WO2019131633A1 - ポリテトラフルオロエチレン粉末の製造方法 - Google Patents

ポリテトラフルオロエチレン粉末の製造方法 Download PDF

Info

Publication number
WO2019131633A1
WO2019131633A1 PCT/JP2018/047574 JP2018047574W WO2019131633A1 WO 2019131633 A1 WO2019131633 A1 WO 2019131633A1 JP 2018047574 W JP2018047574 W JP 2018047574W WO 2019131633 A1 WO2019131633 A1 WO 2019131633A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
ptfe
preferable
carbon atoms
Prior art date
Application number
PCT/JP2018/047574
Other languages
English (en)
French (fr)
Inventor
和宏 三島
平良 隆博
千亜紀 奥井
田中 孝之
政佳 宮本
拓 山中
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US16/957,288 priority Critical patent/US11518826B2/en
Priority to JP2019561715A priority patent/JP7014976B2/ja
Publication of WO2019131633A1 publication Critical patent/WO2019131633A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method of producing polytetrafluoroethylene powder.
  • PTFE Polytetrafluoroethylene
  • Patent Document 2 a gas diffusion electrode material other than PTFE is dispersed in an organic solvent which is not mixed with water, a PTFE dispersion is added to the dispersion, and ultrasonic irradiation or vigorous stirring and shaking is performed.
  • a method for producing a reaction layer material of a gas diffusion electrode or a gas supply layer material is described, which comprises mixing and dispersing fine particles with the gas diffusion electrode material in an organic solvent.
  • An object of the present invention is to provide a method for producing a novel polytetrafluoroethylene powder.
  • the present invention comprises the steps of irradiating a polytetrafluoroethylene aqueous dispersion containing polytetrafluoroethylene particles with ultrasonic waves to coagulate the polytetrafluoroethylene particles, and producing a polytetrafluoroethylene powder. It is a method.
  • the polytetrafluoroethylene aqueous dispersion is preferably obtained by polymerizing tetrafluoroethylene in an aqueous medium in the presence of a hydrocarbon surfactant.
  • the production method of the present invention is a method for producing a novel fluoropolymer powder.
  • organic group means a group containing one or more carbon atoms or a group formed by removing one hydrogen atom from an organic compound.
  • An example of the "organic group” is An alkyl group which may have one or more substituents, An alkenyl group which may have one or more substituents, An alkynyl group which may have one or more substituents, A cycloalkyl group which may have one or more substituents, A cycloalkenyl group which may have one or more substituents, A cycloalkadienyl group which may have one or more substituents, An aryl group which may have one or more substituents, An aralkyl group which may have one or more substituents, A non-aromatic heterocyclic group which may have one or more substituents, A heteroaryl group which may have one or more substituents, Cyano group, Formyl group, RaO-, RaCO-, RaSO 2- , RaCOO-, RaNRaCO
  • the method for producing a polytetrafluoroethylene powder of the present invention comprises the steps of irradiating a PTFE aqueous dispersion containing polytetrafluoroethylene (PTFE) particles with ultrasonic waves to coagulate the PTFE particles (hereinafter also referred to as "coagulation step”) Say).
  • PTFE polytetrafluoroethylene
  • the PTFE particles are made of PTFE.
  • the PTFE may be TFE homopolymer or modified PTFE.
  • the modified PTFE comprises TFE units and modified monomer units based on modified monomers copolymerizable with TFE.
  • the modifying monomer is not particularly limited as long as it can be copolymerized with TFE.
  • perfluoroolefins such as hexafluoropropylene [HFP]; Chlorofluoroolefins such as chlorotrifluoroethylene [CTFE]; Hydrogen-containing fluoroolefins such as trifluoroethylene and vinylidene fluoride [VDF]; perfluorovinylether; perfluoroalkylethylene; ethylene; fluorine-containing vinylether having a nitrile group and the like.
  • one kind or plural kinds of modifying monomers may be used.
  • Rf represents a perfluoro organic group.
  • the perfluoro unsaturated compound etc. which are represented are mentioned.
  • the above-mentioned "perfluoro organic group” means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted by fluorine atoms.
  • the perfluoro organic group may have ether oxygen.
  • perfluorovinyl ether examples include perfluoro (alkyl vinyl ether) [PAVE] in which Rf represents a perfluoroalkyl group having 1 to 10 carbon atoms in the above general formula (X).
  • the carbon number of the perfluoroalkyl group is preferably 1 to 5.
  • perfluoroalkyl group in the above PAVE examples include perfluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, etc.
  • Perfluoromethylvinylether [PMVE] in which the group is a perfluoromethyl group and perfluoropropylvinylether [PPVE] in which the perfluoroalkyl group is a perfluoropropyl group are preferable.
  • the perfluoroalkylethylene is not particularly restricted but includes, for example, perfluorobutylethylene (PFBE), perfluorohexylethylene (PFHE) and perfluorooctylethylene (PFOE).
  • PFBE perfluorobutylethylene
  • PFHE perfluorohexylethylene
  • PFOE perfluorooctylethylene
  • the modifying monomer in the above-mentioned modified PTFE is preferably at least one selected from the group consisting of HFP, CTFE, VDF, PMVE, PPVE, PFBE, PFHE and ethylene.
  • the modified PTFE preferably has a modified monomer unit in a range of 0.0001 to 1% by mass. As a minimum of modification monomer unit, 0.001 mass% is more preferred, and 0.01 mass% is still more preferred.
  • the upper limit of the modifying monomer unit is more preferably 0.5% by mass, and still more preferably 0.3% by mass.
  • the above-mentioned modified monomer unit means a part of the molecular structure of modified PTFE and a portion derived from the modified monomer, and all monomer units are all single amounts in the molecular structure of modified PTFE. Means part derived from the body.
  • standard specific gravity (SSG) and melt viscosity (MV) used as a molecular weight index are not particularly limited.
  • the above-mentioned PTFE may be high-molecular-weight PTFE having non-melt processability and fibrillation, or low-molecular-weight PTFE having melt-processability and no fibrillation.
  • the above non-melt processability means the property that the melt flow rate can not be measured at a temperature higher than the crystallization melting point according to ASTM D-1238, and the melt processability means a melt flow at a temperature higher than the crystallization melting point It means the property that can measure the rate.
  • paste extrusion is a typical method of molding high molecular weight PTFE powder.
  • paste extrusion is possible because high molecular weight PTFE has fibrillating properties. If a continuous extrusion (extruded strand) is not obtained by paste extrusion, or if the green molded product obtained by paste extrusion does not have substantial strength or elongation, for example, the elongation is 0% and it breaks when pulled. The case can be regarded as non-fibrillating.
  • the high molecular weight PTFE preferably has a standard specific gravity (SSG) of 2.130 to 2.280.
  • the standard specific gravity is measured by a water displacement method in accordance with ASTM D-792 using a sample molded in accordance with ASTM D4895-89.
  • “high molecular weight” means that the above-mentioned standard specific gravity is in the above-mentioned range.
  • the low molecular weight PTFE has a melt viscosity at 380 ° C. of 1 ⁇ 10 2 to 7 ⁇ 10 5 Pa ⁇ s.
  • "low molecular weight” means that the above-mentioned melt viscosity is in the above range.
  • the high molecular weight PTFE has an extremely higher melt viscosity than the low molecular weight PTFE, and it is difficult to measure its exact melt viscosity.
  • the melt viscosity of the low molecular weight PTFE can be measured, it is difficult to obtain a molded product usable for measuring the standard specific gravity from the low molecular weight PTFE, and it is difficult to measure its accurate standard specific gravity It is. Therefore, in the present invention, a standard specific gravity is adopted as an index of the molecular weight of the high molecular weight PTFE, and a melt viscosity is adopted as an index of the molecular weight of the low molecular weight PTFE.
  • the measuring method which can specify molecular weight directly is not known also about any of said high molecular weight PTFE and said low molecular weight PTFE.
  • the high molecular weight PTFE preferably has a peak temperature of 333 to 347 ° C., and more preferably 335 to 345 ° C.
  • the low molecular weight PTFE preferably has a peak temperature of 322 to 333 ° C., and more preferably 324 to 332 ° C.
  • the above peak temperature corresponds to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC] for PTFE which has no history of being heated to a temperature of 300 ° C. or more It is.
  • the high molecular weight PTFE is 333 to 347 ° C. in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC] for PTFE heated to a temperature of 300 ° C. or more. It is preferable that at least one endothermic peak appears in the range of and the heat of fusion at 290 to 350.degree. C. calculated from the heat of fusion curve is 62 mJ / mg or more.
  • the PTFE particles may have a core-shell structure.
  • modified PTFE comprising a core of high molecular weight PTFE and lower molecular weight PTFE or a modified PTFE shell in the particles can be mentioned.
  • modified PTFE for example, PTFE described in JP-A-2005-527652 can be mentioned.
  • TFE homopolymer shell TFE homopolymer core: modified PTFE shell: TFE homopolymer core: modified PTFE shell: modified PTFE Core: TFE homopolymer Shell: modified PTFE Core: low molecular weight PTFE shell: high molecular weight PTFE Core: high molecular weight PTFE shell: low molecular weight PTFE
  • the lower limit of the core ratio is preferably 0.5% by mass, more preferably 1.0% by mass, still more preferably 3.0% by mass, particularly preferably 5.0% by mass And most preferably 10.0% by mass.
  • the upper limit of the core ratio is preferably 99.5% by mass, more preferably 99.0% by mass, still more preferably 97.0% by mass, particularly preferably 95.0% by mass, most preferably 90.0% by mass It is.
  • the lower limit of the ratio of the shell is preferably 0.5% by mass, more preferably 1.0% by mass, still more preferably 3.0% by mass, particularly preferably 5.0% by mass And most preferably 10.0% by mass.
  • the upper limit of the ratio of the shell is preferably 99.5% by mass, more preferably 99.0% by mass, still more preferably 97.0% by mass, particularly preferably 95.0% by mass, most preferably 90.0% by mass It is.
  • the core or the shell may be configured to have two or more layers.
  • it may be PTFE particles having a three-layer structure having a core core of modified PTFE, a core outer layer of TFE homopolymer, and a shell of modified PTFE.
  • PTFE particles having such a three-layer structure for example, PTFE described in WO 2006/054612 can be mentioned.
  • each monomer constituting PTFE can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis according to the type of monomer.
  • the PTFE aqueous dispersion contains PTFE particles.
  • the concentration of the above-mentioned PTFE particles is usually 1 to 70% by mass of the aqueous PTFE dispersion.
  • the amount is preferably 8 to 60% by mass, more preferably 8 to 50% by mass.
  • a further more preferable lower limit of the concentration of PTFE particles is 10% by mass of the aqueous PTFE dispersion, a particularly preferable lower limit is 15% by mass, a still more preferable upper limit is 40% by mass, and a particularly preferable upper limit is 35% by mass is there.
  • the average primary particle size of the PTFE particles is, for example, 50 to 500 nm.
  • the lower limit of the average primary particle size is preferably 100 nm, more preferably 150 nm.
  • the upper limit of the average primary particle size is preferably 400 nm, more preferably 350 nm, and still more preferably 300 nm.
  • the above average primary particle size is determined by measuring the transmission of 550 nm projected light with respect to the unit length of the aqueous dispersion in which the PTFE particle concentration is adjusted to 0.15 mass% and the directional diameter in the transmission electron micrograph. A calibration curve with the average primary particle diameter can be prepared, the transmittance of the aqueous dispersion to be measured can be measured, and the determination can be made based on the calibration curve.
  • the PTFE aqueous dispersion usually contains an aqueous medium.
  • the aqueous medium is not particularly limited as long as it is a liquid containing water, and may contain, in addition to water, an organic solvent such as alcohol, ether, ketone, paraffin wax and the like.
  • the water content of the aqueous medium is preferably 50% by mass or more, more preferably 80% by mass or more, and most preferably 100% by mass.
  • the above-mentioned PTFE aqueous dispersion usually contains a surfactant.
  • the surfactant may be a fluorine-containing surfactant or a hydrocarbon surfactant.
  • the hydrocarbon surfactant is a surfactant that does not contain a fluorine atom.
  • the fluorine-containing surfactant and the hydrocarbon-based surfactant are not particularly limited, and conventionally known surfactants can be used, and examples thereof include fluorine-containing surfactants and hydrocarbon-based surfactants described later.
  • the content of the surfactant in the aqueous PTFE dispersion is not particularly limited, but is preferably 0.0001 to 10.0% by mass with respect to 100% by mass of the aqueous PTFE dispersion. If the amount is less than 0.0001% by mass, the dispersion stability may be poor. If the amount is more than 10.0% by mass, the dispersion effect corresponding to the amount present is not practical.
  • the lower limit of the surfactant is more preferably 0.001% by mass, still more preferably 0.01% by mass, and particularly preferably 0.07% by mass.
  • the upper limit is more preferably 8.5% by mass, still more preferably 1.0% by mass, still more preferably 0.90% by mass, still more preferably 0.46% by mass, particularly preferably The preferred upper limit is 0.32% by mass.
  • the above-mentioned PTFE aqueous dispersion can be obtained by a conventionally known method.
  • melt-processable fluororesin As the above-mentioned PTFE aqueous dispersion, one containing a melt-processable fluororesin may be used in addition to PTFE particles, for example, an aqueous dispersion containing PTFE particles and an aqueous dispersion of melt-processable fluororesin particles are mixed. You may use what was.
  • the melt processable fluororesin include TFE / HFP copolymer [FEP], TFE / PAVE copolymer [PFA], ethylene / TFE copolymer [ETFE], ethylene / TFE / HFP copolymer, etc. Among them, FEP is preferred.
  • the irradiation of ultrasonic waves in the coagulation step is preferably performed at an output of 20 W or more from the viewpoint of coagulating the PTFE particles.
  • the irradiation output is more preferably performed at an output of 100 W or more, and more preferably 200 W or more.
  • the upper limit of the output is not particularly limited, but may be, for example, 3000 W or less, preferably 1000 W or less, and more preferably 800 W or less.
  • the irradiation of the ultrasonic waves is preferably performed at a frequency of 15 kHz or more from the viewpoint of coagulating the PTFE particles.
  • the frequency is more preferably 18 kHz or more.
  • the upper limit of the frequency is not particularly limited, for example, 100 kHz or less is preferable, 50 kHz or less is more preferable, and 40 kHz or less is more preferable.
  • the irradiation time of the said ultrasonic wave is not specifically limited, For example, it is preferable that it is 60 second or more, and it is more preferable that it is 300 second or more.
  • the irradiation time of the ultrasonic wave may be a time sufficient to coagulate the PTFE particles, and from the viewpoint of productivity, preferably 20 minutes or less.
  • the irradiation of the ultrasonic wave can be performed using a commercially available ultrasonic wave generator.
  • the above-mentioned ultrasonic irradiator include commercially available ultrasonic transmitters (for example, ultrasonic homogenizers), ultrasonic transmitters, circulating ultrasonic irradiators, ultrasonic transducers, ultrasonic cleaners, and the like. It can select suitably from and use.
  • the method of irradiating the aqueous dispersion with ultrasonic waves is not particularly limited as long as the PTFE aqueous dispersion is coagulated, and a conventionally known method can be adopted.
  • a specific method of irradiating ultrasonic waves for example, a method of performing by immersing the nozzle portion of the ultrasonic homogenizer in a PTFE aqueous dispersion, or immersing a throwing type ultrasonic transducer in a container into which a PTFE aqueous dispersion is introduced Irradiation method, a method in which a container containing a PTFE aqueous dispersion is introduced into an ultrasonic cleaner charged beforehand with an aqueous medium and the like for irradiation, and an ultrasonic cleaner manufactured in a tank type and a PTFE dispersion in an ultrasonic transmitter.
  • transducing and irradiating a liquid etc. are mentioned.
  • the temperature of the aqueous dispersion is adjusted to 0 to 80 ° C. and then the ultrasonic wave is irradiated.
  • the lower limit of the temperature of the aqueous dispersion is more preferably 10 ° C, further preferably 20 ° C.
  • the upper limit of the temperature of the aqueous dispersion is more preferably 50.degree. C., still more preferably 40.degree.
  • the pH may be adjusted as necessary.
  • the method etc. which add ammonium carbonate, nitric acid, etc. suitably are mentioned before irradiating an ultrasonic wave. It is preferable to adjust the specific gravity of the aqueous dispersion to 1.03 to 1.20.
  • the upper limit of the specific gravity of the aqueous dispersion is more preferably 1.10, still more preferably 1.08.
  • the concentration of the non-aggregated TFE polymer in the waste water generated by the coagulation step is preferably low, more preferably less than 0.4% by mass, and still more preferably less than 0.3% by mass.
  • the above coagulation step coagulates the PTFE particles in the aqueous PTFE dispersion to form a wet PTFE powder.
  • the production method of the present invention may further include the step of isolating the wet PTFE powder from the post-coagulation dispersion containing the wet PTFE powder obtained in the coagulation step. It may also include the step of drying the isolated wet PTFE powder. Drying is preferably carried out using a heating means such as hot air in a state where the wet PTFE powder does not flow much. The drying temperature may be a temperature lower than the melting point of the polymer, but a range of 100 to 300 ° C. is usually suitable.
  • the drying can be carried out at a drying temperature of 120 to 250 ° C., preferably 140 to 230 ° C.
  • the above drying may be combined with reduced pressure, vacuum and high frequency.
  • the drying time is not particularly limited, and is preferably performed until the dried PTFE powder does not contain water.
  • color tone L * is 88 or more, and, as for PTFE obtained by the manufacturing method of this invention, it is more preferable that it is 90 or more.
  • the color tone Z of the PTFE obtained by the production method of the present invention is preferably 80 or more, more preferably 85 or more, and still more preferably 90 or more.
  • color tone L * after baking for 10 minutes at 385 degreeC is 40 or more, and, as for PTFE obtained by the manufacturing method of this invention, it is more preferable that it is 45 or more.
  • the color tone Z after baking for 10 minutes at 385 degreeC is 10 or more, and, as for PTFE obtained by the manufacturing method of this invention, it is more preferable that it is 15 or more.
  • a sample for measuring the color tone L * and Z is obtained by molding 4.0 g of a PTFE powder into a disc-shaped PTFE compact having an inner diameter of 28.6 mm and a thickness of about 4 mm.
  • the color tone L * and Z of the above PTFE is measured using a colorimetric color difference meter (CIELAB color scale) in accordance with JIS Z8781-4.
  • the said baking is implemented by heat-processing for 10 minutes in the electric furnace heated to 385 degreeC.
  • the apparent density of the PTFE powder obtained by the production method of the present invention is preferably 0.60 g / ml or less, more preferably 0.55 g / ml or less, and more preferably 0.52 g / ml or less Is more preferably 0.40 g / ml or more, more preferably 0.45 g / ml or more, and still more preferably 0.47 g / ml or more.
  • the apparent density is a value measured in accordance with JIS K 6892.
  • the average particle diameter of the PTFE powder obtained by the production method of the present invention is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, still more preferably 700 ⁇ m or less, and preferably 300 ⁇ m or more.
  • the thickness is more preferably 400 ⁇ m or more, and still more preferably 500 ⁇ m or more.
  • the average particle size is a value measured in accordance with JIS K6891.
  • the production method of the present invention is simple because it can be coagulated by irradiation with ultrasonic waves, and does not necessarily require a large amount of a coagulating agent and the like. is there. Furthermore, since the aqueous PTFE dispersion usually contains a surfactant, the surfactant remains in the obtained PTFE powder. According to the production method of the present invention, a PTFE powder having a small amount of remaining surfactant can be obtained.
  • the production method of the present invention is particularly useful when obtaining a PTFE powder from an aqueous PTFE dispersion produced using a hydrocarbon surfactant.
  • a fluorinated anionic surfactant has been used, but recently, the use of a hydrocarbon surfactant has also been proposed in place of the fluorinated anionic surfactant.
  • TFE is polymerized in the presence of a hydrocarbon surfactant, the obtained polytetrafluoroethylene powder tends to be colored, and there is room for improvement.
  • JP-A-2015-516029 describes a method for reducing thermally induced discoloration of a fluorinated polymer resin, comprising the step of exposing the fluorinated polymer resin in wet or dry form to an oxidizing agent. ing.
  • the production method of the present invention comprises the step of irradiating the aqueous PTFE dispersion containing ultrasonic waves with ultrasonic waves to coagulate the PTFE particles, and the polytetrafluoroethylene aqueous dispersion has a hydrocarbon surfactant. It is preferably obtained by carrying out the polymerization of tetrafluoroethylene in an aqueous medium in the presence of an agent.
  • the method for producing the PTFE powder of the present invention can reduce the coloration of the obtained PTFE powder even if the aqueous PTFE dispersion is obtained using a hydrocarbon surfactant.
  • the above-mentioned PTFE aqueous dispersion can be obtained by a method comprising the step of polymerizing tetrafluoroethylene in an aqueous medium in the presence of a hydrocarbon surfactant. That is, the step of polymerizing tetrafluoroethylene in an aqueous medium in the presence of a hydrocarbon surfactant (hereinafter also referred to as “polymerization step”), and irradiating the PTFE aqueous dispersion containing PTFE particles with ultrasonic waves. Also, a method of producing a PTFE powder comprising the step of coagulating PTFE particles is one of the present invention.
  • the polymerization may be emulsion polymerization.
  • a PTFE aqueous dispersion containing particles made of polytetrafluoroethylene can be obtained by polymerizing the above-mentioned TFE and, if necessary, the above-mentioned modifying monomer copolymerizable with TFE.
  • the polymerization step is carried out in the presence of a hydrocarbon surfactant.
  • a hydrocarbon surfactant generally known hydrocarbon surfactants can be used.
  • hydrocarbon surfactants those described in JP-A-2013-542308, JP-A-2013-542309, and JP-A-2013-542310 can be used. Details of the hydrocarbon surfactant will be described later.
  • the polymerization reactor is charged with an aqueous medium, the above surfactant, TFE and, if necessary, a modifying monomer copolymerizable with TFE, and, if necessary, other additives, the contents of the reactor
  • the reaction can be carried out by stirring the product and maintaining the reactor at a predetermined polymerization temperature, and then adding a predetermined amount of a polymerization initiator to initiate a polymerization reaction.
  • a monomer such as TFE, a polymerization initiator, a chain transfer agent, the above surfactant and the like may be additionally added depending on the purpose.
  • the polymerization temperature is 5 to 120 ° C.
  • the polymerization pressure is 0.05 to 10 MPaG.
  • the polymerization temperature and the polymerization pressure are appropriately determined by the type of monomer used, the molecular weight of the target PTFE, and the reaction rate.
  • the hydrocarbon surfactant is preferably added in a total amount of 0.0001 to 10% by mass with respect to 100% by mass of the aqueous medium.
  • a more preferable lower limit is 0.001% by mass, a still more preferable lower limit is 0.01% by mass, and a particularly preferable lower limit is 0.1% by mass.
  • a more preferable upper limit is 1.0% by mass, a still more preferable upper limit is 0.50% by mass, and a particularly preferable upper limit is 0.35% by mass. If the amount is less than 0.0001% by mass, the dispersing power may be insufficient. If the amount is more than 10% by mass, the effect corresponding to the addition amount can not be obtained, and the polymerization rate may be decreased or the reaction may be stopped. There is.
  • the addition amount of the above-mentioned hydrocarbon type surfactant is suitably determined by the kind of monomer to be used, the molecular weight of PTFE made into the objective, etc.
  • At least one hydrocarbon surfactant may be used.
  • two or more of the hydrocarbon surfactants described later may be used at the same time, or a compound having a surfactant activity other than the hydrocarbon surfactant may be used at the same time.
  • modified monomer (A) a modified monomer having a functional group capable of reacting in radical polymerization and a hydrophilic group
  • modified monomer (A) a modified monomer having a functional group capable of reacting in radical polymerization and a hydrophilic group
  • the modifying monomer (A) may be a compound having a surface activity ability containing at least one or more vinyl groups.
  • hydrophilic group in the modifying monomer (A) examples include -NH 2 , -PO 3 M, -OPO 3 M, -SO 3 M, -OSO 3 M, -COOM (wherein M is H, Metal atom, NR 7 4 , imidazolium which may have a substituent, pyridinium which may have a substituent or phosphonium which may have a substituent, R 7 is H or an organic group And any two of them may be bonded to each other to form a ring).
  • -SO 3 M or -COOM is preferable.
  • an organic group of H or C 1-10 is preferable, an organic group of H or C 1-4 is more preferable, and an alkyl group of H or C 1-4 is still more preferable.
  • the metal atom include a metal atom of 1 and 2 valences, an alkali metal (group 1), an alkaline earth metal (group 2) and the like, and Na, K or Li is preferable.
  • the “functional group capable of reacting in radical polymerization” in the modifying monomer (A) include a group having an ethylenically unsaturated bond.
  • a compound represented by the general formula (270a): CF 2 CF- (CF 2 ) n 271 a -Y 271 (Wherein, n 271 a represents an integer of 1 to 10, Y 271 represents —SO 3 M 271 or —COOM 271 and M 271 represents H, NH 4 or an alkali metal.)
  • Surfactant, general formula (270b): CF 2 CF- (CF 2 C (CF 3 ) F) n 271 b -Y 271 (Wherein, n 271 b represents an integer of 1 to 5 and Y 271 has the same meaning as defined above)
  • a surfactant represented by the general formula ( 270 c): CF 2 CF-O- (CFX 271 ) n 271 c -Y 271 (Wherein, X 271 represents F or CF 3 , n 271 c represents an integer of 1 to 10, and Y 271 is the same as defined
  • the polymerization initiator is not particularly limited as long as it can generate radicals in the polymerization temperature range, and known oil-soluble and / or water-soluble polymerization initiators can be used. Furthermore, polymerization may be initiated as redox in combination with a reducing agent or the like. The concentration of the polymerization initiator is appropriately determined according to the type of modifying monomer copolymerizable with TFE, the molecular weight of the target PTFE, and the reaction rate.
  • a water-soluble radical polymerization initiator can be used as the above-mentioned polymerization initiator.
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, and as the water-soluble inorganic peroxide, for example, persulfate, perborate, perchlorate, perphosphate, percarbonate, etc. Ammonium salts, potassium salts, sodium salts and the like.
  • the water-soluble organic peroxide include disuccinic acid peroxide, diglutaric acid peroxide, t-butyl permaleate, t-butyl hydroperoxide and the like.
  • a reducing agent such as sulfites and sulfites may also be included, and the amount used may be 0.1 to 20 times the amount of peroxide.
  • a redox initiator which combines an oxidizing agent and a reducing agent as a polymerization initiator.
  • the oxidizing agent include persulfates, organic peroxides, potassium permanganate, manganese triacetate, ammonium cerium nitrate and the like.
  • the reducing agent sulfite, bisulfite, bromate, diimine, oxalic acid and the like can be mentioned.
  • Persulfates include ammonium persulfate and potassium persulfate.
  • sulfites include sodium sulfite and ammonium sulfite.
  • Copper salts include copper (II) sulfate
  • iron salts include iron (II) sulfate.
  • potassium permanganate / oxalic acid ammonium persulfate / bisulfite / iron sulfate, ammonium persulfate / sulfite / iron sulfate, manganese triacetate / oxalic acid, cerium ammonium nitrate / oxalic acid, bromine Acid salts / sulfites, bromates / bisulfites and the like, and potassium permanganate / oxalic acid is preferred.
  • either the oxidizing agent or the reducing agent may be previously charged in the polymerization vessel, and then the other may be added continuously or intermittently to start the polymerization.
  • the oxidizing agent or the reducing agent may be previously charged in the polymerization vessel, and then the other may be added continuously or intermittently to start the polymerization.
  • potassium permanganate / oxalic acid it is preferable to charge oxalic acid in a polymerization tank and continuously add potassium permanganate thereto.
  • the addition amount of the polymerization initiator is not particularly limited, but an amount (for example, several ppm to water concentration) or more at which the polymerization rate does not significantly decrease (for example, several ppm to water concentration) May be added.
  • the upper limit is a range in which the reaction temperature may be raised while removing heat from the apparatus surface by the heat of polymerization reaction, and a more preferable upper limit is a range in which the heat of the polymerization reaction can be removed from the apparatus surface.
  • the aqueous medium is a reaction medium for carrying out the polymerization, and can adopt an aqueous medium which may be contained in the above-mentioned PTFE aqueous dispersion.
  • chain transfer agents radical scavengers and decomposing agents may be added to adjust the polymerization rate and molecular weight.
  • chain transfer agent examples include esters such as dimethyl malonate, diethyl malonate, methyl acetate, ethyl acetate, butyl acetate, dimethyl succinate, hydrogen, isopentane, methane, ethane, propane, methanol, isobutane, isopropanol And various halogenated hydrocarbons such as acetone, various mercaptans and carbon tetrachloride, and cyclohexane.
  • esters such as dimethyl malonate, diethyl malonate, methyl acetate, ethyl acetate, butyl acetate, dimethyl succinate, hydrogen, isopentane, methane, ethane, propane, methanol, isobutane, isopropanol
  • various halogenated hydrocarbons such as acetone, various mercaptans and carbon tetrachloride, and cyclohexane.
  • the amount of the chain transfer agent used can be appropriately selected depending on the molecular weight of the target polymer, the type of chain transfer agent used, the type and amount of the initiator used, etc.
  • the concentration is 1 to 50,000 ppm, preferably 1 to 20,000 ppm.
  • the chain transfer agent may be added to the reaction vessel all at once prior to the start of polymerization, may be added all at once after the start of polymerization, or may be added several times during the polymerization. It may be added continuously during polymerization.
  • additives may be used to stabilize each compound.
  • a buffer a pH adjuster, a stabilization adjuvant, a dispersion stabilizer etc. are mentioned.
  • paraffin wax As the stabilizing aid, paraffin wax, fluorinated oil, fluorinated solvent, silicone oil and the like are preferable.
  • the stabilizing assistants may be used alone or in combination of two or more. Paraffin wax is more preferred as a stabilizing aid.
  • the paraffin wax may be liquid, semisolid or solid at room temperature, but is preferably a saturated hydrocarbon having 12 or more carbon atoms.
  • the melting point of paraffin wax is preferably 40 to 65.degree. C., and more preferably 50 to 65.degree.
  • the amount of the stabilizing aid used is preferably 0.1 to 12% by mass, and more preferably 0.1 to 8% by mass, based on the mass of the aqueous medium used. It is desirable that the stabilizing aid be sufficiently hydrophobic and be completely separated from the PTFE aqueous emulsion after the emulsion polymerization of TFE so as not to become a contamination component.
  • TFE is polymerized in an aqueous medium to produce an aqueous dispersion of PTFE (A) particles, and (II) above
  • the TFE may be seed-polymerized onto the PTFE (A) particles.
  • the aqueous PTFE dispersion obtained by the above polymerization step usually contains a hydrocarbon surfactant.
  • the content of the hydrocarbon surfactant in the aqueous PTFE dispersion is not particularly limited, but is preferably 0.0001 to 10.0% by mass with respect to 100% by mass of the aqueous PTFE dispersion. If the amount is less than 0.0001% by mass, the dispersion stability may be poor. If the amount is more than 10.0% by mass, the dispersion effect corresponding to the amount present is not practical.
  • the lower limit of the surfactant is more preferably 0.001% by mass, still more preferably 0.01% by mass, and particularly preferably 0.07% by mass.
  • the upper limit is more preferably 8.5% by mass, still more preferably 1.0% by mass, still more preferably 0.90% by mass, and particularly preferably 0.46% by mass. The particularly preferred upper limit is 0.32% by mass.
  • pigments or various fillers for improving mechanical properties may be added before or during the coagulation step. Thereby, a PTFE powder containing a pigment and various fillers is obtained.
  • the PTFE powder obtained by the manufacturing method of the present invention is preferable for molding, and suitable applications include hydraulic systems such as aircraft and automobiles, tubes of fuel systems, etc., flexible hoses such as chemical solutions and steam, wire coating Applications and the like can be mentioned.
  • the PTFE powder obtained by the production method of the present invention can also be used as a processing aid.
  • the above-mentioned PTFE powder is mixed with a host polymer or the like to improve the melt strength at the time of melt processing of the host polymer, the mechanical strength of the obtained polymer, the electrical properties, the flame retardancy, the time of combustion The dripping prevention property and the slidability can be improved.
  • the above-mentioned PTFE powder can be used as a processing aid after being compounded with a resin other than PTFE.
  • the PTFE powder obtained by the production method of the present invention can also be used as a binder for batteries and dustproof applications.
  • the PTFE powder obtained by the production method of the present invention is high molecular weight PTFE, it is also useful as a raw material of a PTFE porous body (membrane).
  • a PTFE porous body membrane
  • PTFE powder is unfired or semi-sintered, stretched in at least one direction (preferably, roll stretched in the rolling direction and then stretched in the width direction by a tenter), porous PTFE (membrane) You can get By stretching, PTFE is easily fibrillated to form a porous PTFE body (membrane) consisting of knots and fibers.
  • This porous body (membrane) is useful as various filters, and can be preferably used as a chemical filter, particularly as an air filter medium.
  • the PTFE powder obtained by the production method of the present invention is a powder of low molecular weight PTFE (also called PTFE micropowder), it has excellent chemical stability, extremely low surface energy, and hardly causes fibrillation, so It is suitable for the production of plastics, inks, cosmetics, paints, greases, office automation equipment members, toners, etc. as additives for the purpose of improving the slipperiness and the texture of the coating film surface, etc. (e.g. -147617).
  • the fluorine-containing surfactant is not particularly limited, but a fluorine-containing anionic surfactant is preferable.
  • conventionally used perfluorooctanoic acid and salts thereof eg, ammonium salts
  • perfluorooctanoic acid and salts thereof eg, ammonium salts
  • a fluorinated surfactant having a Log POW of 3.4 or less is preferable.
  • the above-mentioned fluorine-containing surfactant may have a Log POW of 2.5 or more, or 3.0 or more.
  • the above Log POW is a distribution coefficient of 1-octanol and water, and Log P [in the formula, P is an octanol / water (1: 1) mixed solution containing a fluorosurfactant in octanol when phase separation occurs The fluorine-containing surfactant concentration / the fluorine-containing surfactant concentration ratio in water.
  • the fluorine-containing surfactant having a Log POW of 3.4 or less may have a general formula: CF 3- (CF 2 ) 4- COOX (Wherein, X represents a hydrogen atom, NH 4 or an alkali metal), a general formula: CF 3 CF 2 CF 2 OCF (CF 3 ) COOX (Wherein, X represents a hydrogen atom, NH 4 or an alkali metal atom), a general formula: CF 3 OCF (CF 3) CF 2 OCF (CF 3) COOX (Wherein, X represents a hydrogen atom, NH 4 or an alkali metal atom), and a general formula: CF 3 CF 2 OCF 2 CF 2 OCF 2 COOX (Wherein, X represents a hydrogen atom, NH 4 or an alkali metal atom) It is preferable that it is at least one fluorine-containing surfactant selected from the group consisting of
  • a fluorine-containing surfactant having a LogPOW of 3.4 or less As a fluorine-containing surfactant having a LogPOW of 3.4 or less, a general formula: CF 3 OCF 2 CF 2 OCF 2 CF 2 COOX (Wherein, X represents a hydrogen atom, NH 4 or an alkali metal atom), a general formula: CF 3 OCF 2 CF 2 CF 2 OCHFCF 2 COOX (Wherein, X represents a hydrogen atom, NH 4 or an alkali metal atom) Etc. can also be mentioned.
  • examples of the counter ion forming the salt include alkali metal ions or NH 4 + and the like, and examples of the alkali metal ion include Na + and K + and the like. .
  • CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOH, CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 , CF 3 CF 2 OCF 2 CF 2 OCF 2 COOH, CF 3 CF 2 OCF 2 CF 2 OCF 2 COONH 4, CF 3 OCF 2 CF 2 CF 2 OCHFCF 2 COOH, CF 3 OCF 2 CF 2 CF 2 OCHFCF 2 COONH 4, CF 3 - (CF 2) 4 -COOH, CF 3 - (CF 2) 4 -COONH 4, CF 3 - (CF 2) 4 -COONH 4, CF 3 CF 2 CF 2 OCF (CF 3) COONH 4, CF 3 CF 2 CF 2 OCF (CF 3) COOH or the like include Be
  • Hydrocarbon surfactants have hydrophilic and hydrophobic portions on the same molecule. These may be cationic, nonionic or anionic.
  • Cationic surfactants usually have a positively charged hydrophilic moiety such as an alkylated ammonium halide such as alkylated ammonium bromide and a hydrophobic moiety such as a long chain fatty acid.
  • Anionic surfactants usually have a hydrophilic moiety such as a carboxylate, sulfonate or sulfate and a hydrophobic moiety which is a long chain hydrocarbon moiety such as alkyl.
  • Nonionic surfactants usually do not contain charged groups and have a hydrophobic moiety that is a long chain hydrocarbon.
  • the hydrophilic portion of the nonionic surfactant comprises a water soluble functional group such as a chain of ethylene ether derived from polymerization with ethylene oxide.
  • nonionic hydrocarbon surfactants polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ester, sorbitan alkyl ester, polyoxyethylene sorbitan alkyl ester, glycerol ester, derivatives thereof.
  • polyoxyethylene alkyl ether polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene behenyl ether and the like.
  • polyoxyethylene alkylphenyl ether polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether and the like.
  • polyoxyethylene alkyl esters polyethylene glycol monolaurate, polyethylene glycol monooleate, polyethylene glycol monostearate and the like.
  • sorbitan alkyl esters polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate and the like.
  • polyoxyethylene sorbitan alkyl ester polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate and the like.
  • glycerol ester glycerol monomyristate, glycerol monostearate, glycerol monooleate and the like.
  • polyoxyethylene alkylamine polyoxyethylene alkylphenyl-formaldehyde condensate, polyoxyethylene alkyl ether phosphate and the like.
  • the ethers and esters may have HLB values of 10-18.
  • nonionic hydrocarbon surfactants include Triton (registered trademark) Triton (registered trademark) X series (X15, X45, X100, etc.), Tergitol (registered trademark) 15-S series, Tergitol (manufactured by Dow Chemical Company) TMN series (TMN-6, TMN-10, TMN-100, etc.), Tergitol (R) L series, BASF Pluronic (R) R series (31R1, 17R2, 10R5, 25R4 (m-22) , N to 23), Iconol (registered trademark) TDA series (TDA-6, TDA-9, TDA-10) and the like.
  • anionic hydrocarbon surfactant examples include Versatic (registered trademark) 10, Resolution Performance Products, and Avanel S series (S-70, S-74, etc.) manufactured by BASF.
