1参照)。
特許第4188634号公報
 封止材を高熱伝導化するためにアルミナを用いると、流動性が悪化することがある。例えば、半導体素子と基板とをワイヤを介して接続するワイヤボンディング構造と呼ばれる方法を採用した半導体パッケージは、半導体素子と、基板と、これらを電気的に接続しているワイヤとを樹脂組成物である封止材で封止することにより形成される。その際、封止材の流動によりワイヤに圧力がかかり、ワイヤの位置ずれ(ワイヤ流れ)が生じたり、半導体素子の保護が充分にされないことがある。
 本発明の一形態は、上記従来の事情に鑑みてなされたものであり、無機充填材としてアルミナを用いた場合における流動性に優れる封止組成物及びそれを用いた半導体装置を提供することを目的とする。
 前記課題を達成するための具体的手段は以下の通りである。
  <1> エポキシ樹脂と、硬化剤と、アルミナを含む無機充填材と、3級ホスフィンオキシドと、を含有する封止組成物。
  <2> 前記3級ホスフィンオキシドが、トリアリールホスフィンオキシドを含む<1>に記載の封止組成物。
  <3> 前記トリアリールホスフィンオキシドが、トリフェニルホスフィンオキシドを含む<2>に記載の封止組成物。
  <4> 前記3級ホスフィンオキシドの含有量が、前記エポキシ樹脂100質量部に対して25質量部以下である<1>~<3>のいずれか1項に記載の封止組成物。
  <5> 前記無機充填材に占める前記アルミナの含有率が、50体積%以上である<1>~<4>のいずれか1項に記載の封止組成物。
  <6> エポキシ樹脂と、硬化剤と、アルミナを含む無機充填材と、アルミナ流動化剤と、を含有する封止組成物。
  <7> 半導体素子と、前記半導体素子を封止してなる<1>~<6>のいずれか1項に記載の封止組成物の硬化物と、を含む半導体装置。
 本発明の一形態によれば、無機充填材としてアルミナを用いた場合における流動性に優れる封止組成物及びそれを用いた半導体装置を提供することができる。
 以下、本発明の封止組成物及び半導体装置を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
<封止組成物>
 本開示の第一の封止組成物は、エポキシ樹脂と、硬化剤と、アルミナを含む無機充填材と、3級ホスフィンオキシドと、を含有する。
 また、本開示の第二の封止組成物は、エポキシ樹脂と、硬化剤と、アルミナを含む無機充填材と、アルミナ流動化剤と、を含有する。
 以下、本開示の第一の封止組成物及び第二の封止組成物を合わせて本開示の封止組成物と称することがある。
 本開示の封止組成物は、無機充填材としてアルミナを用いた場合における流動性に優れる。その理由は明確ではないが、以下のように推察される。
 本開示の封止組成物は3級ホスフィンオキシド又はアルミナ流動化剤を含有するため、封止組成物が加熱されることで3級ホスフィンオキシドの粘度が低下するか又はアルミナの流動化が促進され、封止組成物の全体としての粘度が低下すると考えられる。その結果、無機充填材としてアルミナを用いた場合においても封止組成物の流動性が向上すると推察される。
 また、従来の封止組成物では、高熱伝導性を担保するために無機充填材としてアルミナを用いると、封止組成物の低流動化及び硬化物の高弾性率化という背反特性が生じ、高熱伝導性の獲得と低流動性及び硬化物の低弾性率という特性を両立することが困難な場合があった。本開示の封止組成物によれば、無機充填材としてアルミナを用いることで高熱伝導性が担保され、且つ低流動化が可能となる。さらには、無機充填材としてアルミナを用いても硬化物の低弾性率化が可能となる。
 以下、封止組成物を構成する各成分について説明する。本開示の第一の封止組成物は、エポキシ樹脂と、硬化剤と、アルミナを含む無機充填材と、3級ホスフィンオキシドと、を含有し、必要に応じてその他の成分を含有してもよい。また、本開示の第二の封止組成物は、エポキシ樹脂と、硬化剤と、アルミナを含む無機充填材と、アルミナ流動化剤と、を含有し、必要に応じてその他の成分を含有してもよい。
-エポキシ樹脂-
 封止組成物は、エポキシ樹脂を含有する。エポキシ樹脂の種類は特に限定されず、公知のエポキシ樹脂を使用することができる。
