WO2019131671A1 - 封止組成物及びその製造方法並びに半導体装置 - Google Patents

封止組成物及びその製造方法並びに半導体装置 Download PDF

Info

Publication number
WO2019131671A1
WO2019131671A1 PCT/JP2018/047644 JP2018047644W WO2019131671A1 WO 2019131671 A1 WO2019131671 A1 WO 2019131671A1 JP 2018047644 W JP2018047644 W JP 2018047644W WO 2019131671 A1 WO2019131671 A1 WO 2019131671A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
sealing composition
epoxy resin
mass
alumina
Prior art date
Application number
PCT/JP2018/047644
Other languages
English (en)
French (fr)
Inventor
実佳 田中
格 山浦
東哲 姜
健太 石橋
拓也 児玉
慧地 堀
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201880083974.7A priority Critical patent/CN111601849A/zh
Priority to JP2019562048A priority patent/JPWO2019131671A1/ja
Priority to KR1020207018216A priority patent/KR102668756B1/ko
Publication of WO2019131671A1 publication Critical patent/WO2019131671A1/ja
Priority to JP2023205597A priority patent/JP2024019300A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Definitions

  • the present invention relates to a sealing composition, a method of manufacturing the same, and a semiconductor device.
  • a semiconductor encapsulation comprising an inorganic filler containing (A) epoxy resin, (B) curing agent, and (D) spherical alumina and spherical silica as essential components as an example of a sealing material using alumina as the inorganic filler
  • It is an epoxy resin composition for housing Comprising: The 1st spherical alumina whose (d1) average particle diameter is 40 micrometers-70 micrometers, and the 2nd spherical alumina whose (d 2) average particle diameters are 10 micrometers-15 micrometers And the first spherical silica having (d3) an average particle diameter of 4 ⁇ m to 8 ⁇ m, and (d4) the second spherical silica having an average particle diameter of 0.05 ⁇ m to 1.0 ⁇ m.
  • An epoxy resin composition for semiconductor encapsulation which is characterized in that the amount is 4 or less and the amount of inorganic filler is 85% by mass to 95% by mass in the total resin composition (see, for example, Patent Document 1). .
  • the specific means for achieving the said subject are as follows.
  • ⁇ 2> The sealing composition according to ⁇ 1>, wherein the volume average particle diameter of the inorganic filler is 4 ⁇ m to 100 ⁇ m.
  • a sealing composition which is excellent in curability, flowability and moldability and which is excellent in thermal conductivity when made into a cured product, a method of manufacturing the same, and a semiconductor device using the sealing composition.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • particles corresponding to each component may contain a plurality of types. When there are a plurality of particles corresponding to each component in the composition, the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
  • the sealing composition of the present disclosure contains an epoxy resin, a curing agent, and an inorganic filler having a porosity of 18% by volume or less.
  • the porosity of the inorganic filler is a value representing the ratio of the void to the bulk volume of the inorganic filler ((volume of void / bulk volume of inorganic filler) ⁇ 100 (%)).
  • the volume of the inorganic filler contained in the sealing composition becomes smaller, the volume of the inorganic filler can be determined from the volume of the sealing composition even if the content of the inorganic filler contained in the sealing composition is the same.
  • the value obtained by subtracting becomes larger.
  • this value may be referred to as "the amount of surplus resin".
  • the present inventors pay attention to the amount of excess resin in the sealing composition, and the influence of the amount of excess resin on the curability, flowability and moldability of the sealing composition and the thermal conductivity when it is a cured product
  • the amount of excess resin increases (that is, the porosity of the inorganic filler decreases), and the curability, flowability, moldability, and thermal conductivity of a cured product of the sealing composition
  • the present invention has been completed by finding improvement.
  • the reason why the curing property, flowability, moldability and thermal conductivity of the cured product of the sealing composition improve as the amount of excess resin increases is not clear, but the amount of excess resin increases. It is considered that the viscosity of the sealing composition is reduced to improve the flowability.
  • the dispersibility of the sealing composition at the time of kneading is improved by the increase of the amount of the excess resin, which contributes to the improvement of the curability, the moldability and the thermal conductivity of the cured product. Be done.
  • the sealing composition of the present disclosure contains an epoxy resin, a curing agent, and an inorganic filler, and may contain other components as needed.
  • the sealing composition contains an epoxy resin.
  • the type of epoxy resin is not particularly limited, and known epoxy resins can be used. Specifically, for example, it is selected from the group consisting of phenol compounds (for example, phenol, cresol, xylenol, resorcine, catechol, bisphenol A and bisphenol F) and naphthol compounds (for example, ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene) Epoxidized novolak resins obtained by condensation or cocondensation of at least one of the compounds listed above with an aldehyde compound (eg, formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde) under an acidic catalyst (eg, phenol Novolac type epoxy resin and ortho cresol novolac type epoxy resin); bisphenol (for example, bisphenol A, bisphenol AD, bisphenol F and bisphenol) At least one digly
  • the purity of the epoxy resin is preferably high, and the amount of hydrolyzable chlorine is preferably small.
  • the amount of hydrolyzable chlorine is preferably 500 ppm or less on a mass basis.
  • the amount of hydrolyzable chlorine is a value determined by potentiometric titration after dissolving 1 g of the epoxy resin as a sample in 30 mL of dioxane, adding 5 mL of 1N-KOH methanol solution and refluxing for 30 minutes.
  • the content of the epoxy resin in the sealing composition is preferably 2.5% by mass to 6% by mass, more preferably 3.5% by mass to 5.5% by mass, and 3.5% by mass. It is more preferable that the content is in the range of% to 5.0 mass%.
  • the content of the epoxy resin in the sealing composition excluding the inorganic filler is preferably 40% by mass to 70% by mass, more preferably 45% by mass to 64% by mass, and 48% by mass to 55% by mass. More preferably, it is mass%.
  • the sealing composition contains a curing agent.
