WO2019193875A1 - 非水電解質二次電池用正極活物質及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質及び非水電解質二次電池 Download PDF

Info

Publication number
WO2019193875A1
WO2019193875A1 PCT/JP2019/007310 JP2019007310W WO2019193875A1 WO 2019193875 A1 WO2019193875 A1 WO 2019193875A1 JP 2019007310 W JP2019007310 W JP 2019007310W WO 2019193875 A1 WO2019193875 A1 WO 2019193875A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
mol
metal oxide
lithium transition
positive electrode
Prior art date
Application number
PCT/JP2019/007310
Other languages
English (en)
French (fr)
Inventor
孝哉 杤尾
毅 小笠原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP19781698.6A priority Critical patent/EP3780178A4/en
Priority to CN201980022879.0A priority patent/CN112005410B/zh
Priority to US17/040,154 priority patent/US20210020937A1/en
Priority to JP2020511643A priority patent/JP7336679B2/ja
Publication of WO2019193875A1 publication Critical patent/WO2019193875A1/ja
Priority to JP2023125672A priority patent/JP2023143960A/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a technique for a non-aqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary battery that includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and performs charge / discharge by moving lithium ions and the like between the positive electrode and the negative electrode. Widely used.
  • the positive electrode active material used for the positive electrode of the nonaqueous electrolyte secondary battery for example, the following are known.
  • Patent Document 1 discloses a general formula NiM (OH) 2 (wherein M represents at least one element selected from transition metals other than Ni, alkaline earth metal elements, Al, Ga, In, and Si). And a positive electrode active material containing a lithium transition metal oxide that is a monodispersed primary particle is disclosed.
  • Patent Document 2 it is represented by the general formula Li (1 + ⁇ ) Mn x Ni y Co (1-xy) O 2, where ⁇ , x, and y are each ⁇ 0.15 ⁇ ⁇ .
  • a positive electrode active material containing a lithium transition metal oxide that satisfies the relationship of 0.15, 0.1 ⁇ x ⁇ 0.5, 0.5 ⁇ x + y ⁇ 1.0 is disclosed.
  • the capacity of the nonaqueous electrolyte secondary battery can be increased.
  • the charge / discharge cycle characteristics deteriorate.
  • An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery that can suppress an increase in charge transfer resistance during charge / discharge and a decrease in battery capacity.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery that is one embodiment of the present disclosure has Ni and Al-containing lithium transition metal oxide, and the proportion of Ni in the lithium transition metal oxide is a metal element excluding Li
  • the lithium transition metal oxide contains at least 0.02 mol% of sulfate ions, and the lithium transition metal oxide has an X-ray diffraction pattern by X-ray diffraction.
  • the half-value width n of the diffraction peak of the (208) plane is 0.30 ° ⁇ n ⁇ 0.50 °.
  • a non-aqueous electrolyte secondary battery which is one embodiment of the present disclosure includes a positive electrode having the positive electrode active material for a non-aqueous electrolyte secondary battery.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery that is one embodiment of the present disclosure has Ni and Al-containing lithium transition metal oxide, and the proportion of Ni in the lithium transition metal oxide is a metal element excluding Li
  • the lithium transition metal oxide contains at least 0.02 mol% of sulfate ions, and the lithium transition metal oxide has an X-ray diffraction pattern by X-ray diffraction.
  • the half-value width n of the diffraction peak of the (208) plane is 0.30 ° ⁇ n ⁇ 0.50 °.
  • Ni and Al-containing lithium transition metal oxide is, for example, a layered structure having a transition metal layer such as Ni and Al, a Li layer, and an oxygen layer, and Li ions existing in the Li layer enter and exit reversibly.
  • the charge / discharge reaction of the battery proceeds.
  • the half width of the diffraction peak of the (208) plane of the X-ray diffraction pattern by X-ray diffraction is an index representing the fluctuation of the arrangement between the Li layer and the transition metal layer, and this value is in the predetermined range. In this case, moderate fluctuation occurs in the arrangement between the Li layer and the transition metal layer, and the Li ions in the Li layer are relaxed to some extent, so that the Li ions enter and exit the Li layer during the charge / discharge reaction.
