WO2019131441A1 - 接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法 - Google Patents

接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法 Download PDF

Info

Publication number
WO2019131441A1
WO2019131441A1 PCT/JP2018/047009 JP2018047009W WO2019131441A1 WO 2019131441 A1 WO2019131441 A1 WO 2019131441A1 JP 2018047009 W JP2018047009 W JP 2018047009W WO 2019131441 A1 WO2019131441 A1 WO 2019131441A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
optical
optical waveguide
connection
core
Prior art date
Application number
PCT/JP2018/047009
Other languages
English (en)
French (fr)
Inventor
松井 隆
中島 和秀
雅樹 和田
山下 陽子
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2019561612A priority Critical patent/JP7067568B2/ja
Priority to EP18893804.7A priority patent/EP3734338B1/en
Priority to US16/770,531 priority patent/US10955622B2/en
Priority to CN201880081808.3A priority patent/CN111492282B/zh
Publication of WO2019131441A1 publication Critical patent/WO2019131441A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type

Definitions

  • the present disclosure relates to a connecting device for connecting multi-core fibers, a method therefor, and a manufacturing device and method for producing an optical connector of a multi-core fiber.
  • MCF multi-core optical fiber having a plurality of core regions is actively studied for the leap of the transmission capacity expansion by using the spatial multiplexing technology.
  • MCF has high space utilization efficiency and can realize high density optical wiring, and therefore, attention is also focused on application to high density of optical wiring in data centers and the like.
  • Non-Patent Document 1 and Patent Document 1 alignment is performed including the core arrangement in the rotational direction using observation of the connection end face and analysis of the side image (for example, in Non-Patent Document 3, the rotation angle of the core is It is required to be within 1 °)), techniques for fusing are shown.
  • MCF fan-out devices are configured to have an MCF core and a plurality of SMF cores at the input and output, and fiber bundle types, melt and draw types, laminated PLC types, and three-dimensional optical waveguide types have been proposed and used. .
  • the three-dimensional optical waveguide type shown in Non-Patent Document 2 can form an arbitrary optical waveguide in three dimensions in glass or quartz using a short pulse laser, it is possible to use a fanout device for any MCF structure. It can be made.
  • the core arrangement in the rotational direction is aligned at a predetermined angle as in the fusion connection described above, and then connection is performed by fusion or connector connection.
  • this invention aims at providing the connection apparatus, the optical connector manufacturing apparatus, the connection method, and the optical connector manufacturing method which do not require the rotational alignment of MCF in order to solve the said subject.
  • connection device and the optical connector according to the present invention use an optical waveguide substrate in which an optical waveguide is three-dimensionally laser-drawn on a glass or quartz substrate in accordance with the rotation angle of the MCF to be connected.
  • connection device is a connection device that connects an optical fiber to be connected to an optical fiber to be connected, which is a multi-core fiber, using an optical waveguide substrate,
  • An end face image acquisition unit that acquires an image of the connection surface of the first fiber fixing unit to which at least the optical fiber of the connection source connected to one of the optical waveguide substrates is fixed;
  • a coordinate deriving unit that acquires coordinates of a center position of a core of an optical fiber that appears on the connection surface of the first fiber fixing unit from the image of the connection surface acquired by the end surface image acquiring unit;
  • the optical waveguide connecting the core of the optical fiber of the connection source to the core of the optical fiber of the connection destination based on the coordinates acquired by the coordinate deriving unit is a desired path from one of the optical waveguide substrates to the other An optical waveguide forming part to be described on the optical waveguide substrate;
  • a connecting portion connecting the connecting surface of the first fiber fixing portion to one of the optical waveguide substrates and connecting the connecting surface of the second fiber fixing portion to
  • connection method is a connection method in which an optical fiber to be connected and an optical fiber to be connected which is a multi-core fiber are connected using an optical waveguide substrate, An end face image acquiring procedure of acquiring at least an image of a connecting surface of the first fiber fixing portion to which the optical fiber of the connection source connected to one of the optical waveguide substrates is fixed; A coordinate derivation procedure for acquiring coordinates of a center position of a core of an optical fiber appearing on the connection surface of the first fiber fixing part from the image of the connection surface acquired in the end face image acquisition procedure; The optical waveguide connecting the core of the optical fiber of the connection source to the core of the optical fiber of the connection destination based on the coordinates acquired in the coordinate derivation procedure is a desired path from one of the optical waveguide substrates to the other An optical waveguide forming procedure to be described on the optical waveguide substrate; The connecting surface of the first fiber fixing portion is connected to one of the optical waveguide substrates on which the optical waveguide is described in the optical waveguide forming procedure, and
  • connection method may be the following procedure.
  • the optical waveguide connecting the core of the optical fiber of the connection source to the core of the optical fiber of the connection destination based on the coordinates acquired in the coordinate derivation procedure is a desired path from one of the optical waveguide substrates to the other.
  • connection step the other end of the optical waveguide substrate may be connected to the connection surface of the second fiber fixing portion in which the optical fiber of the connection destination is fixed, or after the optical waveguide formation step, the light guide
  • connection surface of the second fiber fixing portion in which the optical fiber of the connection destination is fixed may be connected to the other of the waveguide substrates.
  • an optical connector manufacturing apparatus is an optical connector manufacturing apparatus for manufacturing an optical connector for connecting an optical fiber including a multi-core fiber to another optical component,
  • An end face image acquisition unit that acquires an image of a connection surface of a fiber fixing unit to which at least the optical fiber connected to one of the optical waveguide substrates is fixed;
  • a coordinate deriving unit that acquires coordinates of a center position of a core of an optical fiber appearing on the connection surface of the fiber fixing unit from the image of the connection surface acquired by the end surface image acquiring unit;
  • the optical waveguide connecting the core of the optical fiber to the optical port of the other optical component based on the coordinates acquired by the coordinate deriving unit is the optical waveguide along a desired path from one of the optical waveguide substrates to the other.
  • An optical waveguide forming portion to be drawn on a substrate A substrate producing jig for producing the optical waveguide substrate, A substrate fixing jig for inserting and fixing the optical waveguide substrate formed by the substrate forming jig into a ferrule for multi-core connector; It is characterized by having.
  • the optical connector manufacturing method is an optical connector manufacturing method for manufacturing an optical connector for connecting an optical fiber including a multi-core fiber to another optical component,
  • An end face image acquiring procedure for acquiring an image of at least a connection surface of a fiber fixing portion to which the optical fiber connected to one of the optical waveguide substrates is fixed;
  • a coordinate derivation procedure for acquiring coordinates of a center position of a core of an optical fiber appearing on the connection surface of the fiber fixing part from the image of the connection surface acquired in the end face image acquisition procedure;
  • the optical waveguide connecting the core of the optical fiber to the optical port of the other optical component based on the coordinates acquired in the coordinate derivation procedure is the optical waveguide along a desired path from one of the optical waveguide substrates to the other.
  • An optical waveguide forming procedure for drawing on a substrate A substrate forming step of forming the optical waveguide substrate by A substrate fixing step of inserting and fixing the optical waveguide substrate formed in the substrate forming step into a ferrule for a multi-core connector; It is characterized by doing.
  • connection device capture the end face of the MCF to be connected by an image, grasp the position of the core, and form the optical waveguide on the substrate to match the position. This eliminates the need for rotational alignment of the MCF. Therefore, it is possible to solve the problems of increased loss due to rotational misalignment accompanying rotational alignment and complication of the connection operation. Therefore, the present invention can provide a connection apparatus, an optical connector manufacturing apparatus, a connection method, and an optical connector manufacturing method for rotational alignment of the MCF.
