WO2019131234A1 - 非水電解質二次電池用正極活物質及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質及び非水電解質二次電池 Download PDF

Info

Publication number
WO2019131234A1
WO2019131234A1 PCT/JP2018/046218 JP2018046218W WO2019131234A1 WO 2019131234 A1 WO2019131234 A1 WO 2019131234A1 JP 2018046218 W JP2018046218 W JP 2018046218W WO 2019131234 A1 WO2019131234 A1 WO 2019131234A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
metal oxide
positive electrode
lithium transition
active material
Prior art date
Application number
PCT/JP2018/046218
Other languages
English (en)
French (fr)
Inventor
良憲 青木
毅 小笠原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019563007A priority Critical patent/JP7126173B2/ja
Priority to US16/957,143 priority patent/US11831013B2/en
Priority to CN201880082341.4A priority patent/CN111492514B/zh
Priority to EP18897658.3A priority patent/EP3734722A4/en
Priority to CN202211465698.5A priority patent/CN115763782A/zh
Publication of WO2019131234A1 publication Critical patent/WO2019131234A1/ja
Priority to JP2022124586A priority patent/JP7336778B2/ja
Priority to JP2023129872A priority patent/JP2023138734A/ja
Priority to US18/380,679 priority patent/US20240058675A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0024Training appliances or apparatus for special sports for hockey
    • A63B69/0026Training appliances or apparatus for special sports for hockey for ice-hockey
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/26Hurling
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/17Counting, e.g. counting periodical movements, revolutions or cycles, or including further data processing to determine distances or speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/74Miscellaneous features of sport apparatus, devices or equipment with powered illuminating means, e.g. lights
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technology of a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte and transferring lithium ions etc. between the positive electrode and the negative electrode It is widely used.
  • a positive electrode active material used for the positive electrode of a nonaqueous electrolyte secondary battery the following are known, for example.
  • Patent Document 1 the composition formula Li a Ni b Co c Mn d O 2 (0.1 ⁇ a ⁇ 1.2, 0.40 ⁇ b ⁇ 1.15, 0 ⁇ c ⁇ 0.60, 0 ⁇ D ⁇ 0.60, and 1.00 ⁇ b + c + d ⁇ 1.15, 0 ⁇ c + d ⁇ 0.60), and the transition metal occupancy rate e of the Li layer is 0.006 ⁇ e
  • a positive electrode active material comprising a composite oxide in the range of ⁇ 0.150 is disclosed.
  • the present disclosure relates to the charge and discharge cycle characteristics of a non-aqueous electrolyte secondary battery when using a lithium transition metal oxide in which the proportion of Ni is at least 91 mol% with respect to the total number of moles of metal elements excluding Li. It is an object of the present invention to provide a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery capable of suppressing a decrease in
  • the positive electrode active material for a non-aqueous electrolyte secondary battery which is an aspect of the present disclosure, has a Ni-containing lithium transition metal oxide having a layered structure, and the proportion of Ni in the lithium transition metal oxide excludes Li. 91 mol% to 99 mol% with respect to the total number of moles of the metal element, and the Li layer of the layered structure is composed of 1 mol with respect to the total molar amount of transition metal in the Ni-containing lithium transition metal oxide % To 2.5 mol% of transition metal is present, and the Ni-containing lithium transition metal oxide has a half value width n of diffraction peak of (208) plane of X-ray diffraction pattern by X-ray diffraction being 0.30 ° It is characterized in that ⁇ n ⁇ 0.50 °.
  • a non-aqueous electrolyte secondary battery includes a positive electrode including the above-described positive electrode active material for a non-aqueous electrolyte secondary battery.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery which is an aspect of the present disclosure, has a Ni-containing lithium transition metal oxide having a layered structure, and the proportion of Ni in the lithium transition metal oxide excludes Li. 91 mol% to 99 mol% with respect to the total number of moles of the metal element, and the Li layer of the layered structure is composed of 1 mol with respect to the total molar amount of transition metal in the Ni-containing lithium transition metal oxide % To 2.5 mol% of a transition metal, and the half value width n of the diffraction peak of the (208) plane of the X-ray diffraction pattern by X-ray diffraction is 0.30 ° ⁇ n ⁇ 0.50 ° It is characterized by
  • a transition metal layer such as Ni, a Li layer, and an oxygen layer are present, and the lithium ion present in the Li layer reversibly enters and leaves the battery. proceed.
  • a transition metal layer such as Ni, a Li layer, and an oxygen layer
  • the lithium ion present in the Li layer reversibly enters and leaves the battery.
  • the proportion of Ni is in the range of 91% by mole to 99% by mole
  • a large amount of Li ions are extracted from the Li layer at the time of discharge of the battery. As a result, charge and discharge cycle characteristics are degraded.
  • the predetermined amount of transition metal when the predetermined amount of transition metal is present in the layered structure Li layer, Li at the time of discharge of the battery Even if a large amount of Li ions are extracted from the layer, the predetermined amount of transition metal present in the Li layer holds the Li layer, thereby stabilizing the layered structure and suppressing the decrease in charge-discharge cycle characteristics. It is guessed.
  • the transition metal present in the layered Li layer is mainly Ni, but transition metals other than Ni contained in the Ni-containing lithium transition metal oxide are also Li. May be present in layers.
  • the full width at half maximum of the diffraction peak of the (208) plane of the X-ray diffraction pattern by X-ray diffraction is an index indicating the fluctuation of the arrangement between the Li layer in the layered structure and the transition metal layer.
  • the half width is too small, the fluctuation of the arrangement between the Li layer and the transition metal layer is small, and the Li ions in the Li layer are strongly bound, leading to the deterioration of the charge and discharge cycle characteristics.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery when the half value width of the diffraction peak on the (208) plane is in the predetermined range, Since the arrangement between the transition metal layers is appropriately shaken and the binding of Li ions in the Li layer is relaxed to some extent, the Li ions in and out of the Li layer smoothly flow during charge and discharge reactions, and the charge and discharge It is considered that deterioration of cycle characteristics is suppressed.
  • a non-aqueous electrolyte secondary battery which is an example of an embodiment, includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. It is preferable to provide a separator between the positive electrode and the negative electrode. Specifically, it has a structure in which a non-aqueous electrolyte and a wound-type electrode body in which a positive electrode and a negative electrode are wound via a separator are accommodated in an outer package.
  • the electrode body is not limited to a wound type electrode body, and other types of electrode bodies may be applied, such as a laminated type electrode body in which a positive electrode and a negative electrode are stacked via a separator.
  • the form of the non-aqueous electrolyte secondary battery is not particularly limited, and may be cylindrical, square, coin, button or laminate.
  • the positive electrode, the negative electrode, the non-aqueous electrolyte, and the separator used for the non-aqueous electrolyte secondary battery which is an example of the embodiment will be described in detail.
  • the positive electrode is composed of, for example, a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector.
  • a positive electrode current collector a foil of a metal stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface, or the like can be used.
  • the positive electrode active material layer contains, for example, a positive electrode active material, a binder, a conductive material, and the like.
  • a positive electrode active material layer is formed on a positive electrode current collector by applying and drying a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive material, and the like on a positive electrode current collector, It can be obtained by rolling the positive electrode active material layer.
  • the positive electrode active material includes a Ni-containing lithium transition metal oxide having a layered structure.
  • the ratio of Ni to the total number of moles of metal elements other than lithium in the lithium transition metal oxide is in the range of 91 mole% to 99 mole% in terms of increasing the capacity of the battery and suppressing the decrease in charge / discharge cycle characteristics. And preferably in the range of 91 mol% to 96 mol%.
  • the proportion of Ni exceeds 99% by mole, the transition metal content in the layered structure Li layer and the half value width n of the diffraction peak of the (208) plane of the X-ray diffraction pattern by X-ray diffraction have the specific range described later Even if it is, it is not possible to sufficiently suppress the deterioration of the charge and discharge cycle characteristics. If the proportion of Ni is less than 91 mol%, it is difficult to achieve high capacity of the battery.
  • Examples of the layered structure of the Ni-containing lithium transition metal oxide include a layered structure belonging to the space group R-3m, a layered structure belonging to the space group C2 / m, and the like. Among these, a layered structure belonging to the space group R-3m is preferable in terms of high capacity, stability of the crystal structure, and the like.
  • the Ni-containing lithium transition metal oxide preferably contains Al in terms of suppression of deterioration in charge and discharge cycle characteristics and the like.
  • Al may be, for example, uniformly dispersed in the layered structure of the Ni-containing lithium transition metal oxide, or may be present in part of the layered structure.
  • a part of Al contained in the layered structure may be precipitated on the particle surface of the Ni-containing lithium transition metal oxide, and this precipitated Al is also It is Al contained in the Ni-containing lithium transition metal oxide.
  • the Ni-containing lithium transition metal oxide may contain an element other than Al, and is represented by, for example, the following general formula.
  • x indicating the proportion of Ni in the Ni-containing lithium transition metal oxide may satisfy 0.91 ⁇ x ⁇ 0.99, but as described above, the capacity of the battery and the charge and discharge cycle characteristics It is preferable to satisfy 0.91 ⁇ x ⁇ 0.96 in terms of suppression of reduction and the like.
  • y indicating the proportion of Al in the Ni-containing lithium transition metal oxide preferably satisfies 0.04 ⁇ y ⁇ 0.09 in terms of suppression of decrease in charge-discharge cycle characteristics, etc., and 0.04 It is more preferable to satisfy ⁇ y ⁇ 0.06.
  • the charge / discharge cycle characteristics may be reduced compared to the case where y satisfies the above range, and when y is more than 0.09, y satisfies the above range and In comparison, the proportion of Ni may decrease, and the capacity of the non-aqueous electrolyte secondary battery may decrease.
  • M in the above formula is not particularly limited as long as it is an element other than Li, Ni and Al, and for example, Co, Mn, Fe, Mg, Ti, Cr, Cu, Sn, Zr, Nb, Mo, Ta And at least one element selected from W, Na, K, Ba, Sr, Bi, Be, Zn, Ca and B, and the like.
  • M is preferably at least one element selected from Co, W, Nb, Mg, Ti, Mn, Zr, and Mo from the viewpoint of suppressing a specific decrease in charge and discharge cycles.
  • (1-x-y) indicating the proportion of M in the Ni-containing lithium transition metal oxide is 0 ⁇ (1-x-y).
  • z representing the proportion of Li in the Ni-containing lithium transition metal oxide preferably satisfies 0.95 ⁇ z ⁇ 1.10, and more preferably 0.97 ⁇ z ⁇ 1.03. .
  • the capacity may be reduced as compared with the case where z satisfies the above range.
  • z is more than 1.03, more Li compounds will be added as compared with the case where z satisfies the above range, which may not be economical from the viewpoint of production cost.