 具体的には、例えば、フェノール化合物(例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA及びビスフェノールF)並びにナフトール化合物(例えば、α-ナフトール、β-ナフトール及びジヒドロキシナフタレン)からなる群より選択される少なくとも1種と、アルデヒド化合物(例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒド)と、を酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの(例えば、フェノールノボラック型エポキシ樹脂及びオルソクレゾールノボラック型エポキシ樹脂);ビスフェノール(例えば、ビスフェノールA、ビスフェノールAD、ビスフェノールF及びビスフェノールS)及びビフェノール(例えば、アルキル置換及び非置換のビフェノール)からなる群より選択される少なくとも1種のジグリシジルエーテル;フェノール・アラルキル樹脂のエポキシ化物;フェノール化合物とジシクロペンタジエン及びテルペン化合物からなる群より選択される少なくとも1種との付加物又は重付加物のエポキシ化物;多塩基酸(例えば、フタル酸及びダイマー酸)とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂;ポリアミン(例えば、ジアミノジフェニルメタン及びイソシアヌル酸)とエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂;オレフィン結合を過酸(例えば、過酢酸)で酸化して得られる線状脂肪族エポキシ樹脂;並びに脂環族エポキシ樹脂が挙げられる。エポキシ樹脂は1種類を単独で使用しても、2種類以上を併用してもよい。
 集積回路(Integrated Circuit、IC)等の素子上のアルミニウム配線又は銅配線の腐食防止の観点から、エポキシ樹脂の純度は高い方が好ましく、加水分解性塩素量は少ない方が好ましい。封止組成物の耐湿性の向上の観点からは、加水分解性塩素量は質量基準で500ppm以下であることが好ましい。
 ここで、加水分解性塩素量は、試料のエポキシ樹脂1gをジオキサン30mLに溶解し、1mol/L(1規定)-KOHメタノール溶液5mLを添加して30分間リフラックスした後、電位差滴定により求めた値である。
 封止組成物に占めるエポキシ樹脂の含有率は、2質量%~10質量%であることが好ましく、3質量%~8質量%であることがより好ましく、4質量%~6質量%であることがさらに好ましい。
 無機充填材を除く封止組成物に占めるエポキシ樹脂の含有率は、30質量%~60質量%であることが好ましく、35質量%~55質量%であることがより好ましく、40質量%~50質量%であることがさらに好ましい。
-硬化剤-
 封止組成物は、硬化剤を含有する。硬化剤の種類は特に限定されず、公知の硬化剤を使用することができる。
 具体的には、例えば、フェノール化合物(例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA及びビスフェノールF)及びナフトール化合物(例えば、α-ナフトール、β-ナフトール及びジヒドロキシナフタレン)からなる群より選択される少なくとも1種と、アルデヒド化合物(例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒド)と、を酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂;フェノール・アラルキル樹脂;並びにナフトール・アラルキル樹脂;が挙げられる。硬化剤は1種類を単独で使用しても、2種類以上を併用してもよい。
 硬化剤の官能基(例えば、ノボラック樹脂の場合にはフェノール性水酸基)の当量がエポキシ樹脂のエポキシ基1当量に対して0.5当量~1.5当量になるように、硬化剤が配合されることが好ましく、特に、0.7当量~1.2当量になるように硬化剤が配合されることが好ましい。
-無機充填材-
 封止組成物は、アルミナを含む無機充填材を含有する。封止組成物が無機充填材を含むことで、封止組成物の吸湿性が低減し、硬化状態での強度が向上する傾向にある。
 無機充填材は、1種類を単独で使用しても、2種類以上を併用してもよい。
無機充填材を2種類以上併用する場合としては、例えば、成分、平均粒子径、形状等が異なる無機充填材を2種類以上用いる場合が挙げられる。
 無機充填材の形状は特に制限されず、例えば、粉状、球状、繊維状等が挙げられる。封止組成物の成形時の流動性及び金型摩耗性の点からは、球状であることが好ましい。
 無機充填材はアルミナを含んでいればよく、無機充填材の全てがアルミナであってもアルミナとその他の無機充填材とが併用されていてもよい。無機充填材がアルミナを含むことで、封止組成物の熱伝導性が向上する傾向にある。
 アルミナと併用可能なその他の無機充填材としては、球状シリカ、結晶シリカ等のシリカ、ジルコン、酸化マグネシウム、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化ホウ素、ベリリア、ジルコニアなどが挙げられる。さらに、難燃効果のある無機充填材としては水酸化アルミニウム、硼酸亜鉛等が挙げられる。
 無機充填材としてアルミナとその他の無機充填材とが併用される場合、球形の形状である観点から、その他の無機充填材としてシリカを用いることが好ましい。