  • the type of curing agent is not particularly limited, and known curing agents can be used. Specifically, for example, it is selected from the group consisting of phenol compounds (eg, phenol, cresol, resorcine, catechol, bisphenol A and bisphenol F) and naphthol compounds (eg, ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene)
  • Novolak resin obtained by condensation or cocondensation of at least one type and an aldehyde compound (eg, formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde) under an acidic catalyst; phenol / aralkyl resin; biphenyl / aralkyl resin; And naphthol / aralkyl resins.
  • the curing agent may be used alone or in combination of two or more.
  • the sealing composition comprises an inorganic filler.
  • the inorganic filler By including the inorganic filler, the hygroscopicity of the sealing composition is reduced, and the strength in the cured state tends to be improved.
  • the inorganic filler may be used alone or in combination of two or more.
  • two or more types of inorganic fillers are used in combination, there may be mentioned, for example, a case where two or more types of inorganic fillers having different components, average particle diameter, shape and the like are used.
  • the shape of the inorganic filler is not particularly limited, and examples thereof include powder, sphere, and fiber. It is preferable that it is spherical shape from the point of the fluidity
  • the porosity of the inorganic filler is 18 volume% or less, preferably 16 volume% or less, more preferably 15 volume% or less, and still more preferably 14 volume% or less.
  • the porosity of the inorganic filler may be 7% by volume or more.
  • the porosity of the inorganic filler means the porosity of one type of inorganic filler, and in the case of two or more types of inorganic fillers, the porosity of the inorganic filler Means a porosity for a mixture of two or more inorganic fillers.
  • the porosity of an inorganic filler says the value measured by the following method.
  • the sealing composition is placed in a crucible and left at 800 ° C. for 4 hours to incinerate.
  • the particle size distribution of the obtained ash content is measured by applying the refractive index of alumina using a laser diffraction / scattering particle size distribution measuring apparatus (for example, LA920, HORIBA, Ltd.).
  • the void ratio ⁇ is calculated from the particle size distribution using the following equation of Ouchiyama.
  • the details of Ouchiyama's formula are described in the following documents. N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam. , 19, 338 (1980) N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam. , 20, 66 (1981) N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam. , 23, 490 (1984)
  • the inorganic filler preferably contains at least one of alumina and silica, and more preferably alumina from the viewpoint of high thermal conductivity. Even if all of the inorganic fillers are alumina, alumina and other inorganic fillers may be used in combination. When the inorganic filler contains alumina, the thermal conductivity of the sealing composition tends to be improved. Spherical silica, crystalline silica, etc. are mentioned as a silica.
  • inorganic fillers other than silica which can be used in combination with alumina include zircon, magnesium oxide, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, boron nitride, aluminum nitride, beryllia, zirconia and the like.
  • examples of the inorganic filler having a flame retardant effect include aluminum hydroxide and zinc borate.
  • the content of alumina in the inorganic filler is preferably 50% by volume or more, more preferably 70% by volume or more, and 85% by volume or more It is further preferred that the content of alumina in the inorganic filler may be 99% by volume or less.
  • the content of the inorganic filler is preferably 60% by volume or more, and 70% by volume, based on the entire sealing composition, from the viewpoints of hygroscopicity, reduction of linear expansion coefficient, strength improvement, and solder heat resistance.
  • the above content is more preferably 75% by volume or more.
  • the content of the inorganic filler may be 95% by volume or less.
  • the average particle size of the inorganic filler is preferably 4 ⁇ m to 100 ⁇ m, more preferably 7 ⁇ m to 70 ⁇ m, and still more preferably 7 ⁇ m to 40 ⁇ m from the viewpoint of high thermal conductivity.
  • the average particle size of the inorganic filler is the average particle size of alumina when alumina is used alone as the inorganic filler, and alumina and other inorganic fillers are used in combination as the inorganic filler. Mean the average particle size of the inorganic filler as a whole.
  • the thermal conductivity of the cured product of the sealing composition tends to be higher as the average particle size of the inorganic filler is larger.
  • the average particle size of the inorganic filler can be measured by the following method.
  • the inorganic filler to be measured is added to the solvent (pure water) in the range of 1% by mass to 5% by mass together with 1% by mass to 8% by mass of the surfactant, and 30 seconds to 5 seconds by a 110 W ultrasonic cleaner. Vibrate for a minute to disperse the inorganic filler. About 3 mL of the dispersion is injected into the measuring cell and measured at 25 ° C.
  • the measuring apparatus measures the particle size distribution based on volume using a laser diffraction / scattering type particle size distribution measuring apparatus (for example, LA920, manufactured by Horiba, Ltd.). The average particle size is determined as the particle size (D 50%) at which the accumulation from the small diameter side in the volume-based particle size distribution is 50%.
  • the refractive index of alumina is used. When the inorganic filler is a mixture of alumina and another inorganic filler, the refractive index is the refractive index of alumina.
  • the specific surface area of the inorganic filler is preferably from 0.7m 2 /g ⁇ 4.0m 2 / g, 0.9m 2 /g ⁇ 3.0m 2 / g more preferably, still more preferably 1.0m 2 /g ⁇ 2.5m 2 / g.
  • the flowability of the sealing composition tends to increase as the specific surface area of the inorganic filler decreases.
  • the specific surface area of the inorganic filler is, for example, when the alumina alone is used as the inorganic filler, the specific surface area of the alumina is used, and alumina and other inorganic fillers are used in combination as the inorganic filler.
  • the specific surface area (BET specific surface area) of the inorganic filler can be measured from the nitrogen adsorption capacity according to JIS Z 8830: 2013.
  • QUANTACHROME AUTOSORB-1 (trade name) can be used.
  • pretreatment for removing water by heating first, since it is considered that the water adsorbed in the sample surface and structure affects the gas adsorption capacity. .