  • the content of elements constituting the Ni-containing lithium transition metal oxide is measured by inductively coupled plasma emission spectrometry (ICP-AES), electron beam microanalyzer (EPMA), energy dispersive X-ray analyzer (EDX), etc. can do.
  • ICP-AES inductively coupled plasma emission spectrometry
  • EPMA electron beam microanalyzer
  • EDX energy dispersive X-ray analyzer
  • a transition metal is present in the Li layer having a layered structure.
  • the amount of transition metal in the layered structure Li layer is 1 mol% to 2.5 mol% with respect to the total molar amount of transition metal in the layer structure, in terms of suppressing deterioration of charge and discharge cycle characteristics, Preferably, it is 1 mole% to 2 mole%.
  • the amount of transition metal in the layered Li layer is less than 1 mol%, the stability of the layered structure in the state in which the Li ions in the Li layer are extracted is reduced, as compared to the case where the above range is satisfied. Charge and discharge cycle characteristics are degraded.
  • the transition metal present in the layered Li layer is mainly Ni, but is preferably Ni, Co, Mn or the like.
  • the transition metal content in the layered Li layer can be obtained from Rietveld analysis results of the X-ray diffraction pattern of the Ni-containing lithium transition metal oxide by X-ray diffraction measurement.
  • the X-ray diffraction pattern is obtained by powder X-ray diffraction under the following conditions, using a powder X-ray diffractometer (manufactured by Rigaku Corporation, trade name "RINT-TTR", radiation source Cu-K ⁇ ).
  • the half value width n of the diffraction peak of the (208) plane of the X-ray diffraction pattern by the X-ray diffraction is 0.30 ° ⁇ n ⁇ 0 in that charge and discharge cycle characteristics are suppressed. .50 °, preferably 0.30 ° ⁇ n ⁇ 0.45 °.
  • the half value width n of the diffraction peak of the (208) plane is less than 0.30 °, the binding of Li ions in the Li layer is strong as compared with the case where the above range is satisfied, and the charge / discharge cycle characteristics are degraded.
  • the lattice constant a indicating the a-axis length of the crystal structure obtained from the result of the X-ray diffraction pattern by the above-mentioned X-ray diffraction is in the range of 2.872 ⁇ ⁇ a ⁇ 2.875 ⁇ .
  • the lattice constant c indicating the axial length is preferably in the range of 14.18 ⁇ ⁇ c ⁇ 14.21 ⁇ .
  • the lattice constant a is 2.875 ⁇ or more
  • the interatomic distance in the crystal structure becomes wide and unstable, and the output characteristics of the battery may be reduced as compared with the case where the above range is satisfied. is there.
  • the lattice constant c is 14.18 ⁇ or less
  • the interatomic distance in the crystal structure becomes narrow and unstable, and the charge and discharge cycle characteristics of the battery are reduced as compared with the case where the above range is satisfied.
  • the lattice constant c is 14.21 ⁇ or more
  • the interatomic distance in the crystal structure is wide and unstable, and the charge and discharge cycle characteristics of the battery are reduced as compared with the case where the above range is satisfied.
  • the lattice constant c is 14.21 ⁇ or more
  • the Ni-containing lithium transition metal oxide has a crystallite size s of 400 ⁇ ⁇ s calculated by the Scherrer equation from the half value width of the diffraction peak of the (104) plane of the X-ray diffraction pattern by the X-ray diffraction. It is preferred that ⁇ 500 ⁇ .
  • the crystallite size s of the Ni-containing lithium transition metal oxide is smaller than 400 ⁇ , the crystallinity may be reduced and the charge and discharge cycle characteristics of the battery may be reduced as compared with the case where the above range is satisfied.
  • s K ⁇ / B cos ⁇ (2)
  • s crystallite size
  • wavelength of X-ray
  • B half width of diffraction peak of (104) plane
  • diffraction angle (rad)
  • K Scherrer constant.
  • K is 0.9.
  • the content of the Ni-containing lithium transition metal oxide is, for example, a positive electrode active material for a non-aqueous electrolyte secondary battery, in terms of, for example, improving the battery capacity and effectively suppressing the decrease in charge-discharge cycle characteristics. It is preferable that it is 90 mass% or more with respect to the total mass of, and it is preferable that it is 99 mass% or more.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present embodiment may contain another lithium transition metal oxide.
  • examples of other lithium transition metal oxides include lithium transition metal oxides having a Ni content of 0 mol% to less than 91 mol%.
  • Ni containing lithium transition metal oxide An example of the manufacturing method of Ni containing lithium transition metal oxide is demonstrated.
  • the method for producing a Ni-containing lithium transition metal oxide comprises, for example, mixing a first step of obtaining a composite oxide containing Ni and an arbitrary metal element, and a composite oxide obtained in the first step with a Li compound.
  • the method includes two steps and a third step of firing the mixture.
  • the parameters are adjusted, for example, by controlling the mixing ratio of the raw materials in the second step, the baking temperature and time in the third step, and the like.
  • an alkaline solution such as sodium hydroxide is dropped while stirring a solution of a metal salt containing, for example, Ni and any metal element (Co, Al, Mn, etc.), and the pH is adjusted to the alkaline side (eg .5 to 11.5) to precipitate (co-precipitate) a composite hydroxide containing Ni and an arbitrary metal element, and calcining the composite hydroxide to form Ni and an arbitrary metal element Is obtained.
  • the mixing ratio of Ni and an arbitrary metal element may be appropriately determined so that the ratio of Ni is in the range of 91 mol% to 99 mol%.
  • the firing temperature is not particularly limited, but is, for example, in the range of 500 ° C. to 600 ° C.
  • the complex oxide obtained in the first step and the Li compound are mixed to obtain a mixture.
  • the mixing ratio of the composite oxide and the Li compound obtained in the first step makes it easy to adjust the above-mentioned parameters to the above-defined range, and, for example, the molar ratio of metallic elements excluding Li: Li Is preferably in the range of 1: 0.98 to 1: 1.15.
  • other metal raw materials may be added as necessary.
  • the other metal raw material is, for example, an oxide containing a metal element constituting the complex oxide obtained in the first step and a metal element other than Li.
  • the mixture obtained in the second step is fired at a predetermined temperature and time to obtain the Ni-containing lithium transition metal oxide according to the present embodiment.
  • the firing of the mixture in the third step is preferably, for example, a two-step firing in that it is easy to adjust the above-mentioned parameters to the above-defined range.
  • the first-step baking temperature is preferably, for example, in the range of 450 ° C. to 680 ° C.
  • the second-step baking temperature is preferably higher than the first-step baking temperature, and for example, preferably in the range of 700 ° C. to 800 ° C.
  • the baking time of the first and second stages is preferably, for example, 3 to 10 hours.
  • the firing of the mixture obtained in the second step is preferably performed in an oxygen stream.
  • the time exceeding the firing temperature of the first step is preferably 10 hours or less.
  • the difference between the first-stage baking temperature and the second-stage baking temperature is preferably 40 ° C. or more and 300 ° C. or less.
  • Examples of the conductive material contained in the positive electrode active material layer include carbon powders such as carbon black, acetylene black, ketjen black, graphite, etc. These may be used alone or in combination of two or more. You may use.
  • binder contained in the positive electrode active material layer examples include fluorine-based polymers and rubber-based polymers.
  • fluorine-based polymer examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and modified products thereof
  • the rubber-based polymer includes, for example, ethylene-propylene-isoprene copolymer And ethylene-propylene-butadiene copolymer and the like. These may be used alone or in combination of two or more.
  • the negative electrode includes, for example, a negative electrode current collector such as a metal foil, and a negative electrode active material layer formed on the negative electrode current collector.
  • a negative electrode current collector such as a metal foil
  • a negative electrode active material layer formed on the negative electrode current collector.
  • the negative electrode active material layer contains, for example, a negative electrode active material, a binder, a thickener, and the like.
  • the negative electrode forms a negative electrode active material layer on the negative electrode current collector, for example, by applying and drying a negative electrode mixture slurry containing a negative electrode active material, a thickener, and a binder on the negative electrode current collector, It can be obtained by rolling the negative electrode active material layer.
  • the negative electrode active material contained in the negative electrode active material layer is not particularly limited as long as it is a material capable of inserting and extracting lithium ions, and for example, it is possible to form an alloy with a carbon material and lithium Metal or an alloy compound containing the metal, and the like.
  • the carbon material graphites such as natural graphite, non-graphitizable carbon, artificial graphite and the like, cokes and the like can be used, and as the alloy compound, those containing at least one metal capable of forming an alloy with lithium are mentioned Be
  • the element capable of forming an alloy with lithium is preferably silicon or tin, and silicon oxide or tin oxide in which these are bonded to oxygen can also be used. Moreover, what mixed the said carbon material and the compound of silicon or tin can be used. In addition to the above, it is also possible to use one having a higher charge / discharge potential for metal lithium such as lithium titanate than a carbon material or the like.
  • a fluorine-based polymer, a rubber-based polymer, etc. can be used as in the case of the positive electrode, but a styrene-butadiene copolymer (SBR) or this modification You may use a body etc.
  • SBR styrene-butadiene copolymer
  • fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin, etc. can be used as in the case of the positive electrode.
  • CMC carboxymethylcellulose
  • PEO polyethylene oxide
  • the non-aqueous electrolyte comprises a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte is not limited to a liquid electrolyte (non-aqueous electrolyte), and may be a solid electrolyte using a gel-like polymer or the like.
  • the non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, mixed solvents of two or more of them, and the like can be used.
  • the non-aqueous solvent may contain a halogen substitute wherein at least a part of hydrogen of these solvents is substituted with a halogen atom such as fluorine.
  • esters examples include ethylene carbonate (EC), propylene carbonate (PC), cyclic carbonates such as butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate , Cyclic carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate, cyclic carboxylic acid esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP And chain carboxylic acid esters such as ethyl propionate and ⁇ -butyrolactone.
  • EC ethylene carbonate
  • PC propylene carbonate
  • cyclic carbonates such as butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Dioxane, 1,3,5-trioxane, furan, 2-methyl furan, 1,8-cineole, cyclic ether such as crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dipheny
  • a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated linear carbonate, a fluorinated linear carboxylic ester such as methyl fluoropropionate (FMP), and the like.
  • FEC fluoroethylene carbonate
  • FMP fluorinated linear carboxylic ester
  • FEC fluoroethylene carbonate
  • FMP fluorinated linear carboxylic ester
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2 n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4 O 7, Li (B ( C 2 O 4) F 2) boric acid salts such as, LiN (SO 2 CF 3) 2, LiN (C 1 F 2l + 1 SO 2) (C m F 2m + 1 SO 2) ⁇ l , M is an integer of 0 or more ⁇ , and the like.