  • RLM As a hydrocarbon surfactant, RLM (wherein R is a linear or branched alkyl group having 1 or more carbon atoms which may have a substituent, or a substituent It may be a cyclic alkyl group having 3 or more carbon atoms, and in the case of 3 or more carbon atoms, it may contain a monovalent or divalent heterocyclic ring, and may have a ring.
  • anionic surfactants represented by (Aryl sulfonate). Specifically, those represented by CH 3- (CH 2 ) n -L-M (wherein n is an integer of 6 to 17; L and M are the same as above) can be mentioned. Mixtures of those in which R is an alkyl group having 12 to 16 carbon atoms and L is sulfate or sodium dodecyl sulfate (SDS) can also be used.
  • R 6 As a hydrocarbon surfactant, R 6 (—LM) 2 (wherein, R 6 is a linear or branched alkylene group having 1 or more carbon atoms which may have a substituent, Or, it is a cyclic alkylene group having 3 or more carbon atoms which may have a substituent, and in the case of 3 or more carbon atoms, it may contain a monovalent or divalent heterocyclic ring, or the ring may be wound.
  • R 6 is a linear or branched alkylene group having 1 or more carbon atoms which may have a substituent, Or, it is a cyclic alkylene group having 3 or more carbon atoms which may have a substituent, and in the case of 3 or more carbon atoms, it may contain a monovalent or divalent heterocyclic ring, or the ring may be wound.
  • L is, -ArSO 3 -, -SO 3 - , -SO 4 -, - PO 3 - or -COO - a and, M is, H +, Na +, a K + or NH 4 + .
  • - ArSO 3 - is an aryl sulfonate, and a and b are each an integer of 1 or more.
  • R 7 ( ⁇ LM) 3 As a hydrocarbon surfactant, R 7 ( ⁇ LM) 3 (wherein R 7 is a linear or branched alkylidene group having 1 or more carbon atoms which may have a substituent, Or, it is a cyclic alkylidine group having 3 or more carbon atoms which may have a substituent, and in the case of 3 or more carbon atoms, it may contain a monovalent or divalent heterocyclic ring, or may have a ring.
  • L is, -ArSO 3 -, -SO 3 - , -SO 4 -, - PO 3 - or -COO - a and, M is, H +, Na +, a K + or NH 4 + .
  • - ArSO 3 - is an aryl sulfonate, and a and b are each an integer of 1 or more. In the present specification, unless otherwise specified, the "substituent" means a group capable of substitution.
  • substituted examples include aliphatic group, aromatic group, heterocyclic group, acyl group, acyloxy group, acylamino group, aliphatic oxy group, aromatic oxy group, heterocyclic oxy group, aliphatic oxycarbonyl group Aromatic oxycarbonyl group, heterocyclic oxycarbonyl group, carbamoyl group, aliphatic sulfonyl group, aromatic sulfonyl group, heterocyclic sulfonyl group, aliphatic sulfonyloxy group, aromatic sulfonyloxy group, heterocyclic sulfonyloxy group, sulfamoyl Group, aliphatic sulfonamide group, aromatic sulfonamide group, heterocyclic sulfonamide group, amino group, aliphatic amino group, aromatic amino group, heterocyclic amino group, aliphatic oxycarbonylamino group, aromatic oxycarbonylamino
  • siloxane hydrocarbon surfactants examples include Silicone Surfactants, R.I. M. Hill, Marcel Dekker, Inc. , ISBN: 0-8247-00104.
  • the structure of the siloxane surfactant comprises well-defined hydrophobic and hydrophilic moieties.
  • the hydrophobic moiety comprises one or more dihydrocarbyl siloxane units, wherein the substituents on the silicone atom are completely hydrocarbon.
  • These siloxane surfactants can also be regarded as hydrocarbon surfactants, in the sense that when carbon atoms of hydrocarbyl groups can be substituted by halogen such as fluorine, they are completely substituted by hydrogen atoms, ie And the monovalent substituent on the carbon atom of the hydrocarbyl group is hydrogen.
  • the hydrophilic part of the siloxane surfactant is sulfate, sulfonate, phosphonate, phosphate ester, carboxylate, carbonate, sulfosuccinate, taurate (as free acid, salt or ester), phosphine oxide, betaine, betaine copolyol, It may also include one or more polar moieties that include ionic groups such as quaternary ammonium salts.
  • the ionic hydrophobic moiety may also comprise an ionically functionalized siloxane graft.
  • siloxane surfactants include, for example, polydimethylsiloxane-graft- (meth) acrylates, polydimethylsiloxane-graft-polyacrylate salts and polydimethylsiloxane-grafted quaternary amines.
  • the polar part of the hydrophilic part of the siloxane surfactant is polyethylene oxide (PEO), and polyethers such as mixed polyethylene oxide / propylene oxide polyether (PEO / PPO); monosaccharides and disaccharides; and pyrrolidinone etc. It may contain nonionic groups formed by water soluble heterocycles.
  • the ratio of ethylene oxide to propylene oxide (EO / PO) can be varied in mixed polyethylene oxide / propylene oxide polyethers.
  • the hydrophilic portion of the siloxane surfactant may also comprise a combination of ionic and non-ionic moieties.
  • Such moieties include, for example, ionically end-functionalized or randomly functionalized polyethers or polyols.
  • Preferred for the practice of the present invention are siloxanes having non-ionic moieties, ie, non-ionic siloxane surfactants.
  • the arrangement of the hydrophobic and hydrophilic portions of the structure of the siloxane surfactant may be diblock polymer (AB), triblock polymer (ABA) (where "B” represents the siloxane portion of the molecule), or multiblock It may be in the form of a polymer.
  • the siloxane surfactant may comprise a graft polymer.
  • Siloxane surfactants are also disclosed in US Pat. No. 6,841,616.
  • siloxane-based anionic hydrocarbon surfactants examples include Lubrizol Advanced Materials, Inc. Of Noveon (registered trademark) Consumer Specialties available from SilSense TM PE-100 silicone include SilSense TM CA-1 silicone and the like.
  • the anionic hydrocarbon surfactant also includes, for example, the sulfosuccinate surfactant Lankropol (registered trademark) K8300 of Akzo Nobel Surface Chemistry LLC.
  • sulfosuccinate hydrocarbon surfactants include sulfosuccinate diisodecyl Na salt (Clariant's Emulsogen® SB 10), sulfosuccinate diisotridecyl Na salt (Polirol® TR / LNA by Cesapinia Chemicals), etc.
  • hydrocarbon surfactants examples include Omnova Solutions, Inc. Of PolyFox (TM) surfactant (PolyFox TM PF-156A, PolyFox TM PF-136A , etc.) may be mentioned.
  • TM PolyFox
  • R 1a is a linear or branched alkyl group having 1 or more carbon atoms or a cyclic alkyl group having 3 or more carbon atoms
  • a hydrogen atom bonded to a carbon atom is a hydroxy group or an ester bond It may be substituted by a monovalent organic group, and may contain a carbonyl group when the carbon number is 2 or more, and may contain a monovalent or divalent heterocycle when the carbon number is 3 or more.
  • R 2a and R 3a are independently a single bond or a divalent linking group R 1a , R 2a and R 3a have a total of 5 or more carbon atoms in total A a is , -COOX a or -SO 3 X a
  • X a is H, a metal atom, NR 4a 4 , imidazolium which may have a substituent, pyridinium which may have a substituent, or a substituent a good phosphonium have
  • R 4a is H Is an organic group and may be the same or different.
  • Surfactant (a) Surfactant (a), and the following formula (b): (Wherein, R 1b is a linear or branched alkyl group having 1 or more carbon atoms which may have a substituent or a cyclic alkyl group having 3 or more carbons which may have
  • the surfactant (a) will be described.
  • R 1a is a linear or branched alkyl group having 1 or more carbon atoms or a cyclic alkyl group having 3 or more carbon atoms.
  • the alkyl group may contain a monovalent or divalent heterocyclic ring, or may have a ring.
  • the hetero ring is preferably an unsaturated hetero ring, more preferably an oxygen-containing unsaturated hetero ring, and examples thereof include a furan ring and the like.
  • the “carbon number” of the alkyl group includes the number of carbon atoms constituting the carbonyl group and the number of carbon atoms constituting the heterocyclic ring.
  • the group represented by CH 3 -C ( O)-has 2 carbon atoms.
  • a hydrogen atom bonded to a carbon atom may be substituted by a functional group, and for example, it may be substituted by a hydroxy group (—OH) or a monovalent organic group containing an ester bond, It is preferred not to be substituted by any functional group.
  • halogen atoms 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less may be substituted by halogen atoms
  • it is preferable that it is a non-halogenated alkyl group which does not contain halogen atoms, such as a fluorine atom and a chlorine atom.
  • R 2a and R 3a are independently a single bond or a divalent linking group.
  • R 2a and R 3a are preferably independently a single bond or a linear or branched alkylene group having 1 or more carbon atoms or a cyclic alkylene group having 3 or more carbon atoms. It is preferable that the said alkylene group which comprises R2a and R3a does not contain a carbonyl group.
  • a hydrogen atom bonded to a carbon atom may be substituted by a functional group, and may be substituted by, for example, a hydroxy group (—OH) or a monovalent organic group containing an ester bond, It is preferred not to be substituted by any functional group.
  • halogen atoms 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less may be substituted by halogen atoms
  • it is preferable that it is a non-halogenated alkylene group which does not contain a halogen atom such as a fluorine atom or a chlorine atom.
  • R 1a , R 2a and R 3a have a total carbon number of 5 or more.
  • the total carbon number is preferably 7 or more, more preferably 9 or more, preferably 20 or less, more preferably 18 or less, and still more preferably 15 or less. Any two R 1a , R 2a and R 3a may be bonded to each other to form a ring.
  • a a is -COOX a or -SO 3 X a
  • X a is H, metal atom, NR 4a 4 , imidazolium which may have a substituent
  • substituent And R 4a is H or an organic group, which may be the same or different).
  • R 4a H or an organic group having 1 to 10 carbon atoms is preferable, and H or an organic group having 1 to 4 carbon atoms is more preferable.
  • the metal atom include alkali metals (group 1), alkaline earth metals (group 2) and the like, with Na, K or Li being preferred.
  • H an alkali metal (group 1), an alkaline earth metal (group 2) or NR 4a 4 is preferable, and H, Na, K, Li or NH 4 is more preferable because it is easily soluble in water. Further since the easily soluble in water, Na, K or NH 4 are more preferred, particularly preferably Na or NH 4 is, since removal is easy, NH 4 being the most preferred.
  • X a is NH 4
  • the solubility of the surfactant in an aqueous medium is excellent, and metal components are less likely to remain in PTFE or in the final product.
  • R 1a a linear or branched alkyl group having 1 to 8 carbon atoms which does not contain a carbonyl group, a cyclic alkyl group having 3 to 8 carbon atoms which does not contain a carbonyl group, or 1 to 10 carbonyl groups And a linear or branched alkyl group having 2 to 45 carbon atoms, a cyclic alkyl group having 3 to 45 carbon atoms including a carbonyl group, or a monovalent or divalent complex having 3 to 45 carbon atoms. Alkyl groups containing a ring are preferred.
  • R 1a the following formula: (Wherein, n 11a is an integer of 0 to 10, R 11a is a linear or branched alkyl group having 1 to 5 carbon atoms, or a cyclic alkyl group having 3 to 5 carbon atoms, R 12a Is an alkylene group having a carbon number of 0 to 3. When n 11a is an integer of 2 to 10, each of R 12a may be the same or different) is more preferable.
  • n 11a an integer of 0 to 5 is preferable, an integer of 0 to 3 is more preferable, and an integer of 1 to 3 is still more preferable.
  • the above alkyl group as R 11a preferably contains no carbonyl group.
  • a hydrogen atom bonded to a carbon atom may be substituted by a functional group, and for example, it may be substituted by a hydroxy group (—OH) or a monovalent organic group containing an ester bond although it is preferable, it is not substituted by any functional group.
  • alkyl group as R 11a 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less are halogens Although it may be substituted by an atom, it is preferable that it is a non-halogenated alkyl group which does not contain a halogen atom such as a fluorine atom or a chlorine atom.
  • R 12a is an alkylene group having 0 to 3 carbon atoms.
  • the carbon number is preferably 1 to 3.
  • the above-mentioned alkylene group as R 12a may be linear or branched.
  • the alkylene group represented by R 12a preferably does not contain a carbonyl group.
  • the R 12a, an ethylene group (-C 2 H 4 -) or propylene group (-C 3 H 6 -) is more preferred.
  • a hydrogen atom bonded to a carbon atom may be substituted by a functional group, and for example, it may be substituted by a hydroxy group (—OH) or a monovalent organic group containing an ester bond Although it is preferable, it is not substituted by any functional group.
  • alkylene group as R 12a 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less are halogens Although it may be substituted by an atom, it is preferable that it is a non-halogenated alkylene group which does not contain a halogen atom such as a fluorine atom or a chlorine atom.
  • R 2a and R 3a independently, an alkylene group having 1 or more carbon atoms which does not contain a carbonyl group is preferable, and an alkylene group having 1 to 3 carbon atoms which does not contain a carbonyl group is more preferable, and ethylene group (—C 2 H 4 -) or propylene group (-C 3 H 6 -) is more preferred.
  • R 1b is a linear or branched alkyl group having 1 or more carbon atoms which may have a substituent or a cyclic alkyl having 3 or more carbon atoms which may have a substituent It is a group.
  • the above alkyl group may contain a monovalent or divalent heterocyclic ring, or may have a ring.
  • the hetero ring is preferably an unsaturated hetero ring, more preferably an oxygen-containing unsaturated hetero ring, and examples thereof include a furan ring and the like.
  • a monovalent heterocycle may be located at the end of the alkyl group.
  • the “carbon number” of the above-mentioned alkyl group also includes the number of carbon atoms constituting the above-mentioned heterocycle.
  • the substituent which the above alkyl group as R 1b may have is a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, or a cyclic alkyl group having 3 to 10 carbon atoms, A hydroxy group is preferable, and a methyl group and an ethyl group are particularly preferable.
  • the alkyl group as R 1b is preferably free carbonyl group.
  • 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less may be substituted by halogen atoms
  • R 1b is preferably a linear or branched alkyl group having 1 to 10 carbon atoms which may have a substituent or a cyclic alkyl group having 3 to 10 carbons which may have a substituent.
  • a linear or branched alkyl group having 1 to 10 carbon atoms which does not contain a carbonyl group or a cyclic alkyl group having 3 to 10 carbon atoms which does not contain a carbonyl group is more preferable, and a carbon number having no substituent
  • a linear or branched alkyl group of 1 to 10 is more preferable, a linear or branched alkyl group of 1 to 3 carbon atoms having no substituent is still more preferable, and a methyl group (-CH is more preferable 3 ) or ethyl group (-C 2 H 5 ) is particularly preferred, and methyl group (-CH 3 ) is most preferred.
  • R 2b and R 4b are independently H or a substituent.
  • the plurality of R 2b and R 4b may be the same or different.
  • R 2b and R 4b is preferably a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a cyclic alkyl group having 3 to 10 carbon atoms, or a hydroxy group, and methyl Groups and ethyl groups are particularly preferred.
  • the said alkyl group as R2b and R4b does not contain a carbonyl group.
  • 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less may be substituted by halogen atoms
  • a linear or branched alkyl group having 1 to 10 carbon atoms which does not contain a carbonyl group or a cyclic alkyl group which has 3 to 10 carbon atoms which does not contain a carbonyl group Is preferable, and a linear or branched alkyl group having 1 to 10 carbon atoms which does not contain a carbonyl group is more preferable, and a linear or branched alkyl group having 1 to 3 carbon atoms having no substituent is preferable. Is more preferred, and methyl (-CH 3 ) or ethyl (-C 2 H 5 ) is particularly preferred.
  • R 2b and R 4b independently, H or a linear or branched alkyl group having 1 to 10 carbon atoms which does not contain a carbonyl group is preferable, and H or C having 1 to 3 carbon atoms having no substituent is preferable.
  • a linear or branched alkyl group is more preferable, H, a methyl group (-CH 3 ) or an ethyl group (-C 2 H 5 ) is still more preferable, and H is particularly preferable.
  • R 3b is an alkylene group having 1 to 10 carbon atoms which may have a substituent. When a plurality of R 3b are present, they may be the same or different.
  • the said alkylene group does not contain a carbonyl group.
  • 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less may be substituted by halogen atoms
  • a linear or branched alkylene group having 1 to 10 carbon atoms which may have a substituent or a cyclic alkylene group having 3 to 10 carbon atoms which may have a substituent is preferable.
  • a linear or branched alkylene group having 1 to 10 carbon atoms which does not contain a carbonyl group or a cyclic alkylene group having 3 to 10 carbon atoms which does not contain a carbonyl group is preferable, and a carbon number having no substituent is preferable.
  • R 1b , R 2b , R 3b and R 4b may combine with each other to form a ring.
  • n is an integer of 1 or more. As n, an integer of 1 to 40 is preferable, an integer of 1 to 30 is more preferable, and an integer of 5 to 25 is more preferable.
  • p and q are independently integers of 0 or more.
  • p an integer of 0 to 10 is preferable, and 0 or 1 is more preferable.
  • q an integer of 0 to 10 is preferable, and an integer of 0 to 5 is more preferable.
  • n, p and q are integers of 6 or more in total. More preferably, the sum of n, p and q is an integer of 8 or more. The sum of n, p and q is also preferably an integer of 60 or less, more preferably 50 or less, and still more preferably 40 or less.
  • a b is —SO 3 X b or —COOX b
  • X b is H, metal atom, NR 5b 4 , imidazolium which may have a substituent, has a substituent
  • R 5b is H or an organic group, which may be the same or different).
  • R 5b H or an organic group having 1 to 10 carbon atoms is preferable, and H or an organic group having 1 to 4 carbon atoms is more preferable.
  • the metal atom include alkali metals (group 1), alkaline earth metals (group 2) and the like, with Na, K or Li being preferred.
  • X b may be a metal atom or NR 5b 4 (R 5b is as described above).
  • H an alkali metal (group 1), an alkaline earth metal (group 2) or NR 5b 4 is preferable, and H, Na, K, Li or NH 4 is more preferable because it is easily dissolved in water. Further since the easily soluble in water, Na, K or NH 4 are more preferred, particularly preferably Na or NH 4 is, since removal is easy, NH 4 being the most preferred.
  • X b is NH 4
  • the solubility of the surfactant in an aqueous medium is excellent, and the metal component hardly remains in the fluoropolymer or in the final product.
  • L b is a single bond, -CO 2 -B- *, -OCO-B- *, -CONR 6b -B- *, -NR 6b CO -B- *, or -CO- (Except for the carbonyl group contained in -CO 2 -B-, -OCO-B-, -CONR 6b -B-, and -NR 6b CO-B-), and B is a single bond or a substituent
  • R 6b is an alkylene group having 1 to 10 carbon atoms which may be possessed, and R 6b is H or an alkyl group having 1 to 4 carbon atoms which may have a substituent.
  • the alkylene group more preferably has 1 to 5 carbon atoms.
  • R 6b is more preferably H or methyl. * Indicates the side to be bonded to -A b in the formula.
  • L b is preferably a single bond.
  • the surfactant preferably has an integral value of 10% or more of the total peak intensity observed in the region of a chemical shift of 2.0 to 5.0 ppm in the 1 H-NMR spectrum.
  • the surfactant preferably has an integral value of all peak intensities observed in the region of a chemical shift of 2.0 to 5.0 ppm in the 1 H-NMR spectrum within the above range.
  • the surfactant preferably has a ketone structure in the molecule.
  • the integral value is more preferably 15 or more, preferably 95 or less, more preferably 80 or less, and still more preferably 70 or less.
  • the integrated value is measured at room temperature with a heavy water solvent. Make heavy water 4.79 ppm.
  • the surfactant (a) is a novel compound and can be produced, for example, by the production method exemplified below.
  • Surfactant (a) has the formula: (Wherein, R 3a is as described above and E a is a leaving group), lithium, and a compound of the formula: R 201a 3 Si—Cl (wherein R 201a is Independently, it is made to react with the chlorosilane compound shown by the alkyl group or the aryl group.
  • R 1a contains a furan ring
  • the furan ring may be opened by acid and converted to a dicarbonyl derivative.
  • the acid include acetic acid, hydrochloric acid, p-toluenesulfone and the like. The same applies to other manufacturing methods described later.
  • E a represents a leaving group.
  • the leaving group include tert-butyldimethylsilyl (TBS) group, triethylsilyl (TES) group, triisopropylsilyl (TIPS) group, tert-butyldiphenylsilyl (TBDPS) group, benzyl (Bn) group and the like. Be The same applies to other manufacturing methods described later.
  • R 21a a single bond or a linear or branched alkylene group having 1 or more carbon atoms is preferable.
  • chlorosilane compound for example, Can be mentioned.
  • any of the reactions in step (11a) can be carried out in a solvent.
  • a solvent an organic solvent can be used, and an aprotic polar solvent can be mentioned, and specifically, an ether can be exemplified.
  • the reaction ratio of the compound (11a) to the above-mentioned olefin is preferably 1 to 2 of the above-mentioned olefin per 1 mol of the compound (11a) in consideration of the improvement of the yield and the reduction of waste. Mole quantities can be employed.
  • step (12a) can be carried out in a solvent in the presence of a thiazolium salt and a base.
  • thiazolium salt examples include 3-ethyl-5- (2-hydroxyethyl) -4-methylthiazolium bromide, 3-benzyl-5- (2-hydroxyethyl) -4-methylthiazolium chloride and the like.
  • Examples of the base include 1,8-diazabicyclo [5.4.0] -7-undecene, triethylamine and the like.
  • an organic solvent can be used, and an aprotic polar solvent can be mentioned, and specifically, an ether can be exemplified.
  • the elimination reaction of the leaving group in step (13a) can be carried out by using a fluoride ion or an acid.
  • a fluoride ion or an acid for example, a method using hydrofluoric acid, a method using an amine complex of hydrogen fluoride such as pyridine nHF or triethylamine nHF, cesium fluoride potassium fluoride lithium fluoride lithium (LiBF 4 ), methods using inorganic salts such as ammonium fluoride, methods using organic salts such as tetrabutylammonium fluoride (TBAF), and the like.
  • the elimination reaction of the leaving group in step (13a) can be carried out in a polar solvent.
  • a polar solvent an organic solvent can be used, and an aprotic polar solvent can be mentioned, and specifically, an ether can be exemplified.
  • the oxidation in step (14a) can be carried out in a solvent in the presence of sodium chlorite.
  • alcohols such as methanol, ethanol, 1-propanol, isopropanol, 1-butanol, tert-butyl alcohol and the like, and water can be used.
  • Disodium hydrogen phosphate solution may be used as a buffer solution.
  • the compound (14a) may be brought into contact with an alkali to convert —COOH into a salt form.
  • alkali include sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia and the like.
  • an aqueous solution of ammonia can be used.
  • the solvent may be distilled off, distillation, purification or the like may be carried out to increase the purity of the obtained compound.
  • Surfactant (a) also has the formula: Wherein R 3a is as described above, R 22a is a monovalent organic group, and E a is a leaving group, and a ketone represented by the formula: (Wherein, R 1a is as described above, and R 23a is a monovalent organic group), which is reacted with a carboxylic acid ester represented by the formula: (Wherein R 1a , R 3a and E a are as described above and R 24a is a single bond or a divalent linking group) Step (21a) to obtain a compound (21a) represented by The leaving group of compound (21a) is eliminated to give a compound of the formula: (Wherein R 1a , R 24a and R 3a are as described above.) A step (22a) of obtaining a compound (22a) represented by The compound (22a) is oxidized to give a compound of the formula: (Wherein R 1a , R 24a and R 3a are as described above) Step (23a) of obtaining
  • R 22a a linear or branched alkyl group having 1 or more carbon atoms is preferable, and a methyl group is more preferable.
  • R 23a a linear or branched alkyl group having 1 or more carbon atoms is preferable, and a methyl group is more preferable.
  • R 24a a linear or branched alkylene group having 1 or more carbon atoms is preferable, and a methylene group (—CH 2 —) is more preferable.
  • step (21a) can be carried out in a solvent in the presence of a base.
  • Examples of the base include sodium amide, sodium hydride, sodium methoxide, sodium ethoxide and the like.
  • an organic solvent can be used, and an aprotic polar solvent can be mentioned, and specifically, an ether can be exemplified.
  • the elimination reaction of the leaving group in step (22a) can be carried out by using a fluoride ion or an acid.
  • a fluoride ion or an acid for example, a method using hydrofluoric acid, a method using an amine complex of hydrogen fluoride such as pyridine ⁇ nHF or triethylamine ⁇ nHF, cesium fluoride, potassium fluoride, lithium borofluoride (LiBF 4 ), methods using inorganic salts such as ammonium fluoride, methods using organic salts such as tetrabutylammonium fluoride (TBAF), and the like.
  • the elimination reaction of the leaving group in step (22a) can be carried out in a solvent.
  • a solvent an organic solvent can be used, and an aprotic polar solvent can be mentioned, and specifically, an ether can be exemplified.
  • the oxidation in step (23a) can be carried out in a solvent in the presence of sodium chlorite.
  • Alcohol and water can be used as the solvent.
  • Disodium hydrogen phosphate solution may be used as a buffer solution.
  • the compound (23a) may be brought into contact with an alkali to convert —COOH into a salt form.
  • alkali include sodium hydroxide, potassium hydroxide, lithium hydroxide and ammonia.
  • an aqueous solution of ammonia can be used.
  • the solvent may be distilled off, distillation, purification or the like may be carried out to increase the purity of the obtained compound.
  • Surfactant (a) is also the formula: Y a -R 3a -CH 2 -OE a (Wherein R 3a is as described above, Y a is a halogen atom, and E a is a leaving group), and an alkyl halide represented by the formula: (Wherein, R 1a is as described above), which is reacted with lithium acetylide to give a compound of the formula: (Wherein R 1a , R 3a and E a are as described above) Step (31a) of obtaining a compound (31a) represented by The compound (31a) is oxidized to give a compound of the formula: (Wherein R 1a , R 3a and E a are as described above) Step (32a) of obtaining a compound (32a) represented by The leaving group of compound (32a) is eliminated to give a compound of the formula: (Wherein R 1a and R 3a are as described above.) A step (33a) of obtaining a compound (33a
  • the lithium acetylide is 1 per mole of the alkyl halide in consideration of the improvement of the yield and the reduction of wastes. An amount of ⁇ 2 moles can be employed.
  • step (31a) can be carried out in a solvent.
  • Hexane is mentioned as said solvent.
  • the oxidation in the step (32a) can be carried out by [(Cn * ) Ru III (CF 3 CO 2 ) 3 ] .H 2 O (wherein Cn * is 1,4,7-trimethyl-1,4,7-triazabicyclo) It can be carried out in a nitrile solvent using the complex formed by adding sodium perchlorate after treatment of (nonane representing) with (NH 4 ) 2 Ce (NO 3 ) 6 and trifluoroacetic acid.
  • reaction product may be neutralized with an alkali, and an organic solvent such as ether may be used to extract the compound (32a).
  • the elimination reaction of the leaving group in the step (33a) can be carried out by using a fluoride ion or an acid.
  • a fluoride ion or an acid for example, a method using hydrofluoric acid, a method using an amine complex of hydrogen fluoride such as pyridine ⁇ nHF or triethylamine ⁇ nHF, cesium fluoride, potassium fluoride, lithium borofluoride (LiBF 4 ), methods using inorganic salts such as ammonium fluoride, methods using organic salts such as tetrabutylammonium fluoride (TBAF), and the like.
  • the elimination reaction of the leaving group in step (33a) can be carried out in a solvent.
  • a solvent an organic solvent can be used, and an aprotic polar solvent can be mentioned, and specifically, an ether can be exemplified.
  • the oxidation in step (34a) can be carried out in a solvent in the presence of sodium chlorite.
  • Alcohol and water can be used as the solvent.
  • Disodium hydrogen phosphate solution may be used as a buffer solution.
  • the compound (34a) may be brought into contact with an alkali to convert —COOH into a salt form.
  • alkali include sodium hydroxide, potassium hydroxide, lithium hydroxide and ammonia.
  • an aqueous solution of ammonia can be used.
  • the solvent may be distilled off, distillation, purification or the like may be carried out to increase the purity of the obtained compound.
  • Surfactant (a) also has the formula: And a divinyl ketone represented by the formula: Is reacted with 2-methyl furan represented by the formula: Obtaining a compound (51a) represented by: (51a), Compound (51a) and the formula: Is reacted with furan represented by the formula: Obtaining a compound (52a) represented by: (52a), By heating compound (52a) in the presence of acid, the formula: Obtaining a compound (53a) represented by the formula (53a), and The compound (53a) is oxidized to give a compound of the formula: Obtaining a compound (54a) represented by: (54a), Can be manufactured by a manufacturing method including
  • step (51a) as the reaction ratio of divinyl ketone and 2-methyl furan, in consideration of improvement in yield and reduction of waste, 0.5 of 2-methyl furan is used per 1 mol of divinyl ketone. An amount of ⁇ 1 mole can be adopted.
  • the reaction in step (51a) can be carried out in the presence of an acid.
  • the acid include acetic acid, hydrochloric acid, p-toluenesulfonic acid and the like.
  • the amount of the acid used in step (51a) can be 0.1 to 2 moles per mole of divinyl ketone, in consideration of the improvement of yield and the reduction of wastes.
  • the reaction in step (51a) can be carried out in a polar solvent.
  • the solvent include water and acetonitrile.
  • the reaction ratio of the compound (51a) to furan is an amount of 1 to 2 moles of furan to 1 mole of the compound (51a) in consideration of the improvement of the yield and the reduction of wastes. Can be adopted.
  • the reaction in the step (52a) can be carried out in the presence of an acid, and examples of the acid include acetic acid, hydrochloric acid, p-toluenesulfone and the like.
  • the amount of the acid used in the step (52a) can be 0.1 to 2 moles per mole of the compound (51a), in consideration of the improvement of the yield and the reduction of wastes.
  • the reaction in step (52a) can be carried out in a polar solvent.
  • Water is mentioned as the above-mentioned solvent.
  • the furan ring is opened by heating the compound (52a) in the presence of an acid.
  • hydrochloric acid and sulfuric acid can be used.
  • the reaction in step (53a) can be carried out in a polar solvent.
  • Water can be exemplified as the above-mentioned solvent.
  • the oxidation in step (54a) can be carried out in a solvent in the presence of sodium chlorite.
  • tert-butyl alcohol and water can be used as the above solvent.
  • Disodium hydrogen phosphate solution may be used as a buffer solution.
  • Compound (54a) may be brought into contact with an alkali to convert —COOH into a salt form.
  • alkali include sodium hydroxide, potassium hydroxide, lithium hydroxide and ammonia.
  • an aqueous solution of ammonia can be used.
  • the solvent may be distilled off, distillation, purification or the like may be carried out to increase the purity of the obtained compound.
  • Surfactant (a) also has the formula: (Wherein, R 1a is as described above, R 21a is a single bond or a divalent linking group), and an alkene represented by the formula: ( Wherein , Y 61a is an alkyl ester group) and reacted with an alkyne represented by the formula: (Wherein R 1a , R 21a and Y 61a are as described above.)
  • a step (61a) of obtaining a compound (61a) represented by An alkali is allowed to act on the compound (61a), and then an acid is allowed to act to give a compound of the formula: (Wherein R 1a and R 21a are as described above)
  • the reaction ratio between the alkene and the alkyne is 0.5 to 2 moles of the alkene with respect to 1 mole of the alkyne in consideration of the improvement of the yield and the reduction of wastes. You can use the quantity.
  • the reaction in step (61a) can be carried out in the presence of a metal catalyst.
  • a metal catalyst examples include ruthenium and the like.
  • the amount of the metal catalyst used in the step (61a) can be 0.01 to 0.4 mol per 1 mol of the alkene in consideration of the improvement of the yield and the reduction of wastes.
  • the reaction in step (61a) can be carried out in a polar solvent.
  • the solvent include water, acetonitrile, dimethylacetamide and dimethylformamide.
  • the reaction ratio of the compound (61a) to the alkali is 0.6 to 1 of the alkali per mole of the compound (61a) in consideration of the improvement of the yield and the reduction of wastes. An amount of 2 moles can be used.
  • the amount of the acid used in step (62a) can be 1.0 to 20.0 moles, relative to 1 mole of compound (61a), in consideration of the improvement of yield and the reduction of wastes.
  • the reaction in step (62a) can be carried out in a polar solvent.
  • Water is mentioned as the above-mentioned solvent.
  • Compound (62a) may be brought into contact with an alkali to convert —COOH into a salt form.
  • alkali include sodium hydroxide, potassium hydroxide, lithium hydroxide and ammonia.
  • an aqueous solution of ammonia can be used.
  • the solvent may be distilled off, distillation, purification or the like may be carried out to increase the purity of the obtained compound.
  • the surfactant (b) is a novel compound and can be produced, for example, by the production method exemplified below.
  • the surfactant (b) has the following formula: (Wherein, R 1b , R 2b and n are as described above) And a compound (10b) represented by the following formula: (Wherein, R 3b is as described above.
  • L b is a single bond, -CO 2 -B- *, -OCO-B- *, -CONR 6b -B- *, -NR 6b CO-B - *, or, -CO- (where, -CO 2 -B -, - OCO -B -, - CONR 6b -B -, -.
  • L b is a single bond, -CO 2 -B- *, -OCO-B- *, -CONR 6b -B- *, -NR 6b CO-B- *, or -CO- (provided that -CO 2 -B-, -OCO-B-, -CONR 6b -B-, -NR 6b CO-B- Group is excluded),
  • B is a single bond or an alkylene group having 1 to 10 carbon atoms which may have a substituent
  • R 6b is H or may have a substituent, carbon number It is an alkyl group of 1 to 4.
  • * represents a side to be bonded to -SO 3 X b in the formula, which can be produced by a production method including a step (11 b) of obtaining a compound (11 b) represented by
  • the reaction in step (11b) can be carried out in the presence of a base.
  • a base examples include sodium hydride, sodium hydroxide, potassium hydroxide, triethylamine and the like.
  • the above base can be used in an amount of 0.5 to 20 mol per 1 mol of compound (10b).
  • the reaction in step (11b) can be carried out in a solvent.
  • a solvent an organic solvent can be used, and an aprotic polar solvent can be mentioned, and specific examples include an ether, an aromatic compound, a nitrile, a halogenated hydrocarbon and the like.
  • Surfactant (b) also has the following formula: (Wherein, R 1b to R 4b , n, p and q are as described above.
  • L b is a single bond, -CO 2 -B- *, -OCO-B- *, -CONR 6b -B- *, -NR 6b CO-B- *, or -CO- (provided that -CO 2 -B-, -OCO-B-, -CONR 6b -B-, -NR 6b CO-B- Group is excluded),
  • B is a single bond or an alkylene group having 1 to 10 carbon atoms which may have a substituent, R 6b is H or may have a substituent, carbon number It is an alkyl group of 1 to 4.
  • L b is a single bond, -CO 2 -B- *, -OCO-B- *, -CONR 6b -B - *, - NR 6b CO -B- *, or, -CO- (where, -CO 2 -B -, - OCO -B -, - CONR 6b -B -, - NR 6b CO-B- in And B is a single bond or an alkylene group having 1 to 10 carbon atoms which may have a substituent, and R 6b may have H or a substituent. And an alkyl group having 1 to 4 carbon atoms, * indicates the side to be bonded to -COOX b in the formula) It can manufacture by the manufacturing method including the process (21b) which obtains the compound (21b) shown by these.
  • step (21b) can be carried out by reacting compound (20b) with a nitrosating agent.
  • nitrosating agent sodium nitrite, nitrosyl sulfuric acid, isoamyl nitrite and the like can be used.
  • the nitrosating agent can be used in an amount of 0.5 to 10 moles relative to 1 mole of the compound (20b).
  • the oxidation in step (21b) can be carried out in a solvent.
  • a solvent trifluoroacetic acid, acetonitrile and the like can be used.
  • R 11b -CH CH-Y 1b -OH
  • R 11b is H, a linear or branched alkyl group having 1 or more carbon atoms which may have a substituent, or a cyclic having 3 or more carbon atoms which may have a substituent
  • Y 1 b may be — (CR 2 b 2 ) n — or — (CR 2 b 2) n - (oR 3b) p - (CR 4b 2) q -L b -CH 2 - (R 2b ⁇ R 4b, n, p and q are as described above .
  • L b represents a single bond, -CO 2 -B- *, -OCO-B- *, -CONR 6b -B-
  • the alkyl group as R 11b is preferably free carbonyl group.
  • 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less are halogens
  • it may be substituted by an atom, it is preferable that it is a non-halogenated alkyl group which does not contain a halogen atom such as a fluorine atom or a chlorine atom. It is preferable that the said alkyl group does not have any substituent.
  • R 11b is H, a linear or branched alkyl group having 1 to 9 carbon atoms which may have a substituent, or a cyclic 3 to 9 carbon atoms which may have a substituent
  • An alkyl group is preferable, H, a linear or branched alkyl group having 1 to 9 carbon atoms which does not contain a carbonyl group, or a cyclic alkyl group having a carbon number of 3 to 9 which does not contain a carbonyl group is more preferable.
  • H a linear or branched alkyl group having 1 to 9 carbon atoms and more preferably having no substituent, H, from the methyl group (-CH 3) or ethyl (-C 2 H 5) further
  • H or methyl (-CH 3 ) is particularly preferred, H being most preferred.
  • the hydroxylation in the step (101b) may be carried out, for example, by a method of causing phthalocyanine iron (II) (Fe (Pc)) and sodium borohydride to act on compound (100b) in an oxygen atmosphere, or (2b) compound (2b)
  • the reaction can be carried out by a method in which 100 b ) is reacted with isopinocampheylborane (IpcBH 2 ) and then the resulting intermediate (dialkylborane) is oxidized.
  • the amount of phthalocyanine iron (II) may be a catalytic amount and can be used in an amount of 0.001 to 1.2 moles relative to 1 mole of the compound (100b).
  • sodium borohydride can be used in an amount of 0.5 to 20 moles relative to 1 mole of the compound (100b).
  • the reaction of method (1b) can be carried out in a solvent.
  • a solvent an organic solvent can be used, and specific examples include ethers, halogenated hydrocarbons, aromatic hydrocarbons, nitriles, nitrogen-containing polar organic compounds, and the like.
  • isopinocampheylborane can be used in an amount of 1.0 to 10.0 mol with respect to 1 mol of the compound (100 b).
  • the reaction of compound (100b) with isopinocampheylborane can be carried out in a solvent.
  • a solvent an organic solvent can be used, and specific examples include ethers, halogenated hydrocarbons, aromatic hydrocarbons and the like.
  • the pressure for the reaction of the compound (100b) with isopinocanfailborane can be 0 to 5.0 MPa.
  • the reaction time of the compound (100b) with isopinocanfailborane can be 0.1 to 72 hours.
  • the oxidation in the method (2b) can be carried out by reacting the above intermediate with an oxidizing agent.
  • Hydrogen peroxide is mentioned as said oxidizing agent.
  • the oxidizing agent can be used in an amount of 0.7 to 10 moles relative to 1 mole of the intermediate.
  • the oxidation in method (2b) can be carried out in a solvent.
  • the solvent include water, methanol, ethanol and the like.
  • a method of oxidizing the compound (101b) in the step (102b) for example, (a) a method using Jones reagent (CrO 3 / H 2 SO 4 ) (Jones oxidation), (b) Dess-Martin periodinane (b) DMP) (des-Martin oxidation), (c) pyridinium chlorochromate (PCC), (d) bleach in the presence of a nickel compound such as NiCl 2 (about 5 to 6% aqueous solution of NaOCl (E) A method of causing hydrogen acceptors such as aldehydes and ketones to act in the presence of an aluminum catalyst such as (e) Al (CH 3 ) 3 or Al [OCH (CH 3 ) 2 ] 3 (Openauer oxidation) Can be mentioned.
  • an aluminum catalyst such as (e) Al (CH 3 ) 3 or Al [OCH (CH 3 ) 2 ] 3 (Openauer oxidation) Can be mentioned.
  • the oxidation in step (102b) can be carried out in a solvent.
  • a solvent water and an organic solvent can be used. Specific examples thereof include water, ketones, ethers, halogenated hydrocarbons, aromatic hydrocarbons, nitriles and the like.
  • the compound (10b) and the compound (20b) also have the following formula: (Wherein, R 1b and Y 1b are as described above, and R 101b is an organic group), and the compound (200b) represented by the following formula: (Wherein, R 1b and Y 1b are as described above) can be produced by a production method including the step (201 b) of obtaining a compound (201 b) represented by the above.
  • R 101b an alkyl group having 1 to 20 carbon atoms is preferable.
  • Two R 101b may be the same or different.