  • the measurement cell into which 0.05 g of the measurement sample was charged was depressurized to 10 Pa or less with a vacuum pump and then heated at 110 ° C.
  • the evaluation temperature is set to 77 K, and the evaluation pressure range is measured as a relative pressure (equilibrium pressure to saturated vapor pressure) less than 1.
  • the sealing composition may further contain a curing accelerator.
  • a hardening accelerator is not restrict
  • the content of the curing accelerator is preferably 0.1% by mass to 8% by mass with respect to the total amount of the epoxy resin and the curing agent.
  • the sealing composition may further contain an ion trapping agent.
  • the ion trap agent that can be used in the present disclosure is not particularly limited as long as it is a generally used ion trap agent in a sealant used for manufacturing a semiconductor device.
  • Examples of the ion trapping agent include compounds represented by the following general formula (II-1) or the following general formula (II-2).
  • Ion trap agents are commercially available.
  • DHT-4A Korean Chemical Industry Co., Ltd., trade name
  • IXE 500 Toagosei Co., Ltd., trade name
  • ion trap agents other than the above, hydrous oxides of elements selected from magnesium, aluminum, titanium, zirconium, antimony and the like can be mentioned.
  • the ion trap agent may be used alone or in combination of two or more.
  • the average particle size of the ion trap agent is preferably 0.1 ⁇ m to 3.0 ⁇ m, and the maximum particle size is preferably 10 ⁇ m or less.
  • the average particle size of the ion trapping agent can be measured in the same manner as in the case of the inorganic filler.
  • the sealing composition may further contain a coupling agent.
  • the type of coupling agent is not particularly limited, and known coupling agents can be used.
  • As a coupling agent a silane coupling agent and a titanium coupling agent are mentioned, for example.
  • the coupling agent may be used alone or in combination of two or more.
  • silane coupling agent for example, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane ⁇ -Glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ - [bis ( ⁇ -hydroxyethyl)] aminopropyltriethoxysilane, N - ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ - ( ⁇ -aminoethyl) aminopropyldimethoxymethylsilane, N- (trimethoxysilylpropyl)
  • titanium coupling agent for example, isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra ( 2,2-diallyloxymethyl-1-butyl) bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacrylic iso Stearoyl titanate, isopropyl tridodecyl benzene sulfonyl titanate, isopropyl isostearoyl titanate
  • the content of the coupling agent is preferably 3% by mass or less based on the whole of the sealing composition, and from the viewpoint of exerting the effect, 0
  • the content is preferably 1% by mass or more.
  • the sealing composition may further contain a release agent.
  • a mold release agent is not restrict
  • the mold release agent may be used alone or in combination of two or more.
  • the content of the release agent is preferably 10% by mass or less based on the total amount of the epoxy resin and the curing agent, and from the viewpoint of exerting the effect Is preferably 0.5% by mass or more.
  • the sealing composition may contain a colorant (eg, carbon black).
  • the sealing composition may also contain modifiers such as silicone and silicone rubber.
  • the colorant and the modifier may be used alone or in combination of two or more.
  • electroconductive particles such as carbon black
  • electroconductive particles are 1 mass% or less in content rate of particle
  • the content of the conductive particles is preferably 3% by mass or less based on the total amount of the epoxy resin and the curing agent.
  • the inorganic filler whose composition is determined to have a predetermined porosity, the epoxy resin, the curing agent, and other components used as needed are sufficiently mixed by a mixer or the like, and then heat is applied.
  • a sealing composition can be manufactured by knead
  • the state of the sealing composition is not particularly limited, and may be powder, solid, liquid or the like.
  • a semiconductor device of the present disclosure includes a semiconductor element and a cured product of the sealing composition of the present disclosure formed by sealing the semiconductor element.
  • the method for sealing the semiconductor element using the sealing composition is not particularly limited, and a known method can be applied.
  • transfer molding is generally used, but compression molding, injection molding, etc. may be used.
  • the semiconductor device of the present disclosure is suitable as an IC, a large scale integration (LSI) circuit, or the like.
  • LSI large scale integration
  • D1 Average particle diameter (D50, particle diameter corresponding to 50% of volume accumulation from the small diameter side) 10.4 ⁇ m and alumina surface specific surface area 1.5 m 2 / g D2: Average particle diameter 1.
  • Alumina filler of 8.0 m 2 / g ⁇ D5 ⁇ ⁇ ⁇ silica filler of a specific surface area of 200 m 2 / g ⁇ D 6 ⁇ ⁇ ⁇ an average particle diameter of 11.7 ⁇ m and an alumina filler of a specific surface area of 2.2 m 2 / g / silica filler 9/1 (mass ratio) mixture
  • ⁇ Curable> The curability was evaluated based on the gel time measured as follows using a gelation tester. Place 0.5 g of the sealing composition obtained above on a hot plate heated to 175 ° C., and use a jig at a rotation speed of 20 rotations / minute to 25 rotations / minute to make a sample 2.0 cm to 2 Spread evenly in a circle of 5 cm. After the sample was placed on the hot plate, the time until the viscosity of the sample was lost and it became a gel state to be peeled off from the hot plate was measured, and this was measured as gel time (sec). The results are shown in Table 3 or Table 4. When the same catalyst amount (curing accelerator amount) is used with respect to 100 parts by mass of epoxy resin, the shorter the gel time, the better the curability.
  • the sealing composition obtained above was passed through a two-stage sieve (upper stage: 2.38 mm, lower stage: 0.5 mm), and 7 g of the sample remaining in the lower stage was weighed.
  • the sealing composition was placed on a smooth mold heated to 180 ° C., and a smooth mold of 8 kg, also heated to 180 ° C., placed on the sample and left for 60 seconds. Thereafter, an average value (mm) of the major axis (mm) and the minor axis (mm) of the obtained disk-shaped molded product was determined, and the average value (mm) was defined as a disc flow (DF).
  • Table 3 or Table 4 The longer the disk flow, the better the fluidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)