  • lithium salts may be used singly or in combination of two or more. Among these, it is preferable to use LiPF 6 from the viewpoint of ion conductivity, electrochemical stability and the like.
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the non-aqueous solvent.
  • a porous sheet having ion permeability and insulation is used.
  • the porous sheet include a microporous thin film, a woven fabric, a non-woven fabric and the like.
  • olefin resins such as polyethylene and polypropylene, cellulose and the like are preferable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin, or may be one having an aramid resin or the like coated on the surface of the separator.
  • a filler layer containing an inorganic filler may be formed.
  • the inorganic filler for example, an oxide containing at least one of titanium (Ti), aluminum (Al), silicon (Si), magnesium (Mg), a phosphoric acid compound, or the surface thereof is treated with hydroxide or the like And the like.
  • the filler layer can be formed, for example, by applying a slurry containing the filler to the surface of the positive electrode, the negative electrode, or the separator.
  • Example 1 [Preparation of positive electrode active material]
  • the composite hydroxide represented by [Ni 0.955 Al 0.045 ] (OH) 2 obtained by the coprecipitation method is calcined at 500 ° C. for 2 hours, and a composite oxide containing Ni and Al (Ni 0.2. 955 Al 0.045 O 2 ) was obtained.
  • LiOH and a composite oxide containing Ni and Al were mixed such that the molar ratio of Li to the total amount of Ni and Al was 0.98: 1.
  • the mixture was calcined at 670 ° C. for 5 hours in an oxygen stream, and then calcined at 710 ° C. for 3 hours, and then washed with water to remove impurities to obtain a Ni-containing lithium transition metal oxide.
  • the time from the start of the temperature rise to the second stage baking temperature to the time when the first stage baking temperature was reached after the completion of the second stage baking was about 4 hours.
  • the composition of the obtained Ni-containing lithium transition metal was measured using an ICP emission spectrophotometer (trade name "iCAP6300" manufactured by Thermo Fisher Scientific Co., Ltd.), and the composition was Li 0.97 Ni 0.955 Al 0 It was .045 O 2 . This was used as the positive electrode active material of Example 1.
  • Example 2 Ni was prepared in the same manner as in Example 1, except that LiOH and the composite oxide containing Ni and Al of Example 1 were mixed such that the molar ratio of Li to the total amount of Ni and Al was 1: 1.
  • a lithium transition metal oxide was prepared.
  • the composition of the obtained Ni-containing lithium transition metal oxide was Li 0.98 Ni 0.955 Al 0.045 O 2 . This was used as the positive electrode active material of Example 2.
  • Example 3 The same as Example 1, except that LiOH and the composite oxide containing Ni and Al of Example 1 were mixed such that the molar ratio of Li to the total amount of Ni and Al was 1.03: 1. Ni-containing lithium transition metal oxides were prepared. The composition of the obtained Ni-containing lithium transition metal oxide was Li 0.99 Ni 0.955 Al 0.045 O 2 . This was used as the positive electrode active material of Example 3.
  • Example 4 The composite hydroxide represented by [Ni 0.955 Al 0.045 ] (OH) 2 obtained by the coprecipitation method is calcined at 500 ° C. for 2 hours, and a composite oxide containing Ni and Al (Ni 0.2. 955 Al 0.045 O 2 ) was obtained.
  • Example 1 and Example 1 except that the molar ratio of LiOH and the composite oxide containing Ni and Al and SiO described above is 1.05: 1, the molar ratio of Li and the total of Ni, Al and Si is 1.05: 1. Similarly, a Ni-containing lithium transition metal oxide was produced.
  • the composition of the obtained Ni-containing lithium transition metal oxide was Li 0.99 Ni 0.952 Al 0.045 Si 0.003 O 2 . This was made into the positive electrode active material of Example 4.
  • Example 5 The composite hydroxide represented by [Ni 0.94 Co 0.015 Al 0.045 ] (OH) 2 obtained by the coprecipitation method is calcined at 500 ° C. for 2 hours, and a composite containing Ni, Co and Al An oxide (Ni 0.94 Co 0.015 Al 0.045 O 2 ) was obtained.
  • Example 1 and Example 1 except that LiOH and the composite oxide containing Ni, Co and Al described above were mixed in an amount such that the molar ratio of Li and the total amount of Ni, Co and Al was 0.98: 1. Similarly, a Ni-containing lithium transition metal oxide was produced.
  • the composition of the obtained Ni-containing lithium transition metal oxide was Li 0.97 Ni 0.94 Co 0.015 Al 0.045 O 2 . This was made into the positive electrode active material of Example 5.
  • Example 6 Example 1 except that LiOH and the composite oxide containing Ni, Co and Al of Example 5 were mixed such that the molar ratio of Li to the total amount of Ni, Co and Al was 1: 1. Similarly to the above, Ni-containing lithium transition metal oxide was prepared. The composition of the obtained Ni-containing lithium transition metal oxide was Li 0.98 Ni 0.94 Co 0.015 Al 0.045 O 2 . This was made into the positive electrode active material of Example 6.
  • Example 7 It was carried out except that LiOH and the composite oxide containing Ni, Co and Al of Example 5 were mixed so that the molar ratio of Li and the total amount of Ni, Co and Al would be 1.03: 1.
  • a Ni-containing lithium transition metal oxide was prepared.
  • the composition of the obtained Ni-containing lithium transition metal oxide was Li 0.99 Ni 0.94 Co 0.015 Al 0.045 O 2 . This was used as the positive electrode active material of Example 7.
  • Example 8 The composite hydroxide represented by [Ni 0.94 Co 0.015 Al 0.045 ] (OH) 2 obtained by the coprecipitation method is calcined at 500 ° C. for 2 hours, and a composite containing Ni, Co and Al An oxide (Ni 0.94 Co 0.015 Al 0.045 O 2 ) was obtained. LiOH and the composite oxide containing Ni, Co and Al were mixed with SiO in an amount such that the molar ratio of Li to the total amount of Ni, Co, Al and Si was 1.05: 1. A Ni-containing lithium transition metal oxide was produced in the same manner as in Example 1 except for the above. The composition of the obtained Ni-containing lithium transition metal oxide was Li 0.98 Ni 0.937 Co 0.015 Al 0.045 Si 0.003 O 2 . This was made into the positive electrode active material of Example 8.
  • Example 9 The composite hydroxide represented by [Ni 0.94 Co 0.015 Al 0.045 ] (OH) 2 obtained by the coprecipitation method is calcined at 500 ° C. for 2 hours, and a composite containing Ni, Co and Al An oxide (Ni 0.94 Co 0.015 Al 0.045 O 2 ) was obtained. An amount such that the molar ratio of LiOH, the above composite oxide containing Ni, Co and Al to Ti (OH) 2 ⁇ ⁇ type, the total amount of Li and Ni, Co, Al and Ti is 1.03: 1 Mixed. A Ni-containing lithium transition metal oxide was produced in the same manner as in Example 1 except for the above. The composition of the obtained Ni-containing lithium transition metal oxide was Li 0.98 Ni 0.935 Co 0.015 Al 0.045 Ti 0.005 O 2 . This was used as the positive electrode active material of Example 9.
  • Example 10 The molar ratio of LiOH and the composite oxide containing Ni, Co and Al of Example 9 and Ti (OH) 2 ⁇ ⁇ type, Li and the total amount of Ni, Co, Al and Ti is 1.05: 1
  • a Ni-containing lithium transition metal oxide was produced in the same manner as in Example 1 except that the amounts were mixed.
  • the composition of the obtained Ni-containing lithium transition metal oxide was Li 0.98 Ni 0.935 Co 0.015 Al 0.045 Ti 0.005 O 2 . This was used as the positive electrode active material of Example 10.
  • Example 11 The molar ratio of LiOH and the composite oxide containing Ni, Co and Al of Example 9 to Li 3 MoO 4 is such that the molar ratio of Li to the total of Ni, Co, Al and Mo is 1.075: 1.
  • a Ni-containing lithium transition metal oxide was produced in the same manner as in Example 1 except for mixing.
  • the composition of the obtained Ni-containing lithium transition metal oxide was Li 0.99 Ni 0.935 Co 0.015 Al 0.045 Mo 0.005 O 2 .
  • the resultant was used as a positive electrode active material of Example 11.
  • Example 12 The composite hydroxide represented by [Ni 0.94 Co 0.015 Al 0.045 ] (OH) 2 obtained by the coprecipitation method is calcined at 500 ° C. for 2 hours, and a composite containing Ni, Co and Al An oxide (Ni 0.94 Co 0.015 Al 0.045 O 2 ) was obtained. LiOH and the above composite oxide containing Ni, Co and Al and MnO 2 were mixed in such an amount that the molar ratio of Li and the total amount of Ni, Co, Al and Mn was 1.05: 1. A Ni-containing lithium transition metal oxide was produced in the same manner as in Example 1 except for the above. The composition of the obtained Ni-containing lithium transition metal oxide was Li 0.98 Ni 0.93 Co 0.015 Al 0.045 Mn 0.01 O 2 . The resultant was used as a positive electrode active material of Example 12.
  • Example 13 LiOH and the composite oxide containing Ni, Co and Al of Example 12 and MnO 2 were mixed in such an amount that the molar ratio of Li and the total of Ni, Co, Al and Mn was 1.08: 1.
  • a Ni-containing lithium transition metal oxide was produced in the same manner as in Example 1 except for the above.
  • the composition of the obtained Ni-containing lithium transition metal oxide was Li 0.98 Ni 0.93 Co 0.015 Al 0.045 Mn 0.01 O 2 . This was made into the positive electrode active material of Example 13.
  • Example 14 LiOH and the composite oxide containing Ni, Co and Al of Example 12 and LiNbO 3 were mixed in such an amount that the molar ratio of Li and the total of Ni, Co, Al and Nb would be 1.08: 1.
  • a Ni-containing lithium transition metal oxide was produced in the same manner as in Example 1 except for the above.
  • the composition of the obtained Ni-containing lithium transition metal oxide was Li 0.99 Ni 0.93 Co 0.015 Al 0.045 Nb 0.01 O 2 .
  • the resultant was used as a positive electrode active material of Example 14.
  • Example 15 LiOH and the composite oxide containing Ni, Co and Al of Example 12 and LiNbO 3 were mixed in such an amount that the molar ratio of Li and the total of Ni, Co, Al and Nb would be 1.10: 1
  • a Ni-containing lithium transition metal oxide was produced in the same manner as in Example 1 except for the above.
  • the composition of the obtained Ni-containing lithium transition metal oxide was Li 0.99 Ni 0.93 Co 0.015 Al 0.045 Nb 0.01 O 2 . This was made into the positive electrode active material of Example 15.