 無機充填材としてアルミナとシリカとが併用される場合、無機充填材に占めるアルミナの含有率は、50体積%以上であることが好ましく、60体積%以上であることがより好ましく、70体積%以上であることがさらに好ましい。また、無機充填材に占めるアルミナの含有率は、100体積%以下であってもよく、99体積%以下であることが好ましい。
 無機充填材の含有率としては、吸湿性、線膨張係数の低減、強度向上及びはんだ耐熱性の観点から、封止組成物の全体に対して70体積%以上であることが好ましく、73体積%以上であることがより好ましく、76体積%以上であることがさらに好ましい。無機充填材の含有率は、85体積%以下であってもよい。
 無機充填材の平均粒子径(体積平均粒子径)としては、1μm~30μmであることが好ましく、3μm~20μmであることがより好ましく、5μm~15μmであることがさらに好ましい。本開示において、無機充填材の平均粒子径は、無機充填材としてアルミナが単独で用いられている場合にはアルミナの平均粒子径を、無機充填材としてアルミナとその他の無機充填材とが併用されている場合には無機充填材全体としての平均粒子径をいう。
 無機充填材の平均粒子径は、以下の方法により測定することができる。
 溶媒(純水)に、測定対象の無機充填材を0.02質量%~0.08質量%の範囲内で添加し、110Wのバス式超音波洗浄機で1分~10分振動し、無機充填材を分散する。分散液の約40mL程度を測定セルに注入して25℃で測定する。測定装置は、レーザー回折/散乱式粒子径分布測定装置(例えば、株式会社堀場製作所、LA920(商品名))を用い、体積基準の粒度分布を測定する。平均粒子径は、体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(D50%)として求められる。なお、屈折率はアルミナの屈折率を用いる。無機充填材がアルミナとその他の無機充填材の混合物である場合においては、屈折率はアルミナの屈折率を用いるものとする。
-3級ホスフィンオキシド-
 本開示の第一の封止組成物は、3級ホスフィンオキシドを含有する。
 3級ホスフィンオキシドとしては特に限定されるものではなく、脂肪族系3級ホスフィンオキシド、芳香族系3級ホスフィンオキシド等を用いることができる。3級ホスフィンオキシドは、1種類を単独で使用しても、2種類以上を併用してもよい。
 3級ホスフィンオキシドの具体例としては、トリフェニルホスフィンオキシド、ジフェニル(p-トリル)ホスフィンオキシド、トリス(アルキルフェニル)ホスフィンオキシド、トリス(アルコキシフェニル)ホスフィンオキシド、トリス(アルキルアルコキシフェニル)ホスフィンオキシド、トリス(ジアルキルフェニル)ホスフィンオキシド、トリス(トリアルキルフェニル)ホスフィンオキシド、トリス(テトラアルキルフェニル)ホスフィンオキシド、トリス(ジアルコキシフェニル)ホスフィンオキシド、トリス(トリアルコキシフェニル)ホスフィンオキシド、トリス(テトラアルコキシフェニル)ホスフィンオキシド等のトリアリールホスフィンオキシド、トリアルキルホスフィンオキシド、ジアルキルアリールホスフィンオキシド、アルキルジアリールホスフィンオキシドなどが挙げられる。
 これらの中でも、3級ホスフィンオキシドは、トリアリールホスフィンオキシドを含むことが好ましい。また、トリアリールホスフィンオキシドは、トリフェニルホスフィンオキシドを含むことがより好ましい。
 3級ホスフィンオキシドに占めるトリアリールホスフィンオキシドの割合は、30質量%~100質量%であることが好ましく、50質量%~100質量%であることがより好ましく、70質量%~100質量%であることがさらに好ましい。
 また、トリアリールホスフィンオキシドに占めるトリフェニルホスフィンオキシドの割合は、30質量%~100質量%であることが好ましく、50質量%~100質量%であることがより好ましく、70質量%~100質量%であることがさらに好ましい。
 3級ホスフィンオキシドの含有量は、エポキシ樹脂100質量部に対して25質量部以下であることが好ましく、20質量部以下であることがより好ましく、15質量部以下であることがさらに好ましい。3級ホスフィンオキシドの含有量は、エポキシ樹脂100質量部に対して1質量部以上であってもよい。
-アルミナ流動化剤-
 本開示の第二の封止組成物は、アルミナ流動化剤を含有する。
 本開示において、アルミナ流動化剤とは、以下の特性を満たす化合物をいう。