  • connection device and method according to the present invention an image of the connection surface of the second fiber fixing portion to which the optical fiber of the connection destination is fixed is also acquired, and the optical fiber appears on the connection surface of the second fiber fixing portion It is characterized in that the coordinates of the center position of the core of are also acquired. Connection between MCFs is also possible without rotational alignment.
  • the space for holding the optical waveguide substrate of the ferrule for a multi-core connector and the optical waveguide substrate are rectangular in a plane perpendicular to the longitudinal direction of the optical fiber.
  • the optical connector can be miniaturized by forming the optical waveguide on the substrate in three dimensions, and the misalignment between the ferrule and the optical waveguide substrate so that the connection loss becomes 1 dB or less. The amount is specified. Therefore, by using the present optical connector, it is possible to prevent a decrease in space utilization efficiency and to prevent an increase in insertion loss.
  • connection device and the method thereof according to the present invention or the optical connector manufacturing device and the optical waveguide substrate manufactured by the manufacturing method thereof, With multiple optical waveguides, A connection surface to which a multicore fiber is connected, Equipped with An end of the optical waveguide connected to each core of the multi-core fiber appears on the connection surface, and a rotation angle of the set of the end for each multi-core fiber is larger than 1 °. Do.
  • connection device of the present invention and the method thereof, or the optical connector manufacturing device and the manufacturing method thereof are characterized in that the rotation angle of the multi-core fiber is larger than 1 ° at the connection surface of the fiber fixing portion.
  • the present invention can provide a connection apparatus, an optical connector manufacturing apparatus, a connection method, and an optical connector manufacturing method for rotational alignment of an MCF.
  • connection method of the optical fiber concerning this invention It is a figure explaining the connection method of the optical fiber concerning this invention. It is a figure explaining the connection method of the optical fiber concerning this invention. It is a flowchart explaining the connection method of the optical fiber which concerns on this invention. It is a figure explaining the connection method of the optical fiber concerning this invention. It is a figure explaining the optical waveguide substrate formed by the connection method of the optical fiber which concerns on this invention. It is a figure explaining the manufacturing method of the optical connector concerning the present invention. It is a figure explaining the manufacturing method of the optical connector concerning the present invention. It is a figure explaining the connection loss by the optical waveguide shift
  • the optical connector manufacturing method which concerns on this invention, it is a figure explaining the relationship of the gap
  • the optical fiber connection method is a connection method in which the optical fiber 52 at the connection destination and the optical fiber 51 at the connection source, which is a multi-core fiber, are connected using the optical waveguide substrate 10, and An end face image acquisition procedure S01 for acquiring an image of the connection surface of the first fiber fixing portion 21 to which at least the optical fiber of the connection source connected to the optical waveguide substrate 10 is fixed; Coordinate derivation procedure S02 for acquiring the coordinates of the center position of the core of the optical fiber appearing on the connection surface of the first fiber fixing portion 21 from the image of the connection surface acquired in the end surface image acquisition procedure S01; A desired optical waveguide 15 connecting the core of the optical fiber of the connection source to the core of the optical fiber of the connection destination from the one 11 to the other 12 of the optical waveguide substrate 10 based on the coordinates acquired in the coordinate derivation procedure S02
  • connection source optical fibers 51 fixed to the first fiber fixing portion 21 are multi-core fibers, but at least one of the first fiber fixing portions 21 is a multi-core fiber, and the other is a single core It may be a fiber. Further, in the present embodiment, it is assumed that the connection-destination optical fiber 52 fixed to the second fiber fixing portion 22 is a single mode fiber.
  • the connection source optical fiber 51 may be described as “multi-core fiber 51” or “MCF 51”.
  • the MCF 51 is fixed to a V-groove array or the like that fixes the fibers. At this time, since the MCF 51 does not apply any rotation control, the rotation angle of the MCF 51 differs each time as shown in the lower left of FIG. This cross-sectional view is observed and analyzed with a microscope or the like (step S01), and the coordinates of the core center position are obtained (step S02).
  • a substrate for example, a silica glass block
  • a short pulse laser is used to generate a refractive index change due to multiphoton absorption in the substrate to form an optical waveguide 15 and complete the optical waveguide substrate 10 (step S04).
  • the optical waveguide 15 can be formed with high positional accuracy by appropriately setting the origin position (the end of the substrate or the position of the marker) on the optical waveguide substrate 10.
  • the end face of one of the optical waveguide substrates 10 has the same core arrangement as the end face of the MCF 51 which is not rotationally aligned. Therefore, the respective cores of the MCF 51 are connected to the optical waveguide 15 of the optical waveguide substrate 10 by aligning the end surface of the optical waveguide substrate 10 with the end surface of the fiber fixing portion 21 in the horizontal and vertical directions. (Step S05).
  • the MCF 51 and the optical waveguide substrate 10 are connected and fixed by fusion bonding using an adhesive or discharge.
  • a multi-core SMF 52 corresponding to the output surface of the optical waveguide 15 is connected to the end face of the other 12 of the optical waveguide substrate 10 (step S06).
  • an optical component of PLC may be connected to the end face of the other 12 of the optical waveguide substrate 10 as a substitute for the SMF 52.
  • the optical waveguide 15 is formed on the optical waveguide substrate 10 so that the positions of the optical waveguide 15 appearing on the end face of the other 12 of the optical waveguide substrate 10 and the optical port of the optical component are aligned.
  • connection method of the present embodiment does not require rotational alignment of the MCF 51, and the core arrangement of the MCF 51 appearing on the end face of the fiber fixing portion 21 can be formed on the end face of one of the optical waveguide substrates 10 with high accuracy. There is no loss associated with the heart, and connection work can be simplified. Also, connection to multi-core MCFs, which was difficult with conventional connection techniques, can be easily realized. Furthermore, since the connection method of the present embodiment does not require rotational alignment of the MCF 51, the rotation angle of the MCF 51 may be larger than 1 ° at the connection surface of the fiber fixing portion 21.
  • the MCF 51 has eight cores (FIG. 12D)
  • the definition of the rotation angle is not limited to the angle with respect to any reference line shown in FIG. 12, and another rotation angle with respect to any MCF rotation angle It may be a relative rotation angle (difference of the rotation angle) of the MCF.
  • FIG. 1 it is assumed that a 4-core 4-core fiber is connected as MCF 51 and 16-core (8-core ⁇ 2-row) as SMF 51, while the end face of 11 is a core corresponding to the end face image of the 4-core fiber.
  • the end face of the other 12 has a structure in which eight cores are arranged in two rows in the lateral direction at intervals of 250 ⁇ m.
  • the cores of MCFs can be similarly produced in any number and arrangement, and the number of MCFs may be single or multicore of two or more.
  • connection method of the present embodiment can also be performed by the procedures of FIGS. 10 and 11.
  • step S04 and step S05 are reverse to the procedure of FIG.
  • the procedure of FIG. 11 is different from the procedure of FIG. 3 in that step S04 is finally performed.
  • FIG. 4 is a view for explaining the connection method of the optical fiber of the present embodiment.
  • MCFs having different numbers of cores and different core arrangements are connected to each other.
  • an image of the connection surface of the second fiber fixing portion 22 to which the optical fiber of the connection destination is fixed is also acquired in end face image acquisition procedure S01.
  • the coordinate derivation procedure S02 the coordinates of the center position of the core of the optical fiber appearing on the connection surface of the second fiber fixing portion 22 are also acquired.
  • the fiber fixing portion 21 fixes a 4-core 4-core fiber 51 as a connection source optical fiber
  • the fiber fixing portion 22 fixes a 2-core 8-core fiber 53 as a connection optical fiber. .