  • Example 16 The composite hydroxide represented by [Ni 0.91 Co 0.045 Al 0.045 ] (OH) 2 obtained by the coprecipitation method is calcined at 500 ° C. for 2 hours, and a composite containing Ni, Co and Al An oxide (Ni 0.91 Co 0.045 Al 0.045 O 2 ) was obtained. LiOH and the composite oxide containing Ni, Co and Al were mixed in an amount such that the molar ratio of Li to the total amount of Ni, Co and Al was 1.03: 1. A Ni-containing lithium transition metal oxide was produced in the same manner as in Example 1 except for the above. The composition of the obtained Ni-containing lithium transition metal oxide was Li 1.03 Ni 0.91 Co 0.045 Al 0.045 O 2 . The resultant was used as a positive electrode active material of Example 16.
  • Example 17 The molar ratio of the complex oxide containing LiOH and Ni, Co and Al of Example 12 to the Ti (OH) 2 ⁇ ⁇ type, Li, and the total amount of Ni, Co, Al and Ti is 1. 10: 1 A Ni-containing lithium transition metal oxide was produced in the same manner as in Example 1 except that the amounts were mixed. The composition of the obtained Ni-containing lithium transition metal oxide was Li 0.98 Ni 0.91 Co 0.015 Al 0.045 Ti 0.03 O 2 . This was made into the positive electrode active material of Example 17.
  • Comparative Example 1 LiOH and NiO are mixed in such an amount that the molar ratio of Li to Ni is 1.03: 1, and the mixture is calcined at 670 ° C. for 5 hours in an oxygen stream, and then calcined at 750 ° C. for 3 hours The impurities were removed by water washing to obtain a Ni-containing lithium transition metal oxide. After the completion of the first stage baking, the time from the start of the temperature increase to the second stage baking temperature to the time when the first stage baking temperature was reached after the completion of the second stage baking was about 5 hours. The composition of the Ni-containing lithium transition metal oxide obtained above was Li 0.98 Ni 1.0 O 2 . This was used as the positive electrode active material of Comparative Example 1.
  • Comparative Example 2 LiOH and the composite oxide containing Ni, Co and Al of Example 5 were mixed in such an amount that the molar ratio of Li to the total amount of Ni, Co and Al was 1.03: 1. The mixture was fired at 670 ° C. for 5 hours in an oxygen stream, and then fired at 750 ° C. for 3 hours to obtain a Ni-containing lithium transition metal oxide.
  • the composition of the Ni-containing lithium transition metal oxide obtained above was Li 0.98 Ni 0.94 Co 0.015 Al 0.045 O 2 . This was used as the positive electrode active material of Comparative Example 2.
  • Comparative Example 3 LiOH and the composite oxide containing Ni, Co and Al of Example 12 and MnO 2 were mixed in such an amount that the molar ratio of Li to the total amount of Ni, Co, Al and Mn was 1.1: 1. The mixture was calcined at 670 ° C. for 5 hours in an oxygen stream, and then calcined at 800 ° C. for 3 hours to obtain a Ni-containing lithium transition metal oxide. After the completion of the first stage baking, the time from the start of the temperature rise to the second stage baking temperature to the time the first stage baking temperature was reached after the completion of the second stage baking was about 6 hours. The composition of the Ni-containing lithium transition metal oxide obtained above was Li 0.98 Ni 0.93 Co 0.015 Al 0.045 Mn 0.01 O 2 . This was used as the positive electrode active material of Comparative Example 3.
  • Comparative Example 4 The molar ratio of the complex oxide containing LiOH and Ni, Co and Al of Example 9 to the Ti (OH) 2 ⁇ ⁇ type and the total amount of Li and Ni, Co, Al and Ti is 1.1: 1 The following amounts were mixed. The mixture was calcined at 670 ° C. for 5 hours in an oxygen stream, and then calcined at 710 ° C. for 3 hours to obtain a Ni-containing lithium transition metal oxide. The composition of the Ni-containing lithium transition metal oxide obtained above was Li 0.99 Ni 0.935 Co 0.015 Al 0.045 Ti 0.005 O 2 . This was used as the positive electrode active material of Comparative Example 4.
  • Comparative Example 5 LiOH and the composite oxide containing Ni, Co and Al of Example 5 were mixed in such an amount that the molar ratio of Li to the total amount of Ni, Co and Al was 1.05: 1. The mixture was calcined at 670 ° C. for 5 hours in an oxygen stream, and then calcined at 710 ° C. for 3 hours to obtain a Ni-containing lithium transition metal oxide.
  • the composition of the Ni-containing lithium transition metal oxide obtained above was Li 0.98 Ni 0.94 Co 0.015 Al 0.045 O 2 . This was used as the positive electrode active material of Comparative Example 5.
  • Comparative Example 6 The composite hydroxide represented by [Ni 0.88 Co 0.09 Al 0.03 ] (OH) 2 obtained by the coprecipitation method is calcined at 500 ° C. for 2 hours, and a composite containing Ni, Co and Al An oxide (Ni 0.88 Co 0.09 Al 0.03 O 2 ) was obtained. LiOH and the composite oxide containing Ni, Co and Al were mixed in such an amount that the molar ratio of Li to the total amount of Ni, Co and Al was 1.03: 1. The mixture was fired at 670 ° C. for 5 hours in an oxygen stream, and then fired at 750 ° C. for 3 hours to remove impurities by water washing to obtain a Ni-containing lithium transition metal oxide.
  • the composition of the Ni-containing lithium transition metal oxide obtained above was Li 0.98 Ni 0.88 Co 0.09 Al 0.03 O 2 . This was used as the positive electrode active material of Comparative Example 6.
  • Comparative Example 7 Example except that LiOH and the composite oxide containing Ni, Co and Al of Comparative Example 6 were mixed in an amount such that the molar ratio of Li to the total amount of Ni, Co and Al was 1.05: 1 Similar to 6, a Ni-containing lithium transition metal oxide was prepared. The composition of the Ni-containing lithium transition metal oxide obtained above was Li 0.99 Ni 0.88 Co 0.09 Al 0.03 O 2 . This was used as the positive electrode active material of Comparative Example 7.
  • Powder X-ray diffraction measurement was performed on the Ni-containing lithium transition metal oxides (positive electrode active materials) of Examples 1 to 17 and Comparative Examples 1 to 7 under the conditions described above to obtain X-ray diffraction patterns. From all the X-ray diffraction patterns of Examples and Comparative Examples, diffraction lines showing a layered structure were confirmed.
  • the amount of transition metal in the Li layer, the half width of the diffraction peak on the (208) plane, the lattice constant a, the lattice constant c, and the crystallite size s were determined from the X-ray diffraction patterns of the examples and comparative examples. The results are summarized in Tables 1 and 2. The measuring method is as described above.
  • test cells were produced as follows.
  • Ethylene carbonate (EC), methyl ethyl carbonate (MEC) and dimethyl carbonate (DMC) were mixed in a volume ratio of 3: 3: 4.
  • LiPF 6 lithium hexafluorophosphate
  • test cell The positive electrode of Example 1 and a negative electrode made of lithium metal foil were laminated so as to face each other via a separator, and this was wound to fabricate an electrode body. Then, the electrode body and the non-aqueous electrolyte were inserted into an aluminum outer package to prepare a test cell. Test cells were produced in the same manner as in the other examples and comparative examples.
  • Capacity retention rate (discharge capacity at 20th cycle / discharge capacity at 1st cycle) ⁇ 100
  • Tables 3 and 4 show the results of the capacity retention rates in the charge and discharge cycles of the test cells of the examples and the comparative examples.
  • Each of the positive electrode active materials of Examples 1 to 17 and Comparative Examples 1 to 5 has a Ni-containing lithium transition metal oxide having a layered structure, and the proportion of Ni in the lithium transition metal oxide excludes Li. It is 91 mol% or more with respect to the total number of moles of the metal element.