  • a non-aqueous electrolyte secondary battery which is an example of an embodiment includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • a separator is preferably provided between the positive electrode and the negative electrode. Specifically, it has a structure in which a wound electrode body in which a positive electrode and a negative electrode are wound through a separator, and a nonaqueous electrolyte are housed in an exterior body.
  • the electrode body is not limited to a wound electrode body, and other forms of electrode bodies such as a stacked electrode body in which a positive electrode and a negative electrode are stacked via a separator may be applied.
  • the form of the nonaqueous electrolyte secondary battery is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape.
  • the positive electrode includes a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector.
  • a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector.
  • a metal foil that is stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the positive electrode active material layer includes, for example, a positive electrode active material, a binder, a conductive material, and the like.
  • the positive electrode is formed by applying and drying a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive material, and the like on the positive electrode current collector, thereby forming a positive electrode active material layer on the positive electrode current collector, It is obtained by rolling the positive electrode active material layer.
  • the positive electrode active material contains Ni and Al-containing lithium transition metal oxides.
  • the ratio of Ni to the total number of moles of metal elements excluding lithium in the lithium transition metal oxide is 91 mol% or more, preferably in the range of 91 mol% to 99 mol%, more preferably 91 mol. % To 96 mol%. If the Ni content is less than 91 mol%, it is difficult to increase the capacity of the battery.
  • Al in the Ni and Al-containing lithium transition metal oxide may be uniformly dispersed in the crystal structure of the Ni-containing lithium transition metal oxide, or may be present in a part of the crystal structure. Good.
  • a part of Al contained in the crystal structure may be deposited on the particle surface of the lithium transition metal oxide. Al contained in the transition metal oxide.
  • Ni- and Al-containing lithium transition metal oxide may contain an element other than Al, and is represented by the following general formula, for example. Li x Ni a Co b Al c M d O 2 (1)
  • a indicating the proportion of Ni may be x ⁇ 0.91, but preferably 0.91 ⁇ x ⁇ 0.99, and 0.91 ⁇ x ⁇ 0.96. More preferred.
  • b indicating the ratio of Co is preferably b ⁇ 0.06, and more preferably 0.005 ⁇ b ⁇ 0.045, from the viewpoint of suppressing reduction in charge / discharge cycle characteristics.
  • c indicating the ratio of Al is preferably 0.03 ⁇ c, and more preferably 0.04 ⁇ c ⁇ 0.06, from the viewpoint of suppressing reduction in charge / discharge cycle characteristics.
  • M in the above formula is not particularly limited as long as it is an element other than Li, Ni, Al, and Co.
  • M in the above formula is preferably at least one element selected from Ti, Nb, Mn, Si, and Mo from the viewpoint of suppressing a decrease in charge / discharge cycle characteristics.
  • d indicating the ratio of M is preferably 0 ⁇ d ⁇ 0.03, and more preferably 0.005 ⁇ d ⁇ 0.025.
  • x indicating the ratio of Li preferably satisfies 0.95 ⁇ x ⁇ 1.10, and more preferably satisfies 0.97 ⁇ x ⁇ 1.03 in terms of improvement in battery capacity and the like. .
  • Ni and Al-containing lithium transition metal oxides contain sulfate ions.
  • Sulfate ions if the SO 4 compound adhering to the particle surface of the lithium transition metal oxide, if it is incorporated into the secondary particles of the lithium transition metal oxide as SO 4 compound, Ni and Al containing Any form is included such as when included in the crystal structure of the lithium transition metal oxide.
  • Examples of the SO 4 compound attached to the particle surface or taken into the secondary particles include Al 2 (SO 4 ) 3 , Ti (SO 4 ) 2 , MnSO 4 , and Nb 2 (SO 4 ). 3, Si (SO 4) 2 , Mo (SO 4) 3, Fe 2 (SO 4) 3, BaSO 4, CaSO 4, CuSO 4, MgSO 4, SrSO 4, ZnSO 4 , and the like.
  • the sulfate ion content contained in the Ni- and Al-containing lithium transition metal oxides may be 0.02 mol% or more from the viewpoint of suppressing a decrease in charge transfer resistance and battery capacity during charging / discharging, and The range of 02 mol% to 0.12 mol% is preferable, and the range of 0.03 to 0.1 is more preferable.
  • the content of sulfate ions is measured as follows.