 エポキシ樹脂と硬化剤とアルミナとをアルミナの含有率が75体積%となるように混合して第一封止組成物を調製し、第一封止組成物について175℃における粘度を流動特性評価装置(株式会社島津製作所、CFT-100D(商品名))により測定する。次いで、第一封止組成物100質量部に対して所定の化合物5質量部を添加して第二封止組成物を調製し、第二封止組成物について175℃における粘度を流動特性評価装置(株式会社島津製作所、CFT-100D(商品名))により測定する。第一封止組成物の粘度に対する第二封止組成物の粘度の低下率(((第一封止組成物の粘度-第二封止組成物の粘度)/第一封止組成物の粘度)×100(%))が10%以上である場合に、当該所定の化合物をアルミナ流動化剤とみなす。
 本発明者等は鋭意検討の結果、無機充填材としてアルミナを用いた封止組成物の流動性を向上させ得る化合物の評価方法を見出した。上記方法により、無機充填材としてアルミナを用いた場合の封止組成物の流動性を向上させる化合物(アルミナ流動化剤)を容易に見出すことが可能となる。
 アルミナ流動化剤の溶融温度は特に限定されるものではなく、封止組成物を用いて半導体パッケージを封止する際の封止温度において液状となる観点から、溶融温度は封止温度以下であることが好ましく、165℃以下であることがより好ましく、160℃以下であることがさらに好ましい。
 アルミナ流動化剤は、封止組成物の保存安定性の観点から、エポキシ樹脂の硬化反応を促進させる官能基を含まないものであることが好ましい。エポキシ樹脂の硬化反応を促進させる官能基としては、カルボキシ基、アミノ基、水酸基等が挙げられる。
 アルミナ流動化剤の含有量は、エポキシ樹脂100質量部に対して25質量部以下であることが好ましく、20質量部以下であることがより好ましく、15質量部以下であることがさらに好ましい。アルミナ流動化剤の含有量は、エポキシ樹脂100質量部に対して1質量部以上であってもよい。
(硬化促進剤)
 封止組成物は、硬化促進剤をさらに含有してもよい。硬化促進剤の種類は特に制限されず、公知の硬化促進剤を使用することができる。
 具体的には、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、1,5-ジアザ-ビシクロ[4.3.0]ノネン、5,6-ジブチルアミノ-1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7等のシクロアミジン化合物;シクロアミジン化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂などのπ結合をもつ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン化合物、3級アミン化合物の誘導体;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール化合物、イミダゾール化合物の誘導体;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート、N-メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩、テトラフェニルボロン塩の誘導体;トリフェニルホスホニウム-トリフェニルボラン、N-メチルモルホリンテトラフェニルホスホニウム-テトラフェニルボレート等のホスフィン化合物とテトラフェニルボロン塩との付加物などが挙げられる。硬化促進剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
 硬化促進剤の含有率は、エポキシ樹脂と硬化剤の合計量に対して、0.1質量%~8質量%であることが好ましい。
(イオントラップ剤)
 封止組成物は、イオントラップ剤をさらに含有してもよい。
 本開示において使用可能なイオントラップ剤は、半導体装置の製造用途に用いられる封止材において、一般的に使用されているイオントラップ剤であれば特に制限されるものではない。イオントラップ剤としては、例えば、下記一般式(II-1)又は下記一般式(II-2)で表される化合物が挙げられる。
Mg1-aAl(OH)(COa/2・uHO (II-1)
(一般式(II-1)中、aは0<a≦0.5であり、uは正数である。)
BiO(OH)(NO (II-2)
(一般式(II-2)中、bは0.9≦b≦1.1、cは0.6≦c≦0.8、dは0.2≦d≦0.4である。)
 イオントラップ剤は、市販品として入手可能である。一般式(II-1)で表される化合物としては、例えば、「DHT-4A」(協和化学工業株式会社、商品名)が市販品として入手可能である。また、一般式(II-2)で表される化合物としては、例えば、「IXE500」(東亞合成株式会社、商品名)が市販品として入手可能である。
 また、上記以外のイオントラップ剤として、マグネシウム、アルミニウム、チタン、ジルコニウム、アンチモン等から選ばれる元素の含水酸化物などが挙げられる。