Abstract

封止組成物は、エポキシ樹脂と、硬化剤と、空隙率が18体積%以下の無機充填材と、を含有する。

Description

封止組成物及びその製造方法並びに半導体装置
 本発明は、封止組成物及びその製造方法並びに半導体装置に関する。
 近年、小型化及び高集積化に伴い、半導体パッケージ内部の発熱が懸念されている。発熱により、半導体パッケージを有する電気部品又は電子部品の性能低下が生じる恐れがあるため、半導体パッケージに使用される部材には、高い熱伝導性が求められている。そのため、半導体パッケージの封止材を高熱伝導化することが求められている。
 また、半導体パッケージを封止する際に、封止材には高い流動性が求められる。
 無機充填材として例えばアルミナを用いた場合、封止材の高熱伝導化が可能になるものの封止材の流動性が低下する場合があり、封止材の高熱伝導化と流動性の向上とはトレードオフの関係にある。そのため、高熱伝導化と流動性の向上とを両立することが難しい場合がある。
 無機充填材にアルミナを用いた封止材の例として、(A)エポキシ樹脂、(B)硬化剤、並びに(D)球状アルミナ及び球状シリカを含有する無機充填材を必須成分としてなる半導体封止用エポキシ樹脂組成物であって、前記球状アルミナが、(d1)平均粒子径40μm以上70μm以下である第1の球状アルミナ、及び(d2)平均粒子径10μm以上15μm以下である第2の球状アルミナを含み、前記球状シリカが、(d3)平均粒子径4μm以上8μm以下である第1の球状シリカ、(d4)平均粒子径0.05μm以上~1.0μm以下である第2の球状シリカを含むものであり、(d3)+(d4)の合計量が全無機充填材に対して17%以上23%以下であり、(d3)/(d4)の比率が(d3)/(d4)=1/8以上5/4以下であり、無機充填材量が全樹脂組成物中85質量%~95質量%であることを特徴とする半導体封止用エポキシ樹脂組成物が知られている(例えば、特許文献1参照)。
特開2006-273920号公報
 しかし、高熱伝導フィラーであるアルミナを採用することで、封止材の硬化性及び成形性が悪化することがある。そのため、流動性、成形性及び硬化性を担保した高熱伝導封止材の開発は難題である。
 本開示は、上記従来の事情に鑑みてなされたものであり、硬化性、流動性及び成形性に優れ、硬化物としたときの熱伝導性に優れる封止組成物及びその製造方法並びに封止組成物を用いた半導体装置を提供することを目的とする。
 前記課題を達成するための具体的手段は以下の通りである。
  <1> エポキシ樹脂と、硬化剤と、空隙率が18体積%以下の無機充填材と、を含有する封止組成物。
  <2> 前記無機充填材の体積平均粒子径が、4μm~100μmである<1>に記載の封止組成物。
  <3> 前記無機充填材が、アルミナ及びシリカの少なくとも一方を含む<1>又は<2>に記載の封止組成物。
  <4> 前記無機充填材の比表面積が、0.7m/g~4.0m/gである<1>~<3>のいずれか1項に記載の封止組成物。
  <5> 半導体素子と、前記半導体素子を封止してなる<1>~<4>のいずれか1項に記載の封止組成物の硬化物と、を含む半導体装置。
  <6> 空隙率が予め定められた値となるように無機充填材の組成を決定する工程と、
 前記工程により決定された組成の無機充填材と、エポキシ樹脂と、硬化剤と、を混合する工程と、を有する封止組成物の製造方法。
 本開示によれば、硬化性、流動性及び成形性に優れ、硬化物としたときの熱伝導性に優れる封止組成物及びその製造方法並びに封止組成物を用いた半導体装置を提供することができる。
 以下、本発明の封止組成物及びその製造方法並びに半導体装置を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
<封止組成物>
 本開示の封止組成物は、エポキシ樹脂と、硬化剤と、空隙率が18体積%以下の無機充填材と、を含有する。
 無機充填材の空隙率は、無機充填材の嵩体積に占める空隙の割合((空隙の体積/無機充填材の嵩体積)×100(%))を表す値である。同じ素材の無機充填材を用いた場合、無機充填材の重さが同じであれば、空隙率が小さくなるに従い無機充填材の嵩体積は小さくなる。封止組成物に含まれる無機充填材の嵩体積が小さくなると、封止組成物に含まれる無機充填材の含有量が同じであっても、封止組成物の体積から無機充填材の嵩体積を差し引いて得られる値は大きくなる。以下、この値を「余剰樹脂の量」と称することがある。
 本発明者等は封止組成物における余剰樹脂の量に注目し、余剰樹脂の量が封止組成物の硬化性、流動性及び成形性並びに硬化物としたときの熱伝導性に与える影響について検討したところ、余剰樹脂の量が大きくなる(つまりは、無機充填材の空隙率が小さくなる)に従って封止組成物の硬化性、流動性、成形性及び硬化物としたときの熱伝導性が向上することを見出して本発明を完成させた。
 余剰樹脂の量が大きくなるに従って封止組成物の硬化性、流動性、成形性及び硬化物としたときの熱伝導性が向上する理由は明確ではないが、余剰樹脂の量が増加することで封止組成物の粘度が低減して流動性が向上すると考えられる。また、余剰樹脂の量が増加することで、封止組成物の混練時の分散性が良くなり、硬化性、成形性及び硬化物としたときの熱伝導性の向上に寄与していると推測される。
 以下、封止組成物を構成する各成分について説明する。本開示の封止組成物は、エポキシ樹脂と、硬化剤と、無機充填材とを含有し、必要に応じてその他の成分を含有してもよい。
-エポキシ樹脂-
 封止組成物は、エポキシ樹脂を含有する。エポキシ樹脂の種類は特に限定されず、公知のエポキシ樹脂を使用することができる。
 具体的には、例えば、フェノール化合物(例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA及びビスフェノールF)並びにナフトール化合物(例えば、α-ナフトール、β-ナフトール及びジヒドロキシナフタレン)からなる群より選択される少なくとも1種と、アルデヒド化合物(例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒド)とを、酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの(例えば、フェノールノボラック型エポキシ樹脂及びオルソクレゾールノボラック型エポキシ樹脂);ビスフェノール(例えば、ビスフェノールA、ビスフェノールAD、ビスフェノールF及びビスフェノールS)及びビフェノール(例えば、アルキル置換又は非置換のビフェノール)からなる群より選択される少なくとも1種のジグリシジルエーテル;フェノール・アラルキル樹脂のエポキシ化物;フェノール化合物とジシクロペンタジエン及びテルペン化合物からなる群より選択される少なくとも1種との付加物又は重付加物のエポキシ化物;多塩基酸(例えば、フタル酸及びダイマー酸)とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂;ポリアミン(例えば、ジアミノジフェニルメタン及びイソシアヌル酸)とエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂;オレフィン結合を過酸(例えば、過酢酸)で酸化して得られる線状脂肪族エポキシ樹脂;並びに脂環族エポキシ樹脂が挙げられる。エポキシ樹脂は、1種類を単独で使用しても、2種類以上を併用してもよい。
 集積回路(Integrated Circuit、IC)等の素子上のアルミニウム配線又は銅配線の腐食防止の観点から、エポキシ樹脂の純度は高い方が好ましく、加水分解性塩素量は少ない方が好ましい。封止組成物の耐湿性の向上の観点からは、加水分解性塩素量は質量基準で500ppm以下であることが好ましい。
 ここで、加水分解性塩素量は、試料のエポキシ樹脂1gをジオキサン30mLに溶解し、1N-KOHメタノール溶液5mLを添加して30分間リフラックスした後、電位差滴定により求めた値である。
 封止組成物に占めるエポキシ樹脂の含有率は、2.5質量%~6質量%であることが好ましく、3.5質量%~5.5質量%であることがより好ましく、3.5質量%~5.0質量%であることがさらに好ましい。
 無機充填材を除く封止組成物に占めるエポキシ樹脂の含有率は、40質量%~70質量%であることが好ましく、45質量%~64質量%であることがより好ましく、48質量%~55質量%であることがさらに好ましい。
-硬化剤-
 封止組成物は、硬化剤を含有する。硬化剤の種類は特に限定されず、公知の硬化剤を使用することができる。
 具体的には、例えば、フェノール化合物(例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA及びビスフェノールF)並びにナフトール化合物(例えば、α-ナフトール、β-ナフトール及びジヒドロキシナフタレン)からなる群より選択される少なくとも1種と、アルデヒド化合物(例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒド)とを、酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂;フェノール・アラルキル樹脂;ビフェニル・アラルキル樹脂;並びにナフトール・アラルキル樹脂;が挙げられる。硬化剤は1種類を単独で使用しても、2種類以上を併用してもよい。
 硬化剤の官能基(例えば、ノボラック樹脂の場合にはフェノール性水酸基)の当量がエポキシ樹脂のエポキシ基1当量に対して0.5当量~1.5当量になるように、硬化剤が配合されることが好ましく、特に、0.7当量~1.2当量になるように硬化剤が配合されることが好ましい。
-無機充填材-
 封止組成物は、無機充填材を含む。無機充填材を含むことで、封止組成物の吸湿性が低減し、硬化状態での強度が向上する傾向にある。
 無機充填材は、1種類を単独で使用しても、2種類以上を併用してもよい。
無機充填材を2種類以上併用する場合としては、例えば、成分、平均粒子径、形状等が異なる無機充填材を2種類以上用いる場合が挙げられる。
 無機充填材の形状は特に制限されず、例えば、粉状、球状、繊維状等が挙げられる。封止組成物の成形時の流動性及び金型摩耗性の点からは、球状であることが好ましい。
 本開示において、無機充填材の空隙率は18体積%以下であり、16体積%以下であることが好ましく、15体積%以下であることがより好ましく、14体積%以下であることがさらに好ましい。無機充填材の空隙率は7体積%以上であってもよい。無機充填材が1種類の場合には、無機充填材の空隙率は1種類の無機充填材についての空隙率を意味し、無機充填材が2種類以上の場合には、無機充填材の空隙率は2種類以上の無機充填材の混合物についての空隙率を意味する。
 無機充填材の空隙率は、下記方法により測定された値をいう。
 封止組成物をるつぼに入れ、800℃で4時間放置し、灰化させる。得られた灰分の粒度分布を、レーザー回折/散乱式粒子径分布測定装置(例えば、株式会社堀場製作所、LA920)を用いてアルミナの屈折率を適用して測定する。粒度分布から下記の大内山の式を用いて、空隙率εを算出する。なお、大内山の式に関しては、下記文献に詳しい。
 N. Ouchiyama and T.Tanaka, Ind. Eng. Chem. Fundam., 19, 338 (1980)
 N. Ouchiyama and T.Tanaka, Ind. Eng. Chem. Fundam., 20, 66 (1981)
 N. Ouchiyama and T.Tanaka, Ind. Eng. Chem. Fundam., 23, 490 (1984)
Figure JPOXMLDOC01-appb-M000001