  • a sample solution obtained by adding 1 g of Ni and Al-containing lithium transition metal oxide to 50 mL of pure water is shaken at room temperature for 24 hours.
  • the sample solution after stirring is filtered, and the filtrate is collected.
  • the amount of sulfate ion in the collected filtrate is measured by ion chromatography.
  • the content of the elements constituting the Ni- and Al-containing lithium transition metal oxides is determined by inductively coupled plasma emission spectroscopy (ICP-AES), electron microanalyzer (EPMA), energy dispersive X-ray analyzer (EDX). ) And the like.
  • the half-value width n of the diffraction peak on the (208) plane of the X-ray diffraction pattern by X-ray diffraction is 0.30 ° ⁇ n ⁇ 0.50 ° may be satisfied, but preferably 0.30 ° ⁇ n ⁇ 0.45 °.
  • the half-value width n of the diffraction peak of the (208) plane is less than 0.30 °, the Li ions in the Li layer are strongly bound and charge / discharge cycle characteristics are deteriorated as compared with the case where the above range is satisfied.
  • the content of the Ni and Al-containing lithium transition metal oxide is, for example, in terms of effectively suppressing a decrease in charge / discharge cycle characteristics, a decrease in charge transfer resistance during charge / discharge, or a decrease in battery capacity.
  • the content is preferably 90% by mass or more, and more preferably 99% by mass or more, based on the total mass of the positive electrode active material for a nonaqueous electrolyte secondary battery.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present embodiment may contain other lithium transition metal oxides in addition to the Ni and Al-containing lithium transition metal oxides.
  • other lithium transition metal oxides include lithium transition metal oxides having a Ni content of 0 mol% to less than 91 mol%.
  • the method for producing the Ni-containing lithium transition metal oxide includes, for example, a first step of mixing a Ni-containing compound, a Li compound, a metal element-containing SO 4 compound, and a metal element-containing non-SO 4 compound, and a step of firing the mixture. 2 steps.
  • the Ni-containing compound used in the first step may be a composite compound containing other elements such as Al and Co in addition to Ni, and examples thereof include oxides containing Ni and the like.
  • the Li compound used in the first step is, for example, lithium carbonate, lithium hydroxide or the like.
  • Metal-element-containing SO 4 compound used in the first step Al, Ti, Nb, Mn , Si, Mo, Fe, Ba, Ca, Cu, Mg, Sr, SO 4 compounds containing a metal element such as Zn
  • SO 4 compounds containing a metal element such as Zn
  • Al 2 (SO 4 ) 3 Ti (SO 4 ) 2 , MnSO 4 , Nb 2 (SO 4 ) 3 , Si (SO 4 ) 2 , Mo (SO 4 ) 3 , Fe 2 (SO 4 ) 3, BaSO 4, CaSO 4, CuSO 4, MgSO 4, SrSO 4, ZnSO 4 , and the like.
  • the metal element-containing non-SO 4 compound used in the first step is a compound containing the same element as or a different element from the metal element contained in the SO 4 compound.
  • Al, Ti, Nb, Mn, Si examples thereof include hydroxides or oxides containing metal elements such as Mo, Fe, Ba, Ca, Cu, Mg, Sr, and Zn.
  • the half-value width n of the diffraction peak of the (208) plane in the finally obtained Ni- and Al-containing lithium transition metal oxide is obtained. It becomes easy to control within the predetermined range. If the amount of sulfate ion contained in the Ni- and Al-containing lithium transition metal oxide is only controlled within the above predetermined range, a Ni-containing compound, a Li compound, and a metal element-containing SO 4 compound are mixed together. The mixture may be fired. In this case, it is difficult to control the half-value width n of the diffraction peak of the (208) plane in the finally obtained Ni- and Al-containing lithium transition metal oxide within the predetermined range. It becomes.
  • the mixing ratio of the metal element-containing SO 4 compound and the metal element-containing non-SO 4 compound is preferably in the range of, for example, 1: 9 to 7: 3. If the ratio of the metal element-containing SO 4 compound decreases, the amount of sulfate ions contained in the finally obtained Ni- and Al-containing lithium transition metal oxide may not be controlled within the predetermined range, and the metal element-containing When the ratio of the SO 4 compound is increased, the amount of Li present in the crystal structure of the finally obtained Ni- and Al-containing lithium transition metal oxide may be reduced, leading to a decrease in battery capacity.