  • the ozonolysis in the step (201b) can be carried out by subjecting the compound (200b) to ozone and post-treating with a reducing agent.
  • Ozone can be generated by silent discharge in oxygen gas.
  • the ozonolysis in step (201b) can be carried out in a solvent.
  • a solvent water and an organic solvent can be used, and water, alcohol, carboxylic acids, ether, halogenated hydrocarbon, aromatic hydrocarbon and the like can be mentioned.
  • R 21b -CH CH-Y 1b -OH (wherein , Y 1b is as described above.
  • R 21b has H, a linear or branched alkyl group having one or more carbon atoms which may have a substituent, or a substituent) Or a cyclic alkyl group having 3 or more carbon atoms, and when the carbon number is 3 or more, the compound (300b) may be represented by a monovalent or divalent heterocyclic ring, or may be a ring.
  • Step (302b) of obtaining a compound (302b) represented by Compound (302b) is oxidized to give the following formula: (Wherein, R 21b , R 22b and Y 1b are as described above).
  • the compound (303b) can be produced by a production method including the step (303b).
  • the said alkyl group as R21b does not contain a carbonyl group.
  • 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less are halogens
  • it may be substituted by an atom, it is preferable that it is a non-halogenated alkyl group which does not contain a halogen atom such as a fluorine atom or a chlorine atom. It is preferable that the said alkyl group does not have any substituent.
  • R 21 b H, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, or a cyclic 3 to 8 carbon atoms which may have a substituent
  • An alkyl group is preferable, H, a linear or branched alkyl group having 1 to 8 carbon atoms which does not contain a carbonyl group, or a cyclic alkyl group having 3 to 8 carbon atoms which does not contain a carbonyl group is more preferable.
  • a linear or branched alkyl group having 1 to 8 carbon atoms which does not have a substituent is more preferable, H or methyl group (—CH 3 ) is particularly preferable, and H is most preferable.
  • the said alkyl group as R22b does not contain a carbonyl group.
  • 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less are halogens
  • it may be substituted by an atom, it is preferable that it is a non-halogenated alkyl group which does not contain a halogen atom such as a fluorine atom or a chlorine atom. It is preferable that the said alkyl group does not have any substituent.
  • a linear or branched alkyl group having 1 to 9 carbon atoms which may have a substituent or a cyclic alkyl group having 3 to 9 carbon atoms which may have a substituent
  • a linear or branched alkyl group having 1 to 9 carbon atoms is more preferable, a methyl group (-CH 3 ) or an ethyl group (-C 2 H 5 ) is particularly preferable, and a methyl group (-CH 3 ) is the most preferable. preferable.
  • Two R 22b may be the same or different.
  • the total number of carbon atoms in R 21b and R 22b is preferably 1 to 7, and more preferably 1 to 2.
  • the epoxidation in the step (301 b) can be carried out by reacting the compound (300 b) with an epoxidizing agent.
  • epoxidizing agent examples include metachloroperbenzoic acid (m-CPBA), perbenzoic acid, hydrogen peroxide, peroxy acids such as tert-butyl hydroperoxide, dimethyldioxirane, methyl trifluoromethyldioxirane and the like.
  • m-CPBA metachloroperbenzoic acid
  • perbenzoic acid hydrogen peroxide
  • peroxy acids such as tert-butyl hydroperoxide
  • dimethyldioxirane dimethyldioxirane
  • methyl trifluoromethyldioxirane methyl trifluoromethyldioxirane and the like.
  • the epoxidizing agent can be used in an amount of 0.5 to 10.0 moles with respect to 1 mole of the compound (300b).
  • the epoxidation in step (301b) can be carried out in a solvent.
  • a solvent an organic solvent can be used, and ketones, ethers, halogenated hydrocarbons, aromatic hydrocarbons, nitriles, pyridines, nitrogen-containing polar organic compounds, dimethyl sulfoxide and the like can be mentioned.
  • the dialkyl copper lithium can be used in an amount of 0.5 to 10.0 moles with respect to 1 mole of the compound (301b).
  • the reaction of step (302b) can be carried out in a solvent.
  • a solvent an organic solvent can be used, and ethers, halogenated hydrocarbons, aromatic hydrocarbons and the like can be mentioned.
  • a method for oxidizing the compound (302b) in the step (303b) for example, (a) a method using Jones reagent (CrO 3 / H 2 SO 4 ) (Jones oxidation), (b) DMP) (des-Martin oxidation), (c) pyridinium chlorochromate (PCC), (d) bleach in the presence of a nickel compound such as NiCl 2 (E)
  • a method of causing hydrogen acceptors such as aldehydes and ketones to act in the presence of an aluminum catalyst such as (e) Al (CH 3 ) 3 or Al [OCH (CH 3 ) 2 ] 3 Can be mentioned.
  • the oxidation in step (303b) can be carried out in a solvent.
  • a solvent water and an organic solvent can be used, and water, ketone, alcohol, ether, halogenated hydrocarbon, aromatic hydrocarbon, nitrile and the like can be mentioned.
  • the compound (100b) represented by the following formula: (Wherein, R 11 b and Y 1 b are as described above) can be produced by a production method including the step (401 b ) of obtaining a compound (401 b) represented by the above.
  • the oxidation in step (401b) can be carried out by reacting compound (100b) with an oxidizing agent in the presence of water and a palladium compound.
  • oxidizing agent examples include monovalent or divalent copper salts such as copper chloride, copper acetate, copper cyanide, copper trifluoromethanethiol, iron chloride, iron acetate, iron cyanide, iron trifluoromethanethiol, hexacyanoiron, etc.
  • Benzoquinones such as iron salt, 1,4-benzoquinone, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, tetrachloro-1,2-benzoquinone, tetrachloro-1,4-benzoquinone H 2 O 2 , MnO 2 , KMnO 4 , RuO 4 , m-chloroperbenzoic acid, oxygen and the like.
  • the oxidizing agent can be used in an amount of 0.001 to 10 moles relative to 1 mole of the compound (100b).
  • the water can be used in an amount of 0.5 to 1000 mol per 1 mol of the compound (100 b).
  • Examples of the palladium compound include palladium dichloride.
  • the amount of the palladium compound may be a catalytic amount, and can be used in an amount of 0.0001 to 1.0 mol with respect to 1 mol of the compound (100 b).
  • the oxidation in step (401b) can be carried out in a solvent.
  • the solvent include water, esters, aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, carboxylic acids, ethers, halogenated hydrocarbons, nitrogen-containing polar organic compounds, nitriles, dimethyl sulfoxide, and sulfolanes.
  • L b is a single bond, -CO 2 -B- *, -OCO-B- *,- CONR 6b -B- *, -NR 6b CO-B- *, or -CO- (however, -CO 2 -B-, -OCO-B-, -CONR 6b -B-, -NR 6b CO-B And B is a single bond or an alkylene group having 1 to 10 carbon atoms which may have a substituent, and R 6b has H or a substituent Is an alkyl group having 1 to 4 carbon atoms, and * indicates the side to be bonded to -COOX b in the formula) by oxidizing the compound (30b) shown by the following formula: (R 2b ⁇ R 4b, R 11b, n, p, q and X b, as described above .L b represents a single bond, -CO 2 -B - *, - OCO-B - *, - CONR
  • the oxidation in the step (31b) can be carried out by reacting the compound (30b) with an oxidizing agent in the presence of water and a palladium compound, and the same conditions as the oxidation in the step (401b) can be adopted.
  • the solvent may be distilled off, distillation, purification or the like may be carried out to increase the purity of the obtained compound.
  • the compound to be obtained is a compound in which X b is H such as -SO 3 H or -COOH, these groups can be converted to a salt form by contacting with an alkali such as sodium carbonate or ammonia.
  • High molecular weight PTFE can also be produced using the surfactant (a) or (b). That is, the production method of the present invention using the above-mentioned surfactant surprisingly has the same molecular weight as the production method using the conventional fluorine-containing surfactant without using the conventional fluorine-containing surfactant Can be produced.
  • Low molecular weight PTFE can also be produced using the surfactant (a) or (b).
  • the low molecular weight PTFE may be produced by polymerization, or may be produced by lowering the molecular weight of high molecular weight PTFE obtained by the polymerization by a known method (thermal decomposition, radiation irradiation decomposition, etc.).
  • R 1a is a linear or branched alkyl group having 1 or more carbon atoms or a cyclic alkyl group having 3 or more carbon atoms, and a hydrogen atom bonded to a carbon atom is a hydroxy group or an ester bond It may be substituted by a monovalent organic group, and may contain a carbonyl group when the carbon number is 2 or more, and may contain a monovalent or divalent heterocycle when the carbon number is 3 or more.
  • R 2a and R 3a are independently a single bond or a divalent linking group R 1a , R 2a and R 3a have a total of 6 or more carbon atoms in total, and X a is H, a metal atom, NR 4a 4 , imidazolium which may have a substituent, pyridinium which may have a substituent or phosphonium which may have a substituent, and R 4a is H Or organic groups, which may be the same or different .
  • R 1a, R 2a and R 3a is that attached to any 2 Tsugaotagai, may form a ring surfactant represented by) (a1), and the following formula (b1): (Wherein, R 1b is a linear or branched alkyl group having 1 or more carbon atoms which may have a substituent or a cyclic alkyl group having 3 or more carbons which may have a substituent) And when the carbon number is 3 or more, it may contain a monovalent or divalent heterocyclic ring or may be ring-wrapped R 2b and R 4b are independently H or a substituent R 3b is It is an alkylene group having 1 to 10 carbon atoms which may have a substituent, n is an integer of 1 or more, p and q are independently an integer of 0 or more, X b is H, A metal atom, NR 5b 4 , imidazolium which may have a substituent, pyridinium which may have a substituent or
  • the surfactant (a1) will be described.
  • R 1a in the formula (a1), as the R 2a and R 3a, R 1a in the formula (a), those exemplified as R 2a and R 3a may preferably used.
  • R 1a , R 2a and R 3a have a total carbon number of 6 or more.
  • the total carbon number is preferably 8 or more, more preferably 9 or more, still more preferably 10 or more, preferably 20 or less, more preferably 18 or less, and still more preferably 15 or less. Any two R 1a , R 2a and R 3a may be bonded to each other to form a ring.
  • R 1b, R 2b, as R 3b and R 4b, R 1b in formula (b), R 2b can be preferably employed those mentioned as R 3b and R 4b.
  • any two of R 1b , R 2b , R 3b and R 4b may be bonded to each other to form a ring, but preferably they do not form a ring.
  • n is an integer of 1 or more.
  • an integer of 1 to 40 is preferable, an integer of 1 to 30 is more preferable, an integer of 5 to 25 is more preferable, and an integer of 5 to 9 and 11 to 25 is particularly preferable.
  • p and q are independently an integer of 0 or more.
  • p an integer of 0 to 10 is preferable, and 0 or 1 is more preferable.
  • q an integer of 0 to 10 is preferable, and an integer of 0 to 5 is more preferable.
  • n, p and q are integers of 5 or more in total. More preferably, the sum of n, p and q is an integer of 8 or more. The sum of n, p and q is also preferably an integer of 60 or less, more preferably 50 or less, and still more preferably 40 or less.
  • surfactant (b) the following formula: (Wherein, L b , R 1b , R 2b , n and X b are as described above) are preferable.
  • the surfactant preferably has an integral value of 10% or more of the total peak intensity observed in the region of a chemical shift of 2.0 to 5.0 ppm in the 1 H-NMR spectrum.
  • the surfactant preferably has an integral value of all peak intensities observed in the region of a chemical shift of 2.0 to 5.0 ppm in the 1 H-NMR spectrum within the above range.
  • the surfactant preferably has a ketone structure in the molecule.
  • the integral value is more preferably 15 or more, preferably 95 or less, more preferably 80 or less, and still more preferably 70 or less.
  • the integrated value is measured at room temperature with a heavy water solvent. Make heavy water 4.79 ppm.
  • the surfactant (a1) is a novel compound and can be produced, for example, by the production method exemplified below.
  • the surfactant (a1) has the formula: (Wherein, R 3a is as described above and E a is a leaving group), lithium, and a compound of the formula: R 201a 3 Si—Cl (wherein R 201a is Independently, it is made to react with the chlorosilane compound shown by the alkyl group or the aryl group.
  • the above-mentioned sulfonic acid relative to 1 mol of the compound (13a) in consideration of the improvement of the yield and the reduction of waste.
  • the reaction in step (14a) can be carried out in the presence of a base.
  • a base examples include alkali metal hydroxides, alkaline earth metal hydroxides, amines and the like.
  • Examples of the above amine in the step (14a) include trimethylamine, triethylamine, tributylamine, N, N-dimethylaniline, dimethylbenzylamine, N, N, N ', N'-tetramethyl-1,8-naphthalenediamine and the like.
  • Aromatic amines such as pyridine, pyrrole, pyrrol, uracil, collidine and lutidine, 1,8-diaza-bicyclo [5.4.0] -7-undecene, 1,5-diaza-bicyclo [4.3. 0] 5-nonene and the like cyclic amines and the like.
  • the amount of the base used in the step (14a) can be 1 to 2 moles per mole of the compound (13a).
  • the reaction in step (14a) can be carried out in a polar solvent.
  • a polar solvent an organic solvent can be used, and an aprotic polar solvent can be mentioned, and specifically, an ether can be exemplified.
  • step (14a) When the reaction in step (14a) is carried out in a solvent, a solution containing compound (14a) is obtained after completion of the above reaction. After adding water to the above solution, the mixture is allowed to stand to be separated into two phases, the aqueous phase is recovered, and the solvent may be distilled off to recover the high purity compound (14a).
  • the compound (14a) has a group represented by -OSO 3 H (that is, when X is H), it is replaced by water and an alkaline aqueous solution such as an aqueous solution of sodium hydrogencarbonate or aqueous ammonia is used. It is also possible to convert -OSO 3 H to a sulfate base.
  • the solvent may be distilled off, distillation, purification or the like may be carried out to increase the purity of the obtained compound.
  • the surfactant (a1) also has the formula: Wherein R 3a is as described above, R 22a is a monovalent organic group, and E a is a leaving group, and a ketone represented by the formula: (Wherein, R 1a is as described above, and R 23a is a monovalent organic group), which is reacted with a carboxylic acid ester represented by the formula: (Wherein R 1a , R 3a and E a are as described above and R 24a is a single bond or a divalent linking group) Step (21a) to obtain a compound (21a) represented by The leaving group of compound (21a) is eliminated to give a compound of the formula: (Wherein R 1a , R 24a and R 3a are as described above.) A step (22a) of obtaining a compound (22a) represented by Compound (22a), and the formula: (Wherein, X a is as described above.) By reacting with a sulfonic acid sulfonic acid represented by the formula
  • the above-mentioned sulfonic acid relative to 1 mol of the compound (22a) in consideration of the improvement of the yield and the reduction of waste.
  • the reaction in step (23a) can be carried out in the presence of a base.
  • a base examples include alkali metal hydroxides, alkaline earth metal hydroxides, amines and the like.
  • the amount of the base used in the step (23a) can be 1 to 2 moles per 1 mole of the compound (22a), in consideration of the improvement of the yield and the reduction of wastes.
  • the reaction in step (23a) can be carried out in a polar solvent.
  • a polar solvent an organic solvent can be used, and an aprotic polar solvent can be mentioned, and specifically, an ether can be exemplified.
  • step (23a) When the reaction in step (23a) is carried out in a solvent, a solution containing compound (23a) is obtained after completion of the above reaction. After adding water to the above solution, the mixture is allowed to stand to be separated into two phases, the aqueous phase is recovered, and the solvent may be distilled off to recover the high purity compound (23a).
  • the compound (23a) has a group represented by -OSO 3 H (that is, when X is H), it is replaced by water and an alkaline aqueous solution such as aqueous sodium hydrogen carbonate solution or aqueous ammonia is used, It is also possible to convert -OSO 3 H to a sulfate base.
  • the solvent may be distilled off, distillation, purification or the like may be carried out to increase the purity of the obtained compound.
  • Surfactant (a1) is also the formula: Y a -R 3a -OE a (Wherein R 3a is as described above, Y a is a halogen atom, and E a is a leaving group), and an alkyl halide represented by the formula: (Wherein, R 1a is as described above), which is reacted with lithium acetylide to give a compound of the formula: (Wherein R 1a , R 3a and E a are as described above) Step (31a) of obtaining a compound (31a) represented by The compound (31a) is oxidized to give a compound of the formula: (Wherein R 1a , R 3a and E a are as described above) Step (32a) of obtaining a compound (32a) represented by The leaving group of compound (32a) is eliminated to give a compound of the formula: (Wherein R 1a and R 3a are as described above.) A step (33a) of obtaining a compound (33a) represented by Com
  • the reaction ratio of the compound (33a) to the above-mentioned sulfonic acid the above-mentioned sulfonic acid relative to 1 mol of the compound (33a) in consideration of the improvement of the yield and the reduction of waste.
  • the reaction in step (34a) can be carried out in the presence of a base.
  • a base examples include alkali metal hydroxides, alkaline earth metal hydroxides, amines and the like.
  • the amount of the base used in the step (34a) can be 1 to 2 moles per 1 mole of the compound (33a), in consideration of the improvement of the yield and the reduction of wastes.
  • the reaction in step (34a) can be carried out in a polar solvent.
  • a polar solvent an organic solvent can be used, and an aprotic polar solvent can be mentioned, and specifically, an ether can be exemplified.
  • step (34a) When the reaction in step (34a) is carried out in a solvent, a solution containing compound (34a) is obtained after the reaction is completed. After adding water to the above solution, the mixture is allowed to stand to be separated into two phases, the aqueous phase is recovered, and the solvent may be distilled off to recover the high purity compound (34a).
  • the compound (34a) has a group represented by -OSO 3 H (that is, when X is H), it is replaced by water and an alkaline aqueous solution such as aqueous sodium hydrogen carbonate solution or aqueous ammonia is used, It is also possible to convert -OSO 3 H to a sulfate base.
  • the solvent may be distilled off, distillation, purification or the like may be carried out to increase the purity of the obtained compound.
  • the surfactant (a1) also has the formula: (Wherein, R 1a is as described above, R 21a is a single bond or a divalent linking group), and an alkene represented by the formula: ( Wherein , Y 51a is an alkoxyl group) and reacted with an alkyne represented by the formula: (Wherein, R 1a and R 21a are as described above) Obtaining a compound (41a) represented by the formula (41a), and Compound (41a) has the formula: (Wherein, X a is as described above.) By reacting with a sulfonic acid sulfonic acid represented by the formula: (Wherein, R 1a , R 21a and X a are as described above.) The compound (42a) can be produced by a production method including the step (42a).
  • the step (41a) is the same as the surfactant (a) described above.
  • the reaction ratio of the compound (41a) to the above-mentioned sulfonic acid the above-mentioned sulfonic acid relative to 1 mol of the compound (41a) in consideration of the improvement of the yield and the reduction of waste.
  • the reaction in step (42a) can be carried out in the presence of a base.
  • a base examples include alkali metal hydroxides, alkaline earth metal hydroxides, amines and the like.
  • step (42a) The above-mentioned amine in the step (42a) is the same as the above-mentioned step (14a).
  • the amount of the base used in the step (42a) can be 1 to 2 mol per 1 mol of the compound (41a), in consideration of the improvement of the yield and the reduction of wastes.
  • the reaction in step (42a) can be carried out in a polar solvent.
  • a polar solvent an organic solvent can be used, and an aprotic polar solvent can be mentioned, and specifically, an ether can be mentioned.
  • step (42a) When the reaction in step (42a) is carried out in a solvent, a solution containing compound (42a) is obtained after completion of the above reaction. After adding water to the above solution, the mixture is allowed to stand to be separated into two phases, the aqueous phase is recovered, and the solvent may be distilled off to recover the high purity compound (42a).
  • the compound (42a) has a group represented by -OSO 3 H (that is, when X is H), it is replaced by water and an alkaline aqueous solution such as an aqueous solution of sodium hydrogencarbonate or aqueous ammonia is used. It is also possible to convert -OSO 3 H to a sulfate base.
  • the solvent may be distilled off, distillation, purification or the like may be carried out to increase the purity of the obtained compound.
  • the surfactant (b1) is a novel compound and can be produced, for example, by the production method exemplified below.
  • R 11b is H, a linear or branched alkyl group having 1 or more carbon atoms which may have a substituent) Or a cyclic alkyl group having 3 or more carbon atoms which may have a substituent, and in the case of 3 or more carbon atoms, it may contain a monovalent or divalent heterocyclic ring or may have a ring.
  • L b is a single bond, -CO 2 -B- *, -OCO-B- *, -CONR 6b -B- *, -NR 6b CO-B- *, or -CO- (wherein -CO 2- Except for the carbonyl group contained in -B-, -OCO-B-, -CONR 6b -B-, -NR 6b CO-B-), and B is a carbon which may have a single bond or a substituent R 6b is an alkylene group of 1 to 10, and R 6b is H or an alkyl group having 1 to 4 carbon atoms which may have a substituent * Refers to the side bonded to -OH in the formula.)
  • the compound (10b) represented by) is hydroxylated to give the following formula: (Wherein L b , R 2b to R 4b , R 11b , n, p and q are as defined above) Step (11 b) to obtain a compound (11 b) represented
  • R 11 b the same one as R 11 b in the above-described surfactant (b) can be suitably adopted.
  • the hydroxylation in step (11b) can adopt the same method as the hydroxylation in step (100b) described above.
  • the step (12b) can be performed in the same manner as the step (102b) in the surfactant (b) described above.
  • the sulfuric acid esterification in step (13b) can be carried out by reacting compound (12b) with a sulfation reagent.
  • the above-mentioned sulfation reagent includes sulfur trioxide pyridine complex, sulfur trioxide trimethylamine complex, sulfur trioxide amine complex such as sulfur trioxide triethylamine complex, sulfur trioxide amide complex such as sulfur trioxide dimethylformamide complex, sulfuric acid-dicyclohexylcarbodiimide And chlorosulfuric acid, concentrated sulfuric acid, sulfamic acid and the like.
  • the amount of the above-mentioned sulfating reagent used can be 0.5 to 10 moles, per 1 mole of the compound (12b).
  • the sulfuric acid esterification in step (13b) can be carried out in a solvent.
  • a solvent an organic solvent can be used, and ethers, halogenated hydrocarbons, aromatic hydrocarbons, pyridine, dimethyl sulfoxide, sulfolane, nitrile and the like can be mentioned.
  • the surfactant (b1) also has the following formula: (Wherein, L b , R 1b to R 4b , n, p and q are as described above.
  • R 101 b is an organic group.)
  • a step (21 b) of obtaining a compound (21 b) represented by The compound (21b) is sulfated to give a compound of the following formula: (Wherein, L b , R 1b to R 4b , n, p, q and X b are as described above.)
  • the compound (22 b) can be produced by a production method including the step (22 b).
  • R 101b an alkyl group having 1 to 20 carbon atoms is preferable.
  • Two R 101b may be the same or different.
  • the same method as in the step (201b) can be adopted.
  • the sulfuric acid esterification in the step (22b) can be carried out by reacting the compound (21b) with a sulfation reagent, and the same conditions as the sulfuric acid esterification in the step (13b) can be adopted.
  • R 21 b is H, a linear or branched C 1 or more carbon atom which may have a substituent) Or a cyclic alkyl group having 3 or more carbon atoms which may have a substituent, and in the case where the carbon number is 3 or more, the ring may be wound even if it contains a monovalent or divalent heterocyclic ring
  • the compound (30b) represented by the following formula) may be epoxidized to give a compound of the following formula: (31b) obtaining a compound (31b) represented by (wherein L b , R 2b to R 4b , R 21b , n, p and q are as described above); Compound (31b) and R 22b 2 CuLi (R 22b is a linear or branched alkyl group having 1 or more carbon atoms which may have a substituent or a carbon number of 3 which may have a substituent
  • R 21b and R 22b which is the same as R 21b and R 22b in the above-described surfactant (b).
  • the step (31b), the step (32b) and the step (33b) can be performed in the same manner as the step (301b), the step (302b) and the step (303b) described above.
  • the sulfuric acid esterification in the step (34b) can be carried out by reacting the compound (33b) with a sulfation reagent, and the same conditions as the sulfuric acid esterification in the step (13b) can be adopted.
  • a step of obtaining a compound (41b) represented by (41b) A step of obtaining a compound (41b) represented by (41b), and Compound (41b) is sulfated to give a compound of the following formula: (Wherein L b , R 2b to R 4b , R 11b , n, p, q and X b are as described above.)
  • Production by a production method comprising a step
  • the oxidation in the step (41b) can be carried out in the same manner as the step (401b) described above.
  • the sulfuric acid esterification in the step (42b) can be carried out by reacting the compound (41b) with a sulfation reagent, and the same conditions as the sulfuric acid esterification in the step (13b) can be adopted.
  • Step (52) to obtain a compound (52) represented by The compound (52) is oxidized to give the following formula: (Wherein L b , R 2b , R 3b , R 11b and n are as described above.)
  • Compound (53) is sulfated to give a compound of the following formula: (Wherein, L b , R 2b , R 3b , R 11b ,
  • halogenating agent used in the step (51) examples include N-bromosuccinimide, N-chlorosuccinimide and the like.
  • the halogenating agent can be used in an amount of 0.5 to 10.0 mol per 1 mol of compound (50).
  • step (51) can be carried out in the presence of phosphines such as triphenylphosphine.
  • phosphines such as triphenylphosphine.
  • the above phosphines can be used in an amount of 0.5 to 10.0 mol per 1 mol of compound (50).
  • the reaction of step (51) can be carried out in a solvent.
  • a solvent an organic solvent can be used, and specific examples include ethers, halogenated hydrocarbons, aromatic hydrocarbons and the like.
  • the above alkylene glycol can be used in an amount of 0.5 to 10.0 moles with respect to 1 mole of the compound (51).
  • the reaction of step (52) can be carried out in the presence of a base.
  • a base examples include sodium hydride, sodium hydroxide, potassium hydroxide and the like.
  • the above base can be used in an amount of 0.5 to 10.0 moles with respect to 1 mole of the compound (51).
  • the reaction of step (52) can be carried out in a solvent.
  • a solvent an organic solvent can be used, and a nitrogen-containing polar organic compound, an ether, a halogenated hydrocarbon, an aromatic hydrocarbon and the like can be mentioned.
  • the oxidation in step (53) can be carried out by reacting compound (52) with an oxidizing agent in the presence of water and a palladium compound, and the same conditions as the oxidation in step (41) can be adopted.
  • the sulfuric acid esterification in the step (54) can be carried out by reacting the compound (53) with a sulfation reagent, and the same conditions as the sulfuric acid esterification in the step (13) can be adopted.
  • the solvent may be distilled off, distillation, purification or the like may be carried out to increase the purity of the obtained compound.
  • -OSO 3 H ie, when X b is H
  • -OSO 3 H is sulfated by contacting with an alkali such as sodium carbonate or ammonia. Can be converted to
  • R 1c to R 5c represent H or a monovalent substituent, provided that at least one of R 1c and R 3c is a group represented by the general formula: —Y c —R 6c , R of 2c and R 5c, at least one of the general formula: a group represented by -X c -A c, or the general formula:.
  • X c is The same or different in each occurrence, a divalent linking group or a bond;
  • a c is the same or different in each occurrence, -COOM, -SO 3 M or -OSO 3 M (M is H, metal An atom, NR 7c 4 , imidazolium which may have a substituent, pyridinium which may have a substituent, phosphonium which may have a substituent, R 7c is H or an organic group);
  • R 6c is And, in each occurrence, the same or different, an alkyl group having 2 or more carbon atoms
  • R 1c to R 5c each represent H or a monovalent substituent, provided that at least one of R 1c and R 3c is a group represented by the general formula: -Y c -R 6c , R 2c And at least one of R 5c represents a group represented by the general formula: -XA, or a group represented by the general formula: -Y c -R 6c . Any two of R 1c to R 5c may be bonded to each other to form a ring.
  • the substituent which the above alkyl group as R 1c may have is a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, or a cyclic alkyl group having 3 to 10 carbon atoms, A hydroxy group is preferable, and a methyl group and an ethyl group are particularly preferable.
  • the above alkyl group as R 1c preferably contains no carbonyl group.
  • 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less may be substituted by halogen atoms
  • a linear or branched alkyl group having 1 to 10 carbon atoms which may have a substituent or a cyclic alkyl group having 3 to 10 carbons which may have a substituent is preferable
  • a linear or branched alkyl group having 1 to 10 carbon atoms which does not contain a carbonyl group or a cyclic alkyl group having 3 to 10 carbon atoms which does not contain a carbonyl group is more preferable, and a carbon number having no substituent
  • a linear or branched alkyl group of 1 to 10 is more preferable, a linear or branched alkyl group of 1 to 3 carbon atoms having no substituent is still more preferable, and a methyl group (-CH is more preferable 3 ) or ethyl group (-C 2 H 5 ) is particularly preferred, and methyl group (-CH 3 ) is most preferred.
  • a group represented by the general formula: -Y c -R 6c a group represented by the general formula: -X c -A c , -H, C 1- optionally having substituents
  • An alkyl group of 20, -NH 2 , -NHR 9c (R 9c is an organic group), -OH, -COOR 9c (R 9c is an organic group) or -OR 9c (R 9c is an organic group) is preferable.
  • the carbon number of the above alkyl group is preferably 1 to 10.
  • a C 1-10 alkyl group or a C 1-10 alkylcarbonyl group is preferable, and a C 1-4 alkyl group or a C 1-4 alkylcarbonyl group is more preferable.
  • X c is the same or different at each occurrence and represents a divalent linking group or a bond.
  • R 6c does not contain any of a carbonyl group, an ester group, an amido group and a sulfonyl group
  • X is a divalent having at least one selected from the group consisting of a carbonyl group, an ester group, an amido group and a sulfonyl group Is preferably a linking group of
  • a divalent linking group containing at least one bond selected from the group consisting of —, —CONR 8c — and —NR 8c CO—, a C 1-10 alkylene group, or a bond is preferable.
  • R 8c represents H or an organic group.
  • an organic group of H or C 1-10 is preferable, an organic group of H or C 1-4 is more preferable, and H is still more preferable.
  • a c is the same or different at each occurrence, -COOM, -SO 3 M or -OSO 3 M (M is H, a metal atom, NR 7c 4 , an imidazo optionally having substituent (s) And pyridinium which may have a substituent or phosphonium which may have a substituent, R 7c is H or an organic group, and four R 7c may be the same or different. Represent.
  • an organic group of H or C1-10 is preferable, and an organic group of H or C1-4 is more preferable.
  • the metal atom include alkali metals (group 1), alkaline earth metals (group 2) and the like, with Na, K or Li being preferred.
  • M is preferably H, a metal atom or NR 7c 4, more preferably H, an alkali metal (group 1), an alkaline earth metal (group 2) or NR 7c 4 , H, Na, K, Li or NH 4 Is more preferred, Na, K or NH 4 is even more preferred, Na or NH 4 is particularly preferred and NH 4 is most preferred.
  • R 8c represents H or an organic group.
  • Y c is preferably a divalent linking group selected from the group consisting of a bond, -O-, -COO-, -OCO-, -CONR 8c -and -NR 8c CO-, and a bond, -COO More preferred is a divalent linking group selected from the group consisting of-and -OCO-.
  • an organic group of H or C 1-10 is preferable, an organic group of H or C 1-4 is more preferable, and H is still more preferable.
  • R 6c is the same or different at each occurrence, and at least one selected from the group consisting of a carbonyl group, an ester group, an amide group and a sulfonyl group may contain at least 2 carbon atoms between carbon atoms Represents an alkyl group of
  • the number of carbon atoms of the organic group of R 6c is preferably 2 to 20, and more preferably 2 to 10.
  • the alkyl group of R 6c may contain one or more of at least one selected from the group consisting of a carbonyl group, an ester group, an amide group and a sulfonyl group between carbon and carbon atoms, but the terminal of the above alkyl group Does not contain these groups.
  • alkyl group of R 6c 75% or less of hydrogen atoms bonded to carbon atoms may be substituted by halogen atoms, 50% or less may be substituted by halogen atoms, and 25% or less are halogen atoms Although it may be substituted, it is preferable that it is a non-halogenated alkyl group which does not contain halogen atoms, such as a fluorine atom and a chlorine atom.
  • R 6c A group represented by the general formula: -R 10c -CO-R 11c , A group represented by the general formula: -R 10c -COO-R 11c , General formula: a group represented by -R 11c , A group represented by the general formula: -R 10c -NR 8c CO-R 11c , or A group represented by the general formula: -R 10c -CONR 8c -R 11c , (Wherein, R 8c represents H or an organic group, R 10c represents an alkylene group, and R 11c represents an alkyl group which may have a substituent). As R 6c , a group represented by the general formula: -R 10c -CO-R 11c is more preferable.
  • an organic group of H or C 1-10 is preferable, an organic group of H or C 1-4 is more preferable, and H is still more preferable.
  • the number of carbon atoms of the alkylene group R 10c is preferably 1 or more, more preferably 3 or more, preferably 20 or less, more preferably 12 or less, more preferably 10 or less, particularly preferably 8 or less.
  • the carbon number of the alkylene group of R 10c is preferably 1 to 20, more preferably 1 to 10, and still more preferably 3 to 10.
  • the carbon number of the alkyl group of R 11c may be 1 to 20, preferably 1 to 15, more preferably 1 to 12, still more preferably 1 to 10, still more preferably 1 to 8 and 1 to 6 Particularly preferably, 1 to 3 is still more preferred, 1 or 2 is particularly preferred, and 1 is most preferred.
  • the alkyl group of R 11c is preferably composed of only primary carbon, secondary carbon and tertiary carbon, and is particularly preferably composed of only primary carbon and secondary carbon. That is, R 11c is preferably a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and most preferably a methyl group.
  • the solid content of PTFE in a PTFE aqueous dispersion 1 g of a PTFE aqueous dispersion is dried in a blower drier at 150 ° C. for 60 minutes, and the mass of the heating residue relative to the mass of the aqueous dispersion (1 g) The value was expressed as a percentage.
  • the aqueous PTFE dispersion was diluted with water to a solid concentration of 0.15% by mass, and the transmittance of a 550 nm projection light per unit length of the obtained diluted latex and a transmission electron micrograph.
  • the measurement standard diameter is measured and the number-based length average particle diameter determined by the above is measured to create a calibration curve. Using this calibration curve, the average primary particle size of the PTFE particles in the aqueous PTFE dispersion was determined from the measured transmittance of the 550 nm projected light of each sample.
  • Standard specific gravity (SSG) Standard specific gravity (SSG) of PTFE was measured by a water displacement method described in ASTM D-792 using a PTFE molded sample produced in accordance with ASTM D4895-89.
  • Average particle diameter of PTFE powder The obtained PTFE powder was measured according to JIS K6891.
  • Color tone of PTFE powder The color tone (L *, Z) of PTFE powder is measured using a colorimetric color difference meter ZE-6000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.) (CIELAB color scale) according to JIS Z8781-4. did.
  • the method for producing a PTFE sample for measuring color tone (L *, Z) is as follows. 4.0 g of PTFE powder was weighed and charged in a cylindrical mold having an inner diameter of 28.6 mm and held at a pressure of 8.27 MPa for 1 minute to prepare a disc-shaped PTFE molded body (unfired) having a thickness of about 4 mm . After taking out the disc-like PTFE molded body (unfired) from the mold, it was left to stand at 25 ° C. for 24 hours. The color tone (L *, Z) (unfired) of the disk-like PTFE molded body (unfired) was measured using the above-mentioned apparatus.
  • the discoid PTFE molded body (unfired) was heat treated for 10 minutes in an electric furnace heated to 385 ° C., and then taken out of the electric furnace to obtain a discoid PTFE molded body (after firing).
  • the color tone (L *, Z) (after calcination) of the obtained disc-like PTFE molded body (after calcination) was measured using the above-mentioned apparatus.
  • Synthesis example 2 Add 35 g of deionized degassed water, 100 g of paraffin wax and 0.122 g of surfactant A to a 6 L stainless steel autoclave, seal the reactor, replace the system with nitrogen, and oxygen I removed it.
  • the reactor is heated to 70 ° C. and TFE is charged to the reactor to bring the reactor to 0.78 MPa.
  • As a polymerization initiator 0.070 g of ammonium persulfate (APS) was charged. Charge TFE so that the reaction pressure becomes constant at 0.78 MPa.
  • a total of 1.10 g of surfactant A was added nine times. When 425 g of TFE have been charged, the stirring is stopped and depressurization is carried out until the reactor is at atmospheric pressure.
  • the aqueous dispersion was removed from the reactor, and after cooling, the paraffin wax was separated to obtain a PTFE aqueous dispersion A.
  • the PTFE solid content concentration in the obtained PTFE aqueous dispersion B was 10.7% by mass.
  • the average primary particle diameter of the PTFE particles contained in the obtained PTFE aqueous dispersion B was 178 nm.
  • Comparative Example 1 Deionized water was added to the PTFE aqueous dispersion A obtained in Synthesis Example 2 to adjust the specific gravity (25 ° C.) to 1.030. 0.55 L of a PTFE aqueous dispersion adjusted for specific gravity was added to a 1-L glass coagulation tank having an anchor-type stirring blade and a baffle, and the temperature was controlled so that the internal temperature was 28 ° C. Immediately after adjustment, 1.3 g of nitric acid (10%) was added and stirring was started at a stirring speed of 600 rpm. After the start of the stirring, the aqueous dispersion passed through a slurry, and it was confirmed that a wet PTFE powder was formed, and the stirring was continued for another minute.
  • the wet PTFE powder is separated by filtration, and the wet PTFE powder and 0.55 L of deionized water are charged into the coagulation tank, adjusted to 25 ° C., and the operation of washing the polymer powder at a stirring speed of 600 rpm is repeated twice.
  • the wet PTFE powder was separated by filtration and dried in a hot air circulating drier at 150 ° C. for 18 hours to obtain PTFE powder.
  • the standard specific gravity of the obtained PTFE powder was measured and found to be 2.175.
  • the apparent density, average particle size and color tone (L *, Z) of the PTFE powder were measured. The results are shown in Table 1.
  • Example 1 Deionized water was added to the PTFE aqueous dispersion A obtained in Synthesis Example 2 to adjust the specific gravity (25 ° C.) to 1.030. 0.55 L of the PTFE aqueous dispersion after dilution was previously adjusted to 25 ° C., and then charged into a glass beaker having a depth of 18.5 cm and an inner diameter of 8.5 cm. The nozzle portion of the ultrasonic homogenizer UH-8-3C (manufactured by Ultrasonic Industry Co., Ltd.) is immersed in the diluted PTFE aqueous dispersion and subjected to ultrasonic treatment (300 W, 19 kHz) for 12 minutes, whereby a wet PTFE powder is formed. Was confirmed.
  • UH-8-3C manufactured by Ultrasonic Industry Co., Ltd.
  • the wet PTFE powder was filtered off from the coagulated drainage and then washed with 0.55 L of deionized water (stirring speed 600 rpm) using a 1 L glass vessel equipped with anchored stirring blades and baffles. This washing operation was repeated twice more, replacing the deionized water. After washing, the wet PTFE powder was separated by filtration and dried in a hot air circulating drier at 150 ° C. for 18 hours to obtain PTFE powder. The apparent density, average particle diameter, and color tone (L *, Z) of the PTFE powder were measured in the same manner as in Comparative Example 1. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