  • the end face images of both fiber fixing portions (21, 22) to which the MCF is fixed are acquired (step S01), and the coordinates of the center position of each core in the fiber fixing portions (21, 22) are analyzed. (Step S02). Then, the core coordinates of the first fiber fixing portion 21 are the starting point of the end face of one of the optical waveguide substrates 10, and the core coordinates of the second fiber fixing portion 22 are the ending points of the end face of the other 12 of the optical waveguide substrate 10.
  • the connecting optical waveguides 15 are formed by laser drawing (steps S03 and S04).
  • the first fiber fixing portion 21 and the second fiber fixing portion 22 are fixed to the end faces of one side 11 and the other side 12 of the optical waveguide substrate 10 by adhesion or abutment, respectively, so that different core arrangements or the number of cores It is possible to connect (steps S05, S06).
  • this connection method can easily realize connection between MCFs having different numbers of cores and core arrangements without rotational alignment.
  • the connection method of the present embodiment can also be performed by the procedures of FIGS. 10 and 11.
  • FIG. 4 illustrates the case of connecting 4-core 4-core fiber and 2-core 8-core fiber without rotational alignment
  • this connection method does not depend on the number of MCF cores, the number of cores, and the core arrangement. It can be used to connect MCFs of any number and structure. Further, in this connection method, even when MCFs having the same number of cores and the same core arrangement are connected to each other, rotational alignment of the MCFs can be unnecessary.
  • FIG. 5 is a diagram for explaining the coordinate derivation procedure S02 described in the first and second embodiments.
  • the center position of each core can be obtained directly from the image of the first fiber fixing portion 21 in the end face image acquiring procedure S01 in the xz coordinates.
  • i corresponds to the core number
  • j corresponds to the core number.
  • ⁇ j is the amount of rotation of the jth MCF (°)
  • the core position can be determined only by analyzing only the amount of rotation of the MCF from the end face image, and the coordinates can be easily determined.
  • the core center positions at the end faces of one side 11 and the other side 12 of the optical waveguide substrate 10 are determined, and paths connecting these in an S shape are derived (step S03), ⁇ a / 2 ⁇ m around each path
  • the desired optical waveguide 15 is obtained by irradiating a short pulse laser with a width of (step S04).
  • a is the optical waveguide width.
  • the path (center position of the optical waveguide 15) derived in step S03 can be described as follows.
  • the position of the path in y 1 in the interval y 1 ⁇ y 2 gentle curve which connects the position of the path in y 2 is (X and Y coordinates over from y 1 to y 2 is the curve changes).
  • the curve is called "S-shaped”. Note that 0 ⁇ y 1 ⁇ y 2 ⁇ L.
  • the waveguide substrate 10 can be manufactured by drawing a waveguide on a glass plate or a quartz plate by laser processing. That is, the waveguide substrate 10 A plurality of optical waveguides 15 (not shown in FIG. 5); A connecting surface 11 to which a multicore fiber 51 (not shown in FIG. 5) is connected; Equipped with The end portion 17 of the optical waveguide 15 connected to each core of the multi-core fiber 51 appears on the connection surface 11, and the rotation angle ⁇ of the set of the end portion 17 for each multi-core fiber is larger than 1 °. I assume. The arrangement of the end portion 17 differs depending on the type of MCF to be connected, but the rotation angle ⁇ is the same as the rotation angle of the MCF described in FIG.
  • FIG. 6 is a diagram for explaining the optical connector 301 of the present embodiment.
  • the optical connector 301 includes the multicore connector ferrule 31 and the optical waveguide substrate 10.
  • the optical connector 301 is manufactured as follows.
  • the present optical connector manufacturing method is an optical connector manufacturing method for manufacturing an optical connector 301 for connecting an optical fiber including a multi-core fiber to another optical component,
  • An end face image acquiring procedure for acquiring an image of the connection surface of the fiber fixing portion 11 to which the optical fiber connected to at least one of the optical waveguide substrates 10 is fixed;
  • a coordinate derivation procedure for acquiring coordinates of a center position of an optical fiber core appearing on the connection surface of the fiber fixing part 11 from the image of the connection surface acquired in the end face image acquisition procedure;
  • the optical waveguide connecting the core of the optical fiber to the optical port 41 of the other optical component 302 based on the coordinates acquired in the coordinate derivation procedure is a desired path from one of the 11 to the other 12 of the optical waveguide substrate 10
  • the end face image acquisition procedure, the coordinate derivation procedure, and the optical waveguide formation procedure are the same as those described in the first embodiment. That is, as in steps S01 to S05 of the flowchart of FIG. 3, the optical waveguide 15 is formed on the optical waveguide substrate 10 and the MCF 51 is connected in the substrate forming step, and the optical waveguide substrate 10 is MT connector in the substrate fixing step. Alternatively, insert it into a multi-core fiber ferrule such as MPO connector and fix it.
  • the multicore fiber ferrule 31 shown in FIG. 6 has the same interface as the existing MT connector, and has a hole 32 into which a guide pin for fixing is inserted, and a space into which the optical waveguide substrate 10 is inserted at the center.
  • the center position of the optical waveguide 15 which appears on the end face of the other 12 of the optical waveguide substrate 10 is accurately disposed with respect to the guide pin hole 32 and the optical port 41 of the connection destination, so that the SNF 52 to be connected and the optical components
  • the alignment work between 10 and 10 becomes unnecessary. That is, it is possible to provide an optical connector which can be easily detached from the single-core or multi-core MCF 51, the existing multi-core SMF connector 302, and other optical components.
  • optical waveguide substrate 10 by projecting the optical waveguide substrate 10 at the same position as the end face of the ferrule 31 or about several ⁇ m on the connection surface of the optical connector 301, reflection between the optical waveguide substrate 10 and the multicore SMF 52 can be suppressed, and PC connection is achieved. It becomes possible.
  • FIG. 7 is a view showing the accuracy of the space 33 of the multicore connector ferrule 31 and the optical waveguide substrate 10.
  • the multicore connector ferrule 31 has a space 33 for inserting the optical fiber or the optical waveguide substrate 10, and the space 33 has a fixed clearance with the optical waveguide substrate 10. It is conceivable that the position of the optical waveguide 15 deviates from the position (ideal position) of the optical port 41 of the opposing optical connector 302 by this clearance.
  • FIG. 8 is a diagram for explaining the connection loss with respect to the amount of deviation between the optical waveguide 15 and the optical port 41 at the end face of the other 12 of the optical waveguide substrate 10.
  • FIG. 8 is a diagram showing, for each mode field diameter (MFD), connection loss with respect to the amount of deviation when single mode fibers are connected to each other at a wavelength of 1550 nm.
  • MFD mode field diameter
  • connection loss increases exponentially as the amount of deviation increases in any MFD.
  • the MFD is 9.5 ⁇ m or less and 1.26 ⁇ m or less
  • the MFD is 10.0 ⁇ m or less and 1.41 ⁇ m or less
  • the MFD is 10.5 ⁇ m or less and 1.52 ⁇ m or less It becomes.
  • FIG. 9 is a graph summarizing the amount of deviation d at which the connection loss is 1 dB with respect to the MFD (2 w).
  • connection loss can be made 1 dB or less in the region below the straight line of the approximate expression. Accordingly, by setting the clearance of the multi-core connector ferrule 31 to the optical waveguide substrate 10 to be d ( ⁇ m) or less in the optical connector 301, the connection loss can be reduced to 1 dB or less at the maximum.
  • the space 33 for holding the optical waveguide substrate 10 of the multi-core connector ferrule 31 and the optical waveguide substrate 10 are rectangular in a plane perpendicular to the longitudinal direction of the optical fiber.
  • the maximum distance between the vertex of the space 33 in the vertical plane and the vertex of the optical waveguide substrate 10 when the waveguide substrate 10 is shifted to the maximum is equal to or less than the above approximate expression.
  • FIG. 4 and FIG. 5 are described using the ferrule for MT connector, the same is true for the ferrule for MPO connector in that alignment is performed using guide pins, and the optical connector 301 may be an MPO connector. it can.
  • the rotation control of the MCF is not required, and the loss increase due to the rotation control is suppressed to simplify the work and connect the MCF and the SMF or between the MCFs having different core arrangements.
  • the connection of different optical fiber structures, such as the connection of the optical fiber, can be realized easily and directly.
  • the present invention can be used to connect optical fibers and optical components in an optical communication system.
  • Optical waveguide substrate 11 One (end face) 12: The other (end face) 15: optical waveguide 17: end 21: fiber fixing portion 22: fiber fixing portion 31: ferrule for multi-core connector 32: guide pin hole 33: space 41: optical port 51: multi-core fiber (MCF) 52: Single mode fiber (SMF) 53: Multi-core fiber (MCF) 301: Optical connector 302: Optical connector