  • the mixture obtained in the first step is fired at a predetermined temperature and time to obtain the Ni- and Al-containing lithium transition metal oxide according to this embodiment.
  • the firing of the mixture in the second step is preferably in the range of 500 ° C. to 900 ° C., for example.
  • the firing time is preferably 6 to 24 hours, for example. Firing of the mixture obtained in the second step is preferably performed in an oxygen stream.
  • Examples of the conductive material contained in the positive electrode active material layer include carbon powder such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more. It may be used.
  • binder contained in the positive electrode active material layer examples include a fluorine-based polymer and a rubber-based polymer.
  • fluorine-based polymer examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and modified products thereof.
  • PVdF polyvinylidene fluoride
  • rubber-based polymer examples include ethylene-propylene-isoprene copolymer. Examples thereof include ethylene and propylene-butadiene copolymers. These may be used alone or in combination of two or more.
  • the negative electrode includes, for example, a negative electrode current collector such as a metal foil and a negative electrode active material layer formed on the negative electrode current collector.
  • a negative electrode current collector such as a metal foil and a negative electrode active material layer formed on the negative electrode current collector.
  • a metal foil that is stable in the potential range of a negative electrode such as copper, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the negative electrode active material layer includes, for example, a negative electrode active material, a binder, a thickener, and the like.
  • the negative electrode is formed by applying and drying a negative electrode mixture slurry containing a negative electrode active material, a thickener, and a binder on the negative electrode current collector, thereby forming a negative electrode active material layer on the negative electrode current collector, It is obtained by rolling the negative electrode active material layer.
  • the negative electrode active material contained in the negative electrode active material layer is not particularly limited as long as it is a material capable of occluding and releasing lithium ions.
  • a carbon material and an alloy with lithium can be formed.
  • an alloy compound containing the metal As the carbon material, natural graphite, non-graphitizable carbon, artificial graphite and other graphites, cokes and the like can be used, and the alloy compound includes those containing at least one metal capable of forming an alloy with lithium. It is done.
  • the element capable of forming an alloy with lithium is preferably silicon or tin, and silicon oxide, tin oxide, or the like in which these are combined with oxygen can also be used.
  • what mixed the said carbon material and the compound of silicon or tin can be used.
  • a material having a charge / discharge potential higher than that of a carbon material or the like for lithium metal such as lithium titanate can be used.
  • a fluorine-based polymer, a rubber-based polymer, or the like can be used as in the case of the positive electrode, but a styrene-butadiene copolymer (SBR) or a modified thereof.
  • SBR styrene-butadiene copolymer
  • a body or the like may be used.
  • fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin, and the like can be used as in the case of the positive electrode.
  • Examples of the thickener contained in the negative electrode active material layer include carboxymethyl cellulose (CMC) and polyethylene oxide (PEO). These may be used alone or in combination of two or more.
  • CMC carboxymethyl cellulose
  • PEO polyethylene oxide
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • the non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate.
  • Chain carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate, cyclic carboxylic acid esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP ), Chain carboxylic acid esters such as ethyl propionate and ⁇ -butyrolactone.
  • GBL ⁇ -butyrolactone
  • VTL ⁇ -valerolactone
  • MP methyl propionate
  • Chain carboxylic acid esters such as ethyl propionate and ⁇ -butyrolactone.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, diphen
  • a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, a fluorinated chain carboxylate such as methyl fluoropropionate (FMP), or the like.
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B Borates such as 4 O 7 and Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) ⁇ l , M is an integer of 0 or more ⁇ and the like.
  • lithium salts may be used alone or in combination of two or more.
  • LiPF 6 is preferably used from the viewpoints of ion conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the nonaqueous solvent.
  • a porous sheet having ion permeability and insulating properties is used.
  • the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • olefinic resins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin, or may be one in which an aramid resin or the like is applied to the surface of the separator.
  • a filler layer containing an inorganic filler may be formed at the interface between the separator and at least one of the positive electrode and the negative electrode.
  • the inorganic filler for example, an oxide containing at least one of titanium (Ti), aluminum (Al), silicon (Si), and magnesium (Mg), a phosphoric acid compound, or its surface is treated with a hydroxide or the like. And the like.
  • the filler layer can be formed, for example, by applying a slurry containing the filler to the surface of the positive electrode, the negative electrode, or the separator.