新規なポリテトラフルオロエチレン粉末の製造方法を提供する。ポリテトラフルオロエチレン粒子を含むポリテトラフルオロエチレン水性分散液に超音波を照射して、ポリテトラフルオロエチレン粒子を凝析させる工程を含むことを特徴とするポリテトラフルオロエチレン粉末の製造方法である。

Description

ポリテトラフルオロエチレン粉末の製造方法
本発明は、ポリテトラフルオロエチレン粉末の製造方法に関する。
ポリテトラフルオロエチレン〔PTFE〕は、その優れた性質から、さまざまな用途に用いられてきた。例えば、PTFEを電線、ケーブル、チューブ、フィルター等に成形する場合、PTFE粉末の形態等にしてからPTFEを成形する。
従来、ポリテトラフルオロエチレン(PTFE)水性分散液からPTFE粉末を得る場合、分散液に硝酸や炭酸アンモニウムのような凝析剤を加える凝析法が採用されている(例えば、特許文献1参照)。
ところで、特許文献2には、PTFE以外のガス拡散電極材料を水と混合しない有機溶媒に分散させ、その分散液にPTFEディスパージョンを添加し、超音波照射又は激しく攪拌、振とうすることによりPTFE微粒子を有機溶媒中の前記ガス拡散電極材料と混合、分散することを特徴とするガス拡散電極の反応層原料又はガス供給層原料の製造方法が記載されている。
特表2013-528663号公報 特開2001-11677号公報
本発明は、新規なポリテトラフルオロエチレン粉末の製造方法を提供することを目的とする。
本発明は、ポリテトラフルオロエチレン粒子を含むポリテトラフルオロエチレン水性分散液に超音波を照射して、ポリテトラフルオロエチレン粒子を凝析させる工程を含むことを特徴とするポリテトラフルオロエチレン粉末の製造方法である。
上記ポリテトラフルオロエチレン水性分散液は、炭化水素系界面活性剤の存在下に、水性媒体中でテトラフルオロエチレンの重合を行うことにより得られたものであることが好ましい。
本発明の製造方法は、新規なフルオロポリマー粉末の製造方法である。
本発明を具体的に説明する前に、本明細書で使用する「有機基」について説明する。
本明細書において、「有機基」は、1個以上の炭素原子を含有する基、又は有機化合物から1個の水素原子を除去して形成される基を意味する。
当該「有機基」の例は、
1個以上の置換基を有していてもよいアルキル基、
1個以上の置換基を有していてもよいアルケニル基、
1個以上の置換基を有していてもよいアルキニル基、
1個以上の置換基を有していてもよいシクロアルキル基、
1個以上の置換基を有していてもよいシクロアルケニル基、
1個以上の置換基を有していてもよいシクロアルカジエニル基、
1個以上の置換基を有していてもよいアリール基、
1個以上の置換基を有していてもよいアラルキル基、
1個以上の置換基を有していてもよい非芳香族複素環基、
1個以上の置換基を有していてもよいヘテロアリール基、
シアノ基、
ホルミル基、
RaO-、
RaCO-、
RaSO-、
RaCOO-、
RaNRaCO-、
RaCONRa-、
RaOCO-、
RaOSO-、及び、
RaNRbSO
(これらの式中、Raは、独立して、
1個以上の置換基を有していてもよいアルキル基、
1個以上の置換基を有していてもよいアルケニル基、
1個以上の置換基を有していてもよいアルキニル基、
1個以上の置換基を有していてもよいシクロアルキル基、
1個以上の置換基を有していてもよいシクロアルケニル基、
1個以上の置換基を有していてもよいシクロアルカジエニル基、
1個以上の置換基を有していてもよいアリール基、
1個以上の置換基を有していてもよいアラルキル基、
1個以上の置換基を有していてもよい非芳香族複素環基、又は
1個以上の置換基を有していてもよいヘテロアリール基、
Rbは、独立して、H又は1個以上の置換基を有していてもよいアルキル基である)
を包含する。
上記有機基としては、1個以上の置換基を有していてもよいアルキル基が好ましい。
以下に、本発明を具体的に説明する。
本発明のポリテトラフルオロエチレン粉末の製造方法は、ポリテトラフルオロエチレン(PTFE)粒子を含むPTFE水性分散液に超音波を照射して、PTFE粒子を凝析させる工程(以下「凝析工程」ともいう。)を含む。
上記PTFE粒子はPTFEからなる。
上記PTFEとしては、TFE単独重合体であっても、変性PTFEであってもよい。変性PTFEは、TFE単位とTFEと共重合可能な変性モノマーに基づく変性モノマー単位とを含む。
上記変性モノマーとしては、TFEとの共重合が可能なものであれば特に限定されず、例えば、ヘキサフルオロプロピレン〔HFP〕等のパーフルオロオレフィン;クロロトリフルオロエチレン〔CTFE〕等のクロロフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン〔VDF〕等の水素含有フルオロオレフィン;パーフルオロビニルエーテル;パーフルオロアルキルエチレン;エチレン;ニトリル基を有するフッ素含有ビニルエーテル等が挙げられる。また、用いる変性モノマーは1種であってもよいし、複数種であってもよい。
上記パーフルオロビニルエーテルとしては特に限定されず、例えば、下記一般式(X) 
CF=CF-ORf      (X) 
(式中、Rfは、パーフルオロ有機基を表す。)で表されるパーフルオロ不飽和化合物等が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
上記パーフルオロビニルエーテルとしては、例えば、上記一般式(X)において、Rfが炭素数1~10のパーフルオロアルキル基を表すものであるパーフルオロ(アルキルビニルエーテル)〔PAVE〕が挙げられる。上記パーフルオロアルキル基の炭素数は、好ましくは1~5である。
上記PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられるが、パーフルオロアルキル基がパーフルオロメチル基であるパーフルオロメチルビニルエーテル〔PMVE〕、パーフルオロアルキル基がパーフルオロプロピル基であるパーフルオロプロピルビニルエーテル〔PPVE〕が好ましい。
パーフルオロアルキルエチレンとしては特に限定されず、例えば、パーフルオロブチルエチレン(PFBE)、パーフルオロヘキシルエチレン(PFHE)、パーフルオロオクチルエチレン(PFOE)等が挙げられる。
上記変性PTFEにおける変性モノマーとしては、HFP、CTFE、VDF、PMVE、PPVE、PFBE、PFHE及びエチレンからなる群より選択される少なくとも1種であることが好ましい。
上記変性PTFEは、変性モノマー単位が0.0001~1質量%の範囲であることが好ましい。変性モノマー単位の下限としては、0.001質量%がより好ましく、0.01質量%が更に好ましい。変性モノマー単位の上限としては、0.5質量%がより好ましく、0.3質量%が更に好ましい。本明細書において、上記変性モノマー単位とは、変性PTFEの分子構造の一部分であって変性モノマーに由来する部分を意味し、全単量体単位とは、変性PTFEの分子構造における全ての単量体に由来する部分を意味する。
上記PTFEにおいて、分子量の指標として用いられる標準比重(SSG)、および溶融粘度(MV)は特に限定されない。 
上記PTFEは、非溶融加工性を有し、フィブリル化性を有する高分子量PTFEであってもよいし、溶融加工性を有し、フィブリル化性を有しない低分子量PTFEであってもよい。
上記非溶融加工性とは、ASTM D-1238に準拠して、結晶化融点より高い温度でメルトフローレートを測定できない性質を意味し、溶融加工性とは、結晶化融点より高い温度でメルトフローレートを測定できる性質を意味する。
フィブリル化性の有無は、高分子量PTFE粉末を成形する代表的な方法である「ペースト押出し」で判断できる。通常、ペースト押出しが可能であるのは、高分子量のPTFEがフィブリル化性を有するからである。ペースト押出しにより連続した押出物(押出ストランド)が得られない、あるいはペースト押出しで得られた未焼成の成形物に実質的な強度や伸びがない場合、例えば伸びが0%で引っ張ると切れるような場合はフィブリル化性がないとみなすことができる。
上記高分子量PTFEは、標準比重(SSG)が2.130~2.280であることが好ましい。上記標準比重は、ASTM D4895-89に準拠して成形されたサンプルを用い、ASTM D-792に準拠した水置換法により測定する。本発明において、「高分子量」とは、上記標準比重が上記の範囲内にあることを意味する。
上記低分子量PTFEは、380℃における溶融粘度が1×10~7×10Pa・sである。本発明において、「低分子量」とは、上記溶融粘度が上記の範囲内にあることを意味する。
上記高分子量PTFEは、上記低分子量PTFEよりも溶融粘度が極めて高く、その正確な溶融粘度を測定することは困難である。他方、上記低分子量PTFEの溶融粘度は測定可能であるが、上記低分子量PTFEからは、標準比重の測定に使用可能な成形品を得ることが難しく、その正確な標準比重を測定することが困難である。従って、本発明では、上記高分子量PTFEの分子量の指標として、標準比重を採用し、上記低分子量PTFEの分子量の指標として、溶融粘度を採用する。なお、上記高分子量PTFE及び上記低分子量PTFEのいずれについても、直接に分子量を特定できる測定方法は知られていない。
上記高分子量PTFEは、ピーク温度が333~347℃であることが好ましく、335~345℃であることがより好ましい。上記低分子量PTFEは、ピーク温度が322~333℃であることが好ましく、324~332℃であることがより好ましい。上記ピーク温度は、300℃以上の温度に加熱した履歴がないPTFEについて示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度である。
上記高分子量PTFEは、300℃以上の温度に加熱した履歴がないPTFEについて示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線において、333~347℃の範囲に少なくとも1つ以上の吸熱ピークが現れ、上記融解熱曲線から算出される290~350℃の融解熱量が62mJ/mg以上であることが好ましい。
上記PTFE粒子は、コアシェル構造を有していてもよい。例えば、粒子中に高分子量のPTFEのコアと、より低分子量のPTFEまたは変性のPTFEシェルとを含む変性PTFEが挙げられる。このような変性PTFEとしては、例えば、特表2005-527652号公報に記載されるPTFEが挙げられる。
上記コアシェル構造としては、次の構造をとり得る。
コア:TFE単独重合体      シェル:TFE単独重合体
コア:変性PTFE        シェル:TFE単独重合体
コア:変性PTFE        シェル:変性PTFE
コア:TFE単独重合体      シェル:変性PTFE
コア:低分子量PTFE      シェル:高分子量PTFE
コア:高分子量PTFE      シェル:低分子量PTFE
上記コアシェル構造を有するPTFE粒子において、コアの比率の下限は、好ましくは0.5質量%、より好ましくは1.0質量%、更に好ましくは3.0質量%、特に好ましくは5.0質量%、最も好ましくは10.0質量%である。コアの比率の上限は、好ましくは99.5質量%、より好ましくは99.0質量%、更に好ましくは97.0質量%、特に好ましくは95.0質量%、最も好ましくは90.0質量%である。
上記コアシェル構造を有するPTFE粒子において、シェルの比率の下限は、好ましくは0.5質量%、より好ましくは1.0質量%、更に好ましくは3.0質量%、特に好ましくは5.0質量%、最も好ましくは10.0質量%である。シェルの比率の上限は、好ましくは99.5質量%、より好ましくは99.0質量%、更に好ましくは97.0質量%、特に好ましくは95.0質量%、最も好ましくは90.0質量%である。
上記コアシェル構造を有するPTFE粒子において、上記コア又は上記シェルを2層以上の構成とすることもできる。例えば、変性PTFEのコア中心部と、TFE単独重合体のコア外層部と、変性PTFEのシェルとを有する3層構造を有するPTFE粒子であってよい。このような3層構造を有するPTFE粒子としては、例えば、国際公開第2006/054612号に記載されるPTFEが挙げられる。
本明細書において、PTFEを構成する各単量体の含有量は、NMR、FT-IR、元素分析、蛍光X線分析を単量体の種類によって適宜組み合わせることで算出できる。
上記PTFE水性分散液はPTFE粒子を含む。上記PTFE粒子の濃度は、通常、PTFE水性分散液の1~70質量%である。好ましくは8~60質量%であり、より好ましくは8~50質量%である。PTFE粒子の濃度の更により好ましい下限はPTFE水性分散液の10質量%であり、特に好ましい下限は15質量%であり、更により好ましい上限は40質量%であり、特に好ましい上限は35質量%である。
上記PTFE粒子の平均一次粒子径は、例えば、50~500nmである。平均一次粒子径の下限は、好ましくは100nm、より好ましくは150nmである。平均一次粒子径の上限は、好ましくは400nm、より好ましくは350nmであり、更に好ましくは300nmである。
上記平均一次粒子径は、PTFE粒子濃度を0.15質量%に調整した水性分散液の単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真における定方向径を測定して決定された平均一次粒子径との検量線を作成し、測定対象である水性分散液について、上記透過率を測定し、上記検量線をもとに決定できる。
上記PTFE水性分散液は、通常、水性媒体を含む。上記水性媒体は、水を含む液体であれば特に限定されず、水に加え、例えば、アルコール、エーテル、ケトン、パラフィンワックス等の有機溶媒を含むものであってもよい。
上記水性媒体は、水が50質量%以上であることが好ましく、80質量%以上がより好ましく、100質量%が最も好ましい。
上記PTFE水性分散液は、通常、界面活性剤を含む。上記界面活性剤は、含フッ素界面活性剤であってもよいし、炭化水素系界面活性剤であってもよい。炭化水素系界面活性剤は、フッ素原子を含まない界面活性剤である。
含フッ素界面活性剤及び炭化水素系界面活性剤としては特に限定されず、従来公知の界面活性剤を用いることができ、例えば、後述する含フッ素界面活性剤及び炭化水素系界面活性剤等が挙げられる。
上記PTFE水性分散液において界面活性剤の含有量は特に限定されないが、上記PTFE水性分散液100質量%に対して0.0001~10.0質量%であることが好ましい。0.0001質量%未満であると、分散安定性に劣る場合があり、10.0質量%を超えると、存在量に見合った分散効果がなく実用的でない。上記界面活性剤のより好ましい下限は0.001質量%であり、更に好ましい下限は0.01質量%であり、特に好ましい下限は0.07質量%である。より好ましい上限は8.5質量%であり、更に好ましい上限は1.0質量%であり、更により好ましい上限は0.90質量%であり、更に好ましい上限は0.46質量%であり、特に好ましい上限は0.32質量%である。
上記PTFE水性分散液は、従来公知の方法で得ることができる。
上記PTFE水性分散液としては、PTFE粒子以外に、溶融加工性フッ素樹脂を含むものを用いてもよく、例えば、PTFE粒子を含む水性分散液と溶融加工性フッ素樹脂粒子の水性分散液とを混合したものを用いてもよい。
上記溶融加工性フッ素樹脂としては、例えば、TFE/HFP共重合体〔FEP〕、TFE/PAVE共重合体〔PFA〕、エチレン/TFE共重合体〔ETFE〕、エチレン/TFE/HFP共重合体等が挙げられるが、中でもFEPが好ましい。
上記凝析工程における超音波の照射は、PTFE粒子を凝析させる観点で、20W以上の出力で行うことが好ましい。照射出力が低い場合、凝析時間が長くなり生産性に劣るおそれがある。また、凝析することができず目的とするPTFE粉末を得ることができないおそれがある。
上記照射出力は、100W以上の出力で行うことがより好ましく、200W以上が更に好ましい。出力の上限は特に限定されないが、例えば、3000W以下であってよく、1000W以下が好ましく、800W以下がより好ましい。
上記超音波の照射は、PTFE粒子を凝析させる観点で、15kHz以上の周波数で行うことが好ましい。上記周波数は、18kHz以上がより好ましい。周波数の上限は特に限定されないが、例えば、100kHz以下が好ましく、50kHz以下がより好ましく、40kHz以下が更に好ましい。
上記超音波の照射時間は特に限定されないが、例えば、60秒以上であることが好ましく、300秒以上であることがより好ましい。
超音波の照射時間はPTFE粒子を凝析させるのに十分な時間であればよく、生産性の観点から、20分以下であることが好ましい。
上記超音波の照射は、市販の超音波発生装置を用いて行うことができる。
上記超音波照射装置としては、市販の超音波発信装置(例えば、超音波ホモジナイザー)、超音波発信器、循環式超音波照射機、超音波振動子、超音波洗浄器などがあり、これらのものから適宜選択して用いることができる。また、前記水性分散液に超音波を照射する方法は、PTFE水性分散液が凝集する条件であれば、特に制限なく、従来公知の方法を採用することができる。
超音波を照射する具体的な方法としては、例えば、超音波ホモジナイザーのノズル部分をPTFE水性分散液に浸して行う方法や、PTFE水性分散液を導入した容器に投げ込み式の超音波振動子を浸して照射する方法、予め水性媒体などを仕込んだ超音波洗浄器にPTFE水性分散液が入った容器を導入し照射する方法、槽型に製作された超音波洗浄器や超音波発信器にPTFE分散液を導入し照射する方法等が挙げられる。
上記凝析工程は、水性分散液の温度を0~80℃に調整した上で超音波を照射することが好ましい。水性分散液の温度の下限は10℃がより好ましく、20℃が更に好ましい。水性分散液の温度の上限は50℃がより好ましく、40℃が更に好ましい。
また、必要に応じてpHを調整してもよい。例えば、超音波を照射する前に炭酸アンモニウムや硝酸などを適宜加える方法等が挙げられる。
水性分散液の比重を1.03~1.20に調整することが好ましい。水性分散液の比重の上限は1.10がより好ましく、1.08が更に好ましい。
上記凝析工程により生じる排水中の未凝集の上記TFE重合体濃度は、生産性の観点から低いことが好ましく、0.4質量%未満がより好ましく、0.3質量%未満が更に好ましい。
上記凝析工程によりPTFE水性分散液中のPTFE粒子が凝析し、湿潤PTFE粉末が生成する。
本発明の製造方法は、更に、凝析工程で得られた湿潤PTFE粉末を含む凝析後分散液から、湿潤PTFE粉末を単離する工程を含んでもよい。
また、単離した湿潤PTFE粉末を乾燥する工程を含んでもよい。
乾燥は、湿潤PTFE粉末をあまり流動させない状態で、熱風などの加熱手段を用いて行うことが好ましい。乾燥温度は、ポリマーの融点より低い温度であればよいが、通常100~300℃の範囲が適している。上記乾燥は、120~250℃、好ましくは140~230℃の乾燥温度で行うことができる。上記乾燥は、減圧、真空、高周波と組み合わせてもよい。
乾燥時間は特に限定されず、乾燥後のPTFE粉末中の水分を含まなくなるまで行うことが好ましい。
本発明の製造方法で得られるPTFEは、色調L*が88以上であることが好ましく、90以上であることがより好ましい。
本発明の製造方法で得られるPTFEは、色調Zが80以上であることが好ましく、85以上であることがより好ましく、90以上であることが更に好ましい。
本発明の製造方法で得られるPTFEは、385℃で10分間焼成した後の色調L*が40以上であることが好ましく、45以上であることがより好ましい。
本発明の製造方法で得られるPTFEは、385℃で10分間焼成した後の色調Zが10以上であることが好ましく、15以上であることがより好ましい。
色調L*及びZを測定するためのサンプルは、4.0gのPTFEの粉末を、内径28.6mm、厚み約4mmの円盤状PTFE成形体に成形して得られる。
上記PTFEの色調L*及びZは、JIS Z8781-4に準拠して、測色色差計(CIELABカラースケール)を用いて測定する。
上記焼成は、385℃に加熱した電気炉内で10分間熱処理することで実施する。
本発明の製造方法で得られるPTFE粉末は、見掛密度が0.60g/ml以下であることが好ましく、0.55g/ml以下であることがより好ましく、0.52g/ml以下であることが更に好ましく、0.40g/ml以上であることが好ましく、0.45g/ml以上であることがより好ましく、0.47g/ml以上であることが更に好ましい。
上記見掛密度はJIS K6892に準拠して測定する値である。
本発明の製造方法で得られるPTFE粉末は、平均粒径が1000μm以下であることが好ましく、800μm以下であることがより好ましく、700μm以下であることが更に好ましく、300μm以上であることが好ましく、400μm以上であることがより好ましく、500μm以上であることが更に好ましい。
上記平均粒径は、JIS K6891に準拠して測定する値である。
本発明の製造方法は、超音波を照射することで凝析できるため簡便であり、必ずしも多量の凝析剤等を必要としないため、凝析剤等を除去する工程が必要でない点で有利である。
更に、通常、PTFE水性分散液には界面活性剤が含まれているため、得られるPTFE粉末に界面活性剤が残存する。本発明の製造方法では、残存する界面活性剤量が少ないPTFE粉末が得られる。
本発明の製造方法は、炭化水素系界面活性剤を用いて製造されたPTFE水性分散液からPTFE粉末を得る場合に特に有用である。
従来、乳化重合によりPTFEを製造する場合、含フッ素アニオン界面活性剤が使用されてきたが、最近では、含フッ素アニオン界面活性剤に代えて、炭化水素界面活性剤の使用も提案されている。
しかし、炭化水素系界面活性剤の存在下にTFEの重合を行うと、得られるポリテトラフルオロエチレン粉末が着色する傾向があり、改善の余地があった。
例えば、特表2015-516029号公報には、フッ素化ポリマー樹脂の熱誘起変色を低減させる方法であって、湿潤もしくは乾燥形態のフッ素化ポリマー樹脂を酸化剤に暴露させるステップを含む方法が記載されている。
本発明者等が鋭意検討したところ、PTFE水性分散液に超音波を照射して凝析させると、炭化水素系界面活性剤を用いて得られたPTFE水性分散液から得られるPTFE粉末の着色が低減されることが見出された。
すなわち、本発明の製造方法は、PTFE粒子を含むPTFE水性分散液に超音波を照射して、PTFE粒子を凝析させる工程を含み、前記ポリテトラフルオロエチレン水性分散液は、炭化水素系界面活性剤の存在下に、水性媒体中でテトラフルオロエチレンの重合を行うことにより得られたものであることが好ましい。
本発明のPTFE粉末の製造方法は、PTFE水性分散液が炭化水素系界面活性剤を用いて得られたものであったとしても、得られるPTFE粉末の着色を低減することができる。
上記PTFE水性分散液は、炭化水素系界面活性剤の存在下に、水性媒体中でテトラフルオロエチレンの重合を行う工程を含む方法により得ることができる。
すなわち、炭化水素系界面活性剤の存在下に、水性媒体中でテトラフルオロエチレンの重合を行う工程(以下「重合工程」ともいう)、及び、PTFE粒子を含むPTFE水性分散液に超音波を照射して、PTFE粒子を凝析させる工程を含むPTFE粉末の製造方法も本発明の一つである。
上記重合は、乳化重合であってよい。上記工程において、上記TFE、並びに、必要に応じて上述したTFEと共重合可能な変性モノマーを重合することにより、ポリテトラフルオロエチレンからなる粒子を含むPTFE水性分散液を得ることができる。
上記重合工程は、炭化水素系界面活性剤の存在下に行う。本発明において、炭化水素系界面活性剤としては、一般に知られているものを使用できる。例えば、特表2013-542308号公報、特表2013-542309号公報、特表2013-542310号公報に記載されているもの等を使用することができる。炭化水素系界面活性剤の詳細は後述する。
上記重合工程は、重合反応器に、水性媒体、上記界面活性剤、TFE及び必要に応じてTFEと共重合可能な変性モノマー、並びに、必要に応じて他の添加剤を仕込み、反応器の内容物を撹拌し、そして反応器を所定の重合温度に保持し、次に所定量の重合開始剤を加え、重合反応を開始することにより行うことができる。重合反応開始後に、目的に応じて、TFE等のモノマー、重合開始剤、連鎖移動剤及び上記界面活性剤等を追加添加してもよい。
上記重合において、通常、重合温度は、5~120℃であり、重合圧力は、0.05~10MPaGである。重合温度、重合圧力は、使用するモノマーの種類、目的とするPTFEの分子量、反応速度によって適宜決定される。
上記炭化水素系界面活性剤は、合計添加量で、水性媒体100質量%に対して0.0001~10質量%の量を添加することが好ましい。より好ましい下限は0.001質量%であり、更に好ましい下限は0.01質量%であり、特に好ましい下限は0.1質量%である。より好ましい上限は1.0質量%であり、更に好ましい上限は0.50質量%であり、特に好ましい上限は0.35質量%である。0.0001質量%未満であると、分散力が不充分となるおそれがあり、10質量%を超えると、添加量に見合った効果が得られず、却って重合速度の低下や反応停止が起こるおそれがある。上記炭化水素系界面活性剤の添加量は、使用するモノマーの種類、目的とするPTFEの分子量等によって適宜決定される。
上記重合工程では、炭化水素系界面活性剤を少なくとも1種用いればよい。例えば、後述する炭化水素系界面活性剤を2種以上同時に用いてもよいし、炭化水素系界面活性剤以外のその他の界面活性能を有する化合物を同時に使用してもよい。炭化水素系界面活性剤と含フッ素界面活性剤を併用することもできる。
本発明の製造方法において、炭化水素系界面活性剤とともに、ラジカル重合で反応可能な官能基と親水基とを有する変性モノマー(以下「変性モノマー(A)」と記載する。)を使用してもよい。上記変性モノマー(A)としては、少なくとも1つ以上のビニル基を含む界面活性能を有する化合物であればよい。
上記変性モノマー(A)における親水基としては、例えば、-NH、-POM、-OPOM、-SOM、-OSOM、-COOM(各式において、Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウム、Rは、H又は有機基であり、同一でも異なっていてもよい。いずれか2つがお互いに結合して、環を形成してもよい。)が挙げられる。上記親水基としては、なかでも、-SOM又は-COOMが好ましい。Rとしては、H又はC1-10の有機基が好ましく、H又はC1-4の有機基がより好ましく、H又はC1-4のアルキル基が更に好ましい。
上記金属原子としては、1、2価の金属原子が挙げられ、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、Na、K又はLiが好ましい。
上記変性モノマー(A)における「ラジカル重合で反応可能な官能基」としては、例えば、エチレン性不飽和結合を有する基が挙げられる。エチレン性不飽和結合を有する基は、下記式:
CX=CXR-
(式中、X、X及びXは、それぞれ独立して、F、Cl、H、CF、CFH、CFH、又は、CHであり;Rは連結基である。)で示すことができる。好ましくは-CH=CH、-CF=CH2、-CH=CF2、-CF=CF、-CH-CH=CH、-CF-CF=CH、-CF-CF=CF、-(C=O)-CH=CH、-(C=O)-CF=CH、-(C=O)-CH=CF、-(C=O)-CF=CF、-(C=O)-C(CH)=CH、-(C=O)-C(CF)=CH、-(C=O)-C(CH)=CF、-(C=O)-C(CF)=CF、-O-CH-CH=CH、-O-CF-CF=CH、-O-CH-CH=CF、-O-CF-CF=CF等の不飽和結合を有する基が挙げられる。
上記変性モノマー(A)としては、例えば、一般式(270a):
CF=CF-(CFn271a-Y271
(式中、n271aは、1~10の整数を表し、Y271は、-SO271又は-COOM271を表し、M271は、H、NH又はアルカリ金属を表す。)で表される界面活性剤、一般式(270b):
CF=CF-(CFC(CF)F)n271b-Y271
(式中、n271bは、1~5の整数を表し、Y271は、前記定義と同じ。)で表される界面活性剤、一般式(270c):
CF=CF-O-(CFX271n271c-Y271
(式中、X271は、F又はCFを表し、n271cは、1~10の整数を表し、Y271は、前記定義と同じ。)で表される界面活性剤、一般式(270d)
CF=CF-O-(CFCFX271O)n271d-CFCF-Y271
(式中、n271dは、1~10の整数を表し、Y271及びX271は、前記定義と同じ。)で表される界面活性剤、一般式:(270e)
CX272 =CFCF-O-(CF(CF)CFO)n271e-CF(CF)-Y271
(式中、各X272は、同一であり、F又はHを表す。n271eは、0又は1~10の整数を表し、Y271は、前記定義と同じ。)で表されるモノマー等が挙げられる。
上記重合開始剤としては、上記重合温度範囲でラジカルを発生しうるものであれば特に限定されず、公知の油溶性及び/又は水溶性の重合開始剤を使用することができる。更に、還元剤等と組み合わせてレドックスとして重合を開始することもできる。上記重合開始剤の濃度は、TFEと共重合可能な変性モノマーの種類、目的とするPTFEの分子量、反応速度によって適宜決定される。
上記重合開始剤としては、水溶性ラジカル重合開始剤を使用できる。
水溶性ラジカル重合開始剤としては、公知の水溶性過酸化物であってよく、水溶性無機過酸化物としては、たとえば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸などのアンモニウム塩、カリウム塩、ナトリウム塩などが挙げられる。水溶性有機過酸化物としては、たとえば、ジコハク酸パーオキサイド、ジグルタル酸パーオキサイド、t-ブチルパーマレエート、t-ブチルハイドロパーオキサイドなどが挙げられる。サルファイト類、亜硫酸塩類のような還元剤も併せて含んでもよく、その使用量は過酸化物に対して0.1~20倍であってよい。
重合開始剤として、酸化剤と還元剤を組み合わせるレドックス開始剤を用いるのも好ましい。酸化剤としては、過硫酸塩、有機過酸化物、過マンガン酸カリウム、三酢酸マンガン、セリウム硝酸アンモニウム等が挙げられる。還元剤としては、亜硫酸塩、重亜硫酸塩、臭素酸塩、ジイミン、シュウ酸等が挙げられる。過硫酸塩としては、過硫酸アンモニウム、過硫酸カリウムが挙げられる。亜硫酸塩としては、亜硫酸ナトリウム、亜硫酸アンモニウムが挙げられる。開始剤の分解速度を上げるため、レドックス開始剤の組み合わせには、銅塩、鉄塩を加えることも好ましい。銅塩としては、硫酸銅(II)、鉄塩としては硫酸鉄(II)が挙げられる。
上記レドックス開始剤としては、例えば、過マンガン酸カリウム/シュウ酸、過硫酸アンモニウム/重亜硫酸塩/硫酸鉄、過硫酸アンモニウム/亜硫酸塩/硫酸鉄、三酢酸マンガン/シュウ酸、セリウム硝酸アンモニウム/シュウ酸、臭素酸塩/亜硫酸塩、臭素酸塩/重亜硫酸塩等が挙げられ、過マンガン酸カリウム/シュウ酸が好ましい。レドックス開始剤を用いる場合は、酸化剤又は還元剤のいずれかをあらかじめ重合槽に仕込み、ついでもう一方を連続的又は断続的に加えて重合を開始させてもよい。例えば、過マンガン酸カリウム/シュウ酸を用いる場合、重合槽にシュウ酸を仕込み、そこへ過マンガン酸カリウムを連続的に添加することが好ましい。
重合開始剤の添加量は、特に限定はないが、重合速度が著しく低下しない程度の量(たとえば、数ppm対水濃度)以上を重合の初期に一括して、または逐次的に、または連続して添加すればよい。上限は、装置面から重合反応熱で除熱を行ないながら、反応温度を上昇させてもよい範囲であり、より好ましい上限は、装置面から重合反応熱を除熱できる範囲である。
上記水性媒体は、重合を行わせる反応媒体であって、上述したPTFE水性分散液に含まれてよい水性媒体を採用できる。
上記重合において、更に、目的に応じて、公知の連鎖移動剤、ラジカル捕捉剤、分解剤を添加し、重合速度、分子量の調整を行うこともできる。
上記連鎖移動剤としては、たとえばマロン酸ジメチル、マロン酸ジエチル、酢酸メチル、酢酸エチル、酢酸ブチル、コハク酸ジメチルなどのエステル類のほか、水素、イソペンタン、メタン、エタン、プロパン、メタノール、イソブタン、イソプロパノール、アセトン、各種メルカプタン、四塩化炭素などの各種ハロゲン化炭化水素、シクロヘキサンなどがあげられる。
上記連鎖移動剤の使用量は、目的とするポリマーの分子量、使用する連鎖移動剤の種類、使用する開始剤の種類と使用量などによって適宜選択できるが、通常、供給されるフルオロモノマー全量に対して、1~50,000ppmであり、好ましくは1~20,000ppmである。
上記連鎖移動剤は、重合開始前に一括して反応容器中に添加してもよいし、重合開始後に一括して添加してもよいし、重合中に複数回に分割して添加してもよいし、また、重合中に連続的に添加してもよい。
また、上記重合工程において、上記炭化水素系界面活性剤と、所望により用いるその他の界面活性能を有する化合物に加え、各化合物を安定化するため添加剤を使用することができる。上記添加剤としては、緩衝剤、pH調整剤、安定化助剤、分散安定剤などが挙げられる。
安定化助剤としては、パラフィンワックス、フッ素系オイル、フッ素系溶剤、シリコーンオイルなどが好ましい。安定化助剤は、1種単独で又は2種以上を組み合わせて用いてもよい。安定化助剤としては、パラフィンワックスがより好ましい。パラフィンワックスとしては、室温で液体でも、半固体でも、固体であってもよいが、炭素数12以上の飽和炭化水素が好ましい。パラフィンワックスの融点は、通常40~65℃が好ましく、50~65℃がより好ましい。
安定化助剤の使用量は、使用する水性媒体の質量基準で0.1~12質量%が好ましく、0.1~8質量%がより好ましい。安定化助剤は十分に疎水的で、TFEの乳化重合後にPTFE水性乳化液と完全に分離されて、コンタミ成分とならないことが望ましい。
上記重合工程は、上記炭化水素系界面活性剤の存在下に、水性媒体中でTFEを重合して、PTFE(A)粒子の水性分散液を製造する工程(I)、及び、(II)上記PTFE(A)粒子の水性分散液中で、上記TFEをPTFE(A)粒子にシード重合するものであってもよい。
上記重合工程により得られるPTFE水性分散液は、通常、炭化水素系界面活性剤を含む。上記PTFE水性分散液において炭化水素系界面活性剤の含有量は特に限定されないが、上記PTFE水性分散液100質量%に対して0.0001~10.0質量%であることが好ましい。0.0001質量%未満であると、分散安定性に劣る場合があり、10.0質量%を超えると、存在量に見合った分散効果がなく実用的でない。上記界面活性剤のより好ましい下限は0.001質量%であり、更に好ましい下限は0.01質量%であり、特に好ましい下限は0.07質量%である。より好ましい上限は8.5質量%であり、更に好ましい上限は1.0質量%であり、更により好ましい上限は0.90質量%であり、殊更に好ましい上限は0.46質量%であり、特に好ましい上限は0.32質量%である。
上記重合工程の後で凝析工程の前、若しくは凝析工程中に、顔料や機械的性質を改良するための各種充填剤を添加してもよい。これにより、顔料や各種充填剤を含むPTFE粉末が得られる。
本発明の製造方法で得られるPTFE粉末は、成形用として好ましく、好適な用途としては、航空機及び自動車等の油圧系、燃料系のチューブ等が挙げられ、薬液、蒸気等のフレキシブルホース、電線被覆用途等が挙げられる。
本発明の製造方法で得られるPTFE粉末は、加工助剤としても使用できる。加工助剤として使用する場合、上記PTFE粉末をホストポリマー等に混合することにより、ホストポリマー溶融加工時の溶融強度向上や、得られたポリマーの機械的強度、電気特性、難燃性、燃焼時の滴下防止性、摺動性を向上することができる。上記PTFE粉末は、PTFE以外の樹脂と複合させてから加工助剤として使用することもできる。
本発明の製造方法で得られるPTFE粉末は、電池用結着剤、防塵用途として使用することもできる。
本発明の製造方法で得られるPTFE粉末が高分子量PTFEである場合、PTFE多孔体(膜)の原料としても有用である。例えばPTFE粉末をペースト押出し圧延後、未焼成又は半焼成し、少なくとも1方向に延伸して(好ましくは、圧延方向にロール延伸し次いでテンターにより幅方向に延伸して)、PTFE多孔体(膜)を得ることができる。延伸することによりPTFEは容易にフィブリル化し、結節と繊維からなるPTFE多孔体(膜)となる。この多孔体(膜)は、各種フィルターとして有用であり、薬液フィルターとして、特にエアフィルター濾材として好ましく使用できる。
本発明の製造方法で得られるPTFE粉末が低分子量PTFE(PTFEマイクロパウダーとも呼ばれる)の粉末である場合、化学的安定性に優れ、表面エネルギーが極めて低いことに加え、フィブリル化が生じにくいので、滑り性や塗膜表面の質感を向上させることなどを目的とした添加剤として、プラスチック、インク、化粧品、塗料、グリース、オフィスオートメーション機器部材、トナー等の製造に好適である(例えば、特開平10-147617号公報参照。)。
以下に、本発明のPTFE粉末の製造方法にて使用できる具体的な含フッ素界面活性剤及び炭化水素系界面活性剤について記載する。