 
Figure JPOXMLDOC01-appb-M000002

 
Figure JPOXMLDOC01-appb-M000003

 
Figure JPOXMLDOC01-appb-M000004

 
Figure JPOXMLDOC01-appb-M000005
 無機充填材としては、アルミナ及びシリカの少なくとも一方を含んでいることが好ましく、高熱伝導性の観点からアルミナを含むことがより好ましい。無機充填材の全てがアルミナであってもアルミナとその他の無機充填材とが併用されていてもよい。無機充填材がアルミナを含むことで、封止組成物の熱伝導性が向上する傾向にある。シリカとしては、球状シリカ、結晶シリカ等が挙げられる。
 アルミナと併用可能なシリカ以外のその他の無機充填材としては、ジルコン、酸化マグネシウム、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化ホウ素、窒化アルミニウム、ベリリア、ジルコニア等が挙げられる。さらに、難燃効果のある無機充填材としては水酸化アルミニウム、硼酸亜鉛等が挙げられる。
 無機充填材としてアルミナとシリカとが併用される場合、無機充填材に占めるアルミナの含有率は、50体積%以上であることが好ましく、70体積%以上であることがより好ましく、85体積%以上であることがさらに好ましい。また、無機充填材に占めるアルミナの含有率は、99体積%以下であってもよい。
 無機充填材の含有率としては、吸湿性、線膨張係数の低減、強度向上及びはんだ耐熱性の観点から、封止組成物の全体に対して60体積%以上であることが好ましく、70体積%以上であることがより好ましく、75体積%以上であることがさらに好ましい。無機充填材の含有率は、95体積%以下であってもよい。
 無機充填材の平均粒子径としては、高熱伝導性の観点から、4μm~100μmであることが好ましく、7μm~70μmであることがより好ましく、7μm~40μmであることがさらに好ましい。本開示において、無機充填材の平均粒子径は、無機充填材としてアルミナが単独で用いられている場合にはアルミナの平均粒子径を、無機充填材としてアルミナとその他の無機充填材とが併用されている場合には無機充填材全体としての平均粒子径をいう。
 封止組成物の硬化物の熱伝導率は、無機充填材の平均粒子径が大きくなる程、高くなる傾向にある。
 無機充填材の平均粒子径は、以下の方法により測定することができる。
 溶媒(純水)に、測定対象の無機充填材を1質量%~5質量%の範囲内で界面活性剤1質量%~8質量%とともに添加し、110Wの超音波洗浄機で30秒~5分間振動し、無機充填材を分散する。分散液の約3mL程度を測定用セルに注入して25℃で測定する。測定装置は、レーザー回折/散乱式粒子径分布測定装置(例えば、株式会社堀場製作所、LA920)を用い、体積基準の粒度分布を測定する。平均粒子径は、体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(D50%)として求められる。なお、屈折率はアルミナの屈折率を用いる。無機充填材がアルミナとその他の無機充填材の混合物である場合においては、屈折率はアルミナの屈折率を用いるものとする。
 無機充填材の比表面積としては、流動性及び成形性の観点から、0.7m/g~4.0m/gであることが好ましく、0.9m/g~3.0m/gであることがより好ましく、1.0m/g~2.5m/gであることがさらに好ましい。
 封止組成物の流動性は、無機充填材の比表面積が小さくなる程、高くなる傾向にある。
 本開示において、無機充填材の比表面積は、無機充填材として例えばアルミナが単独で用いられている場合にはアルミナの比表面積を、無機充填材としてアルミナとその他の無機充填材とが併用されている場合には無機充填材の混合物の比表面積をいう。
 無機充填材の比表面積(BET比表面積)は、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。評価装置としては、QUANTACHROME社:AUTOSORB-1(商品名)を用いることができる。BET比表面積の測定を行う際には、試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、まず、加熱による水分除去の前処理を行うことが好ましい。
 前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
(硬化促進剤)
 封止組成物は、硬化促進剤をさらに含有してもよい。硬化促進剤の種類は特に制限されず、公知の硬化促進剤を使用することができる。
 具体的には、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、1,5-ジアザ-ビシクロ[4.3.0]ノネン、5,6-ジブチルアミノ-1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7等のシクロアミジン化合物;シクロアミジン化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂などのπ結合をもつ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン化合物、3級アミン化合物の誘導体;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール化合物、イミダゾール化合物の誘導体;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート、N-メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩、テトラフェニルボロン塩の誘導体;トリフェニルホスホニウム-トリフェニルボラン、N-メチルモルホリンテトラフェニルホスホニウム-テトラフェニルボレート等のホスフィン化合物とテトラフェニルボロン塩との付加物などが挙げられる。硬化促進剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
 硬化促進剤の含有率は、エポキシ樹脂と硬化剤の合計量に対して、0.1質量%~8質量%であることが好ましい。
(イオントラップ剤)
 封止組成物は、イオントラップ剤をさらに含有してもよい。
 本開示において使用可能なイオントラップ剤は、半導体装置の製造用途に用いられる封止材において、一般的に使用されているイオントラップ剤であれば特に制限されるものではない。イオントラップ剤としては、例えば、下記一般式(II-1)又は下記一般式(II-2)で表される化合物が挙げられる。
Mg1-aAl(OH)(COa/2・uHO (II-1)
(一般式(II-1)中、aは0<a≦0.5であり、uは正数である。)
BiO(OH)(NO (II-2)
(一般式(II-2)中、bは0.9≦b≦1.1、cは0.6≦c≦0.8、dは0.2≦d≦0.4である。)
 イオントラップ剤は、市販品として入手可能である。一般式(II-1)で表される化合物としては、例えば、「DHT-4A」(協和化学工業株式会社、商品名)が市販品として入手可能である。また、一般式(II-2)で表される化合物としては、例えば、「IXE500」(東亞合成株式会社、商品名)が市販品として入手可能である。
 また、上記以外のイオントラップ剤として、マグネシウム、アルミニウム、チタン、ジルコニウム、アンチモン等から選ばれる元素の含水酸化物などが挙げられる。
 イオントラップ剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
 封止組成物がイオントラップ剤を含有する場合、イオントラップ剤の含有量は、充分な耐湿信頼性を実現する観点からは、エポキシ樹脂100質量部に対して1質量部以上であることが好ましい。他の成分の効果を充分に発揮する観点からは、イオントラップ剤の含有量は、エポキシ樹脂100質量部に対して15質量部以下であることが好ましい。
 また、イオントラップ剤の平均粒子径は0.1μm~3.0μmであることが好ましく、最大粒子径は10μm以下であることが好ましい。イオントラップ剤の平均粒子径は、無機充填材の場合と同様にして測定することができる。
(カップリング剤)
 封止組成物は、カップリング剤をさらに含有してもよい。カップリング剤の種類は、特に制限されず、公知のカップリング剤を使用することができる。カップリング剤としては、例えば、シランカップリング剤及びチタンカップリング剤が挙げられる。カップリング剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
 シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、γ-アニリノプロピルトリメトキシシラン、ビニルトリメトキシシラン及びγ-メルカプトプロピルメチルジメトキシシランが挙げられる。
 チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート及びテトライソプロピルビス(ジオクチルホスファイト)チタネートが挙げられる。
 封止組成物がカップリング剤を含有する場合、カップリング剤の含有率は、封止組成物の全体に対して3質量%以下であることが好ましく、その効果を発揮させる観点からは、0.1質量%以上であることが好ましい。
(離型剤)
 封止組成物は、離型剤をさらに含有してもよい。離型剤の種類は特に制限されず、公知の離型剤を使用することができる。具体的には、例えば、高級脂肪酸、カルナバワックス及びポリエチレン系ワックスが挙げられる。離型剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
 封止組成物が離型剤を含有する場合、離型剤の含有率は、エポキシ樹脂と硬化剤の合計量に対して、10質量%以下であることが好ましく、その効果を発揮させる観点からは、0.5質量%以上であることが好ましい。
(着色剤及び改質剤)
 封止組成物は、着色剤(例えば、カーボンブラック)を含有してもよい。また、封止組成物は、改質剤(例えば、シリコーン及びシリコーンゴム)を含有してもよい。着色剤及び改質剤は、それぞれ、1種類を単独で使用しても、2種類以上を併用してもよい。
 着色剤としてカーボンブラック等の導電性粒子を用いる場合、導電性粒子は、粒子径10μm以上の粒子の含有率が1質量%以下であることが好ましい。
 封止組成物が導電性粒子を含有する場合、導電性粒子の含有率は、エポキシ樹脂と硬化剤の合計量に対して3質量%以下であることが好ましい。
<封止組成物の製造方法>
 本開示の封止組成物の製造方法は、空隙率が予め定められた値となるように無機充填材の組成を決定する工程と、前記工程により決定された組成の無機充填材と、エポキシ樹脂と、硬化剤と、を混合する工程と、を有する。予め定められた空隙率としては、18体積%以下であることが好ましく、16体積%以下であることがより好ましく、15体積%以下であることがさらに好ましく、14体積%以下であることが特に好ましい。
 空隙率が予め定められた値となるように無機充填材の組成を決定する方法は特に限定されるものではない。無機充填材の形状が球状である場合、無機充填材の空隙率は、無機充填材の粒度分布に基づいて算出することが可能となる。そこで、予め複数の無機充填材の粒度分布を測定して蓄積しておき、封止組成物の特性等に応じて無機充填材の空隙率を定め、予め定められた空隙率となるように複数の無機充填材を組み合わせることで、無機充填材の組成を決定してもよい。
 無機充填材の粒度分布に基づいて無機充填材の空隙率を算出する方法としては、上述した大内山の式を用いて算出する方法等が挙げられる。
 次いで、予め定められた空隙率となるように組成が決定された無機充填材と、エポキシ樹脂と、硬化剤と、必要に応じて用いられるその他の成分とをミキサー等によって充分混合した後、熱ロール、押出機等によって混練し、冷却、粉砕等の処理を経ることによって封止組成物を製造することができる。封止組成物の状態は特に制限されず、粉末状、固体状、液体状等であってよい。
<半導体装置>
 本開示の半導体装置は、半導体素子と、前記半導体素子を封止してなる本開示の封止組成物の硬化物と、を含む。
 封止組成物を用いて半導体素子を封止する方法は特に限定されず、公知の方法を適用することが可能である。例えば、トランスファーモールド法が一般的であるが、コンプレッションモールド法、インジェクション成形法等を用いてもよい。
 本開示の半導体装置は、IC、LSI(Large-Scale Integration、大規模集積回路)等として好適である。
 以下に本発明の実施例について説明するが、本発明はこれに限定されるものではない。また、表中の数値は特に断りのない限り「質量部」を意味する。
(実施例1~6及び比較例1~3)
 下記に示す成分を表1又は表2に示す配合割合(質量部)で予備混合(ドライブレンド)した後、二軸ニーダーで混練し、冷却粉砕して粉末状の封止組成物を製造した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
(A)エポキシ樹脂
・A1・・・ビスフェノール型結晶性エポキシ樹脂、エポキシ当量:192g/eq
・A2・・・ビフェニル型エポキシ樹脂、エポキシ当量:192g/eq
・A3・・・ビスフェノールF型エポキシ樹脂、エポキシ当量:158g/eq
(B)硬化剤
・B1・・・トリフェニルメタン型フェノール樹脂、水酸基当量が104g/eqのトリフェニルメタン型フェノール樹脂
(C)硬化促進剤
・C1・・・リン系硬化促進剤(トリブチルホスフィンとベンゾキノンの付加物)
(D)フィラー(無機充填材)
・D1・・・平均粒子径(D50、小径側からの体積累積50%に対応する粒子径)10.4μm及び比表面積1.5m/gのアルミナフィラー
・D2・・・平均粒子径1.6μm及び比表面積3.3m/gのアルミナフィラー
・D3・・・平均粒子径43.9μm及び比表面積0.15m/gのアルミナフィラー
・D4・・・平均粒子径0.7μm及び比表面積8.0m/gのアルミナフィラー
・D5・・・比表面積200m/gのシリカフィラー
・D6・・・平均粒子径11.7μm及び比表面積2.2m/gのアルミナフィラー/シリカフィラー=9/1(質量比)混合物
<空隙率、比表面積及び平均粒子径>
 無機充填材の空隙率、比表面積及び平均粒子径は、上述の方法により測定した。得られた結果を表3又は表4に示す。
<硬化性>
 硬化性は、ゲル化試験機を用いて以下のようにして測定されたゲルタイムに基づいて評価した。
 上記で得られた封止組成物0.5gを175℃に熱した熱板上に乗せ、治具を用いて20回転/分~25回転/分の回転速度で、試料を2.0cm~2.5cmの円状に均一に広げた。試料を熱板に乗せてから、試料の粘性がなくなり、ゲル状態となって熱板から剥がれるようになるまでの時間を計測し、これをゲルタイム(sec)として測定した。
 結果を表3又は表4に示す。エポキシ100質量部に対して同じ触媒量(硬化促進剤量)を用いた場合に、ゲルタイムの短いものほど、硬化性に優れる。
<流動性>
 上記で得られた封止組成物を、2段篩(上段:2.38mm、下段:0.5mm)に通し、下段に残った試料を7g秤量した。その封止組成物を180℃に熱した平滑な金型の上に置き、同様に180℃に熱した8kgの平滑な金型を試料の上に置いて60秒放置した。その後、得られた円板状成形品の長径(mm)と短径(mm)の平均値(mm)を求め、その平均値(mm)をディスクフロー(DF)とした。
 結果を表3又は表4に示す。ディスクフローの長いものほど、流動性に優れる。
<成形性>
 上記で得られた封止組成物15gをプレス熱板上の180℃の金型上に乗せ、硬化時間90秒で成形した。成形後、金型に作製された50μm、30μm、20μm、10μm、5μm及び2μmのスリットで一番長く封止組成物が流れた部分の長さを、ノギスを用いて測定し、この測定値をバリ長さとした。
 結果を表3又は表4に示す。バリの短いものほど、成形性に優れる。
<熱伝導率>
 上記で得られた封止組成物を用いて、真空ハンドプレス成形機により、金型温度175℃~180℃、成形圧力7MPa、硬化時間600秒の条件で熱伝導率評価用の試験片を作製した。次いで、成形した試験片について、厚さ方向の熱拡散率を測定した。熱拡散率の測定はレーザーフラッシュ法(装置:LFA467 nanoflash、NETZSCH社製)にて行った。パルス光照射は、パルス幅0.31(ms)、印加電圧247Vの条件で行った。測定は雰囲気温度25℃±1℃で行った。また上記試験片の密度は電子比重計(AUX220、株式会社島津製作所)を用いて測定した。比熱は、各材料の比熱の文献値と配合比率より算出した封止組成物の理論比熱を用いた。
 次いで、式(1)を用いて比熱及び密度を熱拡散率に乗算することによって,熱伝導率の値を得た。
       λ=α×Cp×ρ・・・式(1)
(式(1)中、λは熱伝導率(W/(m・K))、αは熱拡散率(m/s)、Cpは比熱(J/(kg・K))、ρは密度(kg/m)をそれぞれ示す。)
 結果を表3又は表4に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表3及び表4の評価結果から明らかなように、無機充填材の空隙率が18体積%以下である実施例1~6の封止組成物は、無機充填材の空隙率が18体積%を超える比較例1~3の封止組成物に比較して、硬化性、流動性及び形成性に優れる。また、実施例1~6の封止組成物の硬化物の熱伝導率は、比較例1~3の封止組成物の硬化物の熱伝導率と同等であるか又は高い。
 2017年12月28日に出願された日本国特許出願2017-254885号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (6)