  • Example 1 [Preparation of positive electrode active material] A composite oxide containing Ni, Co and Al (Ni 0.92 Co 0.03 Al 0.05 O 2 ), LiOH, Ti (SO 4 ) 2 and Ti (OH) 4 in a molar ratio of 3: 7. The mixed mixture was mixed at a molar ratio of 100: 101: 1. The mixture was fired in an oxygen stream at 700 ° C. for 20 hours to obtain a lithium transition metal oxide. As a result of measuring the amount of sulfate ion in the obtained lithium transition metal oxide, it was 0.03 mol%.
  • Example 2 A lithium transition metal oxide was produced in the same manner as in Example 1 except that a mixture in which Ti (SO 4 ) 2 and Ti (OH) 4 were mixed at a molar ratio of 7: 3 was used.
  • the amount of sulfate ion in the lithium transition metal oxide is 0.06 mol%, the proportion of Ni is 91 mol%, the proportion of Co is 3 mol%, the proportion of Al is 5 mol%, and the proportion of Ti is 1 mol.
  • the half-value width n of the diffraction peak on the (208) plane was 0.45 °. This lithium transition metal oxide was used as the positive electrode active material of Example 2.
  • Example 3 A composite oxide containing Ni, Co and Al (Ni 0.92 Co 0.03 Al 0.05 O 2 ), LiOH, Al 2 (SO 4 ) 3 and Ti (OH) 4 in a molar ratio of 3: 7
  • a lithium transition metal oxide was prepared in the same manner as in Example 1 except that the mixture in the above was mixed at a molar ratio of 100: 101: 1.
  • the amount of sulfate ions in the lithium transition metal oxide is 0.04 mol%, the proportion of Ni is 91 mol%, the proportion of Co is 3 mol%, the proportion of Al is 5.3 mol%, and the proportion of Ti is
  • the half-value width n of the diffraction peak on the (208) plane was 0.41 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 3.
  • Example 4 A lithium transition metal oxide was produced in the same manner as in Example 3 except that a mixture in which Al 2 (SO 4 ) 3 and Ti (OH) 4 were mixed at a molar ratio of 7: 3 was used.
  • the amount of sulfate ions in the lithium transition metal oxide is 0.12 mol%, the proportion of Ni is 91 mol%, the proportion of Co is 3 mol%, the proportion of Al is 5.7 mol%, the proportion of Ti is The half-value width n of the diffraction peak on the (208) plane was 0.39 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 4.
  • Example 5 A mixed oxide containing Ni, Co and Al (Ni 0.94 Co 0.015 Al 0.045 O 2 ), LiOH, MnSO 4 and Al (OH) 3 in a molar ratio of 3: 7; was mixed in a molar ratio of 100: 101: 1.5 to produce a lithium transition metal oxide in the same manner as in Example 1.
  • the amount of sulfate ion in the lithium transition metal oxide is 0.03 mol%, the proportion of Ni is 92.5 mol%, the proportion of Co is 1.5 mol%, the proportion of Al is 5 mol%, Mn
  • the ratio was 1 mol%, and the half-value width n of the diffraction peak on the (208) plane was 0.33 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 5.
  • Example 6 A lithium transition metal oxide was produced in the same manner as in Example 5 except that a mixture in which MnSO 4 and Al (OH) 3 were mixed at a molar ratio of 7: 3 was used.
  • the amount of sulfate ions in the lithium transition metal oxide is 0.07 mol%, the proportion of Ni is 92.5 mol%, the proportion of Co is 1.5 mol%, the proportion of Al is 5.5 mol%, The ratio of Mn was 0.5 mol%, and the half-value width n of the diffraction peak on the (208) plane was 0.37 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 6.
  • Example 7 A composite oxide containing Ni, Co and Al (Ni 0.94 Co 0.015 Al 0.045 O 2 ), LiOH, Al 2 (SO 4 ) 3 and LiNbO 3 were mixed at a molar ratio of 3: 7.
  • a lithium transition metal oxide was prepared in the same manner as in Example 1 except that the mixture was mixed at a molar ratio of 100: 101: 1.5.