 イオントラップ剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
 封止組成物がイオントラップ剤を含有する場合、イオントラップ剤の含有量は、充分な耐湿信頼性を実現する観点からは、エポキシ樹脂100質量部に対して1質量部以上であることが好ましい。他の成分の効果を充分に発揮する観点からは、イオントラップ剤の含有量は、エポキシ樹脂100質量部に対して15質量部以下であることが好ましい。
 また、イオントラップ剤の平均粒子径は0.1μm~3.0μmであることが好ましく、最大粒子径は10μm以下であることが好ましい。イオントラップ剤の平均粒子径は、無機充填材の場合と同様にして測定することができる。
(カップリング剤)
 封止組成物は、カップリング剤をさらに含有してもよい。カップリング剤の種類は、特に制限されず、公知のカップリング剤を使用することができる。カップリング剤としては、例えば、シランカップリング剤及びチタンカップリング剤が挙げられる。カップリング剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
 シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、γ-アニリノプロピルトリメトキシシラン(N-フェニル-3-アミノプロピルトリメトキシシラン)、ビニルトリメトキシシラン及びγ-メルカプトプロピルメチルジメトキシシランが挙げられる。
 チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート及びテトライソプロピルビス(ジオクチルホスファイト)チタネートが挙げられる。
 封止組成物がカップリング剤を含有する場合、カップリング剤の含有率は、封止組成物の全体に対して3質量%以下であることが好ましく、その効果を発揮させる観点からは、0.1質量%以上であることが好ましい。
(離型剤)
 封止組成物は、離型剤をさらに含有してもよい。離型剤の種類は特に制限されず、公知の離型剤を使用することができる。具体的には、例えば、高級脂肪酸、高級脂肪酸エステル、カルナバワックス及びポリエチレン系ワックスが挙げられる。離型剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
 封止組成物が離型剤を含有する場合、離型剤の含有率は、エポキシ樹脂と硬化剤の合計量に対して、10質量%以下であることが好ましく、その効果を発揮させる観点からは、0.5質量%以上であることが好ましい。
(着色剤及び改質剤)
 封止組成物は、着色剤(例えば、カーボンブラック)を含有してもよい。また、封止組成物は、改質剤(例えば、シリコーン及びシリコーンゴム)を含有してもよい。着色剤及び改質剤は、それぞれ、1種類を単独で使用しても、2種類以上を併用してもよい。
 着色剤としてカーボンブラック等の導電性粒子を用いる場合、導電性粒子は、粒子径10μm以上の粒子の含有率が1質量%以下であることが好ましい。
 封止組成物が導電性粒子を含有する場合、導電性粒子の含有率は、エポキシ樹脂と硬化剤の合計量に対して4質量%以下であることが好ましい。
<封止組成物の作製方法>
 封止組成物の作製方法は特に制限されず、公知の方法により行うことができる。例えば、所定の配合量の原材料の混合物をミキサー等によって充分混合した後、熱ロール、押出機等によって混練し、冷却、粉砕等の処理を経ることによって作製することができる。封止組成物の状態は特に制限されず、粉末状、固体状、液体状等であってよい。
<半導体装置>
 本開示の半導体装置は、半導体素子と、前記半導体素子を封止してなる本開示の封止組成物の硬化物と、を含む。
 封止組成物を用いて半導体素子を封止する方法は特に限定されず、公知の方法を適用することが可能である。例えば、トランスファーモールド法が一般的であるが、コンプレッションモールド法、インジェクション成形法等を用いてもよい。
 本開示の半導体装置は、IC、LSI(Large-Scale Integration、大規模集積回路)等として好適である。
 以下に本発明の実施例について説明するが、本発明はこれに限定されるものではない。また、表中の数値は特に断りのない限り「質量部」を意味する。
(実施例1~5及び比較例1~3)
 表1及び表2に示す配合の材料を予備混合(ドライブレンド)した後、二軸ロール(ロール表面温度:約80℃)で約15分間混練し、冷却粉砕して粉末状の封止組成物を製造した。表1及び表2において、「-」は該当する成分を含まないことを表す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
-エポキシ樹脂-
・エポキシ樹脂1:ビフェニル型エポキシ樹脂、エポキシ当量:192g/eq