含フッ素界面活性剤としては特に限定されないが、含フッ素アニオン性界面活性剤が好ましい。従来から使用されていたパーフルオロオクタン酸やその塩(例えばアンモニウム塩)等も使用することができるが、例えば、米国特許出願公開第2007/0015864号明細書、米国特許出願公開第2007/0015865号明細書、米国特許出願公開第2007/0015866号明細書、米国特許出願公開第2007/0276103号明細書、米国特許出願公開第2007/0117914号明細書、米国特許出願公開第2007/0142541号明細書、米国特許出願公開第2008/0015319号明細書、米国特許第3250808号明細書、米国特許第3271341号明細書、特開2003-119204号公報、国際公開第2005/042593号、国際公開第2008/060461号、国際公開第2007/046377号、国際公開第2007/119526号、国際公開第2007/046482号、国際公開第2007/046345号に記載されたもの等を使用できる。
含フッ素アニオン性界面活性剤としては、LogPOWが3.4以下である含フッ素界面活性剤が好ましい。
上記含フッ素界面活性剤は、LogPOWが2.5以上であってもよいし、3.0以上であってもよい。
上記LogPOWは、1-オクタノールと水との分配係数であり、LogP[式中、Pは、含フッ素界面活性剤を含有するオクタノール/水(1:1)混合液が相分離した際のオクタノール中の含フッ素界面活性剤濃度/水中の含フッ素界面活性剤濃度比を表す]で表されるものである。
LogPOWで表されるオクタノール/水分配係数は、カラム:TOSOH ODS-120Tカラム(φ4.6mm×250mm)、溶離液:アセトニトリル/0.6質量%HClO水=1/1(vol/vol%)、流速:1.0ml/分、サンプル量:300μL、カラム温度:40℃、検出光:UV210nmの条件で、既知のオクタノール/水分配係数を有する標準物質(ヘプタン酸、オクタン酸、ノナン酸及びデカン酸)についてHPLCを行い、各溶出時間と既知のオクタノール/水分配係数との検量線を作成し、この検量線に基づき、試料液におけるHPLCの溶出時間から算出する。
上記LogPOWが3.4以下の含フッ素界面活性剤としては、一般式:
CF-(CF-COOX
(式中、Xは水素原子、NH又はアルカリ金属を表す。)、一般式:
CFCFCFOCF(CF)COOX
(式中、Xは水素原子、NH又はアルカリ金属原子を表す。)、一般式:
CFOCF(CF)CFOCF(CF)COOX
(式中、Xは水素原子、NH又はアルカリ金属原子を表す。)、及び、一般式:
CFCFOCFCFOCFCOOX
(式中、Xは水素原子、NH又はアルカリ金属原子を表す。)
からなる群より選択される少なくとも1種の含フッ素界面活性剤であることが好ましい。
LogPOWが3.4以下の含フッ素界面活性剤としては、一般式:
CFOCFCFOCFCFCOOX
(式中、Xは水素原子、NH又はアルカリ金属原子を表す。)、一般式:
CFOCFCFCFOCHFCFCOOX
(式中、Xは水素原子、NH又はアルカリ金属原子を表す。)
等も挙げることができる。
上記含フッ素界面活性剤が塩である場合、該塩を形成する対イオンとしては、アルカリ金属イオン又はNH4+等が挙げられ、アルカリ金属イオンとしては、例えば、Na、K等が挙げられる。
LogPOWが3.4以下の含フッ素界面活性剤としては、CFOCF(CF)CFOCF(CF)COOH、CFOCF(CF)CFOCF(CF)COONH、CFCFOCFCFOCFCOOH、CFCFOCFCFOCFCOONH、CFOCFCFCFOCHFCFCOOH、CFOCFCFCFOCHFCFCOONH4、CF-(CF-COOH、CF-(CF-COONH、CFCFCFOCF(CF)COONH、CFCFCFOCF(CF)COOH等が挙げられる。
炭化水素系界面活性剤は、同じ分子上に親水性部分及び疎水性部分を有する。これらは、カチオン性、非イオン性またはアニオン性であってよい。
カチオン性界面活性剤は、通常、アルキル化臭化アンモニウムなどのアルキル化ハロゲン化アンモニウムなどの正に帯電した親水性部分と、長鎖脂肪酸などの疎水性部分を有する。
アニオン性界面活性剤は、通常、カルボン酸塩、スルホン酸塩又は硫酸塩などの親水性部分と、アルキルなどの長鎖炭化水素部分である疎水性部分とを有する。
非イオン性界面活性剤は、通常、帯電した基を含まず、長鎖炭化水素である疎水性部分を有する。非イオン性界面活性剤の親水性部分は、エチレンオキシドとの重合から誘導されるエチレンエーテルの鎖などの水溶性官能基を含む。
非イオン性炭化水素系界面活性剤の例
ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエステル、ソルビタンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル、グリセロールエステル、それらの誘導体。
ポリオキシエチレンアルキルエーテルの具体例:ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンベヘニルエーテル等。
ポリオキシエチレンアルキルフェニルエーテルの具体例:ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル等。
ポリオキシエチレンアルキルエステルの具体例:ポリエチレングリコールモノラウリレート、ポリエチレングリコールモノオレエート、ポリエチレングリコールモノステアレートなど。
ソルビタンアルキルエステルの具体例:ポリオキシエチレンソルビタンモノラウリレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレエートなど。
ポリオキシエチレンソルビタンアルキルエステルの具体例:ポリオキシエチレンソルビタンモノラウリレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレートなど。
グリセロールエステルの具体例:モノミリスチン酸グリセロール、モノステアリン酸グリセロール、モノオレイン酸グリセロールなど。
上記誘導体の具体例:ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルフェニル-ホルムアルデヒド凝縮物、ポリオキシエチレンアルキルエーテルホスフェートなど。
上記エーテル及びエステルは、10~18のHLB値を有してよい。
非イオン性炭化水素系界面活性剤としては、Dow  Chemical  Company製のTriton(登録商標)Triton(登録商標)Xシリーズ(X15、X45、X100等)、Tergitol(登録商標)15-Sシリーズ、Tergitol(登録商標)TMNシリーズ(TMN-6、TMN-10、TMN-100等)、Tergitol(登録商標)Lシリーズ、BASF製のPluronic(登録商標)Rシリーズ(31R1、17R2、10R5、25R4(m~22、n~23)、Iconol(登録商標)TDAシリーズ(TDA-6、TDA-9、TDA-10)等が挙げられる。
アニオン性炭化水素系界面活性剤としては、Resolution  Performance  ProductsのVersatic(登録商標)10、BASF製のAvanel  Sシリーズ(S-70、S-74等)等が挙げられる。
炭化水素系界面活性剤としては、R-L-M(式中、Rが、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基、又は、置換基を有してもよい炭素数3以上の環状のアルキル基であり、炭素数が3以上の場合は1価又は2価の複素環を含んでもよいし、環を巻いていてもよい。Lが、-ArSO 、-SO 、-SO-、-PO 又は-COOであり、Mが、H、Na、K又はNH である。-ArSO は、アリールスルホン酸塩である。)によって表されるアニオン性界面活性剤も挙げられる。
具体的には、CH-(CH-L-M(式中、nが、6~17の整数である。LおよびMが、上記と同じ)によって表されるものが挙げられる。
Rが、12~16個の炭素原子を有するアルキル基であり、Lが、硫酸塩又はドデシル硫酸ナトリウム(SDS)であるものの混合物も使用できる。
炭化水素系界面活性剤としては、R(-L-M)(式中、Rが、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキレン基、又は、置換基を有してもよい炭素数3以上の環状のアルキレン基であり、炭素数が3以上の場合は1価又は2価の複素環を含んでもよいし、環を巻いていてもよい。Lが、-ArSO 、-SO 、-SO-、-PO 又は-COOであり、Mが、H、Na、K又はNH である。-ArSO は、アリールスルホン酸塩である。a及びbは、それぞれ、1以上の整数である。)によって表されるアニオン性界面活性剤も挙げられる。
炭化水素系界面活性剤としては、R(-L-M)(式中、Rが、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキリジン基、又は、置換基を有してもよい炭素数3以上の環状のアルキリジン基であり、炭素数が3以上の場合は1価又は2価の複素環を含んでもよいし、環を巻いていてもよい。Lが、-ArSO 、-SO 、-SO-、-PO 又は-COOであり、Mが、H、Na、K又はNH である。-ArSO は、アリールスルホン酸塩である。a及びbは、それぞれ、1以上の整数である。)によって表されるアニオン性界面活性剤も挙げられる。
本明細書中、特に断りのない限り、「置換基」は、置換可能な基を意味する。当該「置換基」の例は、脂肪族基、芳香族基、ヘテロ環基、アシル基、アシルオキシ基、アシルアミノ基、脂肪族オキシ基、芳香族オキシ基、ヘテロ環オキシ基、脂肪族オキシカルボニル基、芳香族オキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基、脂肪族スルホニル基、芳香族スルホニル基、ヘテロ環スルホニル基、脂肪族スルホニルオキシ基、芳香族スルホニルオキシ基、ヘテロ環スルホニルオキシ基、スルファモイル基、脂肪族スルホンアミド基、芳香族スルホンアミド基、ヘテロ環スルホンアミド基、アミノ基、脂肪族アミノ基、芳香族アミノ基、ヘテロ環アミノ基、脂肪族オキシカルボニルアミノ基、芳香族オキシカルボニルアミノ基、ヘテロ環オキシカルボニルアミノ基、脂肪族スルフィニル基、芳香族スルフィニル基、脂肪族チオ基、芳香族チオ基、ヒドロキシ基、シアノ基、スルホ基、カルボキシ基、脂肪族オキシアミノ基、芳香族オキシアミノ基、カルバモイルアミノ基、スルファモイルアミノ基、ハロゲン原子、スルファモイルカルバモイル基、カルバモイルスルファモイル基、ジ脂肪族オキシホスフィニル基、及び、ジ芳香族オキシホスフィニル基を包含する。
シロキサン炭化水素系界面活性剤としては、Silicone  Surfactants,R.M.Hill,Marcel  Dekker,Inc.,ISBN:0-8247-00104に記載されているものが挙げられる。シロキサン界面活性剤の構造は、明確な疎水性部分および親水性部分を含む。疎水性部分は、1つ以上のジヒドロカルビルシロキサン単位を含み、ここで、シリコーン原子上の置換基が、完全に炭化水素である。
ヒドロカルビル基の炭素原子が、フッ素などのハロゲンによって置換され得る場合に、水素原子によって完全に置換されるという意味では、これらのシロキサン界面活性剤は、炭化水素界面活性剤とみなすこともでき、すなわち、ヒドロカルビル基の炭素原子上の一価置換基は水素である。
シロキサン界面活性剤の親水性部分は、スルフェート、スルホネート、ホスホネート、リン酸エステル、カルボキシレート、カーボネート、スルホサクシネート、タウレート(遊離酸、塩またはエステルとしての)、ホスフィンオキシド、ベタイン、ベタインコポリオール、第4級アンモニウム塩などのイオン性基を含む1つ以上の極性部分を含んでもよい。イオン性疎水性部分は、イオン的に官能化されたシロキサングラフトも含み得る。
このようなシロキサン界面活性剤としては、例えば、ポリジメチルシロキサン-グラフト-(メタ)アクリル酸塩、ポリジメチルシロキサン-グラフト-ポリアクリレート塩およびポリジメチルシロキサングラフト化第4級アミンが挙げられる。
シロキサン界面活性剤の親水性部分の極性部分は、ポリエチレンオキシド(PEO)、および混合されたポリエチレンオキシド/プロピレンオキシドポリエーテル(PEO/PPO)などのポリエーテル;単糖類および二糖類;およびピロリジノンなどの水溶性複素環によって形成される非イオン性基を含み得る。エチレンオキシド対プロピレンオキシド(EO/PO)の比率は、混合されたポリエチレンオキシド/プロピレンオキシドポリエーテルにおいて変化され得る。
シロキサン界面活性剤の親水性部分は、イオン性部分と非イオン性部分との組合せも含み得る。このような部分としては、例えば、イオン的に末端官能化されたまたはランダムに官能化されたポリエーテルまたはポリオールが挙げられる。本発明の実施に好ましいのは、非イオン性部分を有するシロキサン、すなわち、非イオン性シロキサン界面活性剤である。
シロキサン界面活性剤の構造の疎水性および親水性部分の配置は、ジブロックポリマー(AB)、トリブロックポリマー(ABA)(ここで、「B」は、分子のシロキサン部分を表す)、またはマルチブロックポリマーの形態をとってもよい。あるいは、シロキサン界面活性剤は、グラフトポリマーを含んでいてもよい。
シロキサン界面活性剤については、米国特許第6,841,616号明細書にも開示されている。
シロキサンベースのアニオン性炭化水素系界面活性剤としては、Lubrizol  Advanced  Materials,Inc.のNoveon(登録商標)Consumer  Specialtiesから入手可能なSilSenseTMPE-100シリコーン、SilSenseTMCA-1シリコーン等が挙げられる。
アニオン性炭化水素系界面活性剤としては、Akzo  Nobel  Surface  Chemistry  LLCのスルホサクシネート界面活性剤Lankropol(登録商標)K8300等も挙げられる。
スルホサクシネート炭化水素系界面活性剤としては、スルホコハク酸ジイソデシルNa塩、(ClariantのEmulsogen(登録商標)SB10)、スルホコハク酸ジイソトリデシルNa塩(Cesapinia  ChemicalsのPolirol(登録商標)TR/LNA)等が挙げられる。
炭化水素系界面活性剤としては、Omnova  Solutions,Inc.のPolyFox(登録商標)界面活性剤(PolyFoxTMPF-156A、PolyFoxTMPF-136A等)も挙げられる。
上記炭化水素系界面活性剤としては、下記式(a):
Figure JPOXMLDOC01-appb-C000001
(式中、R1aは、炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基又は炭素数3以上の環状のアルキル基であり、炭素原子に結合した水素原子がヒドロキシ基又はエステル結合を含む1価の有機基により置換されていてもよく、炭素数が2以上の場合はカルボニル基を含んでもよく、炭素数が3以上の場合は1価又は2価の複素環を含んでも環を巻いていてもよい。R2a及びR3aは、独立に、単結合又は2価の連結基である。R1a、R2a及びR3aは、炭素数が合計で5以上である。Aは、-COOX又は-SO(Xは、H、金属原子、NR4a 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、R4aはH又は有機基であり、同一でも異なっていてもよい。)である。R1a、R2a及びR3aは、いずれか2つがお互いに結合して、環を形成してもよい。)で示される界面活性剤(a)、及び、下記式(b):
Figure JPOXMLDOC01-appb-C000002
(式中、R1bは、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基又は置換基を有してもよい炭素数3以上の環状のアルキル基であり、炭素数が3以上の場合は1価又は2価の複素環を含んでも環を巻いていてもよい。R2b及びR4bは、独立に、H又は置換基である。R3bは、置換基を有してもよい炭素数1~10のアルキレン基である。nは、1以上の整数である。p及びqは、独立に、0以上の整数である。Aは、-SO又は-COOX(Xは、H、金属原子、NR5b 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、R5bはH又は有機基であり、同一でも異なっていてもよい。)である。R1b、R2b、R3b及びR4bは、いずれか2つがお互いに結合して、環を形成してもよい。Lは、単結合、-CO-B-*、-OCO-B-*、-CONR6b-B-*、-NR6bCO-B-*、又は、-CO-(但し、-CO-B-、-OCO-B-、-CONR6b-B-、-NR6bCO-B-に含まれるカルボニル基を除く。)であり、Bは単結合もしくは置換基を有してもよい炭素数1から10のアルキレン基であり、R6bは、H又は置換基を有していてもよい、炭素数1~4のアルキル基である。上記アルキレン基は、炭素数が1~5であることがより好ましい。また、上記R6bは、H又はメチル基であることがより好ましい。*は、式中の-Aに結合する側を指す。)で示される界面活性剤(b)からなる群より選択される少なくとも1種が挙げられる。
界面活性剤(a)について説明する。
式(a)中、R1aは、炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基又は炭素数3以上の環状のアルキル基である。
上記アルキル基は、炭素数が3以上の場合、2つの炭素原子間にカルボニル基(-C(=O)-)を含んでもよい。また、上記アルキル基は、炭素数が2以上の場合、上記アルキル基の末端に上記カルボニル基を含むこともできる。すなわち、CH-C(=O)-で示されるアセチル基等のアシル基も、上記アルキル基に含まれる。
また、上記アルキル基は、炭素数が3以上の場合は1価又は2価の複素環を含むこともできるし、環を巻くこともできる。上記複素環としては、不飽和複素環が好ましく、含酸素不飽和複素環がより好ましく、例えば、フラン環等が挙げられる。R1aにおいて、2価の複素環が2つの炭素原子間に挿入されていてもよいし、2価の複素環が末端に位置して-C(=O)-と結合してもよいし、1価の複素環が上記アルキル基の末端に位置してもよい。
なお、本明細書において、上記アルキル基の「炭素数」には、カルボニル基を構成する炭素原子の数及び上記複素環を構成する炭素原子の数も含めるものとする。例えば、CH-C(=O)-CH-で示される基は炭素数が3であり、CH-C(=O)-C-C(=O)-C-で示される基は炭素数が7であり、CH-C(=O)-で示される基は炭素数が2である。
上記アルキル基は、炭素原子に結合した水素原子が官能基により置換されていてもよく、例えば、ヒドロキシ基(-OH)又はエステル結合を含む1価の有機基により置換されていてもよいが、如何なる官能基によっても置換されていないことが好ましい。
上記エステル結合を含む1価の有機基としては、式:-O-C(=O)-R101a(式中、R101aはアルキル基)で示される基が挙げられる。
上記アルキル基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキル基であることが好ましい。
式(a)中、R2a及びR3aは、独立に、単結合又は2価の連結基である。
2a及びR3aは、独立に、単結合又は炭素数1以上の直鎖状又は分岐鎖状のアルキレン基又は炭素数3以上の環状のアルキレン基であることが好ましい。
2a及びR3aを構成する上記アルキレン基は、カルボニル基を含まないことが好ましい。
上記アルキレン基は、炭素原子に結合した水素原子が官能基により置換されていてもよく、例えば、ヒドロキシ基(-OH)又はエステル結合を含む1価の有機基により置換されていてもよいが、如何なる官能基によっても置換されていないことが好ましい。
上記エステル結合を含む1価の有機基としては、式:-O-C(=O)-R102a(式中、R102aはアルキル基)で示される基が挙げられる。
上記アルキレン基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキレン基であることが好ましい。
1a、R2a及びR3aは、炭素数が合計で5以上である。合計の炭素数としては、7以上が好ましく、9以上がより好ましく、20以下が好ましく、18以下がより好ましく、15以下が更に好ましい。
1a、R2a及びR3aは、いずれか2つがお互いに結合して、環を形成してもよい。
式(a)中、式中、Aは、-COOX又は-SO(Xは、H、金属原子、NR4a 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、R4aはH又は有機基であり、同一でも異なっていてもよい。)である。R4aとしては、H又は炭素数1~10の有機基が好ましく、H又は炭素数1~4の有機基がより好ましい。上記金属原子としては、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、Na、K又はLiが好ましい。
としては、H、アルカリ金属(1族)、アルカリ土類金属(2族)又はNR4a が好ましく、水に溶解しやすいことから、H、Na、K、Li又はNHがより好ましく、水に更に溶解しやすいことから、Na、K又はNHが更に好ましく、Na又はNHが特に好ましく、除去が容易であることから、NHが最も好ましい。XがNHであると、上記界面活性剤の水性媒体への溶解性が優れるとともに、PTFE中又は最終製品中に金属成分が残留しにくい。
1aとしては、カルボニル基を含まない炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基、カルボニル基を含まない炭素数3~8の環状のアルキル基、1~10個のカルボニル基を含む炭素数2~45の直鎖状若しくは分岐鎖状のアルキル基、カルボニル基を含む炭素数3~45の環状のアルキル基、又は、炭素数が3~45の1価又は2価の複素環を含むアルキル基が好ましい。
また、R1aとしては、下記式:
Figure JPOXMLDOC01-appb-C000003
(式中、n11aは0~10の整数であり、R11aは炭素数1~5の直鎖状又は分岐鎖状のアルキル基又は炭素数3~5の環状のアルキル基であり、R12aは炭素数0~3のアルキレン基である。n11aが2~10の整数である場合、R12aは各々同じであっても異なっていてもよい。)で示される基がより好ましい。
11aとしては、0~5の整数が好ましく、0~3の整数がより好ましく、1~3の整数が更に好ましい。
11aとしての上記アルキル基は、カルボニル基を含まないことが好ましい。
11aとしての上記アルキル基は、炭素原子に結合した水素原子が官能基により置換されていてもよく、例えば、ヒドロキシ基(-OH)又はエステル結合を含む1価の有機基により置換されていてもよいが、如何なる官能基によっても置換されていないことが好ましい。
上記エステル結合を含む1価の有機基としては、式:-O-C(=O)-R103a(式中、R103aはアルキル基)で示される基が挙げられる。
11aとしての上記アルキル基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキル基であることが好ましい。
12aは炭素数0~3のアルキレン基である。上記炭素数は1~3が好ましい。
12aとしての上記アルキレン基は、直鎖状又は分岐鎖状であってよい。
12aとしての上記アルキレン基は、カルボニル基を含まないことが好ましい。R12aとしては、エチレン基(-C-)又はプロピレン基(-C-)がより好ましい。
12aとしての上記アルキレン基は、炭素原子に結合した水素原子が官能基により置換されていてもよく、例えば、ヒドロキシ基(-OH)又はエステル結合を含む1価の有機基により置換されていてもよいが、如何なる官能基によっても置換されていないことが好ましい。
上記エステル結合を含む1価の有機基としては、式:-O-C(=O)-R104a(式中、R104aはアルキル基)で示される基が挙げられる。
12aとしての上記アルキレン基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキレン基であることが好ましい。
2a及びR3aとしては、独立に、カルボニル基を含まない炭素数1以上のアルキレン基が好ましく、カルボニル基を含まない炭素数1~3のアルキレン基がより好ましく、エチレン基(-C-)又はプロピレン基(-C-)が更に好ましい。
次に界面活性剤(b)について説明する。
式(b)中、R1bは、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基又は置換基を有してもよい炭素数3以上の環状のアルキル基である。
上記アルキル基は、炭素数が3以上の場合は1価又は2価の複素環を含むこともできるし、環を巻くこともできる。上記複素環としては、不飽和複素環が好ましく、含酸素不飽和複素環がより好ましく、例えば、フラン環等が挙げられる。R1bにおいて、2価の複素環が2つの炭素原子間に挿入されていてもよいし、2価の複素環が末端に位置して-C(=O)-と結合してもよいし、1価の複素環が上記アルキル基の末端に位置してもよい。
なお、本明細書において、上記アルキル基の「炭素数」には、上記複素環を構成する炭素原子の数も含めるものとする。
1bとしての上記アルキル基が有してもよい上記置換基としては、ハロゲン原子、炭素数1~10の直鎖状若しくは分岐鎖状のアルキル基又は炭素数3~10の環状のアルキル基、ヒドロキシ基が好ましく、メチル基、エチル基が特に好ましい。
1bとしての上記アルキル基は、カルボニル基を含まないことが好ましい。
上記アルキル基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキル基であることが好ましい。
上記アルキル基は、如何なる置換基も有していないことが好ましい。
1bとしては、置換基を有してもよい炭素数1~10の直鎖状若しくは分岐鎖状のアルキル基又は置換基を有してもよい炭素数3~10の環状のアルキル基が好ましく、カルボニル基を含まない炭素数1~10の直鎖状若しくは分岐鎖状のアルキル基又はカルボニル基を含まない炭素数3~10の環状のアルキル基がより好ましく、置換基を有さない炭素数1~10の直鎖状又は分岐鎖状のアルキル基が更に好ましく、置換基を有さない炭素数1~3の直鎖状又は分岐鎖状のアルキル基が更により好ましく、メチル基(-CH)又はエチル基(-C)が特に好ましく、メチル基(-CH)が最も好ましい。
式(b)中、R2b及びR4bは、独立に、H又は置換基である。複数個のR2b及びR4bは、それぞれ同一でも異なっていてもよい。
2b及びR4bとしての上記置換基としては、ハロゲン原子、炭素数1~10の直鎖状若しくは分岐鎖状のアルキル基又は炭素数3~10の環状のアルキル基、ヒドロキシ基が好ましく、メチル基、エチル基が特に好ましい。
2b及びR4bとしての上記アルキル基は、カルボニル基を含まないことが好ましい。
上記アルキル基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキル基であることが好ましい。
上記アルキル基は、如何なる置換基も有していないことが好ましい。
2b及びR4bとしての上記アルキル基としては、カルボニル基を含まない炭素数1~10の直鎖状若しくは分岐鎖状のアルキル基又はカルボニル基を含まない炭素数3~10の環状のアルキル基が好ましく、カルボニル基を含まない炭素数1~10の直鎖状又は分岐鎖状のアルキル基がより好ましく、置換基を有さない炭素数1~3の直鎖状又は分岐鎖状のアルキル基が更に好ましく、メチル基(-CH)又はエチル基(-C)が特に好ましい。
2b及びR4bとしては、独立に、H又はカルボニル基を含まない炭素数1~10の直鎖状若しくは分岐鎖状のアルキル基が好ましく、H又は置換基を有さない炭素数1~3の直鎖状若しくは分岐鎖状のアルキル基がより好ましく、H、メチル基(-CH)又はエチル基(-C)が更により好ましく、Hが特に好ましい。
式(b)中、R3bは、置換基を有してもよい炭素数1~10のアルキレン基である。R3bは、複数個存在する場合、同一でも異なっていてもよい。
上記アルキレン基は、カルボニル基を含まないことが好ましい。
上記アルキレン基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキル基であることが好ましい。
上記アルキレン基は、如何なる置換基も有していないことが好ましい。
上記アルキレン基としては、置換基を有してもよい炭素数1~10の直鎖状若しくは分岐鎖状のアルキレン基又は置換基を有してもよい炭素数3~10の環状のアルキレン基が好ましく、カルボニル基を含まない炭素数1~10の直鎖状若しくは分岐鎖状のアルキレン基又はカルボニル基を含まない炭素数3~10の環状のアルキレン基が好ましく、置換基を有さない炭素数1~10の直鎖状又は分岐鎖状のアルキレン基がより好ましく、メチレン基(-CH-)、エチレン基(-C-)、イソプロピレン基(-CH(CH)CH-)又はプロピレン基(-C-)が更に好ましい。
1b、R2b、R3b及びR4bは、いずれか2つがお互いに結合して、環を形成してもよい。
式(b)中、nは、1以上の整数である。nとしては、1~40の整数が好ましく、1~30の整数がより好ましく、5~25の整数が更に好ましい。
式(b)中、p及びqは、独立に、0以上の整数である。pとしては、0~10の整数が好ましく、0又は1がより好ましい。qとしては、0~10の整数が好ましく、0~5の整数がより好ましい。
n、p及びqは、合計が6以上の整数であることが好ましい。n、p及びqの合計は8以上の整数であることがより好ましい。n、p及びqの合計はまた、60以下の整数であることが好ましく、50以下の整数であることがより好ましく、40以下の整数であることが更に好ましい。
式(b)中、Aは、-SO又は-COOX(Xは、H、金属原子、NR5b 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、R5bはH又は有機基であり、同一でも異なっていてもよい。)である。R5bとしては、H又は炭素数1~10の有機基が好ましく、H又は炭素数1~4の有機基がより好ましい。上記金属原子としては、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、Na、K又はLiが好ましい。Xは金属原子又はNR5b (R5bは上記のとおり)であってよい。
としては、H、アルカリ金属(1族)、アルカリ土類金属(2族)又はNR5b が好ましく、水に溶解しやすいことから、H、Na、K、Li又はNHがより好ましく、水に更に溶解しやすいことから、Na、K又はNHが更に好ましく、Na又はNHが特に好ましく、除去が容易であることから、NHが最も好ましい。XがNHであると、上記界面活性剤の水性媒体への溶解性が優れるとともに、フルオロポリマー中又は最終製品中に金属成分が残留しにくい。
式(b)中、Lは、単結合、-CO-B-*、-OCO-B-*、-CONR6b-B-*、-NR6bCO-B-*、又は、-CO-(但し、-CO-B-、-OCO-B-、-CONR6b-B-、-NR6bCO-B-に含まれるカルボニル基を除く。)であり、Bは単結合もしくは置換基を有してもよい炭素数1から10のアルキレン基であり、R6bは、H又は置換基を有していてもよい、炭素数1~4のアルキル基である。上記アルキレン基は、炭素数が1~5であることがより好ましい。また、上記R6bは、H又はメチル基であることがより好ましい。*は、式中の-Aに結合する側を指す。
は単結合であることが好ましい。
上記界面活性剤は、H-NMRスペクトルにおいて、ケミカルシフト2.0~5.0ppmの領域に観測される全ピーク強度の積分値が10%以上であることが好ましい。
上記界面活性剤は、H-NMRスペクトルにおいて、ケミカルシフト2.0~5.0ppmの領域に観測される全ピーク強度の積分値が上記範囲内にあることが好ましい。この場合、上記界面活性剤は分子中にケトン構造を有することが好ましい。
上記界面活性剤において、上記積分値は、15以上がより好ましく、95以下が好ましく、80以下がより好ましく、70以下が更に好ましい。
上記積分値は、重水溶媒にて室温下に測定する。重水を4.79ppmとする。
界面活性剤(a)は、新規化合物であり、例えば、次に例示する製造方法により製造することができる。
界面活性剤(a)は、式:
Figure JPOXMLDOC01-appb-C000004
(式中、R3aは上述のとおり、Eは脱離基である。)で示される化合物(10a)と、リチウム、及び、式:R201a Si-Cl(式中、R201aは、独立に、アルキル基又はアリール基である。)で示されるクロロシラン化合物とを反応させて、式:
Figure JPOXMLDOC01-appb-C000005
(式中、R3a、R201a及びEは上述のとおりである。)で示される化合物(11a)を得る工程(11a)、
化合物(11a)と、式:
Figure JPOXMLDOC01-appb-C000006
(式中、R1aは上述のとおり、R21aは単結合又は2価の連結基である。)で示されるオレフィンとを反応させて、式:
Figure JPOXMLDOC01-appb-C000007
(式中、R1a、R21a、R3a及びEは上述のとおりである。)で示される化合物(12a)を得る工程(12a)、
化合物(12a)が有する脱離基を脱離させて、式:
Figure JPOXMLDOC01-appb-C000008
(式中、R1a、R21a及びR3aは上述のとおりである。)で示される化合物(13a)を得る工程(13a)、及び、
化合物(13a)を酸化させて、式:
Figure JPOXMLDOC01-appb-C000009
(式中、R1a、R21a及びR3aは上述のとおりである。)で示される化合物(14a)を得る工程(14a)、
を含む製造方法により製造できる。
1aにフラン環を含む場合は、例えば酸によりフラン環を開環しジカルボニル誘導体に変換してもよい。酸としては酢酸、塩酸、p-トルエンスルホン等があげられる。後述する他の製造方法においても同じである。
は脱離基を表す。上記脱離基としては、tert-ブチルジメチルシリル(TBS)基、トリエチルシリル(TES)基、トリイソプロピルシリル(TIPS)基、tert-ブチルジフェニルシリル(TBDPS)基、ベンジル(Bn)基等が挙げられる。後述する他の製造方法においても同じである。
21aとしては、単結合又は炭素数1以上の直鎖状又は分岐鎖状のアルキレン基が好ましい。
上記クロロシラン化合物としては、例えば、
Figure JPOXMLDOC01-appb-C000010
が挙げられる。
工程(11a)におけるいずれの反応も、溶媒中で実施することができる。上記溶媒としては、有機溶媒を使用でき、非プロトン性極性溶媒が挙げられ、具体的にはエーテルを例示できる。
工程(12a)において、化合物(11a)と上記オレフィンとの反応割合としては、収率の向上及び廃棄物の減少を考慮して、化合物(11a)1モルに対して、上記オレフィンが1~2モルの量を採用できる。
工程(12a)における反応は、チアゾリウム塩及び塩基の存在下、溶媒中で実施できる。
上記チアゾリウム塩としては、3-エチル-5-(2-ヒドロキシエチル)-4-メチルチアゾリウムブロミド、3-ベンジル-5-(2-ヒドロキシエチル)-4-メチルチアゾリウムクロリド等が挙げられる。
上記塩基としては、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、トリエチルアミン等が挙げられる。
上記溶媒としては、有機溶媒を使用でき、非プロトン性極性溶媒が挙げられ、具体的にはエーテルを例示できる。
工程(13a)における脱離基の脱離反応は、フッ化物イオンや酸を使用することにより、実施できる。脱離基を脱離させる方法としては、例えば、フッ酸を用いる方法、ピリジン・nHFやトリエチルアミン・nHFのようなフッ化水素のアミン錯体を用いる方法、フッ化セシウム、フッ化カリウム、ホウフッ化リチウム(LiBF)、フッ化アンモニウムのような無機塩を用いる方法、テトラブチルアンモニウムフルオリド(TBAF)のような有機塩を用いる方法が挙げられる。
工程(13a)における脱離基の脱離反応は、極性溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、非プロトン性極性溶媒が挙げられ、具体的にはエーテルを例示できる。
工程(14a)における酸化は、亜塩素酸ナトリウムの存在下に、溶媒中で実施できる。
上記溶媒としては、メタノール、エタノール、1-プロパノール、イソプロパノール、1-ブタノール、tert-ブチルアルコール等のアルコール及び水が使用できる。緩衝液として、リン酸水素二ナトリウム溶液を使用してもよい。
化合物(14a)をアルカリと接触させて、-COOHを塩型に変換してもよい。上記アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等が挙げられ、例えばアンモニアの水溶液を使用できる。
各工程の終了後、溶媒を留去したり、蒸留、精製等を実施したりして、得られる化合物の純度を高めてもよい。
界面活性剤(a)は、また、式:
Figure JPOXMLDOC01-appb-C000011
(式中、R3aは上述のとおり、R22aは1価の有機基、Eは脱離基である。)で示されるケトンと、式:
Figure JPOXMLDOC01-appb-C000012
(式中、R1aは上述のとおり、R23aは1価の有機基である。)で示されるカルボン酸エステルとを反応させて、式:
Figure JPOXMLDOC01-appb-C000013
(式中、R1a、R3a及びEは上述のとおり、R24aは単結合又は2価の連結基である。)で示される化合物(21a)を得る工程(21a)、
化合物(21a)が有する脱離基を脱離させて、式:
Figure JPOXMLDOC01-appb-C000014
(式中、R1a、R24a及びR3aは上述のとおりである。)で示される化合物(22a)を得る工程(22a)、及び、
化合物(22a)を酸化させて、式:
Figure JPOXMLDOC01-appb-C000015