  • the amount of sulfate ion in the lithium transition metal oxide is 0.04 mol%, the proportion of Ni is 92.5 mol%, the proportion of Co is 1.5 mol%, the proportion of Al is 5 mol%, Nb
  • the ratio was 1 mol%, and the half-value width n of the diffraction peak on the (208) plane was 0.37 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 7.
  • the amount of sulfate ions in the lithium transition metal oxide is 0.12 mol%, the proportion of Ni is 92.5 mol%, the proportion of Co is 1.5 mol%, the proportion of Al is 5.5 mol%, The ratio of Nb was 0.5 mol%, and the half-value width n of the diffraction peak on the (208) plane was 0.41 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 8.
  • Example 9 A composite oxide containing Ni, Co and Al (Ni 0.945 Co 0.005 Al 0.050 O 2 ), LiOH, Al 2 (SO 4 ) 3 and SiO 2 were mixed at a molar ratio of 7: 3.
  • a lithium transition metal oxide was produced in the same manner as in Example 1 except that the mixture was mixed at a molar ratio of 100: 101: 1.
  • the amount of sulfate ion in the lithium transition metal oxide is 0.05 mol%, the proportion of Ni is 93.5 mol%, the proportion of Co is 0.5 mol%, the proportion of Al is 5.7 mol%,
  • the proportion of Si was 0.3 mol%, and the half width n of the diffraction peak of the (208) plane was 0.34 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 9.
  • Example 10 A composite oxide containing Ni, Co and Al (Ni 0.955 Co 0.005 Al 0.04 O 2 ), LiOH, Al 2 (SO 4 ) 3 and Ti (OH) 4 in a molar ratio of 1: 9
  • a lithium transition metal oxide was produced in the same manner as in Example 1 except that the mixture in the mixture was mixed at a molar ratio of 100: 101: 3.5.
  • the amount of sulfate ions in the lithium transition metal oxide is 0.03 mol%, the proportion of Ni is 92 mol%, the proportion of Co is 0.5 mol%, the proportion of Al is 4.5 mol%, Ti
  • the ratio was 3 mol%, and the half-value width n of the diffraction peak on the (208) plane was 0.39 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 10.
  • Example 11 A mixture of Ni, Co and Al-containing composite oxide (Ni 0.94 Co 0.015 Al 0.045 O 2 ), LiOH, Ti (SO 4 ) 2 and LiNbO 3 in a molar ratio of 7: 3 Were mixed in a molar ratio of 100: 101: 1.5 to produce a lithium transition metal oxide in the same manner as in Example 1.
  • the amount of sulfate ions in the lithium transition metal oxide is 0.05 mol%, the proportion of Ni is 93 mol%, the proportion of Co is 1.3 mol%, the proportion of Al is 4.2 mol%, Ti
  • the ratio was 1 mol%, the ratio of Nb was 0.5 mol%, and the half width n of the diffraction peak of the (208) plane was 0.34 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 11.
  • Example 12 A mixture of Ni, Co and Al-containing composite oxide (Ni 0.94 Co 0.015 Al 0.045 O 2 ), LiOH, Ti (SO 4 ) 2 and LiNbO 3 in a molar ratio of 5: 5 Were mixed in a molar ratio of 100: 101: 1 to produce a lithium transition metal oxide in the same manner as in Example 1.
  • the amount of sulfate ions in the lithium transition metal oxide is 0.04 mol%, the proportion of Ni is 93 mol%, the proportion of Co is 1.5 mol%, the proportion of Al is 4.5 mol%, Ti
  • the ratio was 0.5 mol%, the ratio of Nb was 0.5 mol%, and the half width n of the diffraction peak of the (208) plane was 0.37 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 12.
  • Example 13 A composite oxide containing Ni and Al (Ni 0.955 Al 0.045 O 2 ), LiOH, a mixture of Al 2 (SO 4 ) 3 and Li 2 MoO 4 in a molar ratio of 2: 8, A lithium transition metal oxide was produced in the same manner as in Example 1 except that mixing was performed so that the molar ratio was 100: 101: 0.6.
  • the amount of sulfate ions in the lithium transition metal oxide is 0.03 mol%, the proportion of Ni is 95 mol%, the proportion of Al is 4.5 mol%, the proportion of Mo is 0.5 mol%,
  • the half width n of the diffraction peak of the (208) plane was 0.34 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 13.