  • the proportion of Ni in the lithium transition metal oxide is 91 mol% to 99 mol%, and in the Li layer having the layered structure, the total mol of transition metals in the Ni-containing lithium transition metal oxide 1 to 2.5 mol% of the transition metal (ie, the amount of transition metal in the Li layer is 1 to 2.5 mol%) relative to the amount, X-ray by X-ray diffraction of the lithium
  • the half value width n of the diffraction peak of the (208) plane of the diffraction pattern is 0.30 ° ⁇ n ⁇ 0.50 °
  • the ratio of Ni, the amount of transition metal in the Li layer (208) Compared with Comparative Examples 1 to 5 in which any of the half value widths n of the surface diffraction peaks did not satisfy the above range, the capacity retention rate was high, and the decrease in charge / discharge cycle characteristics was suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本開示の一態様である非水電解質二次電池用正極活物質は、層状構造を有するNi含有リチウム遷移金属酸化物を有し、前記リチウム遷移金属酸化物中のNiの割合は、Liを除く金属元素の総モル数に対して91モル%~96モル%であり、前記層状構造のLi層には、前記Ni含有リチウム遷移金属酸化物中の遷移金属の総モル量に対して、1モル%~2.5モル%の遷移金属が存在し、前記Ni含有リチウム遷移金属酸化物は、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅nが、0.30°≦n≦0.50°であることを特徴とする。

Description

非水電解質二次電池用正極活物質及び非水電解質二次電池
 本発明は、非水電解質二次電池用正極活物質及び非水電解質二次電池の技術に関する。
 近年、高出力、高エネルギー密度の二次電池として、正極、負極、及び非水電解質を備え、正極と負極との間でリチウムイオン等を移動させて充放電を行う非水電解質二次電池が広く利用されている。
 非水電解質二次電池の正極に用いられる正極活物質としては、例えば、以下のものが知られている。
 例えば、特許文献1には、組成式LiNiCoMn(0.1≦a≦1.2、0.40≦b<1.15、0<c<0.60、0<d<0.60であって、1.00≦b+c+d≦1.15、0<c+d≦0.60の関係を有する)で表され、Li層の遷移金属占有率eが0.006≦e≦0.150の範囲である複合酸化物からなる正極活物質が開示されている。
 また、例えば、特許文献2には、[Li]3a[Ni1-x-yCoAl3b[O6c(但し、[  ]の添え宇はサイトを表し、x、yは0<x≦0.20,0<y≦0.15なる条件を満たす)で表され、かつ層状構造を有する六方晶系のリチウムニッケル複合酸化物において、X線回折図形のリートベルト解析から得られる3aサイトのリチウム以外の金属イオンのサイト占有率が3%以下であり、かつ一次粒子の平均粒径が0.1μm以上で、該一次粒子が複数集合して二次粒子を形成している正極活物質が開示されている。
特開2000-133262号公報 特開2000-30693号公報
 ところで、Niの割合がLiを除く金属元素の総モル数に対して91モル%以上であるリチウム遷移金属酸化物を正極活物質として用いると、非水電解質二次電池の高容量化を図ることができる反面、充放電サイクル特性が著しく低下するという問題がある。
 そこで、本開示は、Niの割合がLiを除く金属元素の総モル数に対して91モル%以上であるリチウム遷移金属酸化物を用いた場合において、非水電解質二次電池の充放電サイクル特性の低下を抑制することが可能な非水電解質二次電池用正極活物質及び非水電解質二次電池を提供することを目的とする。
 本開示の一態様である非水電解質二次電池用正極活物質は、層状構造を有するNi含有リチウム遷移金属酸化物を有し、前記リチウム遷移金属酸化物中のNiの割合は、Liを除く金属元素の総モル数に対して91モル%~99モル%であり、前記層状構造のLi層には、前記Ni含有リチウム遷移金属酸化物中の遷移金属の総モル量に対して、1モル%~2.5モル%の遷移金属が存在し、前記Ni含有リチウム遷移金属酸化物は、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅nが、0.30°≦n≦0.50°であることを特徴とする。
 本開示の一態様である非水電解質二次電池は、上記非水電解質二次電池用正極活物質を有する正極を備えることを特徴とする。
 本開示の一態様によれば、充放電サイクル特性の低下を抑制することが可能となる。
 (本開示の基礎となった知見)
 前述したように、Niの割合がLiを除く金属元素の総モル数に対して91モル%以上であるリチウム遷移金属酸化物を正極活物質として用いると、充放電サイクル特性が著しく低下する。そこで、本発明者らが検討した結果、層状構造を有し、Niの割合が91モル%~99モル%の範囲であるNi含有リチウム遷移金属酸化物においては、層状構造のLi層における遷移金属量及びX線回折パターンの(208)面の回折ピークの半値幅nと充放電サイクル特性との間に深い関係があることを見出し、以下に説明する態様の非水電解質二次電池用正極活物質を想到するに至った。
 本開示の一態様である非水電解質二次電池用正極活物質は、層状構造を有するNi含有リチウム遷移金属酸化物を有し、前記リチウム遷移金属酸化物中のNiの割合は、Liを除く金属元素の総モル数に対して91モル%~99モル%であり、前記層状構造のLi層には、前記Ni含有リチウム遷移金属酸化物中の遷移金属の総モル量に対して、1モル%~2.5モル%の遷移金属が存在し、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅nが、0.30°≦n≦0.50°であることを特徴とする。
 Ni含有リチウム遷移金属酸化物の層状構造は、Ni等の遷移金属層、Li層、酸素層が存在し、Li層に存在するLiイオンが可逆的に出入りすることで、電池の充放電反応が進行する。ここで、Niの割合が91モル%~99モル%の範囲であるNi含有リチウム遷移金属酸化物においては、電池の放電時に、Li層から多くのLiイオンが引き抜かれるため、層状構造が不安定になり、充放電サイクル特性が低下する。しかし、本開示の一態様である非水電解質二次電池用正極活物質のように、層状構造のLi層に上記所定量の遷移金属が存在している場合には、電池の放電時に、Li層から多くのLiイオンが引き抜かれても、Li層に存在する所定量の遷移金属によりLi層が保持されるため、層状構造の安定化が図られ、充放電サイクル特性の低下が抑えられると推察される。なお、本開示のNi含有リチウム遷移金属酸化物において、層状構造のLi層に存在する遷移金属は、主にNiであるが、Ni含有リチウム遷移金属酸化物に含まれるNi以外の遷移金属もLi層に存在する場合がある。
 また、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅は、層状構造のLi層と遷移金属層間の配列の揺らぎを表す指標である。そして、この半値幅が小さくなり過ぎると、Li層と遷移金属層間の配列の揺らぎが少なく、Li層のLiイオンが強く束縛された状態となるため、充放電サイクル特性の低下に繋がる。しかし、本開示の一態様である非水電解質二次電池用正極活物質のように、(208)面の回折ピークの半値幅が上記所定の範囲にある場合には、層状構造のLi層と遷移金属層間の配列に適度な揺らぎが生じ、Li層のLiイオンの束縛がある程度緩和された状態になっているため、充放電反応時には、Li層のLiイオンの出入りがスムーズになり、充放電サイクル特性の低下が抑制されると考えられる。
 以下に、本開示の一態様である非水電解質二次電池用正極活物質を用いた非水電解質二次電池の一例について説明する。
 実施形態の一例である非水電解質二次電池は、正極と、負極と、非水電解質とを備える。正極と負極との間には、セパレータを設けることが好適である。具体的には、正極及び負極がセパレータを介して巻回されてなる巻回型の電極体と、非水電解質とが外装体に収容された構造を有する。電極体は、巻回型の電極体に限定されず、正極及び負極がセパレータを介して積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。また、非水電解質二次電池の形態としては、特に限定されず、円筒型、角型、コイン型、ボタン型、ラミネート型などが例示できる。
 以下、実施形態の一例である非水電解質二次電池に用いられる正極、負極、非水電解質、セパレータについて詳述する。
 <正極>
 正極は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極活物質層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極活物質層は、例えば、正極活物質、結着材、導電材等を含む。
 正極は、例えば、正極活物質、結着材、導電材等を含む正極合材スラリーを正極集電体上に塗布・乾燥することによって、正極集電体上に正極活物質層を形成し、当該正極活物質層を圧延することにより得られる。
 正極活物質は、層状構造を有するNi含有リチウム遷移金属酸化物を含む。当該リチウム遷移金属酸化物中のリチウムを除く金属元素の総モル数に対するNiの割合は、電池の高容量化、充放電サイクル特性の低下抑制等の点で、91モル%~99モル%の範囲であり、好ましくは91モル%~96モル%の範囲である。Niの割合が99モル%を超えると、層状構造のLi層における遷移金属量及びX線回折によるX線回折パターンの(208)面の回折ピークの半値幅nが後述する特定の範囲を有していても充放電サイクル特性の低下を十分に抑制することができない。なお、Niの割合が91モル%未満であると、そもそも電池の高容量化を図ることが困難である。
 Ni含有リチウム遷移金属酸化物の層状構造は、例えば、空間群R-3mに属する層状構造、空間群C2/mに属する層状構造等が挙げられる。これらの中では、高容量化、結晶構造の安定性等の点で、空間群R-3mに属する層状構造であることが好ましい。
 Ni含有リチウム遷移金属酸化物は、充放電サイクル特性の低下抑制等の点で、Alを含むことが好ましい。Alは、例えば、Ni含有リチウム遷移金属酸化物の層状構造内に均一に分散していてもよいし、層状構造内の一部に存在していてもよい。また、Ni含有リチウム遷移金属酸化物の製造段階において、層状構造内に含まれるAlの一部が、Ni含有リチウム遷移金属酸化物の粒子表面に析出する場合があるが、この析出したAlも、Ni含有リチウム遷移金属酸化物に含まるAlである。
 Ni含有リチウム遷移金属酸化物は、Al以外の元素を含んでいてもよく、例えば、以下の一般式で表される。
 LiNi1-x-yAl    (1)
 上式においてNi含有リチウム遷移金属酸化物中のNiの割合を示すxは、0.91≦x≦0.99を満たせばよいが、前述した通り、電池の高容量化、充放電サイクル特性の低下抑制等の点で、0.91≦x≦0.96を満たすことが好ましい。
 上式においてNi含有リチウム遷移金属酸化物中のAlの割合を示すyは、充放電サイクル特性の低下抑制等の点で、0.04≦y≦0.09を満たすことが好ましく、0.04≦y≦0.06を満たすことがより好ましい。yが0.04未満であると、yが上記範囲を満たす場合と比較して、充放電サイクル特性が低下する場合があり、yが0.09超の場合、yが上記範囲を満たす場合と比較して、Niの割合が低下して、非水電解質二次電池の容量が低下する場合がある。
 上式のMは、Li、Ni、Al以外の元素であれば特に制限されるものではなく、例えば、Co、Mn、Fe、Mg、Ti、Cr、Cu、Sn、Zr、Nb、Mo、Ta、W、Na、K、Ba、Sr、Bi、Be、Zn、Ca及びBから選ばれる少なくとも1種の元素等が挙げられる。これらの中では、充放電サイクル特定の低下を抑制する点で、上式のMは、Co、W、Nb、Mg、Ti、Mn、Zr及びMoから選ばれる少なくとも1種の元素が好ましい。
 上式においてNi含有リチウム遷移金属酸化物中のMの割合を示す(1-x-y)は0≦(1-x-y)である。
 上式においてNi含有リチウム遷移金属酸化物中のLiの割合を示すzは、0.95≦z≦1.10を満たすことが好ましく、0.97≦z≦1.03を満たすことがより好ましい。zが0.97未満の場合、zが上記範囲を満たす場合と比較して、容量が低下する場合がある。zが1.03超の場合、zが上記範囲を満たす場合と比較して、Li化合物をより多く添加することになるため、生産コストの観点から経済的ではない場合がある。
 Ni含有リチウム遷移金属酸化物を構成する元素の含有量は、誘導結合プラズマ発光分光分析装置(ICP-AES)や電子線マイクロアナライザー(EPMA)、エネルギー分散型X線分析装置(EDX)等により測定することができる。
 Ni含有リチウム遷移金属酸化物は、層状構造のLi層に遷移金属が存在している。そして、層状構造のLi層における遷移金属量は、充放電サイクル特性の低下を抑制する点で、層状構造中の遷移金属の総モル量に対して1モル%~2.5モル%であり、好ましくは1モル%~2モル%である。層状構造のLi層における遷移金属量が、1モル%未満の場合、上記範囲を満たす場合と比較して、Li層中のLiイオンが引き抜かれた状態での層状構造の安定性が低下し、充放電サイクル特性が低下する。また、層状構造のLi層における遷移金属量が2.5モル%を超える場合、上記範囲を満たす場合と比較して、Li層中のLiイオンの拡散性が低下し、電池容量の低下、抵抗上昇による分極劣化が起こり易くなる。層状構造のLi層に存在する遷移金属は、主にNiであるが、好ましくは、Ni、Co、Mn等である。
 層状構造のLi層における遷移金属量は、Ni含有リチウム遷移金属酸化物のX線回折測定によるX線回折パターンのリートベルト解析結果から得られる。