・エポキシ樹脂2:ビスフェノール型結晶性エポキシ樹脂、エポキシ当量:192g/eq
・エポキシ樹脂3:ビスフェノールF型エポキシ樹脂、エポキシ当量:158g/eq
-硬化剤-
・硬化剤1:多官能フェノール樹脂、水酸基当量が104g/eqのトリフェニルメタン型フェノール樹脂
-硬化促進剤-
・リン系硬化促進剤
-カップリング剤-
・カップリング剤:N-フェニル-3-アミノプロピルトリメトキシシラン(シランカップリング剤)
-離型剤-
・モンタン酸エステル
-着色剤-
・カーボンブラック
-イオントラップ剤-
・ハイドロタルサイト系イオントラップ剤
-改質剤-
・改質剤1:シリコーン(エポキシ変性シリコーン樹脂)
-3級ホスフィンオキシド-
・3級ホスフィンオキシド:トリフェニルホスフィンオキシド
-無機充填材-
・アルミナ1:体積平均粒子径が11.7μm
・アルミナ2:体積平均粒子径が13.5μm
・アルミナ3:体積平均粒子径が0.6μm
・シリカ1:体積平均粒子径が21.7μm
・シリカ2:体積平均粒子径が0.1μm
・シリカ3:体積平均粒子径が14.5μm
・シリカ4:体積平均粒子径が0.6μm
<熱伝導率の評価>
 上記で得られた封止組成物を用いて、圧縮成形機により、金型温度175℃~180℃、成形圧力7MPa、硬化時間150秒の条件で半導体素子を封止して熱伝導率評価用の試験片を作製した。次いで、試験片の熱伝導率をキセノンフラッシュ(Xe-flash)法により測定した。結果を表3に示す。
<流動性>
(スパイラルフロー(SF)の評価)
 EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、調製した封止組成物をトランスファー成形機により、金型温度180℃、成形圧力22.5MPa、硬化時間300秒間の条件で成形して流動距離を求めた。結果を表3に示す。
(ディスクフロー(DF)の評価)
 200mm(W)×200mm(D)×25mm(H)の上型と200mm(W)×200mm(D)×15mm(H)の下型を有する円板フロー測定用平板金型を用いて、上皿天秤にて秤量した封止組成物5gを、180℃に加熱した下型の中心部にのせ、5秒後に、180℃に加熱した上型を閉じて、荷重78N、硬化時間90秒の条件で圧縮成形し、ノギスで成形品の長径(mm)及び短径(mm)を測定して、その平均値(mm)をディスクフローとした。結果を表3に示す。
<高温弾性率>
 封止組成物を175℃で10分加熱して、10mm×50mm×3mmの大きさの硬化物を得た。得られた硬化物の弾性率を、動的粘弾性測定装置(TA instruments社の「RSAIII」)を用いて測定した。測定は、30℃~300℃まで10℃/分の昇温速度で行った。260℃で測定した弾性率(MPa)を高温弾性率として表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の評価結果から明らかなように、無機充填材としてアルミナを含み、3級ホスフィンオキシドを含む実施例1~5の封止組成物は、無機充填材としてアルミナを含み、3級ホスフィンオキシドを含まない比較例1の封止組成物に比較して、流動性に優れることが分かる。また、実施例1~5の封止組成物は、無機充填材としてアルミナを含まない比較例2及び3の封止組成物に比較して、熱伝導性に優れることが分かる。
 2017年12月28日に出願された日本国特許出願2017-254884号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (7)

  1.  エポキシ樹脂と、硬化剤と、アルミナを含む無機充填材と、3級ホスフィンオキシドと、を含有する封止組成物。
  2.  前記3級ホスフィンオキシドが、トリアリールホスフィンオキシドを含む請求項1に記載の封止組成物。
  3.  前記トリアリールホスフィンオキシドが、トリフェニルホスフィンオキシドを含む請求項2に記載の封止組成物。
  4.  前記3級ホスフィンオキシドの含有量が、前記エポキシ樹脂100質量部に対して25質量部以下である請求項1~請求項3のいずれか1項に記載の封止組成物。
  5.  前記無機充填材に占める前記アルミナの含有率が、50体積%以上である請求項1~請求項4のいずれか1項に記載の封止組成物。
  6.  エポキシ樹脂と、硬化剤と、アルミナを含む無機充填材と、アルミナ流動化剤と、を含有する封止組成物。
  7.  半導体素子と、前記半導体素子を封止してなる請求項1~請求項6のいずれか1項に記載の封止組成物の硬化物と、を含む半導体装置。
PCT/JP2018/047643 2017-12-28 2018-12-25 封止組成物及び半導体装置 WO2019131670A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019562047A JP7255497B2 (ja) 2017-12-28 2018-12-25 封止組成物及び半導体装置