  • Example 14> A mixed oxide containing Ni, Co and Al (Ni 0.94 Co 0.015 Al 0.045 O 2 ), LiOH, Ti (SO 4 ) 2 and Li 2 MoO 4 are mixed at a molar ratio of 5: 5.
  • a lithium transition metal oxide was prepared in the same manner as in Example 1 except that the mixture was mixed at a molar ratio of 100: 101: 1.
  • the amount of sulfate ions in the lithium transition metal oxide is 0.04 mol%, the proportion of Ni is 93 mol%, the proportion of Co is 1.5 mol%, the proportion of Al is 4.5 mol%, Ti
  • the ratio was 0.5 mol%, the ratio of Mo was 0.5 mol%, and the half-value width n of the diffraction peak of the (208) plane was 0.35 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Example 14.
  • ⁇ Comparative Example 1> A composite oxide containing Ni, Co, and Al (Ni 0.92 Co 0.04 Al 0.04 O 2 ), LiOH, and Ti (SO 4 ) 2 in a molar ratio of 100: 101: 1.
  • a lithium transition metal oxide was prepared in the same manner as in Example 1 except that mixing was performed. The amount of sulfate ion in the lithium transition metal oxide is 0.1 mol%, the proportion of Ni is 91 mol%, the proportion of Co is 4 mol%, the proportion of Al is 4 mol%, and the proportion of Ti is 1 mol.
  • the half-value width n of the diffraction peak on the (208) plane was 0.25 °. This lithium transition metal oxide was used as the positive electrode active material of Comparative Example 1.
  • ⁇ Comparative example 2> A complex oxide containing Ni, Co, and Al (Ni 0.92 Co 0.03 Al 0.05 O 2 ), LiOH, and Al 2 (SO 4 ) 3 in a molar ratio of 100: 101: 1
  • a lithium transition metal oxide was prepared in the same manner as in Example 1 except that mixing was performed.
  • the amount of sulfate ion in the lithium transition metal oxide is 0.17 mol%, the proportion of Ni is 91 mol%, the proportion of Co is 3 mol%, the proportion of Al is 6 mol%, (208) plane
  • the half-value width n of the diffraction peak was 0.27 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Comparative Example 2.
  • a composite oxide containing Ni, Co, and Al (Ni 0.935 Co 0.015 Al 0.05 O 2 ), LiOH, and MnSO 4 has a mass ratio of 100: 101: 1.5.
  • a lithium transition metal oxide was prepared in the same manner as in Example 1 except that the lithium transition metal oxide was mixed.
  • the amount of sulfate ions in the lithium transition metal oxide is 0.13 mol%, the proportion of Ni is 92 mol%, the proportion of Co is 1.5 mol%, the proportion of Al is 5 mol%, and the proportion of Mn is The half-value width n of the diffraction peak on the (208) plane was 0.28 °.
  • This lithium transition metal oxide was used as the positive electrode active material of Comparative Example 3.
  • ⁇ Comparative Example 5> A mixed oxide containing Ni, Co, and Al (Ni 0.935 Co 0.01 Al 0.055 O 2 ), LiOH, and Al were mixed at a molar ratio of 100: 101: 1. Except for the above, a lithium transition metal oxide was produced in the same manner as in Example 1. The amount of sulfate ions in the lithium transition metal oxide is 0.01 mol%, the proportion of Ni is 92.5 mol%, the proportion of Co is 1 mol%, the proportion of Al is 6.5 mol% ( The half-value width n of the diffraction peak of the 208) plane was 0.28 °. This lithium transition metal oxide was used as the positive electrode active material of Comparative Example 5.
  • Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 3: 3: 4.
  • a nonaqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) in the mixed solvent so as to have a concentration of 1.2 mol / liter.
  • test cell The positive electrode of Example 1 and the negative electrode made of lithium metal foil were laminated so as to face each other with a separator interposed therebetween, and an electrode body was manufactured. Next, the electrode body and the non-aqueous electrolyte were inserted into an aluminum exterior body to produce a test cell. Test cells were prepared in the same manner in other examples and comparative examples.
  • Table 1 shows the results of the battery capacity (discharge capacity at the first cycle), charge transfer resistance, and capacity retention rate of the test cells of each Example and each Comparative Example.
  • Examples 1 to 14 all exhibited high capacity retention and battery capacity, and low charge transfer resistance.