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】MCFの回転調心が不要な接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法を提供することを目的とする。 【解決手段】本発明に係る接続装置とその方法及び光コネクタ製造装置とその製造方法は、接続するMCFの端面を画像で取り込み、コアの位置を把握し、その位置に一致するように基板に光導波路を形成するため、MCFの回転調心が不要となる。このため、回転調心に伴う回転ずれによる損失増や接続作業の煩雑化という課題を解決することができる。

Description

接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法
 本開示は、マルチコアファイバを接続する接続装置とその方法およびマルチコアファイバの光コネクタを製造する製造装置と製造方法に関する。
 複数のコア領域を有するマルチコア光ファイバ(MCF)が、空間多重技術を用いることによる飛躍的な伝送容量拡大に向け、活発に検討されている。またMCFは高い空間利用効率を有し高密度な光配線を実現できることから、データセンター等における光配線の高密度化への応用にも着目されている。
 ここでMCFを敷設・配線する場合、MCF同士を接続することが必須となるが、MCFは従来の単一モードファイバ(SMF)と異なり中心以外にコアが配置されることから、回転方向を含めた調心が必須となる。そこで非特許文献1および特許文献1ではそれぞれ、接続端面の観察および側面画像の解析を用いて、回転方向のコア配置を含めて調心し(例えば、非特許文献3では、コアの回転角度は1°以内であることが求められている。)、融着する技術が示されている。
 さらにMCFを既存の単一モード光ファイバ(SMF)もしくはSMF用のデバイスと接続する場合、MCFのコア配置を多心のSMFアレイの配置に変換するMCFファンアウトデバイスを介して接続される。MCFファンアウトデバイスは入出力にMCF心線と複数のSMF心線を有する構成となっており、ファイババンドル型、溶融延伸型、積層PLC型、3次元光導波路型が提案され、使用されている。特に非特許文献2で示される3次元光導波路型は、短パルスレーザを用いてガラスや石英内に3次元で任意の光導波路を形成できる事から、任意のMCF構造に対してファンアウトデバイスを作製できる。ここでMCF側の接続では、上述した融着接続と同様に回転方向のコア配置を所定の角度に調心した上で、融着もしくはコネクタ接続により接続される。
国際公開WO2017/130627パンフレット
Y. Amma et.al., "Accuracy of core alignment with end-view function for multicore fiber", IEEE Summer topical meeting, p. 170, July 2014. R. R. Tomson et al., "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications", Opt. Express, vol. 15, pp. 11691-11697, Sep. 2007. Kengo Watanabe et al., "MPO Type 8-Multicore Fiber Connector With Physical Contact Connection", JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 34, NO. 2, JANUARY 15, 2016
 しかしながら、従来のMCFの接続方法ではMCFの回転調心が必須であり、回転調心に伴う回転ずれによる損失増や接続作業の煩雑化という課題があった。
 そこで、本発明は、上記課題を解決するために、MCFの回転調心が不要な接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法を提供することを目的とする。
 本発明に係る接続装置および光コネクタは、接続するMCFの回転角度に応じてガラスや石英の基板に光導波路を3次元にレーザー描画した光導波路基板を用いることとした。
 具体的には、本発明に係る接続装置は、接続先の光ファイバとマルチコアファイバである接続元の光ファイバとを光導波路基板を用いて接続する接続装置であって、
 少なくとも前記光導波路基板の一方に接続する前記接続元の光ファイバが固定された第1ファイバ固定部の接続面の画像を取得する端面画像取得部と、
 前記端面画像取得部が取得した前記接続面の画像から、前記第1ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出部と、
 前記座標導出部が取得した前記座標に基づき、前記接続元の光ファイバのコアから前記接続先の光ファイバのコアとを接続する光導波路を、前記光導波路基板の一方から他方へ所望の経路で前記光導波路基板に描写する光導波路形成部と、
 前記光導波路基板の一方に前記第1ファイバ固定部の接続面を接続し、他方に前記接続先の光ファイバが固定された第2ファイバ固定部の接続面を接続する接続部と、
を備えることを特徴とする。
 また、本発明に係る接続方法は、接続先の光ファイバとマルチコアファイバである接続元の光ファイバとを光導波路基板を用いて接続する接続方法であって、
 少なくとも、前記光導波路基板の一方に接続する前記接続元の光ファイバが固定された第1ファイバ固定部の接続面の画像を取得する端面画像取得手順と、
 前記端面画像取得手順で取得した前記接続面の画像から、前記第1ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出手順と、
 前記座標導出手順で取得した前記座標に基づき、前記接続元の光ファイバのコアから前記接続先の光ファイバのコアとを接続する光導波路を、前記光導波路基板の一方から他方へ所望の経路で前記光導波路基板に描写する光導波路形成手順と、
 前記光導波路形成手順で前記光導波路を描写した前記光導波路基板の一方に前記第1ファイバ固定部の接続面を接続し、他方に前記接続先の光ファイバが固定された第2ファイバ固定部の接続面を接続する接続手順と、
を行うことを特徴とする。
 なお、本発明に係る接続方法は、以下のような手順であってもよい。
  少なくとも、前記光導波路基板の一方に接続する前記接続元の光ファイバが固定された第1ファイバ固定部の接続面の画像を取得する端面画像取得手順と、
 前記端面画像取得手順で取得した前記接続面の画像から、前記第1ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出手順と、
 前記光導波路基板の一方に前記第1ファイバ固定部の接続面を接続する接続手順と、
 前記座標導出手順で取得した前記座標に基づき、前記接続元の光ファイバのコアから接続先の光ファイバのコアとを接続する光導波路を、前記光導波路基板の一方から他方へ所望の経路で前記光導波路基板に描写する光導波路形成手順と、
を行う。
 なお、前記接続手順で、前記光導波路基板の他方に前記接続先の光ファイバが固定された第2ファイバ固定部の接続面を接続してもよいし、前記光導波路形成手順の後に、前記光導波路基板の他方に前記接続先の光ファイバが固定された第2ファイバ固定部の接続面も接続してもよい。
 一方、本発明に係る光コネクタ製造装置は、マルチコアファイバを含む光ファイバを他の光部品に接続する光コネクタを製造する光コネクタ製造装置であって、
 少なくとも光導波路基板の一方に接続する前記光ファイバが固定されたファイバ固定部の接続面の画像を取得する端面画像取得部と、
 前記端面画像取得部が取得した前記接続面の画像から、前記ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出部と、
 前記座標導出部が取得した前記座標に基づき、前記光ファイバのコアから前記他の光部品の光ポートとを接続する光導波路を、前記光導波路基板の一方から他方へ所望の経路で前記光導波路基板に描写する光導波路形成部と、
を備え、前記光導波路基板を作成する基板作成治具と、
 前記基板作成治具で作成した前記光導波路基板を多心コネクタ用フェルールに挿入して固定する基板固定治具と、
を有することを特徴とする。
 また、本発明に係る光コネクタ製造方法は、マルチコアファイバを含む光ファイバを他の光部品に接続する光コネクタを製造する光コネクタ製造方法であって、
 少なくとも、光導波路基板の一方に接続する前記光ファイバが固定されたファイバ固定部の接続面の画像を取得する端面画像取得手順と、
 前記端面画像取得手順で取得した前記接続面の画像から、前記ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出手順と、
 前記座標導出手順で取得した前記座標に基づき、前記光ファイバのコアから前記他の光部品の光ポートとを接続する光導波路を、前記光導波路基板の一方から他方へ所望の経路で前記光導波路基板に描写する光導波路形成手順と、
を行い、前記光導波路基板を作成する基板作成工程と、
 前記基板作成工程で作成した前記光導波路基板を多心コネクタ用フェルールに挿入して固定する基板固定工程と、
を行うことを特徴とする。
 本発明に係る接続装置とその方法及び光コネクタ製造装置とその製造方法は、接続するMCFの端面を画像で取り込み、コアの位置を把握し、その位置に一致するように基板に光導波路を形成するため、MCFの回転調心が不要となる。このため、回転調心に伴う回転ずれによる損失増や接続作業の煩雑化という課題を解決することができる。従って、本発明は、MCFの回転調心が接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法を提供することができる。
 また、本発明に係る接続装置及びその方法は、前記接続先の光ファイバが固定された第2ファイバ固定部の接続面の画像も取得し、前記第2ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標も取得することを特徴とする。回転調心不要でMCF同士の接続も可能である。