(式中、R1a、R24a及びR3aは上述のとおりである。)で示される化合物(23a)を得る工程(23a)、
を含む製造方法により製造できる。
22aとしては、炭素数1以上の直鎖状又は分岐鎖状のアルキル基が好ましく、メチル基がより好ましい。
23aとしては、炭素数1以上の直鎖状又は分岐鎖状のアルキル基が好ましく、メチル基がより好ましい。
24aとしては、炭素数1以上の直鎖状又は分岐鎖状のアルキレン基が好ましく、メチレン基(-CH-)がより好ましい。
工程(21a)における反応は、塩基の存在下、溶媒中で実施できる。
上記塩基としては、ナトリウムアミド、水素化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド等が挙げられる。
上記溶媒としては、有機溶媒を使用でき、非プロトン性極性溶媒が挙げられ、具体的にはエーテルを例示できる。
工程(22a)における脱離基の脱離反応は、フッ化物イオンや酸を使用することにより、実施できる。脱離基の脱離させる方法としては、例えば、フッ酸を用いる方法、ピリジン・nHFやトリエチルアミン・nHFのようなフッ化水素のアミン錯体を用いる方法、フッ化セシウム、フッ化カリウム、ホウフッ化リチウム(LiBF)、フッ化アンモニウムのような無機塩を用いる方法、テトラブチルアンモニウムフルオリド(TBAF)のような有機塩を用いる方法が挙げられる。
工程(22a)における脱離基の脱離反応は、溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、非プロトン性極性溶媒が挙げられ、具体的にはエーテルを例示できる。
工程(23a)における酸化は、亜塩素酸ナトリウムの存在下に、溶媒中で実施できる。
上記溶媒としては、アルコール及び水が使用できる。緩衝液として、リン酸水素二ナトリウム溶液を使用してもよい。
化合物(23a)をアルカリと接触させて、-COOHを塩型に変換してもよい。上記アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等が挙げられ、例えば、アンモニアの水溶液を使用できる。
各工程の終了後、溶媒を留去したり、蒸留、精製等を実施したりして、得られる化合物の純度を高めてもよい。
界面活性剤(a)は、また、式:Y-R3a-CH-OE
(式中、R3aは上述のとおり、Yはハロゲン原子、Eは脱離基である。)で示されるハロゲン化アルキルと、式:
Figure JPOXMLDOC01-appb-C000016
(式中、R1aは上述のとおりである。)で示されるリチウムアセチリドとを反応させて、式:
Figure JPOXMLDOC01-appb-C000017
(式中、R1a、R3a及びEは上述のとおりである。)で示される化合物(31a)を得る工程(31a)、
化合物(31a)を酸化して、式:
Figure JPOXMLDOC01-appb-C000018
(式中、R1a、R3a及びEは上述のとおりである。)で示される化合物(32a)を得る工程(32a)、
化合物(32a)が有する脱離基を脱離させて、式:
Figure JPOXMLDOC01-appb-C000019
(式中、R1a及びR3aは上述のとおりである。)で示される化合物(33a)を得る工程(33a)、及び、
化合物(33a)を酸化させて、式:
Figure JPOXMLDOC01-appb-C000020
(式中、R1a及びR3aは上述のとおりである。)で示される化合物(34a)を得る工程(34a)、
を含む製造方法により製造できる。
工程(31a)において、上記ハロゲン化アルキルと上記リチウムアセチリドとの反応割合としては、収率の向上及び廃棄物の減少を考慮して、上記ハロゲン化アルキル1モルに対して、上記リチウムアセチリドが1~2モルの量を採用できる。
工程(31a)における反応は、溶媒中で実施できる。上記溶媒としては、ヘキサンが挙げられる。
工程(32a)における酸化は、[(Cn)RuIII(CFCO]・HO(式中、Cnは1,4,7-トリメチルー1,4,7-トリアザビシクロノナンを表す)を、(NHCe(NO及びトリフルオロ酢酸で処理した後、過塩素酸ナトリウムを添加することにより生じる錯体を使用して、ニトリル系溶媒中で実施できる。
酸化終了後に、アルカリにより中和し、エーテル等の有機溶媒を使用して化合物(32a)を抽出してもよい。
工程(33a)における脱離基の脱離反応は、フッ化物イオンや酸を使用することにより、実施できる。脱離基の脱離させる方法としては、例えば、フッ酸を用いる方法、ピリジン・nHFやトリエチルアミン・nHFのようなフッ化水素のアミン錯体を用いる方法、フッ化セシウム、フッ化カリウム、ホウフッ化リチウム(LiBF)、フッ化アンモニウムのような無機塩を用いる方法、テトラブチルアンモニウムフルオリド(TBAF)のような有機塩を用いる方法が挙げられる。
工程(33a)における脱離基の脱離反応は、溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、非プロトン性極性溶媒が挙げられ、具体的にはエーテルを例示できる。
工程(34a)における酸化は、亜塩素酸ナトリウムの存在下に、溶媒中で実施できる。
上記溶媒としては、アルコール及び水が使用できる。緩衝液として、リン酸水素二ナトリウム溶液を使用してもよい。
化合物(34a)をアルカリと接触させて、-COOHを塩型に変換してもよい。上記アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等が挙げられ、具体的にはアンモニアの水溶液を使用できる。
各工程の終了後、溶媒を留去したり、蒸留、精製等を実施したりして、得られる化合物の純度を高めてもよい。
界面活性剤(a)は、また、式:
Figure JPOXMLDOC01-appb-C000021
で示されるジビニルケトンと、式:
Figure JPOXMLDOC01-appb-C000022
で示される2-メチルフランとを反応させて、式:
Figure JPOXMLDOC01-appb-C000023
で示される化合物(51a)を得る工程(51a)、
化合物(51a)と式:
Figure JPOXMLDOC01-appb-C000024
で示されるフランとを反応させて、式:
Figure JPOXMLDOC01-appb-C000025
で示される化合物(52a)を得る工程(52a)、
化合物(52a)を酸の存在下で加熱することにより、式:
Figure JPOXMLDOC01-appb-C000026
で示される化合物(53a)を得る工程(53a)、及び、
化合物(53a)を酸化させて、式:
Figure JPOXMLDOC01-appb-C000027
で示される化合物(54a)を得る工程(54a)、
を含む製造方法により製造できる。
工程(51a)において、ジビニルケトンと2-メチルフランとの反応割合としては、収率の向上及び廃棄物の減少を考慮して、ジビニルケトン1モルに対して、2-メチルフランが0.5~1モルの量を採用できる。
工程(51a)における反応は、酸の存在下に実施することができる。上記酸としては、酢酸、塩酸、p-トルエンスルホン酸等があげられる。
工程(51a)における上記酸の使用量は、収率の向上及び廃棄物の減少を考慮して、ジビニルケトン1モルに対して、0.1~2モルの量を採用できる。
工程(51a)における反応は、極性溶媒中で実施できる。上記溶媒としては、水、アセトニトリルが挙げられる。
工程(52a)において、化合物(51a)とフランとの反応割合としては、収率の向上及び廃棄物の減少を考慮して、化合物(51a)1モルに対してフランが1~2モルの量を採用できる。
工程(52a)における反応は、酸の存在下に実施でき、上記酸としては、酢酸、塩酸、p-トルエンスルホン等があげられる。
工程(52a)における上記酸の使用量は、収率の向上及び廃棄物の減少を考慮して、化合物(51a)1モルに対して、0.1~2モルの量を採用できる。
工程(52a)における反応は、極性溶媒中で実施できる。上記溶媒としては、水が挙げられる。
工程(53a)では、化合物(52a)を酸の存在下で加熱することにより、フラン環を開環させる。
上記酸としては、塩酸、硫酸が使用できる。
工程(53a)における反応は、極性溶媒中で実施できる。上記溶媒としては、水が例示できる。 
工程(54a)における酸化は、亜塩素酸ナトリウムの存在下に、溶媒中で実施できる。
上記溶媒としては、tert-ブチルアルコール及び水が使用できる。緩衝液として、リン酸水素二ナトリウム溶液を使用してもよい。
化合物(54a)をアルカリと接触させて、-COOHを塩型に変換してもよい。上記アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等が挙げられ、具体的にはアンモニアの水溶液を使用できる。
各工程の終了後、溶媒を留去したり、蒸留、精製等を実施したりして、得られる化合物の純度を高めてもよい。
界面活性剤(a)は、また、式:
Figure JPOXMLDOC01-appb-C000028
(式中、R1aは上述のとおり、R21aは単結合又は2価の連結基である。)で示されるアルケンと、式:
Figure JPOXMLDOC01-appb-C000029
(式中、Y61aはアルキルエステル基である。)で示されるアルキンとを反応させて、式:
Figure JPOXMLDOC01-appb-C000030
(式中、R1a、R21a及びY61aは上述のとおりである。)で示される化合物(61a)を得る工程(61a)、及び、
化合物(61a)に、アルカリを作用させたのちに酸を作用させて、式:
Figure JPOXMLDOC01-appb-C000031
(式中、R1a及びR21aは上述のとおりである。)で示される化合物(62a)を得る工程(62a)、
を含む製造方法により製造できる。
工程(61a)において、上記アルケンと上記アルキンとの反応割合としては、収率の向上及び廃棄物の減少を考慮して、上記アルキン1モルに対して、上記アルケンが0.5~2モルの量を使用できる。
工程(61a)における反応は、金属触媒存在下に実施することができる。上記金属としては、ルテニウム等があげられる。
工程(61a)における上記金属触媒の使用量は、収率の向上及び廃棄物の減少を考慮して、上記アルケン1モルに対して、0.01~0.4モルの量を使用できる。
工程(61a)における反応は、極性溶媒中で実施できる。上記溶媒としては、水、アセトニトリル、ジメチルアセトアミド、ジメチルホルムアミドが挙げられる。
工程(62a)において、化合物(61a)と上記アルカリとの反応割合としては、収率の向上及び廃棄物の減少を考慮して、化合物(61a)1モルに対して上記アルカリが0.6~2モルの量を使用できる。
工程(62a)における上記酸の使用量は、収率の向上及び廃棄物の減少を考慮して、化合物(61a)1モルに対して、1.0~20.0モルの量を使用できる。
工程(62a)における反応は、極性溶媒中で実施できる。上記溶媒としては、水が挙げられる。
化合物(62a)をアルカリと接触させて、-COOHを塩型に変換してもよい。上記アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等が挙げられ、例えば、アンモニアの水溶液を使用できる。
各工程の終了後、溶媒を留去したり、蒸留、精製等を実施したりして、得られる化合物の純度を高めてもよい。
界面活性剤(b)は、新規化合物であり、例えば、次に例示する製造方法により製造することができる。
界面活性剤(b)は、下記式:
Figure JPOXMLDOC01-appb-C000032
(式中、R1b、R2b及びnは、上記のとおりである。)
で示される化合物(10b)と、下記式:
Figure JPOXMLDOC01-appb-C000033
(式中、R3bは、上記のとおりである。Lは、単結合、-CO-B-*、-OCO-B-*、-CONR6b-B-*、-NR6bCO-B-*、又は、-CO-(但し、-CO-B-、-OCO-B-、-CONR6b-B-、-NR6bCO-B-に含まれるカルボニル基を除く。)であり、Bは単結合もしくは置換基を有してもよい炭素数1~10のアルキレン基であり、R6bは、H又は置換基を有していてもよい、炭素数1~4のアルキル基である。*は、式中の-S(=O)-に結合する側を指す。)で示されるサルトンとを反応させて、下記式:
Figure JPOXMLDOC01-appb-C000034
(式中、R1b~R3b、n及びXは、上記のとおりである。Lは、単結合、-CO-B-*、-OCO-B-*、-CONR6b-B-*、-NR6bCO-B-*、又は、-CO-(但し、-CO-B-、-OCO-B-、-CONR6b-B-、-NR6bCO-B-に含まれるカルボニル基を除く。)であり、Bは単結合もしくは置換基を有してもよい炭素数1~10のアルキレン基であり、R6bは、H又は置換基を有していてもよい、炭素数1~4のアルキル基である。*は、式中の-SOに結合する側を指す。)で示される化合物(11b)を得る工程(11b)を含む製造方法により製造できる。
工程(11b)における反応は、塩基の存在下に実施できる。
上記塩基としては、水素化ナトリウム、水酸化ナトリウム、水酸化カリウム、トリエチルアミン等が挙げられる。上記塩基は、化合物(10b)1モルに対して、0.5~20モルの量で使用できる。
工程(11b)における反応は、溶媒中で実施できる。
上記溶媒としては、有機溶媒を使用でき、非プロトン性極性溶媒が挙げられ、具体的にはエーテル、芳香族化合物、ニトリル、ハロゲン化炭化水素等が挙げられる。
界面活性剤(b)は、また、下記式:
Figure JPOXMLDOC01-appb-C000035
(式中、R1b~R4b、n、p及びqは上記のとおりである。Lは、単結合、-CO-B-*、-OCO-B-*、-CONR6b-B-*、-NR6bCO-B-*、又は、-CO-(但し、-CO-B-、-OCO-B-、-CONR6b-B-、-NR6bCO-B-に含まれるカルボニル基を除く。)であり、Bは単結合もしくは置換基を有してもよい炭素数1~10のアルキレン基であり、R6bは、H又は置換基を有していてもよい、炭素数1~4のアルキル基である。*は、式中の-CH-OHに結合する側を指す。)
で示される化合物(20b)を酸化させて、下記式:
Figure JPOXMLDOC01-appb-C000036
(式中、R1b~R4b、n、p、q及びXは上記のとおりである。Lは、単結合、-CO-B-*、-OCO-B-*、-CONR6b-B-*、-NR6bCO-B-*、又は、-CO-(但し、-CO-B-、-OCO-B-、-CONR6b-B-、-NR6bCO-B-に含まれるカルボニル基を除く。)であり、Bは単結合もしくは置換基を有してもよい炭素数1~10のアルキレン基であり、R6bは、H又は置換基を有していてもよい、炭素数1~4のアルキル基である。*は、式中の-COOXに結合する側を指す。)
で示される化合物(21b)を得る工程(21b)を含む製造方法により製造できる。
工程(21b)における酸化は、化合物(20b)にニトロソ化剤を作用させることにより実施できる。
上記ニトロソ化剤としては、亜硝酸ナトリウム、ニトロシル硫酸及び亜硝酸イソアミル等が使用できる。
上記ニトロソ化剤は、化合物(20b)1モルに対して、0.5~10モルの量で使用できる。
工程(21b)における酸化は、溶媒中で実施できる。上記溶媒としては、トリフルオロ酢酸、アセトニトリル等が使用できる。
化合物(10b)及び化合物(20b)は、下記式:
11b-CH=CH-Y1b-OH
(式中、R11bは、H、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基、又は、置換基を有してもよい炭素数3以上の環状のアルキル基であり、炭素数が3以上の場合は1価又は2価の複素環を含んでも環を巻いていてもよい。Y1bは、-(CR2b -又は-(CR2b -(OR3b-(CR4b -L-CH-(R2b~R4b、n、p及びqは、上記のとおり。Lは、単結合、-CO-B-*、-OCO-B-*、-CONR6b-B-*、-NR6bCO-B-*、又は、-CO-(但し、-CO-B-、-OCO-B-、-CONR6b-B-、-NR6bCO-B-に含まれるカルボニル基を除く。)であり、Bは単結合もしくは置換基を有してもよい炭素数1~10のアルキレン基であり、R6bは、H又は置換基を有していてもよい、炭素数1~4のアルキル基である。*は、式中の-CH-に結合する側を指す。)である。)で示される化合物(100b)をヒドロキシ化して、下記式:
Figure JPOXMLDOC01-appb-C000037
(式中、R11b及びY1bは、上記のとおり。)で示される化合物(101b)を得る工程(101b)、及び、
化合物(101b)を酸化して、下記式:
Figure JPOXMLDOC01-appb-C000038
(式中、R11b及びY1bは、上記のとおり。)で示される化合物(102b)を得る工程(102b)を含む製造方法により製造できる。
11bとしての上記アルキル基は、カルボニル基を含まないことが好ましい。
11bとしての上記アルキル基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキル基であることが好ましい。
上記アルキル基は、如何なる置換基も有していないことが好ましい。
11bとしては、H、置換基を有してもよい炭素数1~9の直鎖状若しくは分岐鎖状のアルキル基、又は、置換基を有してもよい炭素数3~9の環状のアルキル基が好ましく、H、カルボニル基を含まない炭素数1~9の直鎖状若しくは分岐鎖状のアルキル基又はカルボニル基を含まない炭素数3~9の環状のアルキル基がより好ましく、H、又は、置換基を有さない炭素数1~9の直鎖状若しくは分岐鎖状のアルキル基が更に好ましく、H、メチル基(-CH)又はエチル基(-C)が更により好ましく、H又はメチル基(-CH)が特に好ましく、Hが最も好ましい。
工程(101b)におけるヒドロキシ化は、例えば、(1b)酸素雰囲気中で化合物(100b)にフタロシアニン鉄(II)(Fe(Pc))及び水素化ホウ素ナトリウムを作用させる方法や、(2b)化合物(100b)にイソピノカンフェイルボラン(IpcBH)を作用させた後、得られる中間体(ジアルキルボラン)を酸化する方法により実施できる。
方法(1b)において、フタロシアニン鉄(II)の量は、触媒量であってよく、化合物(100b)1モルに対して、0.001~1.2モルの量で使用できる。
方法(1b)において、水素化ホウ素ナトリウムは、化合物(100b)1モルに対して、0.5~20モルの量で使用できる。
方法(1b)の反応は、溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、具体的にはエーテル、ハロゲン化炭化水素、芳香族炭化水素、ニトリル、含窒素極性有機化合物等が挙げられる。
方法(2b)において、イソピノカンフェイルボランは、化合物(100b)1モルに対して、1.0~10.0モルの量で使用できる。
化合物(100b)とイソピノカンフェイルボランとの反応は、溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、具体的にはエーテル、ハロゲン化炭化水素、芳香族炭化水素等が挙げられる。
化合物(100b)とイソピノカンフェイルボランとの反応の温度としては、-78~200℃が採用できる。
化合物(100b)とイソピノカンフェイルボランとの反応の圧力としては、0~5.0MPaが採用できる。
化合物(100b)とイソピノカンフェイルボランとの反応の時間としては、0.1~72時間が採用できる。
方法(2b)における酸化は、上記中間体に酸化剤を作用させることにより実施できる。上記酸化剤としては、過酸化水素が挙げられる。上記酸化剤は、上記中間体1モルに対して、0.7~10モルの量で使用できる。
方法(2b)における酸化は、溶媒中で実施できる。上記溶媒としては、水、メタノール、エタノール等が挙げられる。
工程(102b)において、化合物(101b)を酸化する方法としては、例えば、(a)ジョーンズ試薬(CrO/HSO)を用いる方法(ジョーンズ酸化)、(b)デス・マーチン・ペルヨージナン(DMP)を用いる方法(デス・マーチン酸化)、(c)クロロクロム酸ピリジニウム(PCC)を用いる方法、(d)NiCl等のニッケル化合物の存在下に漂白剤(NaOClの約5~6%水溶液)を作用させる方法、(e)Al(CH、Al[OCH(CH等のアルミニウム触媒の存在下にアルデヒド、ケトン等の水素受容体を作用させる方法(オッペナウアー酸化)が挙げられる。
工程(102b)における酸化は、溶媒中で実施できる。上記溶媒としては、水及び有機溶媒を使用でき、具体的には水、ケトン、エーテル、ハロゲン化炭化水素、芳香族炭化水素、ニトリル等が挙げられる。
化合物(10b)及び化合物(20b)は、また、下記式:
Figure JPOXMLDOC01-appb-C000039
(式中、R1b及びY1bは、上記のとおり。R101bは、有機基である。)で示される化合物(200b)をオゾン分解して、下記式:
Figure JPOXMLDOC01-appb-C000040
(式中、R1b及びY1bは、上記のとおり。)で示される化合物(201b)を得る工程(201b)を含む製造方法により製造できる。
101bとしては、炭素数1~20のアルキル基が好ましい。2個のR101bは、同一でも異なっていてもよい。
工程(201b)におけるオゾン分解は、化合物(200b)にオゾンを作用させた後、還元剤で後処理することにより実施できる。
オゾンは、酸素ガス中の無声放電によって発生させることができる。
上記後処理に用いる還元剤としては、亜鉛、ジメチルスルフィド、チオウレア、ホスフィン類等が挙げられる。
工程(201b)におけるオゾン分解は、溶媒中で実施できる。上記溶媒としては、水及び有機溶媒を使用でき、水、アルコール、カルボン酸類、エーテル、ハロゲン化炭化水素、芳香族炭化水素等が挙げられる。
化合物(10b)及び化合物(20b)は、また、下記式:
21b-CH=CH-Y1b-OH
(式中、Y1bは、上記のとおり。R21bは、H、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基、又は、置換基を有してもよい炭素数3以上の環状のアルキル基であり、炭素数が3以上の場合は1価又は2価の複素環を含んでも環を巻いていてもよい。)で示される化合物(300b)をエポキシ化して、下記式:
Figure JPOXMLDOC01-appb-C000041
(式中、R21b及びY1bは、上記のとおり。)で示される化合物(301b)を得る工程(301b)、
化合物(301b)と、R22b CuLi(R22bは、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基又は置換基を有してもよい炭素数3以上の環状のアルキル基であり、炭素数が3以上の場合は1価又は2価の複素環を含んでも環を巻いていてもよい。)で示されるジアルキル銅リチウムとを反応させて、下記式:
Figure JPOXMLDOC01-appb-C000042
(式中、R21b、R22b及びY1bは、上記のとおり。)で示される化合物(302b)を得る工程(302b)、及び、
化合物(302b)を酸化して、下記式:
Figure JPOXMLDOC01-appb-C000043
(式中、R21b、R22b及びY1bは、上記のとおり。)で示される化合物(303b)を得る工程(303b)を含む製造方法により製造できる。
21bとしての上記アルキル基は、カルボニル基を含まないことが好ましい。
21bとしての上記アルキル基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキル基であることが好ましい。
上記アルキル基は、如何なる置換基も有していないことが好ましい。
21bとしては、H、置換基を有してもよい炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基、又は、置換基を有してもよい炭素数3~8の環状のアルキル基が好ましく、H、カルボニル基を含まない炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基又はカルボニル基を含まない炭素数3~8の環状のアルキル基がより好ましく、H、又は、置換基を有さない炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基が更に好ましく、H又はメチル基(-CH)が特に好ましく、Hが最も好ましい。
22bとしての上記アルキル基は、カルボニル基を含まないことが好ましい。
22bとしての上記アルキル基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキル基であることが好ましい。
上記アルキル基は、如何なる置換基も有していないことが好ましい。
22bとしては、置換基を有してもよい炭素数1~9の直鎖状若しくは分岐鎖状のアルキル基、又は、置換基を有してもよい炭素数3~9の環状のアルキル基が好ましく、カルボニル基を含まない炭素数1~9の直鎖状若しくは分岐鎖状のアルキル基又はカルボニル基を含まない炭素数3~9の環状のアルキル基がより好ましく、置換基を有さない炭素数1~9の直鎖状若しくは分岐鎖状のアルキル基が更に好ましく、メチル基(-CH)又はエチル基(-C)が特に好ましく、メチル基(-CH)が最も好ましい。
2個のR22bは、同一でも異なっていてもよい。
21b及びR22bは、炭素数が合計で1~7であることが好ましく、1~2であることがより好ましい。
工程(301b)におけるエポキシ化は、化合物(300b)にエポキシ化剤を作用させることにより実施できる。
上記エポキシ化剤としては、メタクロロ過安息香酸(m-CPBA)、過安息香酸、過酸化水素、tert-ブチルヒドロペルオキシド等の過酸、ジメチルジオキシラン、メチルトリフルオロメチルジオキシラン等が挙げられる。
上記エポキシ化剤は、化合物(300b)1モルに対して、0.5~10.0モルの量で使用できる。
工程(301b)におけるエポキシ化は、溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、ケトン、エーテル、ハロゲン化炭化水素、芳香族炭化水素、ニトリル、ピリジン、含窒素極性有機化合物、ジメチルスルホキシド等が挙げられる。
工程(302b)において、上記ジアルキル銅リチウムは、化合物(301b)1モルに対して、0.5~10.0モルの量で使用できる。
工程(302b)の反応は、溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、エーテル、ハロゲン化炭化水素、芳香族炭化水素等が挙げられる。
工程(303b)において、化合物(302b)を酸化する方法としては、例えば、(a)ジョーンズ試薬(CrO/HSO)を用いる方法(ジョーンズ酸化)、(b)デス・マーチン・ペルヨージナン(DMP)を用いる方法(デス・マーチン酸化)、(c)クロロクロム酸ピリジニウム(PCC)を用いる方法、(d)NiCl等のニッケル化合物の存在下に漂白剤(NaOClの約5~6%水溶液)を作用させる方法、(e)Al(CH、Al[OCH(CH等のアルミニウム触媒の存在下にアルデヒド、ケトン等の水素受容体を作用させる方法(オッペナウアー酸化)が挙げられる。
工程(303b)における酸化は、溶媒中で実施できる。上記溶媒としては、水及び有機溶媒を使用でき、水、ケトン、アルコール、エーテル、ハロゲン化炭化水素、芳香族炭化水素、ニトリル等が挙げられる。
化合物(10b)及び化合物(20b)は、また、下記式:
11b-CH=CH-Y1b-OH
(式中、R11b及びY1bは、上記のとおり。)で示される化合物(100b)を酸化して、下記式:
Figure JPOXMLDOC01-appb-C000044
(式中、R11b及びY1bは、上記のとおり。)で示される化合物(401b)を得る工程(401b)を含む製造方法により製造できる。
工程(401b)における酸化は、水及びパラジウム化合物の存在下で、化合物(100b)に酸化剤を作用させることにより実施できる。
上記酸化剤としては、塩化銅、酢酸銅、シアン化銅、トリフルオロメタンチオール銅等の一価又は二価の銅塩、塩化鉄、酢酸鉄、シアン化鉄、トリフルオロメタンチオール鉄、ヘキサシアノ鉄等の鉄塩、1,4-ベンゾキノン、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン、テトラクロロ-1,2-ベンゾキノン、テトラクロロ-1,4-ベンゾキノン等のベンゾキノン類、H、MnO、KMnO、RuO、m-クロロ過安息香酸、酸素等が挙げられる。
上記酸化剤は、化合物(100b)1モルに対して、0.001~10モルの量で使用できる。
上記水は、化合物(100b)1モルに対して、0.5~1000モルの量で使用できる。
上記パラジウム化合物としては、二塩化パラジウムが挙げられる。上記パラジウム化合物の量は、触媒量であってよく、化合物(100b)1モルに対して、0.0001~1.0モルの量で使用できる。
工程(401b)における酸化は、溶媒中で実施できる。上記溶媒としては、水、エステル、脂肪族炭化水素、芳香族炭化水素、アルコール、カルボン酸類、エーテル、ハロゲン化炭化水素、含窒素極性有機化合物、ニトリル、ジメチルスルホキシド、スルホランが挙げられる。
界面活性剤(b)は、また、下記式:
11b-CH=CH-(CR2b -(OR3b-(CR4b -L-COOX
(式中、R2b~R4b、R11b、n、p、q及びXは、上記のとおり。Lは、単結合、-CO-B-*、-OCO-B-*、-CONR6b-B-*、-NR6bCO-B-*、又は、-CO-(但し、-CO-B-、-OCO-B-、-CONR6b-B-、-NR6bCO-B-に含まれるカルボニル基を除く。)であり、Bは単結合もしくは置換基を有してもよい炭素数1~10のアルキレン基であり、R6bは、H又は置換基を有していてもよい、炭素数1~4のアルキル基である。*は、式中の-COOXに結合する側を指す。)で示される化合物(30b)を酸化して、下記式:
Figure JPOXMLDOC01-appb-C000045
(R2b~R4b、R11b、n、p、q及びXは、上記のとおり。Lは、単結合、-CO-B-*、-OCO-B-*、-CONR6b-B-*、-NR6bCO-B-*、又は、-CO-(但し、-CO-B-、-OCO-B-、-CONR6b-B-、-NR6bCO-B-に含まれるカルボニル基を除く。)であり、Bは単結合もしくは置換基を有してもよい炭素数1~10のアルキレン基であり、R6bは、H又は置換基を有していてもよい、炭素数1~4のアルキル基である。*は、式中の-COOXに結合する側を指す。)で示される化合物(31b)を得る工程(31b)を含む製造方法により製造できる。
工程(31b)における酸化は、水及びパラジウム化合物の存在下で、化合物(30b)に酸化剤を作用させることにより実施でき、工程(401b)における酸化と同様の条件が採用できる。
上述したいずれの製造方法においても、各工程の終了後、溶媒を留去したり、蒸留、精製等を実施したりして、得られる化合物の純度を高めてもよい。また、得られる化合物が-SOH、-COOH等のXがHである化合物である場合は、炭酸ナトリウム、アンモニア等のアルカリと接触させることにより、これらの基を塩型に変換できる。
上記界面活性剤(a)又は(b)を用いて高分子量PTFEを製造することもできる。すなわち、上記界面活性剤を使用する本発明の製造方法は、驚くべきことに、従来の含フッ素界面活性剤を使用せずとも、従来の含フッ素界面活性剤を使用する製造方法と同等の分子量を有するPTFEを製造可能である。
上記界面活性剤(a)又は(b)を用いて低分子量PTFEを製造することもできる。
低分子量PTFEは、重合により製造しても良いし、重合で得られた高分子量PTFEを公知の方法(熱分解、放射線照射分解等)で低分子量化して製造することもできる。
上記炭化水素系界面活性剤としては、下記式(a1):
Figure JPOXMLDOC01-appb-C000046
(式中、R1aは、炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基又は炭素数3以上の環状のアルキル基であり、炭素原子に結合した水素原子がヒドロキシ基又はエステル結合を含む1価の有機基により置換されていてもよく、炭素数が2以上の場合はカルボニル基を含んでもよく、炭素数が3以上の場合は1価又は2価の複素環を含んでも環を巻いていてもよい。R2a及びR3aは、独立に、単結合又は2価の連結基である。R1a、R2a及びR3aは、炭素数が合計で6以上である。Xは、H、金属原子、NR4a 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、R4aはH又は有機基であり、同一でも異なっていてもよい。R1a、R2a及びR3aは、いずれか2つがお互いに結合して、環を形成してもよい。)で示される界面活性剤(a1)、及び、下記式(b1):
Figure JPOXMLDOC01-appb-C000047
(式中、R1bは、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基又は置換基を有してもよい炭素数3以上の環状のアルキル基であり、炭素数が3以上の場合は1価又は2価の複素環を含んでも環を巻いていてもよい。R2b及びR4bは、独立に、H又は置換基である。R3bは、置換基を有してもよい炭素数1~10のアルキレン基である。nは、1以上の整数である。p及びqは、独立に、0以上の整数である。Xは、H、金属原子、NR5b 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、R5bはH又は有機基であり、同一でも異なっていてもよい。R1b、R2b、R3b及びR4bは、いずれか2つがお互いに結合して、環を形成してもよい。Lは、単結合、-CO-B-*、-OCO-B-*、-CONR6b-B-*、-NR6bCO-B-*、又は、-CO-(但し、-CO-B-、-OCO-B-、-CONR6b-B-、-NR6bCO-B-に含まれるカルボニル基を除く。)であり、Bは単結合もしくは置換基を有してもよい炭素数1~10のアルキレン基であり、R6bは、H又は置換基を有していてもよい、炭素数1~4のアルキル基である。*は、式中の-OSOに結合する側を指す。)で示される界面活性剤(b1)からなる群より選択される少なくとも1種も挙げられる。
界面活性剤(a1)について説明する。
式(a1)中のR1a、R2a及びR3aとしては、式(a)中のR1a、R2a及びR3aとして挙げたものを好ましく採用できる。
1a、R2a及びR3aは、炭素数が合計で6以上である。合計の炭素数としては、8以上が好ましく、9以上がより好ましく、10以上が更に好ましく、20以下が好ましく、18以下がより好ましく、15以下が更に好ましい。
1a、R2a及びR3aは、いずれか2つがお互いに結合して、環を形成してもよい。
式(a1)中のXとしては、式(a)中のXとして挙げたものを好ましく採用できる。
次に界面活性剤(b1)について説明する。
式(b1)中、R1b、R2b、R3b及びR4bとしては、式(b)中のR1b、R2b、R3b及びR4bとして挙げたものを好ましく採用できる。
式(b1)において、R1b、R2b、R3b及びR4bは、いずれか2つがお互いに結合して、環を形成してもよいが、環を形成していないことが好ましい。
式(b1)中、nは、1以上の整数である。nとしては、1~40の整数が好ましく、1~30の整数がより好ましく、5~25の整数が更に好ましく、5~9、11~25の整数が特に好ましい。
式(b1)中、p及びqは、独立に、0以上の整数である。pとしては、0~10の整数が好ましく、0又は1がより好ましい。qとしては、0~10の整数が好ましく、0~5の整数がより好ましい。
n、p及びqは、合計が5以上の整数であることが好ましい。n、p及びqの合計は8以上の整数であることがより好ましい。n、p及びqの合計はまた、60以下の整数であることが好ましく、50以下の整数であることがより好ましく、40以下の整数であることが更に好ましい。
式(b1)中、Xとしては、式(b1)中のXとして挙げたものを好ましく採用できる。
界面活性剤(b)としては、下記式:
Figure JPOXMLDOC01-appb-C000048
(式中、L、R1b、R2b、n及びXは、上記のとおり。)で示される化合物が好ましい。
上記界面活性剤は、H-NMRスペクトルにおいて、ケミカルシフト2.0~5.0ppmの領域に観測される全ピーク強度の積分値が10%以上であることが好ましい。
上記界面活性剤は、H-NMRスペクトルにおいて、ケミカルシフト2.0~5.0ppmの領域に観測される全ピーク強度の積分値が上記範囲内にあることが好ましい。この場合、上記界面活性剤は分子中にケトン構造を有することが好ましい。
上記界面活性剤において、上記積分値は、15以上がより好ましく、95以下が好ましく、80以下がより好ましく、70以下が更に好ましい。
上記積分値は、重水溶媒にて室温下に測定する。重水を4.79ppmとする。
界面活性剤(a1)は、新規化合物であり、例えば、次に例示する製造方法により製造することができる。
界面活性剤(a1)は、式:
Figure JPOXMLDOC01-appb-C000049
(式中、R3aは上述のとおり、Eは脱離基である。)で示される化合物(10a)と、リチウム、及び、式:R201a Si-Cl(式中、R201aは、独立に、アルキル基又はアリール基である。)で示されるクロロシラン化合物とを反応させて、式:
Figure JPOXMLDOC01-appb-C000050
(式中、R3a、R201a及びEは上述のとおりである。)で示される化合物(11a)を得る工程(11a)、