 X線回折パターンは、粉末X線回折装置(株式会社リガク製、商品名「RINT-TTR」、線源Cu-Kα)を用いて、以下の条件による粉末X線回折法によって得られる。
測定範囲;15-120°
スキャン速度;4°/min
解析範囲;30-120°
バックグラウンド;B-スプライン
プロファイル関数;分割型擬Voigt関数
束縛条件;Li(3a) + Ni(3a)=1
     Ni(3a) + Ni(3b)=x
ICSD No.;98-009-4814
 また、X線回折パターンのリートベルト解析には、リートベルト解析ソフトであるPDXL2(株式会社リガク)が使用される。
 Ni含有リチウム遷移金属酸化物において、上記X線回折によるX線回折パターンの(208)面の回折ピークの半値幅nは、充放電サイクル特性を抑制する点で、0.30°≦n≦0.50°であり、好ましくは0.30°≦n≦0.45°である。(208)面の回折ピークの半値幅nが、0.30°未満の場合、上記範囲を満たす場合と比較して、Li層のLiイオンの束縛が強く、充放電サイクル特性が低下する。また、(208)面の回折ピークの半値幅nが、0.50°を超える場合、上記範囲を満たす場合と比較して、Ni含有Li遷移金属酸化物の結晶性が低下し、結晶構造の骨格が脆くなり、空間群R-3m等の結晶構造を保持できなくなるため、サイクル特性が低下する。
 Ni含有リチウム遷移金属酸化物は、上記X線回折によるX線回折パターンの結果から得られる結晶構造のa軸長を示す格子定数aが2.872Å<a<2.875Åの範囲であり、c軸長を示す格子定数cが14.18Å<c<14.21Åの範囲であることが好ましい。上記格子定数aが2.872Å以下である場合、上記範囲を満たす場合と比較して、結晶構造中の原子間距離が狭く不安定な構造になり、電池の充放電サイクル特性が低下する場合がある。また、上記格子定数aが2.875Å以上である場合、結晶構造中の原子間距離が広く不安定な構造になり、上記範囲を満たす場合と比較して、電池の出力特性が低下する場合がある。また、上記格子定数cが14.18Å以下である場合、結晶構造中の原子間距離が狭く不安定な構造になり、上記範囲を満たす場合と比較して、電池の充放電サイクル特性が低下する場合がある。また、上記格子定数cが14.21Å以上である場合、結晶構造中の原子間距離が広く不安定な構造になり、上記範囲を満たす場合と比較して、電池の充放電サイクル特性が低下する場合がある。
 Ni含有リチウム遷移金属酸化物は、上記X線回折によるX線回折パターンの(104)面の回折ピークの半値幅からシェラーの式(Scherrer equation)により算出される結晶子サイズsが、400Å≦s≦500Åであることが好ましい。Ni含有リチウム遷移金属酸化物の上記結晶子サイズsが400Åより小さい場合、上記範囲を満たす場合と比較して、結晶性が低下して、電池の充放電サイクル特性が低下する場合がある。また、Ni含有リチウム遷移金属酸化物の上記結晶子サイズsが500Åを越える場合、上記範囲を満たす場合と比較して、Liの拡散性が悪くなり、電池の出力特性が低下する場合がある。シェラーの式は、下式(2)で表される。
 s=Kλ/Bcosθ   (2)
 式(2)において、sは結晶子サイズ、λはX線の波長、Bは(104)面の回折ピークの半値幅、θは回折角(rad)、KはScherrer定数である。本実施形態においてKは0.9とする。
 Ni含有リチウム遷移金属酸化物の含有量は、例えば、電池の容量を向上させることや充放電サイクル特性の低下を効果的に抑制すること等の点で、非水電解質二次電池用正極活物質の総質量に対して90質量%以上であることが好ましく、99質量%以上であることが好ましい。
 また、本実施形態の非水電解質二次電池用正極活物質は、Ni含有リチウム遷移金属酸化物以外に、その他のリチウム遷移金属酸化物を含んでいても良い。その他のリチウム遷移金属酸化物としては、例えば、Ni含有率が0モル%~91モル%未満のリチウム遷移金属酸化物等が挙げられる。
 Ni含有リチウム遷移金属酸化物の製造方法の一例について説明する。
 Ni含有リチウム遷移金属酸化物の製造方法は、例えば、Ni及び任意の金属元素を含む複合酸化物を得る第1工程と、第1工程で得られた複合酸化物とLi化合物とを混合する第2工程と、当該混合物を焼成する第3工程と、を備える。最終的に得られるNi含有リチウム遷移金属酸化物の層状構造のLi層における遷移金属量、(208)面の回折ピークの半値幅n、格子定数a、格子定数c、結晶子サイズs等の各パラメータは、例えば、第2工程における原料の混合割合、第3工程における焼成温度や時間等を制御することにより調整される。
 第1工程において、例えば、Ni及び任意の金属元素(Co、Al、Mn等)を含む金属塩の溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば8.5~11.5)に調整することにより、Ni及び任意の金属元素を含む複合水酸化物を析出(共沈)させ、当該複合水酸化物を焼成することにより、Ni及び任意の金属元素を含む複合酸化物を得る。Niと任意の金属元素との配合割合は、Niの割合が91モル%~99モル%の範囲となるように適宜決定されればよい。焼成温度は、特に制限されるものではないが、例えば、500℃~600℃の範囲である。
 第2工程において、第1工程で得られた複合酸化物と、Li化合物とを混合して、混合物を得る。第1工程で得られた複合酸化物とLi化合物との混合割合は、上記各パラメータを上記規定した範囲に調整することを容易とする点で、例えば、Liを除く金属元素:Liのモル比が、1:0.98~1:1.15の範囲となる割合とすることが好ましい。第2工程では、第1工程で得られた複合酸化物とLi化合物とを混合する際、必要に応じて他の金属原料を添加してもよい。他の金属原料は、第1工程で得られた複合酸化物を構成する金属元素及びLi以外の金属元素を含む酸化物等である。
 第3工程において、第2工程で得られた混合物を所定の温度及び時間で焼成し、本実施形態に係るNi含有リチウム遷移金属酸化物を得る。第3工程における混合物の焼成は、上記各パラメータを上記規定した範囲に調整することを容易とする点で、例えば、2段階焼成が好ましい。1段階目の焼成温度は、例えば450℃~680℃の範囲であることが好ましい。また、2段階目の焼成温度は、1段階目の焼成温度より高い温度とすることが好ましく、例えば、700℃~800℃の範囲であることが好ましい。1段階目及び2段階目の焼成時間は、例えば、3~10時間であることが好ましい。第2工程で得られた混合物の焼成は、酸素気流中で行うことが好ましい。
 第3工程の焼成時間について、1段階目の焼成温度を上回る時間は、10時間以下が好ましい。1段階目の焼成温度を上回る時間には、1段階目の焼成終了後、2段階目の焼成温度への昇温開始から、2段階目の焼成終了後1段階目の焼成温度を下回るまでの時間が含まれる。1段階目の焼成温度と2段階目の焼成温度の差は40℃以上300℃以下が好ましい。
 以下に、正極活物質層に含まれるその他の材料について説明する。
 正極活物質層に含まれる導電材としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素粉末等が挙げられる、これらは、1種単独でもよいし、2種以上を組み合わせて用いてもよい。
 正極活物質層に含まれる結着材としては、例えば、フッ素系高分子、ゴム系高分子等が挙げられる。フッ素系高分子としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、またはこれらの変性体等が挙げられ、ゴム系高分子としては、例えば、エチレンープロピレンーイソプレン共重合体、エチレンープロピレンーブタジエン共重合体等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて使用してもよい。
 <負極>
 負極は、例えば金属箔等の負極集電体と、負極集電体上に形成された負極活物質層とを備える。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極活物質層は、例えば、負極活物質、結着材、増粘材等を含む。
 負極は、例えば、負極活物質、増粘材、結着材を含む負極合材スラリーを負極集電体上に塗布・乾燥することによって、負極集電体上に負極活物質層を形成し、当該負極活物質層を圧延することにより得られる。
 負極活物質層に含まれる負極活物質としては、リチウムイオンを吸蔵・放出することが可能な材料であれば特に制限されるものではなく、例えば、炭素材料、リチウムと合金を形成することが可能な金属またはその金属を含む合金化合物等が挙げられる。炭素材料としては、天然黒鉛、難黒鉛化性炭素、人造黒鉛等のグラファイト類、コークス類等を用いることができ、合金化合物としては、リチウムと合金形成可能な金属を少なくとも1種類含むものが挙げられる。リチウムと合金形成可能な元素としてはケイ素やスズであることが好ましく、これらが酸素と結合した、酸化ケイ素や酸化スズ等も用いることもできる。また、上記炭素材料とケイ素やスズの化合物とを混合したものを用いることができる。上記の他、チタン酸リチウム等の金属リチウムに対する充放電の電位が、炭素材料等より高いものも用いることができる。
 負極活物質層に含まれる結着材としては、例えば、正極の場合と同様にフッ素系高分子、ゴム系高分子等を用いることもできるが、スチレンーブタジエン共重合体(SBR)又はこの変性体等を用いてもよい。負極活物質層に含まれる結着材としては、正極の場合と同様にフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等を用いることができる。水系溶媒を用いて負極合材スラリーを調製する場合は、スチレン-ブタジエンゴム(SBR)、CMC又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等を用いることが好ましい。
 負極活物質層に含まれる増粘材としては、例えば、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)等が挙げられる。これらは、1種単独でもよく、2種以上を組み合わせて用いてもよい。
 <非水電解質>
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ-ブチロラクトン等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO4、LiPF、LiAsF、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiCF3CO2、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、非水溶媒1L当り0.8~1.8molとすることが好ましい。
 <セパレータ>
 セパレータは、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよく、セパレータの表面にアラミド樹脂等が塗布されたものを用いてもよい。セパレータと正極及び負極の少なくとも一方との界面には、無機物のフィラーを含むフィラー層が形成されてもよい。無機物のフィラーとしては、例えばチタン(Ti)、アルミニウム(Al)、ケイ素(Si)、マグネシウム(Mg)の少なくとも1種を含有する酸化物、リン酸化合物またその表面が水酸化物等で処理されているものなどが挙げられる。フィラー層は、例えば当該フィラーを含有するスラリーを正極、負極、又はセパレータの表面に塗布して形成することができる。
 以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極活物質の作製]
 共沈法により得られた[Ni0.955Al0.045](OH)で表される複合水酸化物を500℃で2時間焼成し、Ni及びAlを含む複合酸化物(Ni0.955Al0.045)を得た。LiOHとNi及びAlを含む複合酸化物とを、Liと、Ni及びAlの総量とのモル比が0.98:1になるように混合した。当該混合物を酸素気流中にて670℃で5時間焼成した後、710℃で3時間焼成し、水洗により不純物を除去し、Ni含有リチウム遷移金属酸化物を得た。1段階目の焼成終了後、2段階目の焼成温度への昇温開始から、2段階目の焼成終了後1段目の焼成温度に達するまでの時間は約4時間であった。ICP発光分光分析装置(Thermo Fisher Scientific社製、商品名「iCAP6300」)を用いて、上記得られたNi含有リチウム遷移金属の組成を測定した結果、組成はLi0.97Ni0.955Al0.045であった。これを実施例1の正極活物質とした。
 <実施例2>
 LiOHと実施例1のNi及びAlを含む複合酸化物とを、Liと、Ni及びAlの総量とのモル比が1:1になるように混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.955Al0.045であった。これを実施例2の正極活物質とした。
 <実施例3>
 LiOHと実施例1のNi及びAlを含む複合酸化物とを、Liと、Ni及びAlの総量とのモル比が1.03:1になるように混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.99Ni0.955Al0.045であった。これを実施例3の正極活物質とした。
 <実施例4>
 共沈法により得られた[Ni0.955Al0.045](OH)で表される複合水酸化物を500℃で2時間焼成し、Ni及びAlを含む複合酸化物(Ni0.955Al0.045)を得た。LiOHと上記Ni及びAlを含む複合酸化物とSiOとを、Liと、Ni、Al及びSiの総量とのモル比が1.05:1となる量で混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.99Ni0.952Al0.045Si0.003であった。これを実施例4の正極活物質とした。
 <実施例5>
 共沈法により得られた[Ni0.94Co0.015Al0.045](OH)で表される複合水酸化物を500℃で2時間焼成し、Ni、Co及びAlを含む複合酸化物(Ni0.94Co0.015Al0.045)を得た。LiOHと上記Ni、Co及びAlを含む複合酸化物とを、Liと、Ni、Co及びAlの総量とのモル比が0.98:1となる量で混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.97Ni0.94Co0.015Al0.045であった。これを実施例5の正極活物質とした。
 <実施例6>
 LiOHと実施例5のNi、Co及びAlを含む複合酸化物とを、Liと、Ni、Co及びAlの総量とのモル比が1:1になるように混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.94Co0.015Al0.045であった。これを実施例6の正極活物質とした。