JP2023056632A JP2023085411A (ja) 2017-12-28 2023-03-30 封止組成物及び半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-254884 2017-12-28
JP2017254884 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131670A1 true WO2019131670A1 (ja) 2019-07-04

Family

ID=67067436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047643 WO2019131670A1 (ja) 2017-12-28 2018-12-25 封止組成物及び半導体装置

Country Status (3)

Country Link
JP (2) JP7255497B2 (ja)
TW (1) TW201934651A (ja)
WO (1) WO2019131670A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418445A (ja) * 1990-05-10 1992-01-22 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及びその硬化物
JP2003506860A (ja) * 1999-07-30 2003-02-18 スリーエム イノベイティブ プロパティズ カンパニー ラミネート化構造体を製造する方法
JP2004331677A (ja) * 2003-04-30 2004-11-25 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2005146246A (ja) * 2003-10-21 2005-06-09 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2006160855A (ja) * 2004-12-06 2006-06-22 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2007039652A (ja) * 2005-06-27 2007-02-15 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2008045086A (ja) * 2006-08-21 2008-02-28 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2009242572A (ja) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd エポキシ樹脂組成物および成形物
JP2012224758A (ja) * 2011-04-20 2012-11-15 Panasonic Corp エポキシ樹脂組成物及び半導体装置
WO2013146478A1 (ja) * 2012-03-27 2013-10-03 Dic株式会社 エポキシ樹脂、エポキシ樹脂の製造方法、エポキシ樹脂組成物、その硬化物、及び放熱樹脂材料
JP2014185276A (ja) * 2013-03-25 2014-10-02 Dic Corp フェノール性水酸基含有樹脂、フェノール性水酸基含有樹脂の製造方法、硬化性樹脂組成物、その硬化物、放熱樹脂材料、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
CN104829809A (zh) * 2014-02-11 2015-08-12 王祖文 一种高分子发泡材料
CN106496957A (zh) * 2016-10-28 2017-03-15 山东高洁环保科技有限公司 一种丙烯酸环氧材料的制备

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418445A (ja) * 1990-05-10 1992-01-22 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及びその硬化物
JP2003506860A (ja) * 1999-07-30 2003-02-18 スリーエム イノベイティブ プロパティズ カンパニー ラミネート化構造体を製造する方法