 また、本発明に係る光コネクタ製造装置及びその製造方法は、前記多心コネクタ用フェルールの前記光導波路基板を保持する空間と前記光導波路基板は前記光ファイバの長手方向に垂直な面において矩形であり、前記空間の中で前記光導波路基板が最大にずれたときの前記垂直な面における前記空間の頂点と前記光導波路基板の頂点との最大距離が式C1で表されるd(μm)以下であることを特徴とする。
(式C1)
d=0.27(2w)-1.3
ただし、2wは波長1550nmにおける前記光ファイバのモードフィールド径(μm)である。
 MCFとSMFを接続する場合にはファンアウトデバイスの挿入が必須であり、デバイス挿入に伴う損失増や空間利用効率の低下という課題があった。本発明に係る光コネクタ製造装置及びその製造方法では、基板に光導波路を3次元に形成することで光コネクタを小型化でき、接続損失が1dB以下となるようにフェルールと光導波路基板とのずれ量が規定されている。このため、本光コネクタを使用することで空間利用効率の低下を防止し、挿入損失が増加することを防止できる。
 本発明に係る接続装置及びその方法、ないし光コネクタ製造装置及びその製造方法で製造された光導波路基板は、
 複数の光導波路と、
 マルチコアファイバが接続される接続面と、
を備えており、
 前記接続面には、前記マルチコアファイバの各コアに接続される前記光導波路の端部が現れており、前記マルチコアファイバ毎の前記端部の組の回転角度は、1°より大きいことを特徴とする。
 本発明に係る光導波路基板は、非特許文献3に記載されたような回転角度となるようにマルチコアファイバを回転調心することが不要である。つまり、本発明接続装置及びその方法、ないし光コネクタ製造装置及びその製造方法は、前記ファイバ固定部の接続面において前記マルチコアファイバの回転角度が1°より大きいことを特徴とする。
 本発明は、MCFの回転調心が接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法を提供することができる。
本発明に係る光ファイバの接続方法を説明する図である。 本発明に係る光ファイバの接続方法を説明する図である。 本発明に係る光ファイバの接続方法を説明するフローチャートである。 本発明に係る光ファイバの接続方法を説明する図である。 本発明に係る光ファイバの接続方法で形成する光導波路基板を説明する図である。 本発明に係る光コネクタの製造方法を説明する図である。 本発明に係る光コネクタの製造方法を説明する図である。 本発明に係る光コネクタの製造方法における光導波路ずれによる接続損失を説明する図である。 本発明に係る光コネクタ製造方法において、フェルールの空間と光導波路基板とのずれ量とモードフィールド径との関係を説明する図である。 本発明に係る光ファイバの接続方法を説明するフローチャートである。 本発明に係る光ファイバの接続方法を説明するフローチャートである。 マルチコアファイバの回転角度の定義を説明する図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 図1および図2は、本実施形態の光ファイバの接続方法を説明する図である。また図3は本実施形態の接続方法を説明するフローチャートである。光ファイバの接続方法は、接続先の光ファイバ52とマルチコアファイバである接続元の光ファイバ51を光導波路基板10を用いて接続する接続方法であって、
 少なくとも光導波路基板10の一方11に接続する接続元の光ファイバが固定された第1ファイバ固定部21の接続面の画像を取得する端面画像取得手順S01と、
 端面画像取得手順S01で取得した前記接続面の画像から、第1ファイバ固定部21の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出手順S02と、
 座標導出手順S02で取得した前記座標に基づき、前記接続元の光ファイバのコアから接続先の光ファイバのコアとを接続する光導波路15を、光導波路基板10の一方11から他方12へ所望の経路で光導波路基板10に描写する光導波路形成手順(S3及びS4)と、
 光導波路形成手順(S3及びS4)で光導波路15を描写した光導波路基板10の一方11に第1ファイバ固定部21の接続面を接続し(ステップS05)、他方12に前記接続先の光ファイバが固定された第2ファイバ固定部22の接続面を接続する(ステップS06)接続手順と、
を行うことを特徴とする。
 本実施形態では、第1ファイバ固定部21に固定される接続元の光ファイバ51が全てマルチコアファイバであるが、第1ファイバ固定部21には少なくとも1本だけがマルチコアファイバで、他がシングルコアファイバであってもよい。また、本実施形態では、第2ファイバ固定部22に固定される接続先の光ファイバ52がシングルモードファイバであるとした。以下、接続元の光ファイバ51を「マルチコアファイバ51」や「MCF51」と記載することがある。
 MCF51はファイバを固定するV溝アレイ等に固定される。このとき、MCF51は何ら回転制御を加えないため、図1左下図のようにMCF51の回転角はその都度異なる。この断面図を顕微鏡等で観察及び解析し(ステップS01)、コア中心位置の座標を得る(ステップS02)。光導波路基板10の端面(一方11の端面)で先に得たコア中心位置の座標を起点とし、光導波路基板10の反対側の端面(他方12の端面)では任意の座標(接続先の光ファイバのコアの位置)に終点を設定し、両者を結ぶ光導波路の形状(経路)を確定する(ステップS03)。次に基板(例えば石英ガラスブロック)を用意し、短パルスレーザーを用いて多光子吸収による屈折率変化を当該基板内に発生し、光導波路15を形成し、光導波路基板10を完成させる(ステップS04)。光導波路15は、光導波路基板10における原点位置(基板の端もしくはマーカーの位置)を適切に設定することで高い位置精度で形成可能である。
 ステップS01~S04により、光導波路基板10の一方11の端面は、回転調心していないMCF51の端面と同じコア配置になる。このため、光導波路基板10の一方11の端面とファイバ固定部21の端面とを水平及び垂直方向で調心することで、MCF51のそれぞれのコアを光導波路基板10の光導波路15に接続することができる(ステップS05)。MCF51と光導波路基板10とは接着剤もしくは放電による融着により接続固定される。光導波路基板10の他方12の端面には、光導波路15の出力面に対応した多心のSMF52を接続する(ステップS06)。また、光導波路基板10の他方12の端面にはSMF52の代替としてPLCの光部品を接続してもよい。この場合、光導波路基板10の他方12の端面に現れる光導波路15と光部品の光ポートとの位置が合うように光導波路基板10に光導波路15が形成される。
 本実施形態の接続方法は、MCF51の回転調心が不要であり、ファイバ固定部21の端面に現れるMCF51のコア配置を高精度で光導波路基板10の一方11の端面に形成できるため、回転調心に伴う損失がなく、接続作業も簡易にすることができる。また従来の接続技術では困難であった多心MCFに対する接続も容易に実現することができる。さらに、本実施形態の接続方法は、MCF51の回転調心が不要なので、ファイバ固定部21の接続面においてMCF51の回転角度が1°より大きくてもよい。
 なお、「回転角度」の定義を図12に説明する。ファイバ固定部21の接続面において、MCF51の中心を通り、ファイバ固定部21の底面又は上面と平行な直線55を考える。MCF51が2コアならば(図12(B))、それぞれのコアの中心を結ぶ直線56と直線55とが成す角θを「回転角度」とする(通常はθ=0°となるように回転調心する。)。MCF51が4コアならば(図12(C))、対向するコアの中心を結ぶ直線56と直線55とが成す角のうち最小の角θを「回転角度」とする(通常はθ=0°となるように回転調心する。)。MCF51が8コアならば(図12(D))、対向するコアの中心を結ぶ直線56と直線55とが成す角のうち最小の角θを「回転角度」とする(通常はθ=0°となるように回転調心する。)。
 なお、回転角度は各MCFで相対的に同じであればよいので、回転角度の定義としては、図12に示した任意の基準線に対する角度に限らず、いずれかのMCFの回転角度に対する他のMCFの相対的な回転角度(回転角度の差分)としてもよい。
 なお、図1では、MCF51として4心の4コアファイバとSMF51として16心(8心×2列)とを接続することを想定し、一方11の端面では4コアファイバの端面画像に対応したコア配置、他方12の端面では250μm間隔で横方向に8つのコアが2列配列された構造としている。しかしながら本発明の接続方法は、MCFのコアは任意の数および配置であっても同様に作製でき、またMCFの心数も単心もしくは2心以上の多心であってもよい。
 本実施形態の接続方法は、図10や図11の手順でも行うことができる。図10の手順では、ステップS04とステップS05が図3の手順と逆になっている。図11の手順では、ステップS04を最後に行う点が図3の手順と異なっている。
(実施形態2)
 図4は、本実施形態の光ファイバの接続方法を説明する図である。本実施形態では、コア数やコア配置が異なるMCF同士を接続することを想定している。本実施形態では、実施形態1で説明した接続方法(図3参照)において、端面画像取得手順S01で、前記接続先の光ファイバが固定された第2ファイバ固定部22の接続面の画像も取得し、座標導出手順S02で、第2ファイバ固定部22の接続面に表れる光ファイバのコアの中心位置の座標も取得することを特徴とする。図4の場合、接続元の光ファイバとして4心の4コアファイバ51をファイバ固定部21が固定し、接続先の光ファイバとして2心の8コアファイバ53をファイバ固定部22が固定している。
 本実施形態では、MCFを固定した双方のファイバ固定部(21、22)の端面画像を取得し(ステップS01)、それぞれファイバ固定部(21、22)におけるコア毎の中心位置の座標を解析する(ステップS02)。そして、第1ファイバ固定部21のコア座標を光導波路基板10の一方11の端面の起点とし、第2ファイバ固定部22のコア座標を光導波路基板10の他方12の端面の終点とし、これらを結ぶ光導波路15をレーザー描画により形成する(ステップS03、S04)。