 <実施例7>
 LiOHと実施例5のNi、Co及びAlを含む複合酸化物とを、Liと、Ni、Co及びAlの総量とのモル比が1.03:1になるように混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.99Ni0.94Co0.015Al0.045であった。これを実施例7の正極活物質とした。
 <実施例8>
 共沈法により得られた[Ni0.94Co0.015Al0.045](OH)で表される複合水酸化物を500℃で2時間焼成し、Ni、Co及びAlを含む複合酸化物(Ni0.94Co0.015Al0.045)を得た。LiOHと上記Ni、Co及びAlを含む複合酸化物とSiOとを、Liと、Ni、Co、Al及びSiの総量とのモル比が1.05:1となる量で混合した。上記以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.937Co0.015Al0.045Si0.003であった。これを実施例8の正極活物質とした。
 <実施例9>
 共沈法により得られた[Ni0.94Co0.015Al0.045](OH)で表される複合水酸化物を500℃で2時間焼成し、Ni、Co及びAlを含む複合酸化物(Ni0.94Co0.015Al0.045)を得た。LiOHと上記Ni、Co及びAlを含む複合酸化物とTi(OH)・α型とを、Liと、Ni、Co、Al及びTiの総量とのモル比が1.03:1となる量で混合した。上記以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.935Co0.015Al0.045Ti0.005であった。これを実施例9の正極活物質とした。
 <実施例10>
 LiOHと実施例9のNi、Co及びAlを含む複合酸化物とTi(OH)・α型とを、Liと、Ni、Co、Al及びTiの総量とのモル比が1.05:1となる量で混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.935Co0.015Al0.045Ti0.005であった。これを実施例10の正極活物質とした。
 <実施例11>
 LiOHと実施例9のNi、Co及びAlを含む複合酸化物とLiMoOとを、Liと、Ni、Co、Al及びMoの総量とのモル比が1.075:1となる量で混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.99Ni0.935Co0.015Al0.045Mo0.005であった。これを実施例11の正極活物質とした。
 <実施例12>
 共沈法により得られた[Ni0.94Co0.015Al0.045](OH)で表される複合水酸化物を500℃で2時間焼成し、Ni、Co及びAlを含む複合酸化物(Ni0.94Co0.015Al0.045)を得た。LiOHと上記Ni、Co及びAlを含む複合酸化物とMnOとを、Liと、Ni、Co、Al及びMnの総量とのモル比が1.05:1となる量で混合した。上記以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.93Co0.015Al0.045Mn0.01であった。これを実施例12の正極活物質とした。
 <実施例13>
 LiOHと実施例12のNi、Co及びAlを含む複合酸化物とMnOとを、Liと、Ni、Co、Al及びMnの総量とのモル比が1.08:1となる量で混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.93Co0.015Al0.045Mn0.01であった。これを実施例13の正極活物質とした。
 <実施例14>
 LiOHと実施例12のNi、Co及びAlを含む複合酸化物とLiNbOとを、Liと、Ni、Co、Al及びNbの総量とのモル比が1.08:1となる量で混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.99Ni0.93Co0.015Al0.045Nb0.01であった。これを実施例14の正極活物質とした。
 <実施例15>
 LiOHと実施例12のNi、Co及びAlを含む複合酸化物とLiNbOとを、Liと、Ni、Co、Al及びNbの総量とのモル比が1.10:1となる量で混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.99Ni0.93Co0.015Al0.045Nb0.01であった。これを実施例15の正極活物質とした。
 <実施例16>
 共沈法により得られた[Ni0.91Co0.045Al0.045](OH)で表される複合水酸化物を500℃で2時間焼成し、Ni、Co及びAlを含む複合酸化物(Ni0.91Co0.045Al0.045)を得た。LiOHと上記Ni、Co及びAlを含む複合酸化物とを、Liと、Ni、Co及びAlの総量とのモル比が1.03:1となる量で混合した。上記以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi1.03Ni0.91Co0.045Al0.045であった。これを実施例16の正極活物質とした。
 <実施例17>
 LiOHと実施例12のNi、Co及びAlを含む複合酸化物とTi(OH)・α型とを、Liと、Ni、Co、Al及びTiの総量とのモル比が1.10:1となる量で混合したこと以外は、実施例1と同様にNi含有リチウム遷移金属酸化物を作製した。得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.91Co0.015Al0.045Ti0.03であった。これを実施例17の正極活物質とした。
 <比較例1>
 LiOHとNiOとを、LiとNiとのモル比が1.03:1となる量で混合し、当該混合物を酸素気流中にて670℃で5時間焼成した後、750℃で3時間焼成し、水洗により不純物を除去し、Ni含有リチウム遷移金属酸化物を得た。1段階目の焼成終了後、2段階目の焼成温度への昇温開始から、2段階目の焼成終了後1段目の焼成温度に達するまでの時間は約5時間であった。上記得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni1.0であった。これを比較例1の正極活物質とした。
 <比較例2>
 LiOHと実施例5のNi、Co及びAlを含む複合酸化物とを、LiとNi、Co及びAlの総量とのモル比が1.03:1となる量で混合した。当該混合物を酸素気流中にて670℃で5時間焼成した後、750℃で3時間焼成して、Ni含有リチウム遷移金属酸化物を得た。上記得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.94Co0.015Al0.045であった。これを比較例2の正極活物質とした。
 <比較例3>
 LiOHと実施例12のNi、Co及びAlを含む複合酸化物とMnOとを、LiとNi、Co、Al及びMnの総量とのモル比が1.1:1となる量で混合した。当該混合物を酸素気流中にて670℃で5時間焼成した後、800℃で3時間焼成して、Ni含有リチウム遷移金属酸化物を得た。1段階目の焼成終了後、2段階目の焼成温度への昇温開始から、2段階目の焼成終了後1段目の焼成温度に達するまでの時間は約6時間であった。上記得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.93Co0.015Al0.045Mn0.01であった。これを比較例3の正極活物質とした。
 <比較例4>
 LiOHと実施例9のNi、Co及びAlを含む複合酸化物とTi(OH)・α型とを、LiとNi、Co、Al及びTiの総量とのモル比が1.1:1となる量で混合した。当該混合物を酸素気流中にて670℃で5時間焼成した後、710℃で3時間焼成して、Ni含有リチウム遷移金属酸化物を得た。上記得られたNi含有リチウム遷移金属酸化物の組成はLi0.99Ni0.935Co0.015Al0.045Ti0.005であった。これを比較例4の正極活物質とした。
 <比較例5>
 LiOHと実施例5のNi、Co及びAlを含む複合酸化物とを、LiとNi、Co及びAlの総量とのモル比が1.05:1となる量で混合した。当該混合物を酸素気流中にて670℃で5時間焼成した後、710℃で3時間焼成して、Ni含有リチウム遷移金属酸化物を得た。上記得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.94Co0.015Al0.045であった。これを比較例5の正極活物質とした。
 <比較例6>
 共沈法により得られた[Ni0.88Co0.09Al0.03](OH)で表される複合水酸化物を500℃で2時間焼成し、Ni、Co及びAlを含む複合酸化物(Ni0.88Co0.09Al0.03)を得た。LiOHと上記Ni、Co及びAlを含む複合酸化物とを、LiとNi、Co及びAlの総量とのモル比が1.03:1となる量で混合した。当該混合物を酸素気流中にて670℃で5時間焼成した後、750℃で3時間焼成して、水洗により不純物を除去し、Ni含有リチウム遷移金属酸化物を得た。1段階目の焼成終了後、2段階目の焼成温度への昇温開始から、2段階目の焼成終了後1段目の焼成温度に達するまでの時間は約5時間であった。上記得られたNi含有リチウム遷移金属酸化物の組成はLi0.98Ni0.88Co0.09Al0.03であった。これを比較例6の正極活物質とした。
 <比較例7>
 LiOHと比較例6のNi、Co及びAlを含む複合酸化物とを、LiとNi、Co及びAlの総量とのモル比が1.05:1となる量で混合したこと以外は、実施例6と同様にNi含有リチウム遷移金属酸化物を作製した。上記得られたNi含有リチウム遷移金属酸化物の組成はLi0.99Ni0.88Co0.09Al0.03であった。これを比較例7の正極活物質とした。
 実施例1~17及び比較例1~7のNi含有リチウム遷移金属酸化物(正極活物質)に対して、既述の条件で粉末X線回折測定を行い、X線回折パターンを得た。実施例及び比較例の全てのX線回折パターンから、層状構造を示す回折線が確認された。
 各実施例及び各比較例のX線回折パターンから、Li層における遷移金属量、(208)面の回折ピークの半値幅、格子定数a、格子定数c、結晶子サイズsを求めた。その結果を表1及び2にまとめた。測定方法は既述の通りである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~17及び比較例1~7のNi含有リチウム複合酸化物(正極活物質)を用いて、以下のように試験セルを作製した。
 [正極の作製]
 実施例1の正極活物質を91質量部、導電材としてアセチレンブラックを7質量部、結着剤としてポリフッ化ビニリデンを2質量部の割合で混合した。当該混合物を混練機(T.K.ハイビスミックス、プライミクス株式会社製)を用いて混練し、正極合材スラリーを調製した。次いで、正極合材スラリーを厚さ15μmのアルミニウム箔に塗布し、塗膜を乾燥してアルミニウム箔に正極活物質層を形成した。これを実施例1の正極とした。その他の実施例及び比較例も同様にして正極を作製した。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した。当該混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度となるように溶解させて、非水電解質を調製した。
 [試験セルの作製]
 実施例1の正極と、リチウム金属箔からなる負極とを、セパレータを介して互いに対向するように積層し、これを巻回して、電極体を作製した。次いで、電極体及び上記非水電解質をアルミニウム製の外装体に挿入し、試験セルを作製した。その他の実施例及び比較例も同様にして試験セルを作製した。
 [充放電サイクル特性における容量維持率の測定]
 環境温度25℃の下、各実施例及び各比較例の試験セルを0.2Cの定電流で電池電圧が4.3Vになるまで定電流充電した後、電流値が0.05mAになるまで4.3Vで定電圧充電し、0.2Cの定電流で電池電圧が2.5Vになるまで定電流放電した。この充放電サイクルを20サイクル行い、以下の式により、各実施例及び各比較例の試験セルの充放電サイクルにおける容量維持率を求めた。この値が高いほど、充放電サイクル特性の低下が抑制されていることを示している。
 容量維持率=(20サイクル目の放電容量/1サイクル目の放電容量)×100
 表3及び4に、各実施例及び各比較例の試験セルの充放電サイクルにおける容量維持率の結果を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~17及び比較例1~5の正極活物質はいずれも、層状構造を有するNi含有リチウム遷移金属酸化物を有し、前記リチウム遷移金属酸化物中のNiの割合が、Liを除く金属元素の総モル数に対して91モル%以上である。これらの中で、リチウム遷移金属酸化物中のNiの割合が91モル%~99モル%であり、前記層状構造のLi層には、前記Ni含有リチウム遷移金属酸化物中の遷移金属の総モル量に対して、1~2.5モル%の遷移金属が存在し(すなわち、Li層における遷移金属量が1~2.5モル%)、前記リチウム遷移金属酸化物のX線回折によるX線回折パターンの(208)面の回折ピークの半値幅nが、0.30°≦n≦0.50°である実施例1~17は、Niの割合、Li層における遷移金属量、(208)面の回折ピークの半値幅nのいずれかが上記範囲を満たしていない比較例1~5と比べて、容量維持率が高く、充放電サイクル特性の低下が抑制された。なお、リチウム遷移金属酸化物中のNiの割合が、Liを除く金属元素の総モル数に対して91モル%未満である比較例6及び7は、容量維持率は高いが、そもそも電池容量が低く、高容量化が期待される非水電解質二次電池の正極活物質としては好ましくない。

Claims (5)

  1.  層状構造を有するNi含有リチウム遷移金属酸化物を有し、
     前記リチウム遷移金属酸化物中のNiの割合は、Liを除く金属元素の総モル数に対して91モル%~99モル%であり、
     前記層状構造のLi層には、前記Ni含有リチウム遷移金属酸化物中の遷移金属の総モル量に対して、1~2.5モル%の遷移金属が存在し、
     前記リチウム遷移金属酸化物は、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅nが、0.30°≦n≦0.50°である、非水電解質二次電池用正極活物質。