JP2004331677A (ja) * 2003-04-30 2004-11-25 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2005146246A (ja) * 2003-10-21 2005-06-09 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2006160855A (ja) * 2004-12-06 2006-06-22 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2007039652A (ja) * 2005-06-27 2007-02-15 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2008045086A (ja) * 2006-08-21 2008-02-28 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2009242572A (ja) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd エポキシ樹脂組成物および成形物
JP2012224758A (ja) * 2011-04-20 2012-11-15 Panasonic Corp エポキシ樹脂組成物及び半導体装置
WO2013146478A1 (ja) * 2012-03-27 2013-10-03 Dic株式会社 エポキシ樹脂、エポキシ樹脂の製造方法、エポキシ樹脂組成物、その硬化物、及び放熱樹脂材料
JP2014185276A (ja) * 2013-03-25 2014-10-02 Dic Corp フェノール性水酸基含有樹脂、フェノール性水酸基含有樹脂の製造方法、硬化性樹脂組成物、その硬化物、放熱樹脂材料、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
CN104829809A (zh) * 2014-02-11 2015-08-12 王祖文 一种高分子发泡材料
CN106496957A (zh) * 2016-10-28 2017-03-15 山东高洁环保科技有限公司 一种丙烯酸环氧材料的制备

Also Published As

Publication number Publication date
JP7255497B2 (ja) 2023-04-11
JP2023085411A (ja) 2023-06-20
TW201934651A (zh) 2019-09-01
JPWO2019131670A1 (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
JP2019151685A (ja) トランスファーコンプレッションモールド法用半導体封止用樹脂組成物及び半導体装置
JP2018141052A (ja) 樹脂組成物および樹脂封止型半導体装置
WO2019131097A1 (ja) ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置
JP2019044006A (ja) 半導体封止用樹脂組成物及び半導体装置
JP2023067951A (ja) 封止組成物及び半導体装置
JP7392659B2 (ja) 封止組成物及び半導体装置
JP7263765B2 (ja) 封止組成物及び半導体装置
JP7255497B2 (ja) 封止組成物及び半導体装置
JP2019001841A (ja) エポキシ樹脂組成物及び該組成物の硬化物を備える半導体装置
KR20220062006A (ko) 압축 성형용 밀봉재 및 전자 부품 장치
JP2020139042A (ja) 封止組成物及び半導体装置
KR102668756B1 (ko) 밀봉 조성물 및 그의 제조 방법 그리고 반도체 장치
JP7415950B2 (ja) 封止組成物及び半導体装置
WO2019035430A1 (ja) 封止用樹脂組成物、半導体装置及び半導体装置の製造方法
TWI835960B (zh) 密封組成物及半導體裝置
WO2019131671A1 (ja) 封止組成物及びその製造方法並びに半導体装置
JP7238789B2 (ja) 封止組成物及び半導体装置
JP2022049480A (ja) 封止組成物及び半導体装置
JP2024055627A (ja) 成形用樹脂組成物及び電子部品装置
WO2020175669A1 (ja) 封止組成物及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897002

Country of ref document: EP

Kind code of ref document: A1