 その後、第1ファイバ固定部21と第2ファイバ固定部22をそれぞれ光導波路基板10の一方11と他方12の端面に接着もしくは突き当てにより固定することで、異なるコア配置もしくはコア数もMCF同士を接続することができる(ステップS05、S06)。このように、本接続方法は、異なるコア数やコア配置を有するMCF同士の接続を回転調心なしで簡易に実現することができる。
 また、実施形態1で説明したように、本実施形態の接続方法も、図10や図11の手順でも行うことができる。
 なお、図4では4心の4コアファイバと2心の8コアファイバを回転調心なしで接続する場合を説明したが、本接続方法は、MCFの心数、コア数及びコア配置に依らず、任意の心数及び構造のMCF同士の接続に利用することができる。また、本接続方法はコア数とコア配置が同じMCF同士を接続する場合でも、MCFの回転調心を不要とすることができる。
(実施形態3)
 図5は、実施形態1と2で説明した座標導出手順S02を説明する図である。光導波路基板10の一方11の端面をxz平面とし、y=0においてMCF51と接続し、y=Lが光導波路基板10の他方12の端面であり、光導波路15の出力端とする。端面画像取得手順S01で第1ファイバ固定部21の画像から各コアの中心位置を直接xz座標で得ることができる。例えば、MCF51のコアがコア数Nの円環もしくは正多角形状配列である場合、また多心MCFの場合はファイバの設置間隔Dが既知である場合、y=0におけるコアの座標は以下のように記述できる。
Figure JPOXMLDOC01-appb-M000001
ここでiはコア番号、jは心線番号に対応する。Λはファイバ中心から各コアの距離であり、θはj番目のMCFの回転量(°)、zは光導波路基板の端(x=0)から1心目のMCFの中心位置までの距離である。
 実施形態2の場合は光導波路基板10の他方12の端面(y=L)においても同様の方法によりコア中心座標を決定する。
 座標導出手順S02、端面画像からMCFの回転量のみを解析するだけでコア位置を決定でき、簡易に座標を決定することができる。このように、光導波路基板10の一方11と他方12の端面におけるコア中心位置を決定し、これらをS字状に結ぶ経路を導出し(ステップS03)、それぞれの経路を中心として±a/2μmの幅で短パルスレーザーを照射して所望の光導波路15を得る(ステップS04)。ここでaは光導波路幅である。
 ステップS03で導出する経路(光導波路15の中心位置)は以下のように記述できる。本実施形態では、当該経路は、y=0~yおよびy=y~Lの区間でY軸方向に平行な直線であり、y~yの区間でyにおける経路の位置とyにおける経路の位置とを接続する緩やかな曲線(yからyにかけてX座標とY座標が変化する曲線)である。当該曲線を「S字状」と称する。なお、0<y<y<Lである。具体的には、当該経路は次のように表現できる。
 まず、各変数を次のように定義する。
Figure JPOXMLDOC01-appb-M000002
また、y(=(y+y)/2)である。
 y=0におけるコア(i,j)のZ座標zi,j(0)とy=Lにおけるコア(i,j)のZ座標zi,j(L)との関係がzi,j(0)>zi,j(L)の場合、
Figure JPOXMLDOC01-appb-M000003
i,j(0)<zi,j(L)の場合、
Figure JPOXMLDOC01-appb-M000004
である。
 これらの解析手順により、MCFの端面画像を取得後ソフトウェア上でコア中心の座標取得、導波路形状の決定、導波路形状に基づく光導波路基板へのレーザー描画を自動的に実行することができ、高精度かつ簡易にMCFの端面状態に応じた光導波路基板の作製が可能となる。
 以上のように、レーザ加工によりガラス板や石英板に導波路を描画することで導波路基板10を製造することができる。すなわち、導波路基板10は、
 複数の光導波路15(図5において不図示)と、
 マルチコアファイバ51(図5において不図示)が接続される接続面11と、
を備えており、
 接続面11には、マルチコアファイバ51の各コアに接続される光導波路15の端部17が現れており、マルチコアファイバ毎の端部17の組の回転角度θは、1°より大きいことを特徴とする。
 なお、端部17の配置は、接続するMCFの種類でことなるが、その回転角度θは、図12で説明したMCFの回転角度と同様である。
(実施形態4)
 図6は、本実施形態の光コネクタ301を説明する図である。光コネクタ301は、多心コネクタ用フェルール31と光導波路基板10を備える。光コネクタ301は、次のように製造する。本光コネクタ製造方法は、マルチコアファイバを含む光ファイバを他の光部品に接続する光コネクタ301を製造する光コネクタ製造方法であって、
 少なくとも光導波路基板10の一方に接続する前記光ファイバが固定されたファイバ固定部11の接続面の画像を取得する端面画像取得手順と、
 前記端面画像取得手順で取得した前記接続面の画像から、ファイバ固定部11の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出手順と、
 前記座標導出手順で取得した前記座標に基づき、前記光ファイバのコアから前記他の光部品302の光ポート41とを接続する光導波路を、光導波路基板10の一方11から他方12へ所望の経路で光導波路基板10に描写する光導波路形成手順と、
を行い、光導波路基板10を作成する基板作成工程と、
 前記基板作成工程で作成した光導波路基板10を多心コネクタ用フェルール31に挿入して固定する基板固定工程と、
を行うことを特徴とする。
 端面画像取得手順、座標導出手順、及び光導波路形成手順は、実施形態1の説明と同じである。つまり、基板作成工程にて、図3のフローチャートのステップS01~S05のように光導波路基板10に光導波路15を形成してMCF51を接続し、基板固定工程にて、光導波路基板10をMTコネクタ若しくはMPOコネクタ等の多心ファイバ用フェルールに挿入して固定する。
 図6の多心ファイバ用フェルール31は、既存のMTコネクタと同じインターフェイスを持ち、固定用のガイドピンが挿入される孔32と、中心部に光導波路基板10が挿入される空間を有する。光導波路基板10の他方12の端面に現れる光導波路15の中心位置をガイドピン孔32及び接続先の光ポート41に対して精度よく配置することで、接続対象のSNF52や光部品と光導波路基板10との間の調心作業が不要となる。つまり、単心もしくは多心のMCF51と既存の多心SMFコネクタ302や他の光部品と、容易に着脱可能な光コネクタを提供できる。
 また、光コネクタ301の接続面において、光導波路基板10をフェルール31の端面と同じ位置若しくは数μm程度突き出すことにより、光導波路基板10と多心SMF52との間の反射を抑圧でき、PC接続が可能となる。
(実施形態5)
 本実施形態では、基板固定工程の詳細について説明する。図7は、多心コネクタ用フェルール31の空間33と光導波路基板10の精度を示す図である。図7に示すように、多心コネクタ用フェルール31は光ファイバもしくは光導波路基板10を挿入するための空間33を持ち、空間33は光導波路基板10との間に一定のクリアランスを有する。このクリアランスにより光導波路15の位置が、対向する光コネクタ302の光ポート41の位置(理想的な位置)からからずれることが考えられる。
 図8は、光導波路基板10の他方12の端面における光導波路15と光ポート41とのずれ量に対する接続損失を説明する図である。図8は、波長1550nmにおいて、シングルモードファイバ同士を接続したときのずれ量に対する接続損失をモードフィールド径(MFD)毎に示した図である。ここでガイドピン孔32がガイドピンに対して大きすぎる場合にも損失が増大するが、既存MTコネクタにおけるガイドピン穴に対するクリアランスは1μm以下であることを考慮し、図8では1μmのずれが初期位置(ずれ量=0μm)で生じていると仮定している。
 いずれのMFDもずれ量が大きくなるほど接続損失が指数関数的に増加することが確認できる。ここで接続損失が1dB以下となるずれ量を図8より求めると、MFDが9.5μmで1.26μm以下、MFDが10.0μmで1.41μm以下、MFDが10.5μmで1.52μm以下となる。図9は、MFD(2w)に対する、接続損失が1dBとなるずれ量dをまとめたグラフである。図9には近似式も示している。
近似式: d=0.27(2w)-1.3 (μm)
 図9より、当該近似式の直線より下の領域で接続損失を1dB以下とできる事が確認できる。したがって、光コネクタ301において、多心コネクタ用フェルール31の光導波路基板10に対するクリアランスをd(μm)以下とすることで、接続損失を最大1dB以下とすることができる。
 つまり、光コネクタ301は、多心コネクタ用フェルール31の光導波路基板10を保持する空間33と光導波路基板10が前記光ファイバの長手方向に垂直な面において矩形であり、空間33の中で光導波路基板10が最大にずれたときの前記垂直な面における空間33の頂点と光導波路基板10の頂点との最大距離が上記近似式以下であることを特徴とする。
(他の実施形態)
 なお図4および図5の説明ではMTコネクタ用フェルールを用いて説明したが、ガイドピンを用いて調心を行う点でMPOコネクタ用フェルールでも同じであり、光コネクタ301をMPOコネクタとすることもできる。
(本発明の効果)
 本発明の光ファイバの接続方法および接続部品では、MCFの回転制御が不要となり、回転制御に伴う損失増を抑圧し作業を簡便にするとともに、MCFとSMFの接続や異なるコア配置であるMCF間の接続といった異なる光ファイバ構造の接続を容易かつ直脱可能で実現できる、といった効果を奏する。
 本発明は、光通信システムにおける光ファイバおよび光部品の接続に利用できる。
10:光導波路基板
11:一方(の端面)
12:他方(の端面)
15:光導波路
17:端部
21:ファイバ固定部
22:ファイバ固定部
31:多心コネクタ用フェルール
32:ガイドピン孔
33:空間
41:光ポート
51:マルチコアファイバ(MCF)
52:シングルモードファイバ(SMF)
53:マルチコアファイバ(MCF)
301:光コネクタ
302:光コネクタ