  2.  前記リチウム遷移金属酸化物はAlを含む、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記リチウム遷移金属酸化物は、X線回折によるX線回折パターンの解析結果から得られる結晶構造のa軸長を示す格子定数a及びc軸長を示す格子定数cが、2.872Å<a<2.875Å、14.18Å<c<14.21Åの範囲である、請求項1又は2に記載の非水電解質二次電池用正極活物質。
  4.  前記リチウム遷移金属酸化物は、X線回折によるX線回折パターンの(104)面の回折ピークの半値幅からシェラーの式により算出される結晶子サイズsが、400Å≦s≦500Åの範囲である、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極活物質。
  5.  請求項1~4のいずれか1項に記載の非水電解質二次電池用正極活物質を含む正極を備える、非水電解質二次電池。
PCT/JP2018/046218 2017-12-26 2018-12-17 非水電解質二次電池用正極活物質及び非水電解質二次電池 WO2019131234A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2019563007A JP7126173B2 (ja) 2017-12-26 2018-12-17 非水電解質二次電池用正極活物質及び非水電解質二次電池
US16/957,143 US11831013B2 (en) 2017-12-26 2018-12-17 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
CN201880082341.4A CN111492514B (zh) 2017-12-26 2018-12-17 非水电解质二次电池用正极活性物质和非水电解质二次电池
EP18897658.3A EP3734722A4 (en) 2017-12-26 2018-12-17 POSITIVE ELECTRODE ACTIVE SUBSTANCE FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
CN202211465698.5A CN115763782A (zh) 2017-12-26 2018-12-17 非水电解质二次电池用正极活性物质和非水电解质二次电池
JP2022124586A JP7336778B2 (ja) 2017-12-26 2022-08-04 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2023129872A JP2023138734A (ja) 2017-12-26 2023-08-09 非水電解質二次電池用正極活物質及び非水電解質二次電池
US18/380,679 US20240058675A1 (en) 2017-12-26 2023-10-17 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017249717 2017-12-26
JP2017-249717 2017-12-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/957,143 A-371-Of-International US11831013B2 (en) 2017-12-26 2018-12-17 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
US18/380,679 Continuation US20240058675A1 (en) 2017-12-26 2023-10-17 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
WO2019131234A1 true WO2019131234A1 (ja) 2019-07-04

Family

ID=67063068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046218 WO2019131234A1 (ja) 2017-12-26 2018-12-17 非水電解質二次電池用正極活物質及び非水電解質二次電池

Country Status (5)

Country Link
US (2) US11831013B2 (ja)
EP (1) EP3734722A4 (ja)
JP (3) JP7126173B2 (ja)
CN (2) CN111492514B (ja)
WO (1) WO2019131234A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158420A1 (ja) * 2019-01-30 2020-08-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2021059728A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP2021063004A (ja) * 2019-10-10 2021-04-22 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. リチウム複合酸化物およびこれを含むリチウム二次電池
CN114762150A (zh) * 2019-11-29 2022-07-15 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极活性物质的制造方法和非水电解质二次电池
WO2023276527A1 (ja) * 2021-06-30 2023-01-05 パナソニックIpマネジメント株式会社 非水電解質二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298061A (ja) * 1996-03-04 1997-11-18 Sharp Corp 非水系二次電池
JPH10321228A (ja) * 1997-05-16 1998-12-04 Nippon Telegr & Teleph Corp <Ntt> リチウム電池用正極活物質とその製造方法、及びそれを用いるリチウム電池
JP2000030693A (ja) 1998-07-10 2000-01-28 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2000133262A (ja) 1998-10-21 2000-05-12 Sanyo Electric Co Ltd 非水系電解液二次電池
JP2004127675A (ja) * 2002-10-01 2004-04-22 Japan Storage Battery Co Ltd 非水電解液二次電池
JP2004253174A (ja) * 2003-02-18 2004-09-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2006310181A (ja) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2015026454A (ja) * 2013-07-24 2015-02-05 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792574A (en) 1996-03-04 1998-08-11 Sharp Kabushiki Kaisha Nonaqueous secondary battery
EP3024068B1 (en) 2013-07-17 2019-02-27 Sumitomo Metal Mining Co., Ltd. Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
US9843043B2 (en) * 2014-02-11 2017-12-12 Corning Incorporated Lithium ion batteries including stabilized lithium composite particles
JP5999208B2 (ja) * 2014-04-25 2016-09-28 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
KR102436419B1 (ko) * 2015-10-30 2022-08-25 삼성에스디아이 주식회사 복합양극활물질, 그 제조방법 및 이를 포함한 양극을 함유한 리튬 이차 전지
US11121363B2 (en) 2016-08-31 2021-09-14 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298061A (ja) * 1996-03-04 1997-11-18 Sharp Corp 非水系二次電池
JPH10321228A (ja) * 1997-05-16 1998-12-04 Nippon Telegr & Teleph Corp <Ntt> リチウム電池用正極活物質とその製造方法、及びそれを用いるリチウム電池
JP2000030693A (ja) 1998-07-10 2000-01-28 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2000133262A (ja) 1998-10-21 2000-05-12 Sanyo Electric Co Ltd 非水系電解液二次電池
JP2004127675A (ja) * 2002-10-01 2004-04-22 Japan Storage Battery Co Ltd 非水電解液二次電池
JP2004253174A (ja) * 2003-02-18 2004-09-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2006310181A (ja) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2015026454A (ja) * 2013-07-24 2015-02-05 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158420A1 (ja) * 2019-01-30 2020-08-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2021059728A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
CN114514635A (zh) * 2019-09-27 2022-05-17 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池
JP2021063004A (ja) * 2019-10-10 2021-04-22 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. リチウム複合酸化物およびこれを含むリチウム二次電池
JP7063964B2 (ja) 2019-10-10 2022-05-17 エコプロ ビーエム カンパニー リミテッド リチウム複合酸化物およびこれを含むリチウム二次電池
CN114762150A (zh) * 2019-11-29 2022-07-15 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极活性物质的制造方法和非水电解质二次电池
WO2023276527A1 (ja) * 2021-06-30 2023-01-05 パナソニックIpマネジメント株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
US11831013B2 (en) 2023-11-28
CN115763782A (zh) 2023-03-07
US20240058675A1 (en) 2024-02-22
JP2023138734A (ja) 2023-10-02
EP3734722A4 (en) 2021-03-10
EP3734722A1 (en) 2020-11-04
CN111492514B (zh) 2022-12-02
CN111492514A (zh) 2020-08-04
JP2022163131A (ja) 2022-10-25
JP7126173B2 (ja) 2022-08-26
JP7336778B2 (ja) 2023-09-01
US20200395611A1 (en) 2020-12-17
JPWO2019131234A1 (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
CN110637384B (zh) 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极和非水电解质二次电池
US11831013B2 (en) Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2018155121A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
CN111033829B (zh) 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极及非水电解质二次电池
JP7300610B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN111937195A (zh) 非水电解质二次电池
JP2024036438A (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2023118858A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
CN111344885B (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池用正极活性物质的制造方法
WO2018123604A1 (ja) 非水電解質二次電池用正極活物質
WO2019193875A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2019044204A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN114651349A (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018897658

Country of ref document: EP

Effective date: 20200727