化合物(11a)と、式:
Figure JPOXMLDOC01-appb-C000051
(式中、R1aは上述のとおり、R21aは単結合又は2価の連結基である。)で示されるオレフィンとを反応させて、式:
Figure JPOXMLDOC01-appb-C000052
(式中、R1a、R21a、R3a及びEは上述のとおりである。)で示される化合物(12a)を得る工程(12a)、
化合物(12a)が有する脱離基を脱離させて、式:
Figure JPOXMLDOC01-appb-C000053
(式中、R1a、R21a及びR3aは上述のとおりである。)で示される化合物(13a)を得る工程(13a)、及び、
化合物(13a)と、式:
Figure JPOXMLDOC01-appb-C000054
(式中、Xは、上述したとおりである。)で示される塩化スルホン酸とを反応させて、式:
Figure JPOXMLDOC01-appb-C000055
(式中、R1a、R21a、R3a及びXは上述のとおりである。)で示される化合物(14a)を得る工程(14a)を含む製造方法により製造できる。
工程(11a)~工程(13a)までは、上述した界面活性剤(a)と同じである。
工程(14a)において、化合物(13a)と上記塩化スルホン酸との反応割合としては、収率の向上及び廃棄物の減少を考慮して、化合物(13a)1モルに対して、上記塩化スルホン酸が1~2モルの量を採用できる。
工程(14a)における反応は、塩基の存在下に実施することができる。上記塩基としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アミン等があげられる。
工程(14a)における上記アミンとしては、トリメチルアミン、トリエチルアミン、トリブチルアミン、N、N-ジメチルアニリン、ジメチルベンジルアミン、N,N,N’,N’-テトラメチル-1,8-ナフタレンジアミン等の三級アミン、ピリジン、ピロール、ウラシル、コリジン、ルチジン等の複素芳香族アミン、1,8-ジアザ-ビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザ-ビシクロ[4.3.0]-5-ノネン等の環状アミン等が挙げられる。
工程(14a)における上記塩基の使用量は、化合物(13a)1モルに対して、1~2モルを採用できる。
工程(14a)における反応は、極性溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、非プロトン性極性溶媒が挙げられ、具体的にはエーテルを例示できる。
工程(14a)における反応を溶媒中で実施すると、上記反応の終了後に化合物(14a)を含む溶液が得られる。上記溶液に水を加えた後、静置して2相に分離させ、水相を回収し、溶媒を留去することにより、高純度の化合物(14a)を回収してもよい。化合物(14a)が-OSOHで示される基を有する場合は(すなわちXがHである場合は)、水に代えて、炭酸水素ナトリウム水溶液やアンモニア水等のアルカリ水溶液を使用することにより、-OSOHを硫酸塩基に変換することも可能である。
各工程の終了後、溶媒を留去したり、蒸留、精製等を実施したりして、得られる化合物の純度を高めてもよい。
界面活性剤(a1)は、また、式:
Figure JPOXMLDOC01-appb-C000056
(式中、R3aは上述のとおり、R22aは1価の有機基、Eは脱離基である。)で示されるケトンと、式:
Figure JPOXMLDOC01-appb-C000057
(式中、R1aは上述のとおり、R23aは1価の有機基である。)で示されるカルボン酸エステルとを反応させて、式:
Figure JPOXMLDOC01-appb-C000058
(式中、R1a、R3a及びEは上述のとおり、R24aは単結合又は2価の連結基である。)で示される化合物(21a)を得る工程(21a)、
化合物(21a)が有する脱離基を脱離させて、式:
Figure JPOXMLDOC01-appb-C000059
(式中、R1a、R24a及びR3aは上述のとおりである。)で示される化合物(22a)を得る工程(22a)、及び、
化合物(22a)と、式:
Figure JPOXMLDOC01-appb-C000060
(式中、Xは、上述したとおりである。)で示される塩化スルホン酸とを反応させて、式:
Figure JPOXMLDOC01-appb-C000061
(式中、R1a、R24a、R3a及びXは上述のとおりである。)で示される化合物(23a)を得る工程(23a)を含む製造方法により製造できる。
工程(21a)~工程(22a)までは、上述した界面活性剤(a)と同じである。
工程(23a)において、化合物(22a)と上記塩化スルホン酸との反応割合としては、収率の向上及び廃棄物の減少を考慮して、化合物(22a)1モルに対して、上記塩化スルホン酸が1~2モルの量を採用できる。
工程(23a)における反応は、塩基の存在下に実施することができる。上記塩基としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アミン等があげられる。
工程(23a)における上記アミンとしては、上記工程(14a)と同じである。
工程(23a)における上記塩基の使用量は、収率の向上及び廃棄物の減少を考慮して、化合物(22a)1モルに対して、1~2モルの量を採用できる。
工程(23a)における反応は、極性溶媒中で実施できる。上記溶媒としては、有機溶媒がを使用でき、非プロトン性極性溶媒が挙げられ、具体的にはエーテルを例示できる。
工程(23a)における反応を溶媒中で実施すると、上記反応の終了後に化合物(23a)を含む溶液が得られる。上記溶液に水を加えた後、静置して2相に分離させ、水相を回収し、溶媒を留去することにより、高純度の化合物(23a)を回収してもよい。化合物(23a)が-OSOHで示される基を有する場合は(すなわちXがHである場合は)、水に代えて、炭酸水素ナトリウム水溶液やアンモニア水等のアルカリ水溶液を使用することにより、-OSOHを硫酸塩基に変換することも可能である。
各工程の終了後、溶媒を留去したり、蒸留、精製等を実施したりして、得られる化合物の純度を高めてもよい。
界面活性剤(a1)は、また、式:Y-R3a-OE
(式中、R3aは上述のとおり、Yはハロゲン原子、Eは脱離基である。)で示されるハロゲン化アルキルと、式:
Figure JPOXMLDOC01-appb-C000062
(式中、R1aは上述のとおりである。)で示されるリチウムアセチリドとを反応させて、式:
Figure JPOXMLDOC01-appb-C000063
(式中、R1a、R3a及びEは上述のとおりである。)で示される化合物(31a)を得る工程(31a)、
化合物(31a)を酸化して、式:
Figure JPOXMLDOC01-appb-C000064
(式中、R1a、R3a及びEは上述のとおりである。)で示される化合物(32a)を得る工程(32a)、
化合物(32a)が有する脱離基を脱離させて、式:
Figure JPOXMLDOC01-appb-C000065
(式中、R1a及びR3aは上述のとおりである。)で示される化合物(33a)を得る工程(33a)、及び、
化合物(33a)と、式:
Figure JPOXMLDOC01-appb-C000066
(式中、Xは、上述したとおりである。)で示される塩化スルホン酸とを反応させて、式:
Figure JPOXMLDOC01-appb-C000067
(式中、R1a、R3a及びXは上述のとおりである。)で示される化合物(34a)を得る工程(34a)を含む製造方法により製造できる。
工程(31a)~工程(33a)までは、上述した界面活性剤(a)と同じである。
工程(34a)において、化合物(33a)と上記塩化スルホン酸との反応割合としては、収率の向上及び廃棄物の減少を考慮して、化合物(33a)1モルに対して、上記塩化スルホン酸が1~2モルの量を採用できる。
工程(34a)における反応は、塩基の存在下に実施することができる。上記塩基としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アミン等があげられる。
工程(34a)における上記アミンとしては、上記工程(14a)と同じである。
工程(34a)における上記塩基の使用量は、収率の向上及び廃棄物の減少を考慮して、化合物(33a)1モルに対して、1~2モルの量を採用できる。
工程(34a)における反応は、極性溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、非プロトン性極性溶媒が挙げられ、具体的にはエーテルを例示できる。
工程(34a)における反応を溶媒中で実施すると、上記反応の終了後に化合物(34a)を含む溶液が得られる。上記溶液に水を加えた後、静置して2相に分離させ、水相を回収し、溶媒を留去することにより、高純度の化合物(34a)を回収してもよい。化合物(34a)が-OSOHで示される基を有する場合は(すなわちXがHである場合は)、水に代えて、炭酸水素ナトリウム水溶液やアンモニア水等のアルカリ水溶液を使用することにより、-OSOHを硫酸塩基に変換することも可能である。
各工程の終了後、溶媒を留去したり、蒸留、精製等を実施したりして、得られる化合物の純度を高めてもよい。
界面活性剤(a1)は、また、式:
Figure JPOXMLDOC01-appb-C000068
(式中、R1aは上述のとおり、R21aは単結合又は2価の連結基である。)で示されるアルケンと、式:
Figure JPOXMLDOC01-appb-C000069
(式中、Y51aはアルコキシル基である。)で示されるアルキンとを反応させて、式:
Figure JPOXMLDOC01-appb-C000070
(式中、R1a及びR21aは上述のとおりである。)
で示される化合物(41a)を得る工程(41a)、及び、
化合物(41a)に、式:
Figure JPOXMLDOC01-appb-C000071
(式中、Xは、上述したとおりである。)で示される塩化スルホン酸とを反応させて、式:
Figure JPOXMLDOC01-appb-C000072
(式中、R1a、R21a及びXは上述のとおりである。)で示される化合物(42a)を得る工程(42a)を含む製造方法により製造できる。
工程(41a)は、上述した界面活性剤(a)と同じである。
工程(42a)において、化合物(41a)と上記塩化スルホン酸との反応割合としては、収率の向上及び廃棄物の減少を考慮して、化合物(41a)1モルに対して、上記塩化スルホン酸が1~2モルの量を採用できる。
工程(42a)における反応は、塩基の存在下に実施することができる。上記塩基としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アミン等があげられる。
工程(42a)における上記アミンとしては、上記工程(14a)と同じである。
工程(42a)における上記塩基の使用量は、収率の向上及び廃棄物の減少を考慮して、化合物(41a)1モルに対して、1~2モルの量を採用できる。
工程(42a)における反応は、極性溶媒中で実施できる。上記溶媒としては、有機溶媒が使用でき、非プロトン性極性溶媒が挙げられ、具体的にはエーテルが挙げられる。
工程(42a)における反応を溶媒中で実施すると、上記反応の終了後に化合物(42a)を含む溶液が得られる。上記溶液に水を加えた後、静置して2相に分離させ、水相を回収し、溶媒を留去することにより、高純度の化合物(42a)を回収してもよい。化合物(42a)が-OSOHで示される基を有する場合は(すなわちXがHである場合は)、水に代えて、炭酸水素ナトリウム水溶液やアンモニア水等のアルカリ水溶液を使用することにより、-OSOHを硫酸塩基に変換することも可能である。
各工程の終了後、溶媒を留去したり、蒸留、精製等を実施したりして、得られる化合物の純度を高めてもよい。
界面活性剤(b1)は、新規化合物であり、例えば、次に例示する製造方法により製造することができる。
界面活性剤(b1)は、下記式:
11b-CH=CH-(CR2b -(OR3b-(CR4b -L-OH
(式中、R2b~R4b、n、p及びqは、上記のとおり。R11bは、H、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基、又は、置換基を有してもよい炭素数3以上の環状のアルキル基であり、炭素数が3以上の場合は1価又は2価の複素環を含んでも環を巻いていてもよい。Lは、単結合、-CO-B-*、-OCO-B-*、-CONR6b-B-*、-NR6bCO-B-*、又は、-CO-(但し、-CO-B-、-OCO-B-、-CONR6b-B-、-NR6bCO-B-に含まれるカルボニル基を除く。)であり、Bは単結合もしくは置換基を有してもよい炭素数1~10のアルキレン基であり、R6bは、H又は置換基を有していてもよい、炭素数1~4のアルキル基である。*は、式中の-OHに結合する側を指す。)で示される化合物(10b)をヒドロキシ化して、下記式:
Figure JPOXMLDOC01-appb-C000073
(式中、L、R2b~R4b、R11b、n、p及びqは、上記のとおり。)で示される化合物(11b)を得る工程(11b)、
化合物(11b)を酸化して、下記式:
Figure JPOXMLDOC01-appb-C000074
(式中、L、R2b~R4b、R11b、n、p及びqは、上記のとおり。)で示される化合物(12b)を得る工程(12b)、及び、
化合物(12b)を硫酸エステル化して、下記式:
Figure JPOXMLDOC01-appb-C000075
(式中、L、R2b~R4b、R11b、n、p、q及びXは、上記のとおり。)で示される化合物(13b)を得る工程(13b)を含む製造方法により製造できる。
11bとしては、上述した界面活性剤(b)におけるR11bと同じものを好適に採用できる。工程(11b)におけるヒドロキシ化は、上述した工程(100b)のヒドロキシ化と同じ方法を採用できる。
工程(12b)は、上述した界面活性剤(b)における工程(102b)と同様に行うことができる。
工程(13b)における硫酸エステル化は、化合物(12b)と硫酸化試薬とを反応させることにより実施できる。上記硫酸化試薬としては、三酸化硫黄ピリジン錯体、三酸化硫黄トリメチルアミン錯体、三酸化硫黄トリエチルアミン錯体等の三酸化硫黄アミン錯体、三酸化硫黄ジメチルホルムアミド錯体等の三酸化硫黄アミド錯体、硫酸-ジシクロヘキシルカルボジイミド、クロロ硫酸、濃硫酸、スルファミン酸等が挙げられる。上記硫酸化試薬の使用量としては、化合物(12b)1モルに対して、0.5~10モルが採用できる。
工程(13b)における硫酸エステル化は、溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、エーテル、ハロゲン化炭化水素、芳香族炭化水素、ピリジン、ジメチルスルホキシド、スルホラン、ニトリル等が挙げられる。
界面活性剤(b1)は、また、下記式:
Figure JPOXMLDOC01-appb-C000076
(式中、L、R1b~R4b、n、p及びqは、上記のとおり。R101bは、有機基である。)で示される化合物(20b)をオゾン分解して、下記式:
Figure JPOXMLDOC01-appb-C000077
(式中、L、R1b~R4b、n、p及びqは、上記のとおり。)で示される化合物(21b)を得る工程(21b)、及び、
化合物(21b)を硫酸エステル化して、下記式:
Figure JPOXMLDOC01-appb-C000078
(式中、L、R1b~R4b、n、p、q及びXは、上記のとおり。)で示される化合物(22b)を得る工程(22b)を含む製造方法により製造できる。
101bとしては、炭素数1~20のアルキル基が好ましい。2個のR101bは、同一でも異なっていてもよい。
工程(21b)におけるオゾン分解としては、工程(201b)と同様の方法を採用できる。
工程(22b)における硫酸エステル化は、化合物(21b)と硫酸化試薬とを反応させることにより実施でき、工程(13b)における硫酸エステル化と同様の条件が採用できる。
界面活性剤(b1)は、また、下記式:
21b-CH=CH-(CR2b -(OR3b-(CR4b -L-OH
(式中、L、Rb2~R4b、n、p及びqは、上記のとおり。R21bは、H、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基、又は、置換基を有してもよい炭素数3以上の環状のアルキル基であり、炭素数が3以上の場合は1価又は2価の複素環を含んでも環を巻いていてもよい。)で示される化合物(30b)をエポキシ化して、下記式:
Figure JPOXMLDOC01-appb-C000079
(式中、L、R2b~R4b、R21b、n、p及びqは、上記のとおり。)で示される化合物(31b)を得る工程(31b)、
化合物(31b)と、R22b CuLi(R22bは、置換基を有してもよい炭素数1以上の直鎖状若しくは分岐鎖状のアルキル基又は置換基を有してもよい炭素数3以上の環状のアルキル基であり、炭素数が3以上の場合は1価又は2価の複素環を含んでも環を巻いていてもよい。)で示されるジアルキル銅リチウムとを反応させて、下記式:
Figure JPOXMLDOC01-appb-C000080
(式中、L、R2b~R4b、R21b、R22b、n、p及びqは、上記のとおり。)で示される化合物(32b)を得る工程(32b)、
化合物(32b)を酸化して、下記式:
Figure JPOXMLDOC01-appb-C000081
(式中、L、R2b~R4b、R21b、R22b、n、p及びqは、上記のとおり。)で示される化合物(33b)を得る工程(33b)、及び、
化合物(33b)を硫酸エステル化して、下記式:
Figure JPOXMLDOC01-appb-C000082
(式中、L、R2b~R4b、R21b、R22b、n、p、q及びXは、上記のとおり。)で示される化合物(34b)を得る工程(34b)を含む製造方法により製造できる。
21b及びR22bしては、上述した界面活性剤(b)におけるR21b及びR22bと同様である。
工程(31b)、工程(32b)及び工程(33b)は、上述した工程(301b)、工程(302b)及び工程(303b)と同様に実施できる。
工程(34b)における硫酸エステル化は、化合物(33b)と硫酸化試薬とを反応させることにより実施でき、工程(13b)における硫酸エステル化と同様の条件が採用できる。
界面活性剤(b1)は、また、下記式:
11b-CH=CH-(CR2b -(OR3b-(CR4b -L-OH
(式中、L、R2b~R4b、R11b、n、p及びqは、上記のとおり。)で示される化合物(10b)を酸化して、下記式:
Figure JPOXMLDOC01-appb-C000083
(式中、L、R2b~R4b、R11b、n、p及びqは、上記のとおり。)で示される化合物(41b)を得る工程(41b)、及び、
化合物(41b)を硫酸エステル化して、下記式:
Figure JPOXMLDOC01-appb-C000084
(式中、L、R2b~R4b、R11b、n、p、q及びXは、上記のとおり。)で示される化合物(42b)を得る工程(42b)を含む製造方法により製造できる。
工程(41b)における酸化は、上述した工程(401b)と同様に実施できる。
工程(42b)における硫酸エステル化は、化合物(41b)と硫酸化試薬とを反応させることにより実施でき、工程(13b)における硫酸エステル化と同様の条件が採用できる。
界面活性剤(b1)は、また、下記式:
11b-CH=CH-(CR2b -OH
(式中、R2b、R11b及びnは、上記のとおり。)で示される化合物(50)とハロゲン化剤とを反応させて、下記式:
11b-CH=CH-(CR2b -Z51b
(式中、R2b、R11b及びnは、上記のとおり。Z51bは、ハロゲン原子である。)で示される化合物(51)を得る工程(51)、
化合物(51)と、HO-R3b-L-OH(L及びR3bは、上記のとおり。)で示されるアルキレングリコールとを反応させて、下記式:
11b-CH=CH-(CR2b -O-R3b-L-OH
(式中、L、R2b、R3b、R11b及びnは、上記のとおり。)で示される化合物(52)を得る工程(52)、
化合物(52)を酸化して、下記式:
Figure JPOXMLDOC01-appb-C000085
(式中、L、R2b、R3b、R11b及びnは、上記のとおり。)で示される化合物(53)を得る工程(53)、及び、
化合物(53)を硫酸エステル化して、下記式:
Figure JPOXMLDOC01-appb-C000086
(式中、L、R2b、R3b、R11b、n及びXは、上記のとおり。)で示される化合物(54)を得る工程(54)を含む製造方法により製造できる。
51bとしては、F、Cl、Br又はIが好ましく、Brがより好ましい。
工程(51)で使用するハロゲン化剤としては、N-ブロモスクシンイミド、N-クロロスクシンイミド等が挙げられる。
上記ハロゲン化剤は、化合物(50)1モルに対して、0.5~10.0モルの量で使用できる。
工程(51)の反応は、トリフェニルホスフィン等のホスフィン類の存在下に実施できる。
上記ホスフィン類は、化合物(50)1モルに対して、0.5~10.0モルの量で使用できる。
工程(51)の反応は、溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、具体的にはエーテル、ハロゲン化炭化水素、芳香族炭化水素等が挙げられる。
工程(52)において、上記アルキレングリコールは、化合物(51)1モルに対して、0.5~10.0モルの量で使用できる。
工程(52)の反応は、塩基の存在下に実施できる。上記塩基としては、水素化ナトリウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。
上記塩基は、化合物(51)1モルに対して、0.5~10.0モルの量で使用できる。
工程(52)の反応は、溶媒中で実施できる。上記溶媒としては、有機溶媒を使用でき、含窒素極性有機化合物、エーテル、ハロゲン化炭化水素、芳香族炭化水素等が挙げられる。
工程(53)における酸化は、水及びパラジウム化合物の存在下で、化合物(52)に酸化剤を作用させることにより実施でき、工程(41)における酸化と同様の条件が採用できる。
工程(54)における硫酸エステル化は、化合物(53)と硫酸化試薬とを反応させることにより実施でき、工程(13)における硫酸エステル化と同様の条件が採用できる。
上述したいずれの製造方法においても、各工程の終了後、溶媒を留去したり、蒸留、精製等を実施したりして、得られる化合物の純度を高めてもよい。また、得られる化合物が-OSOHで示される基を有する場合は(すなわちXがHである場合は)、炭酸ナトリウム、アンモニア等のアルカリと接触させることにより、-OSOHを硫酸塩基に変換できる。
また、上記炭化水素系界面活性剤としては、下記式(c):
Figure JPOXMLDOC01-appb-C000087
(式中、R1c~R5cはH又は一価の置換基を表し、但し、R1c及びR3cのうち、少なくとも1つは、一般式:-Y-R6cで示される基、R2c及びR5cのうち、少なくとも1つは、一般式:-X-Aで示される基、又は、一般式:-Y-R6cで示される基を表す。また、Xは、各出現において同一又は異なって、2価の連結基、又は、結合手;Aは、各出現において同一又は異なって、-COOM、-SOM又は-OSOM(Mは、H、金属原子、NR7c 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウム、R7cは、H又は有機基);Yは、各出現において同一又は異なって、-S(=O)-、-O-、-COO-、-OCO-、-CONR8c-及び-NR8cCO-からなる群より選択される2価の連結基、又は、結合手、R8cはH又は有機基;R6cは、各出現において同一又は異なって、カルボニル基、エステル基、アミド基及びスルホニル基からなる群より選択される少なくとも1種を炭素-炭素原子間に含んでもよい炭素数2以上のアルキル基;を表す。R1c~R5cのうち、いずれか2つがお互いに結合して、環を形成してもよい。)で示される界面活性剤(c)も挙げられる。
次に界面活性剤(c)について説明する。
式中、R1c~R5cはH又は一価の置換基を表し、但し、R1c及びR3cのうち、少なくとも1つは、一般式:-Y-R6cで示される基、R2c及びR5cのうち、少なくとも1つは、一般式:-X-Aで示される基、又は、一般式:-Y-R6cで示される基を表す。R1c~R5cのうち、いずれか2つがお互いに結合して、環を形成してもよい。
1cとしての上記アルキル基が有してもよい上記置換基としては、ハロゲン原子、炭素数1~10の直鎖状若しくは分岐鎖状のアルキル基又は炭素数3~10の環状のアルキル基、ヒドロキシ基が好ましく、メチル基、エチル基が特に好ましい。
1cとしての上記アルキル基は、カルボニル基を含まないことが好ましい。
上記アルキル基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキル基であることが好ましい。
上記アルキル基は、如何なる置換基も有していないことが好ましい。
1cとしては、置換基を有してもよい炭素数1~10の直鎖状若しくは分岐鎖状のアルキル基又は置換基を有してもよい炭素数3~10の環状のアルキル基が好ましく、カルボニル基を含まない炭素数1~10の直鎖状若しくは分岐鎖状のアルキル基又はカルボニル基を含まない炭素数3~10の環状のアルキル基がより好ましく、置換基を有さない炭素数1~10の直鎖状又は分岐鎖状のアルキル基が更に好ましく、置換基を有さない炭素数1~3の直鎖状又は分岐鎖状のアルキル基が更により好ましく、メチル基(-CH)又はエチル基(-C)が特に好ましく、メチル基(-CH)が最も好ましい。
一価の置換基としては、一般式:-Y-R6cで示される基、一般式:-X-Aで示される基、-H、置換基を有していてもよいC1-20のアルキル基、-NH、-NHR9c(R9cは有機基)、-OH、-COOR9c(R9cは有機基)又は-OR9c(R9cは有機基)が好ましい。上記アルキル基の炭素数は1~10が好ましい。
9cとしては、C1-10のアルキル基又はC1-10のアルキルカルボニル基が好ましく、C1-4のアルキル基又はC1-4のアルキルカルボニル基がより好ましい。
式中、Xは、各出現において同一又は異なって、2価の連結基、又は、結合手を表す。
6cがカルボニル基、エステル基、アミド基及びスルホニル基のいずれをも含まない場合は、Xはカルボニル基、エステル基、アミド基及びスルホニル基からなる群より選択される少なくとも1種を含む2価の連結基であることが好ましい。
としては、-CO-、-S(=O)-、-O-、-COO-、-OCO-、-S(=O)-O-、-O-S(=O)-、-CONR8c-及び-NR8cCO-からなる群より選択される少なくとも1種の結合を含む2価の連結基、C1-10のアルキレン基、又は、結合手が好ましい。R8cはH又は有機基を表す。
8cとしては、H又はC1-10の有機基が好ましく、H又はC1-4の有機基がより好ましく、Hが更に好ましい。
式中、Aは、各出現において同一又は異なって、-COOM、-SOM又は-OSOM(Mは、H、金属原子、NR7c 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウム、R7cはH又は有機基である。4つのR7cは、同一でも異なっていてもよい。)を表す。
7cとしては、H又はC1-10の有機基が好ましく、H又はC1-4の有機基がより好ましい。
上記金属原子としては、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、Na、K又はLiが好ましい。
Mとしては、H、金属原子又はNR7c が好ましく、H、アルカリ金属(1族)、アルカリ土類金属(2族)又はNR7c がより好ましく、H、Na、K、Li又はNHが更に好ましく、Na、K又はNHが更により好ましく、Na又はNHが特に好ましく、NHが最も好ましい。
式中、Yは、各出現において同一又は異なって、-S(=O)-、-O-、-COO-、-OCO-、-CONR8c-及び-NR8cCO-からなる群より選択される2価の連結基、又は、結合手、R8cはH又は有機基を表す。
としては、結合手、-O-、-COO-、-OCO-、-CONR8c-及び-NR8cCO-からなる群より選択される2価の連結基が好ましく、結合手、-COO-及び-OCO-からなる群より選択される2価の連結基がより好ましい。
8cとしては、H又はC1-10の有機基が好ましく、H又はC1-4の有機基がより好ましく、Hが更に好ましい。
式中、R6cは、各出現において同一又は異なって、カルボニル基、エステル基、アミド基及びスルホニル基からなる群より選択される少なくとも1種を炭素-炭素原子間に含んでもよい炭素数2以上のアルキル基を表す。上記R6cの有機基の炭素数は、2~20が好ましく、2~10がより好ましい。
6cのアルキル基は、炭素-炭素原子間にカルボニル基、エステル基、アミド基及びスルホニル基からなる群より選択される少なくとも1種を1又は2以上含むことができるが、上記アルキル基の末端にこれらの基を含まない。上記R6cのアルキル基は、炭素原子に結合した水素原子の75%以下がハロゲン原子により置換されていてもよく、50%以下がハロゲン原子により置換されていてもよく、25%以下がハロゲン原子により置換されていてもよいが、フッ素原子、塩素原子等のハロゲン原子を含まない非ハロゲン化アルキル基であることが好ましい。
6cとしては、
一般式:-R10c-CO-R11cで示される基、
一般式:-R10c-COO-R11cで示される基、
一般式:-R11cで示される基、
一般式:-R10c-NR8cCO-R11cで示される基、又は、
一般式:-R10c-CONR8c-R11cで示される基、
(式中、R8cはH又は有機基を表す。R10cはアルキレン基、R11cは置換基を有してもよいアルキル基)が好ましい。
6cとしては、一般式:-R10c-CO-R11cで示される基がより好ましい。
8cとしては、H又はC1-10の有機基が好ましく、H又はC1-4の有機基がより好ましく、Hが更に好ましい。
10cのアルキレン基の炭素数は、1以上が好ましく、3以上がより好ましく、20以下が好ましく、12以下がより好ましく、10以下が更に好ましく、8以下が特に好ましい。また、R10cのアルキレン基の炭素数は、1~20が好ましく、1~10がより好ましく、3~10が更に好ましい。
11cのアルキル基の炭素数は、1~20であってよく、1~15が好ましく、1~12がより好ましく、1~10が更に好ましく、1~8が更により好ましく、1~6が殊更好ましく、1~3が尚更に好ましく、1又は2が特に好ましく、1が最も好ましい。また、上記R11cのアルキル基は、1級炭素、2級炭素、3級炭素のみで構成されていることが好ましく、1級炭素、2級炭素のみで構成されるのが特に好ましい。すなわち、R11cとしては、メチル基、エチル基、n-プロピル基、イソプロピル基が好ましく、特にメチル基が最も好ましい。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
PTFE水性分散液中のPTFE固形分含有量
PTFE水性分散液1gを、送風乾燥機中で150℃、60分の条件で乾燥し、水性分散液の質量(1g)に対する、加熱残分の質量の割合を百分率で表した値を採用した。
平均一次粒子径
PTFE水性分散液を水で固形分濃度が0.15質量%になるまで希釈し、得られた希釈ラテックスの単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真により定方向径を測定して決定した数基準長さ平均粒子径とを測定して、検量線を作成する。この検量線を用いて、各試料の550nmの投射光の実測透過率からPTFE水性分散液中のPTFE粒子の平均一次粒子径を決定した。
標準比重(SSG)
ASTM D4895-89に準拠して作製したPTFE成形サンプルを用い、ASTM D-792に記載の水置換法によりPTFEの標準比重(SSG)を測定した。
見掛密度
得られたPTFE粉末について、JIS K6892に準拠して測定した。
PTFE粉末の平均粒径
得られたPTFE粉末について、JIS K6891に準拠して測定した。
PTFE粉末の色調
PTFE粉末の色調(L*、Z)について、JIS Z8781-4に準拠して、測色色差計ZE-6000(日本電色工業株式会社製)(CIELABカラースケール)を用いて測定した。
色調(L*、Z)を測定するためのPTFE検体の作製方法は以下の通りである。
PTFE粉末を4.0g計量して、内径28.6mmの円筒金型内に仕込み、8.27MPaの圧力で1分間保持し、厚みが約4mmの円盤状PTFE成形体(未焼成)を作製した。金型から円盤状PTFE成形体(未焼成)を取り出した後、24時間、25℃で放置した。
上記装置を使用して、円盤状PTFE成形体(未焼成)の色調(L*、Z)(未焼成)を測定した。
次に、円盤状PTFE成形体(未焼成)を385℃に加熱した電気炉内で10分間熱処理後、電気炉から取り出し、円盤状PTFE成形体(焼成後)を得た。上記装置を使用して、得られた円盤状PTFE成形体(焼成後)の色調(L*、Z)(焼成後)を測定した。
合成例1
10-ウンデセン-1-オール(16g)、1,4-ベンゾキノン(10.2g)、DMF(160mL)、水(16mL)及びPdCl2(0.34g)の混合物を90℃で12時間加熱撹拌した。
その後減圧下に溶媒を留去した。得られた残渣を分液及びカラムクロマトグラフィーで精製し、11-ヒドロキシウンデカン-2-オン(15.4g)を得た。
得られた11-ヒドロキシウンデカン-2-オンのスペクトルデータを以下に示す。
1H-NMR(CDCl3) δppm:1.29-1.49(m,14H)、2.08(s,3H)、2.45(J=7.6,t,2H)、3.51(J=6.5,t,2H)
11-ヒドロキシウンデカン-2-オン(13g)、三酸化硫黄トリエチルアミン錯体(13.9g)、テトラヒドロフラン(140mL)の混合物を50℃下12時間撹拌した。ナトリウムメトキシド(3.8g)/メタノール(12mL)溶液を反応液に滴下した。
析出固体を減圧濾過し、酢酸エチルで洗浄し、10-オキソウンデシル硫酸ナトリウム(15.5g)(以下、界面活性剤Aという)を得た。得られた10-オキソウンデシル硫酸ナトリウムのスペクトルデータを以下に示す。
1H-NMR(CDCl3) δppm:1.08(J=6.8,m,10H)、1.32(m,2H)、1.45(m,2H)、1.98(s,3H)、2.33(J=7.6,t,2H)、3.83(J=6.5,t,2H)
合成例2
内容積6LのSUS製のオートクレーブに3500gの脱イオン脱気水、100gのパラフィンワックス、0.122gの界面活性剤Aを加え、反応器を密閉し、系内を窒素で置換を行ない、酸素を取り除いた。反応器を70℃に昇温し、TFEを反応器に充填して、反応器を0.78MPaにする。重合開始剤として過硫酸アンモニウム(APS)0.070gを仕込んだ。反応圧が0.78MPa一定となるようにTFEを仕込む。反応途中に界面活性剤Aを9回、トータル1.10g添加した。TFEを425g仕込んだ時に、撹拌を停止し、反応器が大気圧になるまで脱圧を行なう。水性分散液を反応器より取り出し、冷却後、パラフィンワックスを分離し、PTFE水性分散液Aを得た。
得られたPTFE水性分散液B中のPTFE固形分濃度は10.7質量%であった。
得られたPTFE水性分散液Bに含まれるPTFE粒子の平均一次粒子径は178nmであった。
比較例1
合成例2で得られたPTFE水性分散液Aに脱イオン水を加え、比重(25℃)を1.030に調整した。アンカー型撹拌翼と邪魔板を備えた内容量が1Lのガラス製凝析槽に、比重調整したPTFE水性分散液0.55Lを加え、内温が28℃になるように温度調節した。調節後直ちに硝酸(10%)1.3gを添加すると同時に撹拌速度600rpmで撹拌を開始した。撹拌開始後、水性分散液がスラリー状態を経て、湿潤PTFE粉末が形成されたことを確認し、更に1分間撹拌を継続した。
続いて、湿潤PTFE粉末を濾別し、湿潤PTFE粉末と脱イオン水0.55Lを凝析槽内に仕込み、25℃に調整して、撹拌速度600rpmでポリマー粉末を洗浄する操作を2回繰り返した。
洗浄の後、湿潤PTFE粉末を濾別し、熱風循環式乾燥機で150℃、18時間乾燥させ、PTFE粉末を得た。
得られたPTFE粉末について標準比重を測定したところ、2.175であった。
PTFE粉末の見掛密度、平均粒径、色調(L*、Z)を測定した。結果を表1に示す。
実施例1
合成例2で得られたPTFE水性分散液Aに脱イオン水を加え、比重(25℃)を1.030に調整した。希釈後のPTFE水性分散液0.55Lを予め25℃に調整した上で、深さ18.5cm及び内径8.5cmを有するガラスビーカーに投入した。
ウルトラソニックホモジナイザーUH-8-3C(超音波工業株式会社製)のノズル部分を上記希釈PTFE水性分散液に浸し、超音波処理(300W,19kHz)を12分間施したところ、湿潤PTFE粉末が形成されることが確認できた。
湿潤PTFE粉末を凝析排水から濾別した後、アンカー型撹拌翼と邪魔板を備えた1Lガラス製の容器を使用して、脱イオン水0.55Lで洗浄した(撹拌速度600rpm)。脱イオン水を入れ替えて、この洗浄操作を更に2回繰り返した。
洗浄の後、湿潤PTFE粉末を濾別し、熱風循環式乾燥機で150℃、18時間乾燥させ、PTFE粉末を得た。
比較例1と同様にして、PTFE粉末の見掛密度、平均粒径、色調(L*、Z)を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000088