Claims (20)

  1.  接続先の光ファイバとマルチコアファイバである接続元の光ファイバとを光導波路基板を用いて接続する接続装置であって、
     少なくとも、前記光導波路基板の一方に接続する前記接続元の光ファイバが固定された第1ファイバ固定部の接続面の画像を取得する端面画像取得部と、
     前記端面画像取得部が取得した前記接続面の画像から、前記第1ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出部と、
     前記座標導出部が取得した前記座標に基づき、前記接続元の光ファイバのコアから前記接続先の光ファイバのコアとを接続する光導波路を、前記光導波路基板の一方から他方へ所望の経路で前記光導波路基板に描写する光導波路形成部と、
     前記光導波路基板の一方に前記第1ファイバ固定部の接続面を接続し、他方に前記接続先の光ファイバが固定された第2ファイバ固定部の接続面を接続する接続部と、
    を備えることを特徴とする接続装置。
  2.  前記第1ファイバ固定部の接続面において前記マルチコアファイバの回転角度が1°より大きいことを特徴とする請求項1に記載の接続装置。
  3.  前記端面画像取得部は、前記接続先の光ファイバが固定された第2ファイバ固定部の接続面の画像も取得し、
     前記座標導出部は、前記第2ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標も取得する
    ことを特徴とする請求項1又は2に記載の接続装置。
  4.  前記接続先の光ファイバもマルチコアファイバであることを特徴とする請求項3に記載の接続装置。
  5.  前記第2ファイバ固定部の接続面において前記マルチコアファイバの回転角度が1°より大きいことを特徴とする請求項4に記載の接続装置。
  6.  マルチコアファイバを含む光ファイバを他の光部品に接続する光コネクタを製造する光コネクタ製造装置であって、
     少なくとも光導波路基板の一方に接続する前記光ファイバが固定されたファイバ固定部の接続面の画像を取得する端面画像取得部と、
     前記端面画像取得部が取得した前記接続面の画像から、前記ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出部と、
     前記座標導出部が取得した前記座標に基づき、前記光ファイバのコアから前記他の光部品の光ポートとを接続する光導波路を、前記光導波路基板の一方から他方へ所望の経路で前記光導波路基板に描写する光導波路形成部と、
    を備え、前記光導波路基板を作成する基板作成治具と、
     前記基板作成治具で作成した前記光導波路基板を多心コネクタ用フェルールに挿入して固定する基板固定治具と、
    を有することを特徴とする光コネクタ製造装置。
  7.  前記多心コネクタ用フェルールの前記光導波路基板を保持する空間と前記光導波路基板は前記光ファイバの長手方向に垂直な面において矩形であり、前記空間の中で前記光導波路基板が最大にずれたときの前記垂直な面における前記空間の頂点と前記光導波路基板の頂点との最大距離が式C1で表されるd(μm)以下であることを特徴とする請求項6に記載の光コネクタ製造装置。
    (式C1)
    d=0.27(2w)-1.3
    ただし、2wは波長1550nmにおける前記光ファイバのモードフィールド径(μm)である。
  8.  前記ファイバ固定部の接続面において前記マルチコアファイバの回転角度が1°より大きいことを特徴とする請求項6又は7に記載の光コネクタ製造装置。
  9.  接続先の光ファイバとマルチコアファイバである接続元の光ファイバとを光導波路基板を用いて接続する接続方法であって、
     少なくとも、前記光導波路基板の一方に接続する前記接続元の光ファイバが固定された第1ファイバ固定部の接続面の画像を取得する端面画像取得手順と、
     前記端面画像取得手順で取得した前記接続面の画像から、前記第1ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出手順と、
     前記座標導出手順で取得した前記座標に基づき、前記接続元の光ファイバのコアから前記接続先の光ファイバのコアとを接続する光導波路を、前記光導波路基板の一方から他方へ所望の経路で前記光導波路基板に描写する光導波路形成手順と、
     前記光導波路形成手順で前記光導波路を描写した前記光導波路基板の一方に前記第1ファイバ固定部の接続面を接続し、他方に前記接続先の光ファイバが固定された第2ファイバ固定部の接続面を接続する接続手順と、
    を行うことを特徴とする接続方法。
  10.  接続先の光ファイバとマルチコアファイバである接続元の光ファイバとを光導波路基板を用いて接続する接続方法であって、
     少なくとも、前記光導波路基板の一方に接続する前記接続元の光ファイバが固定された第1ファイバ固定部の接続面の画像を取得する端面画像取得手順と、
     前記端面画像取得手順で取得した前記接続面の画像から、前記第1ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出手順と、
     前記光導波路基板の一方に前記第1ファイバ固定部の接続面を接続する接続手順と、
     前記座標導出手順で取得した前記座標に基づき、前記接続元の光ファイバのコアから接続先の光ファイバのコアとを接続する光導波路を、前記光導波路基板の一方から他方へ所望の経路で前記光導波路基板に描写する光導波路形成手順と、
    を行うことを特徴とする接続方法。
  11.  前記接続手順で、前記光導波路基板の他方に前記接続先の光ファイバが固定された第2ファイバ固定部の接続面を接続することを特徴とする請求項10に記載の接続方法。
  12.  前記光導波路形成手順の後に、前記光導波路基板の他方に前記接続先の光ファイバが固定された第2ファイバ固定部の接続面も接続することを特徴とする請求項10に記載の接続方法。
  13.  前記第1ファイバ固定部の接続面において前記マルチコアファイバの回転角度が1°より大きいことを特徴とする請求項9から12のいずれかに記載の接続方法。
  14.  前記端面画像取得手順では、前記接続先の光ファイバが固定された第2ファイバ固定部の接続面の画像も取得し、
     前記座標導出手順では、前記第2ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標も取得する
    ことを特徴とする請求項9から13のいずれかに記載の接続方法。
  15.  前記接続先の光ファイバもマルチコアファイバであることを特徴とする請求項14に記載の接続方法。
  16.  前記第2ファイバ固定部の接続面において前記マルチコアファイバの回転角度が1°より大きいことを特徴とする請求項15に記載の接続方法。
  17.  マルチコアファイバを含む光ファイバを他の光部品に接続する光コネクタを製造する光コネクタ製造方法であって、
     少なくとも、光導波路基板の一方に接続する前記光ファイバが固定されたファイバ固定部の接続面の画像を取得する端面画像取得手順と、
     前記端面画像取得手順で取得した前記接続面の画像から、前記ファイバ固定部の接続面に表れる光ファイバのコアの中心位置の座標を取得する座標導出手順と、
     前記座標導出手順で取得した前記座標に基づき、前記光ファイバのコアから前記他の光部品の光ポートとを接続する光導波路を、前記光導波路基板の一方から他方へ所望の経路で前記光導波路基板に描写する光導波路形成手順と、
    を行い、前記光導波路基板を作成する基板作成工程と、
     前記基板作成工程で作成した前記光導波路基板を多心コネクタ用フェルールに挿入して固定する基板固定工程と、
    を行うことを特徴とする光コネクタ製造方法。
  18.  前記多心コネクタ用フェルールの前記光導波路基板を保持する空間と前記光導波路基板は前記光ファイバの長手方向に垂直な面において矩形であり、前記空間の中で前記光導波路基板が最大にずれたときの前記垂直な面における前記空間の頂点と前記光導波路基板の頂点との最大距離が式C1で表されるd(μm)以下であることを特徴とする請求項17に記載の光コネクタ製造方法。
    (式C1)
    d=0.27(2w)-1.3
    ただし、2wは波長1550nmにおける前記光ファイバのモードフィールド径(μm)である。
  19.  前記ファイバ固定部の接続面において前記マルチコアファイバの回転角度が1°より大きいことを特徴とする請求項17又は18に記載の光コネクタ製造方法。
  20.  光導波路基板であって、
     複数の光導波路と、
     マルチコアファイバが接続される接続面と、
    を備えており、
     前記接続面には、前記マルチコアファイバの各コアに接続される前記光導波路の端部が現れており、前記マルチコアファイバ毎の前記端部の組の回転角度は、1°より大きいことを特徴とする光導波路基板。
PCT/JP2018/047009 2017-12-27 2018-12-20 接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法 WO2019131441A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019561612A JP7067568B2 (ja) 2017-12-27 2018-12-20 接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法
EP18893804.7A EP3734338B1 (en) 2017-12-27 2018-12-20 Connection device, optical connector manufacturing device, connection method, and method for manufacturing optical connector
US16/770,531 US10955622B2 (en) 2017-12-27 2018-12-20 Connection device, optical connector manufacturing device, connection method, and method for manufacturing optical connector
CN201880081808.3A CN111492282B (zh) 2017-12-27 2018-12-20 连接装置、光连接器制造装置、连接方法和光连接器制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017250511 2017-12-27
JP2017-250511 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131441A1 true WO2019131441A1 (ja) 2019-07-04

Family

ID=67067316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047009 WO2019131441A1 (ja) 2017-12-27 2018-12-20 接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法

Country Status (5)

Country Link
US (1) US10955622B2 (ja)
EP (1) EP3734338B1 (ja)
JP (1) JP7067568B2 (ja)
CN (1) CN111492282B (ja)
WO (1) WO2019131441A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160260A (ja) * 2019-03-26 2020-10-01 株式会社フジクラ 光学入出力デバイスの製造方法及び光学入出力デバイス
CN112305678A (zh) * 2019-08-02 2021-02-02 住友电气工业株式会社 光学连接器
EP4006599A4 (en) * 2019-07-31 2022-06-08 Huawei Technologies Co., Ltd. OPTICAL CROSS-CONNECTION DEVICE
US11500160B2 (en) 2020-05-29 2022-11-15 Corning Research & Development Corporation Multicore optical fiber fan-out assemblies and apparatuses
WO2022269692A1 (ja) * 2021-06-21 2022-12-29 日本電信電話株式会社 光コネクタプラグ、光コネクタ及び光導波路の製造方法
US11880071B2 (en) 2021-08-23 2024-01-23 Corning Research & Development Corporation Optical assembly for interfacing waveguide arrays, and associated methods
WO2024028954A1 (ja) * 2022-08-01 2024-02-08 日本電信電話株式会社 光コネクタ及び製造方法
US11914193B2 (en) 2021-06-22 2024-02-27 Corning Research & Development Corporation Optical assembly for coupling with two-dimensionally arrayed waveguides and associated methods
JP7496290B2 (ja) 2020-11-06 2024-06-06 株式会社フジクラ コネクタ付きマルチコアファイバ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7205643B2 (ja) * 2019-10-08 2023-01-17 日本電信電話株式会社 コア位置把握方法、接続方法、及び接続装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010373A (ja) * 2003-06-18 2005-01-13 Fujikura Ltd 光導波路部品およびその製造方法
CN102819066A (zh) * 2012-08-20 2012-12-12 武汉邮电科学研究院 多芯光纤与平面光波导耦合用的3d变换器及其制备方法
JP2014178628A (ja) * 2013-03-15 2014-09-25 Hitachi Ltd マルチコアファイバ接続用ファンイン・ファンアウトデバイス及び光接続装置、並びに光接続方式
JP2015064504A (ja) * 2013-09-25 2015-04-09 株式会社フジクラ 光ファイバの調芯方法および光モジュールの製造方法
US9034222B2 (en) * 2012-02-23 2015-05-19 Karlsruhe Institut Fuer Technologie Method for producing photonic wire bonds
JP2015169873A (ja) * 2014-03-10 2015-09-28 住友電気工業株式会社 光モジュール製造方法
JP2016504620A (ja) * 2012-12-05 2016-02-12 オーエフエス ファイテル,エルエルシー フェルール又は製造治具においてマルチコアファイバを位置合せする構造及び技法
US9594220B1 (en) * 2015-09-22 2017-03-14 Corning Optical Communications LLC Optical interface device having a curved waveguide using laser writing and methods of forming
JP2017090838A (ja) * 2015-11-17 2017-05-25 住友ベークライト株式会社 光配線部品、光コネクターおよび電子機器
WO2017130627A1 (ja) 2016-01-25 2017-08-03 日本電信電話株式会社 調心装置、及び、調心方法
JP2017191157A (ja) * 2016-04-12 2017-10-19 日東電工株式会社 光導波路用コネクタ部材およびそれを用いた光コネクタキット、並びにそれによって得られる光配線