  1.  エポキシ樹脂と、硬化剤と、空隙率が18体積%以下の無機充填材と、を含有する封止組成物。
  2.  前記無機充填材の体積平均粒子径が、4μm~100μmである請求項1に記載の封止組成物。
  3.  前記無機充填材が、アルミナ及びシリカの少なくとも一方を含む請求項1又は請求項2に記載の封止組成物。
  4.  前記無機充填材の比表面積が、0.7m/g~4.0m/gである請求項1~請求項3のいずれか1項に記載の封止組成物。
  5.  半導体素子と、前記半導体素子を封止してなる請求項1~請求項4のいずれか1項に記載の封止組成物の硬化物と、を含む半導体装置。
  6.  空隙率が予め定められた値となるように無機充填材の組成を決定する工程と、
     前記工程により決定された組成の無機充填材と、エポキシ樹脂と、硬化剤と、を混合する工程と、を有する封止組成物の製造方法。
PCT/JP2018/047644 2017-12-28 2018-12-25 封止組成物及びその製造方法並びに半導体装置 WO2019131671A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880083974.7A CN111601849A (zh) 2017-12-28 2018-12-25 密封组合物和其制造方法、以及半导体装置
JP2019562048A JPWO2019131671A1 (ja) 2017-12-28 2018-12-25 封止組成物及びその製造方法並びに半導体装置
KR1020207018216A KR102668756B1 (ko) 2017-12-28 2018-12-25 밀봉 조성물 및 그의 제조 방법 그리고 반도체 장치
JP2023205597A JP2024019300A (ja) 2017-12-28 2023-12-05 封止組成物及びその製造方法並びに半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017254885 2017-12-28
JP2017-254885 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131671A1 true WO2019131671A1 (ja) 2019-07-04