Claims (2)

  1. ポリテトラフルオロエチレン粒子を含むポリテトラフルオロエチレン水性分散液に超音波を照射して、ポリテトラフルオロエチレン粒子を凝析させる工程を含むことを特徴とするポリテトラフルオロエチレン粉末の製造方法。
  2. ポリテトラフルオロエチレン水性分散液は、炭化水素系界面活性剤の存在下に、水性媒体中でテトラフルオロエチレンの重合を行うことにより得られたものである請求項1記載の製造方法。
PCT/JP2018/047574 2017-12-25 2018-12-25 ポリテトラフルオロエチレン粉末の製造方法 WO2019131633A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/957,288 US11518826B2 (en) 2017-12-25 2018-12-25 Method for producing polytetrafluoroethylene powder
JP2019561715A JP7014976B2 (ja) 2017-12-25 2018-12-25 ポリテトラフルオロエチレン粉末の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017248551 2017-12-25
JP2017-248551 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019131633A1 true WO2019131633A1 (ja) 2019-07-04

Family

ID=67067377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047574 WO2019131633A1 (ja) 2017-12-25 2018-12-25 ポリテトラフルオロエチレン粉末の製造方法

Country Status (3)

Country Link
US (1) US11518826B2 (ja)
JP (1) JP7014976B2 (ja)
WO (1) WO2019131633A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200399211A1 (en) * 2017-03-31 2020-12-24 Daikin Industries, Ltd. Alkyl sulfate ester or salt of same
WO2021066189A1 (ja) * 2019-10-03 2021-04-08 ダイキン工業株式会社 ポリテトラフルオロエチレンおよびその製造方法
EP3828208A4 (en) * 2018-07-23 2022-07-13 Daikin Industries, Ltd. POLYTETRAFLUOROETHYLENE AND STRETCHED BODY

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022452A1 (fr) * 1995-12-15 1997-06-26 Daikin Industries, Ltd. Procede de production de feuilles de polytetrafluoroethylene, appareil y servant et granuleuse petrisseuse
JP2011016956A (ja) * 2009-07-10 2011-01-27 Daikin Industries Ltd 架橋性ptfe組成物、およびその成形体
JP2011225710A (ja) * 2010-04-19 2011-11-10 Daikin Industries Ltd フルオロポリマー非水系分散液
JP2014132095A (ja) * 2010-09-30 2014-07-17 Daikin Ind Ltd ポリテトラフルオロエチレンファインパウダーの製造方法
JP2015516029A (ja) * 2012-05-09 2015-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 変色を低減するための酸化剤を利用するフッ素化ポリマー樹脂処理

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
US3250808A (en) 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
JP3931382B2 (ja) 1996-09-18 2007-06-13 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末及びその製造方法
JP3308936B2 (ja) 1999-06-30 2002-07-29 長一 古屋 ガス拡散電極材料の製造方法
EP1065739A1 (en) 1999-06-30 2001-01-03 Nagakazu Furuya Process for producing gas diffusion electrode material
JP3900883B2 (ja) 2001-10-05 2007-04-04 ダイキン工業株式会社 含フッ素重合体ラテックスの製造方法
WO2003059992A1 (en) 2002-01-04 2003-07-24 E.I. Dupont De Nemours And Company Concentrated fluoropolymer dispersions
US6841616B2 (en) 2003-03-28 2005-01-11 Arkema Inc. Polymerization of halogen-containing monomers using siloxane surfactant
US7696268B2 (en) 2003-10-31 2010-04-13 Daikin Industries, Ltd. Process for producing aqueous fluoropolymer dispersion and aqueous fluoropolymer dispersion
US7714448B2 (en) 2004-11-16 2010-05-11 Rohm Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN101056906B (zh) 2004-11-16 2010-08-18 大金工业株式会社 改性聚四氟乙烯细粉和改性聚四氟乙烯成型体
GB0523853D0 (en) 2005-11-24 2006-01-04 3M Innovative Properties Co Fluorinated surfactants for use in making a fluoropolymer
GB0514387D0 (en) 2005-07-15 2005-08-17 3M Innovative Properties Co Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
GB0514398D0 (en) 2005-07-15 2005-08-17 3M Innovative Properties Co Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
GB0525978D0 (en) 2005-12-21 2006-02-01 3M Innovative Properties Co Fluorinated Surfactants For Making Fluoropolymers
US7795332B2 (en) 2005-07-15 2010-09-14 3M Innovative Properties Company Method of removing fluorinated carboxylic acid from aqueous liquid
EP1939222B2 (en) 2005-10-17 2019-09-04 AGC Inc. Process for producing an AQUEOUS POLYTETRAFLUOROETHYLENE EMULSION, AND POLYTETRAFLUOROETHYLENE FINE POWDER AND POROUS MATERIAL PRODUCED FROM THE SAME
JP5391550B2 (ja) 2005-10-20 2014-01-15 旭硝子株式会社 溶融成形可能なフッ素樹脂の製造方法
EP1939252B1 (en) 2005-10-20 2011-09-21 Asahi Glass Company, Limited Aqueous polytetrafluoroethylene dispersion and product made from same
US20090269044A1 (en) 2006-04-14 2009-10-29 Bridgestone Corporation Bridgestone corporation
US20070276103A1 (en) 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US8119750B2 (en) 2006-07-13 2012-02-21 3M Innovative Properties Company Explosion taming surfactants for the production of perfluoropolymers
ATE509960T1 (de) 2006-11-09 2011-06-15 Du Pont Wässrige polymerisation eines fluorinierten monomers mithilfe eines polymerisationsmittels mit einer fluorpolyethersäure oder einem salz daraus und einem fluorpolyethersäuretensid oder - salztensid von hohem molekulargewicht
CN103210003B (zh) 2010-11-09 2016-09-07 纳幕尔杜邦公司 减弱含烃表面活性剂在含氟单体含水分散体聚合反应中的调聚性能
CN103201301B (zh) 2010-11-09 2017-02-08 纳幕尔杜邦公司 含氟单体的含水聚合反应中的成核作用
CN103201300B (zh) 2010-11-09 2016-11-09 纳幕尔杜邦公司 使用烃表面活性剂的含氟单体的含水聚合
CN113667247A (zh) * 2017-03-31 2021-11-19 大金工业株式会社 包含含氟聚合物的组合物及其成型体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022452A1 (fr) * 1995-12-15 1997-06-26 Daikin Industries, Ltd. Procede de production de feuilles de polytetrafluoroethylene, appareil y servant et granuleuse petrisseuse
JP2011016956A (ja) * 2009-07-10 2011-01-27 Daikin Industries Ltd 架橋性ptfe組成物、およびその成形体
JP2011225710A (ja) * 2010-04-19 2011-11-10 Daikin Industries Ltd フルオロポリマー非水系分散液
JP2014132095A (ja) * 2010-09-30 2014-07-17 Daikin Ind Ltd ポリテトラフルオロエチレンファインパウダーの製造方法
JP2015516029A (ja) * 2012-05-09 2015-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 変色を低減するための酸化剤を利用するフッ素化ポリマー樹脂処理

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200399211A1 (en) * 2017-03-31 2020-12-24 Daikin Industries, Ltd. Alkyl sulfate ester or salt of same
US11999681B2 (en) * 2017-03-31 2024-06-04 Daikin Industries, Ltd. Alkyl sulfate ester or salt of same
EP3828208A4 (en) * 2018-07-23 2022-07-13 Daikin Industries, Ltd. POLYTETRAFLUOROETHYLENE AND STRETCHED BODY
WO2021066189A1 (ja) * 2019-10-03 2021-04-08 ダイキン工業株式会社 ポリテトラフルオロエチレンおよびその製造方法
CN114514253A (zh) * 2019-10-03 2022-05-17 大金工业株式会社 聚四氟乙烯及其制造方法
EP4039716A4 (en) * 2019-10-03 2023-10-25 Daikin Industries, Ltd. POLYTETRAFLUOROETHYLENE AND PRODUCTION METHOD THEREFOR

Also Published As

Publication number Publication date
US11518826B2 (en) 2022-12-06
JPWO2019131633A1 (ja) 2020-11-26
US20210388126A1 (en) 2021-12-16
JP7014976B2 (ja) 2022-02-15

Similar Documents

Publication Publication Date Title
RU2497836C2 (ru) Способ получения фторполимеров
JP6750729B2 (ja) フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
JP7174272B2 (ja) 変性ポリテトラフルオロエチレンの製造方法及び組成物
JP7277799B2 (ja) ポリテトラフルオロエチレンの製造方法
JP7112000B2 (ja) フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
WO2019031617A1 (ja) 精製ポリテトラフルオロエチレン水性分散液の製造方法、改質ポリテトラフルオロエチレン粉末の製造方法、ポリテトラフルオロエチレン成形体の製造方法、及び、組成物
JP7014976B2 (ja) ポリテトラフルオロエチレン粉末の製造方法
JPWO2020105650A1 (ja) 組成物及び延伸体
JP7492153B2 (ja) フルオロポリマーの製造方法
JP2022126769A (ja) ポリテトラフルオロエチレン及び延伸体
JP6939916B2 (ja) フルオロポリマーの製造方法、重合用界面活性剤、界面活性剤の使用及び組成物
JP7231868B2 (ja) 組成物およびその製造方法
JP6840073B2 (ja) フルオロポリマー分散系の製造方法
WO2021100835A1 (ja) フルオロポリマーの製造方法
JP2023085494A (ja) フルオロポリマー粉末の製造方法
WO2021100836A1 (ja) フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法、パーフルオロエラストマーの製造方法および組成物
WO2021100834A1 (ja) ポリテトラフルオロエチレンの製造方法
WO2020218618A1 (ja) フルオロポリマー水性分散液の製造方法
JP7029099B2 (ja) ポリテトラフルオロエチレンの製造方法
WO2022196804A1 (ja) フッ素樹脂の製造方法、フッ素樹脂および水性分散液
WO2023277139A1 (ja) フルオロポリマー組成物の製造方法およびフルオロポリマー組成物
WO2023277140A1 (ja) 高純度フルオロポリマー含有組成物の製造方法および高純度フルオロポリマー含有組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895457

Country of ref document: EP

Kind code of ref document: A1