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361382A (en) * 1991-05-20 1994-11-01 The Furukawa Electric Co., Ltd. Method of connecting optical waveguide and optical fiber
JP2005352453A (ja) * 2004-05-12 2005-12-22 Nec Corp 光ファイバ部品及び光導波路モジュール並びにこれらの製造方法
JPWO2014020730A1 (ja) * 2012-08-01 2016-07-11 日立化成株式会社 光ファイバコネクタ、その製造方法、光ファイバコネクタと光ファイバの接続方法、光ファイバコネクタと光ファイバとの組立体
WO2016196035A1 (en) * 2015-05-29 2016-12-08 Corning Optical Communications LLC Planar tapered waveguide coupling elements and optical couplings for photonic circuits
EP3474050A4 (en) * 2016-06-17 2019-06-26 Sumitomo Electric Industries, Ltd. METHOD FOR AXIAL ALIGNMENT OF A COUPLED MULTICORE OPTICAL FIBER

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010373A (ja) * 2003-06-18 2005-01-13 Fujikura Ltd 光導波路部品およびその製造方法
US9034222B2 (en) * 2012-02-23 2015-05-19 Karlsruhe Institut Fuer Technologie Method for producing photonic wire bonds
CN102819066A (zh) * 2012-08-20 2012-12-12 武汉邮电科学研究院 多芯光纤与平面光波导耦合用的3d变换器及其制备方法
JP2016504620A (ja) * 2012-12-05 2016-02-12 オーエフエス ファイテル,エルエルシー フェルール又は製造治具においてマルチコアファイバを位置合せする構造及び技法
JP2014178628A (ja) * 2013-03-15 2014-09-25 Hitachi Ltd マルチコアファイバ接続用ファンイン・ファンアウトデバイス及び光接続装置、並びに光接続方式
JP2015064504A (ja) * 2013-09-25 2015-04-09 株式会社フジクラ 光ファイバの調芯方法および光モジュールの製造方法
JP2015169873A (ja) * 2014-03-10 2015-09-28 住友電気工業株式会社 光モジュール製造方法
US9594220B1 (en) * 2015-09-22 2017-03-14 Corning Optical Communications LLC Optical interface device having a curved waveguide using laser writing and methods of forming
JP2017090838A (ja) * 2015-11-17 2017-05-25 住友ベークライト株式会社 光配線部品、光コネクターおよび電子機器
WO2017130627A1 (ja) 2016-01-25 2017-08-03 日本電信電話株式会社 調心装置、及び、調心方法
JP2017191157A (ja) * 2016-04-12 2017-10-19 日東電工株式会社 光導波路用コネクタ部材およびそれを用いた光コネクタキット、並びにそれによって得られる光配線

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KENGO WATANABE ET AL.: "MPO Type 8-Multicore Fiber Connector With Physical Contact Connection", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 34, no. 2, 15 January 2016 (2016-01-15), XP011598985, DOI: 10.1109/JLT.2015.2473698
R. R. TOMSON ET AL.: "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications", OPT. EXPRESS, vol. 15, September 2007 (2007-09-01), pages 11691 - 11697
See also references of EP3734338A4
Y. AMMA ET AL.: "Accuracy of core alignment with end-view function for multicore fiber", IEEE SUMMER TOPICAL MEETING, July 2014 (2014-07-01), pages 170, XP032646589, DOI: 10.1109/SUM.2014.94

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160260A (ja) * 2019-03-26 2020-10-01 株式会社フジクラ 光学入出力デバイスの製造方法及び光学入出力デバイス
EP4006599A4 (en) * 2019-07-31 2022-06-08 Huawei Technologies Co., Ltd. OPTICAL CROSS-CONNECTION DEVICE
US11782209B2 (en) 2019-07-31 2023-10-10 Huawei Technologies Co., Ltd. Optical cross apparatus
CN112305678A (zh) * 2019-08-02 2021-02-02 住友电气工业株式会社 光学连接器
CN112305678B (zh) * 2019-08-02 2024-02-23 住友电气工业株式会社 光学连接器
US11500160B2 (en) 2020-05-29 2022-11-15 Corning Research & Development Corporation Multicore optical fiber fan-out assemblies and apparatuses
JP7496290B2 (ja) 2020-11-06 2024-06-06 株式会社フジクラ コネクタ付きマルチコアファイバ
WO2022269692A1 (ja) * 2021-06-21 2022-12-29 日本電信電話株式会社 光コネクタプラグ、光コネクタ及び光導波路の製造方法
US11914193B2 (en) 2021-06-22 2024-02-27 Corning Research & Development Corporation Optical assembly for coupling with two-dimensionally arrayed waveguides and associated methods
US11880071B2 (en) 2021-08-23 2024-01-23 Corning Research & Development Corporation Optical assembly for interfacing waveguide arrays, and associated methods
WO2024028954A1 (ja) * 2022-08-01 2024-02-08 日本電信電話株式会社 光コネクタ及び製造方法

Also Published As

Publication number Publication date
JPWO2019131441A1 (ja) 2020-07-27
EP3734338A1 (en) 2020-11-04
EP3734338B1 (en) 2023-01-18
US20200379187A1 (en) 2020-12-03
CN111492282A (zh) 2020-08-04
US10955622B2 (en) 2021-03-23
CN111492282B (zh) 2022-08-16
EP3734338A4 (en) 2021-09-22
JP7067568B2 (ja) 2022-05-16

Similar Documents

Publication Publication Date Title
WO2019131441A1 (ja) 接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法
US10288812B1 (en) Fiber optic-to-waveguide coupling assembly with overlap for edge coupling
EP2790046B1 (en) Junction structure for multicore optical fiber and method for manufacturing junction structure for multicore optical fiber
JP6787803B2 (ja) 光コネクタおよび光伝送システム
US11105981B2 (en) Optical connectors and detachable optical connector assemblies for optical chips
CN112255740B (zh) 一种多芯光纤连接器及其制造方法
JP6407360B2 (ja) 多心光コネクタ
US20160077284A1 (en) Optical connector and manufacturing method for optical connector
US10942316B1 (en) FAU connectors and assemblies employing pin-to-pin alignment
Zimmermann et al. How to bring nanophotonics to application-silicon photonics packaging
CN107250859B (zh) 一种光纤连接器
CN104272152A (zh) 具有扩展光束的多模态多芯光纤连接
JP2001324647A (ja) 光ファイバアレイ、光導波路チップ及びこれらを接続した光モジュール
JP2017003726A (ja) 光ファイバ実装用光部品及び光ファイバ実装用光部品の製造方法
WO2024028954A1 (ja) 光コネクタ及び製造方法
WO2022269692A1 (ja) 光コネクタプラグ、光コネクタ及び光導波路の製造方法
JP7107194B2 (ja) 光接続構造
JP2019045832A (ja) 光導波路部品、コアの調芯方法、および光素子の実装方法
US20230400637A1 (en) Method for constructing light transmission system, and on-site construction set
JP2943629B2 (ja) 光導波路型モジュールとその配列体及びその製造方法
WO2020255379A1 (ja) 光接続構造
CN116974018A (zh) 一种多芯光纤复用解复用器及其制备方法
CN114879314A (zh) 光纤及连接方法
Dong et al. Effect of V-Groove positioning error on coupling loss
JP4792422B2 (ja) 平面光波回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018893804

Country of ref document: EP

Effective date: 20200727