Family

ID=67067431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047644 WO2019131671A1 (ja) 2017-12-28 2018-12-25 封止組成物及びその製造方法並びに半導体装置

Country Status (4)

Country Link
JP (2) JPWO2019131671A1 (ja)
CN (1) CN111601849A (ja)
TW (1) TW201930538A (ja)
WO (1) WO2019131671A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306594A (ja) * 2002-04-17 2003-10-31 Hitachi Ltd エポキシ樹脂組成物およびそれを用いた回転機
JP2005171209A (ja) * 2003-12-15 2005-06-30 Toyota Motor Corp フィラー含有樹脂組成物及びその製造方法
JP2010155750A (ja) * 2008-12-26 2010-07-15 Jgc Catalysts & Chemicals Ltd 表面封止シリカ系粒子の製造方法、表面封止シリカ系粒子および該粒子を混合してなる半導体封止用樹脂組成物
JP2017135053A (ja) * 2016-01-29 2017-08-03 住友ベークライト株式会社 高誘電樹脂組成物、静電容量型センサおよび静電容量型センサの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307649A (ja) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び半導体装置
WO2013136685A1 (ja) * 2012-03-16 2013-09-19 住友ベークライト株式会社 封止用樹脂組成物およびこれを用いた電子装置
JP6267261B2 (ja) * 2016-03-30 2018-01-24 旭化成株式会社 熱硬化性樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306594A (ja) * 2002-04-17 2003-10-31 Hitachi Ltd エポキシ樹脂組成物およびそれを用いた回転機
JP2005171209A (ja) * 2003-12-15 2005-06-30 Toyota Motor Corp フィラー含有樹脂組成物及びその製造方法
JP2010155750A (ja) * 2008-12-26 2010-07-15 Jgc Catalysts & Chemicals Ltd 表面封止シリカ系粒子の製造方法、表面封止シリカ系粒子および該粒子を混合してなる半導体封止用樹脂組成物
JP2017135053A (ja) * 2016-01-29 2017-08-03 住友ベークライト株式会社 高誘電樹脂組成物、静電容量型センサおよび静電容量型センサの製造方法

Also Published As

Publication number Publication date
CN111601849A (zh) 2020-08-28
JPWO2019131671A1 (ja) 2021-01-14
KR20200103683A (ko) 2020-09-02
JP2024019300A (ja) 2024-02-08
TW201930538A (zh) 2019-08-01

Similar Documents

Publication Publication Date Title
JP2023067951A (ja) 封止組成物及び半導体装置
JP2019119862A (ja) 封止組成物及び半導体装置
WO2017209047A1 (ja) 封止組成物及び半導体装置
WO2019131671A1 (ja) 封止組成物及びその製造方法並びに半導体装置
JP7392659B2 (ja) 封止組成物及び半導体装置
KR102668756B1 (ko) 밀봉 조성물 및 그의 제조 방법 그리고 반도체 장치
JP7255497B2 (ja) 封止組成物及び半導体装置
TW202116913A (zh) 壓縮成形用密封材及電子零件裝置
JP2020139042A (ja) 封止組成物及び半導体装置
JP7238789B2 (ja) 封止組成物及び半導体装置
JP7415950B2 (ja) 封止組成物及び半導体装置
JP2021046518A (ja) エポキシ樹脂組成物及び半導体装置
TWI835960B (zh) 密封組成物及半導體裝置
JP7351161B2 (ja) エポキシ樹脂組成物及び半導体装置
JP2022049480A (ja) 封止組成物及び半導体装置
JP2024055627A (ja) 成形用樹脂組成物及び電子部品装置
WO2024111575A1 (ja) 成形用樹脂組成物及び電子部品装置
JPWO2020175669A1 (ja) 封止組成物及び半導体装置
JP2021046519A (ja) エポキシ樹脂組成物及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895588

Country of ref document: EP

Kind code of ref document: A1