  • Comparative Examples 1 to 5 exhibited a low capacity retention rate, a low battery capacity, or a high charge transfer resistance.
  • Ni and Al containing lithium transition metal oxide the proportion of Ni in the lithium transition metal oxide is 91 mol% or more based on the total number of moles of metal elements excluding Li,
  • the lithium transition metal oxide contains 0.02 mol% or more of sulfate ions, and the lithium transition metal oxide has a half-value width n of the diffraction peak on the (208) plane of the X-ray diffraction pattern by X-ray diffraction of 0.
  • the charge / discharge cycle characteristics are prevented from being lowered and the charge transfer resistance during charge / discharge is prevented from increasing, thereby reducing the battery capacity. It becomes possible to suppress.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本実施形態である非水電解質二次電池用正極活物質は、Ni及びAl含有リチウム遷移金属酸化物を有し、前記リチウム遷移金属酸化物中のNiの割合は、Liを除く金属元素の総モル数に対して91モル%以上であり、前記リチウム遷移金属酸化物は、0.02モル%以上の硫酸イオンを含み、前記リチウム遷移金属酸化物は、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅nが、0.30°≦n≦0.50°であることを特徴とする。

Description

非水電解質二次電池用正極活物質及び非水電解質二次電池
 本発明は、非水電解質二次電池用正極活物質及び非水電解質二次電池の技術に関する。
 近年、高出力、高エネルギー密度の二次電池として、正極、負極、及び非水電解質を備え、正極と負極との間でリチウムイオン等を移動させて充放電を行う非水電解質二次電池が広く利用されている。
 非水電解質二次電池の正極に用いられる正極活物質としては、例えば、以下のものが知られている。
 例えば、特許文献1には、一般式NiM(OH)(式中MはNi以外の遷移金属、アルカリ土類金属元素、Al、Ga、In、Siのうち少なくとも1種以上の元素を示す)で表され、かつ単分散の一次粒子であるリチウム遷移金属酸化物を含む正極活物質が開示されている。
 また、例えば、特許文献2には、一般式Li(1+δ)MnNiCo(1-x-y)で表され、前記δ、x、yは、それぞれ-0.15<δ<0.15、0.1<x≦0.5、0.5<x+y≦1.0の関係を満足する、リチウム遷移金属酸化物を含む正極活物質が開示されている。
特開2010-70431号公報 特開2006-202702号公報
 ところで、Niの割合がLiを除く金属元素の総モル数に対して91モル%以上であるリチウム遷移金属酸化物を正極活物質として用いると、非水電解質二次電池の高容量化を図ることができる反面、充放電サイクル特性が低下するという問題がある。また、充放電サイクル特性を改善する目的で、Ni以外の金属元素を添加することも考えられるが、他の金属元素を添加しただけでは、充放電時の電荷移動抵抗が増加する場合があり、ひいては電池容量が低下する場合がある。
 そこで、本開示は、Niの割合がLiを除く金属元素の総モル数に対して91モル%以上であるリチウム遷移金属酸化物を用いた場合において、充放電サイクル特性の低下を抑制すると共に、充放電時の電荷移動抵抗の増加及び電池容量の低下を抑制することが可能な非水電解質二次電池用正極活物質及び非水電解質二次電池を提供することを目的とする。
 本開示の一態様である非水電解質二次電池用正極活物質は、Ni及びAl含有リチウム遷移金属酸化物を有し、前記リチウム遷移金属酸化物中のNiの割合は、Liを除く金属元素の総モル数に対して91モル%以上であり、前記リチウム遷移金属酸化物は、0.02モル%以上の硫酸イオンを含み、前記リチウム遷移金属酸化物は、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅nが、0.30°≦n≦0.50°であることを特徴とする。
 本開示の一態様である非水電解質二次電池は、上記非水電解質二次電池用正極活物質を有する正極を備えることを特徴とする。
 本開示の一態様によれば、充放電サイクル特性の低下を抑制すると共に、充放電時の電荷移動抵抗の増加及び電池容量の低下を抑制することが可能となる。
 本開示の一態様である非水電解質二次電池用正極活物質は、Ni及びAl含有リチウム遷移金属酸化物を有し、前記リチウム遷移金属酸化物中のNiの割合は、Liを除く金属元素の総モル数に対して91モル%以上であり、前記リチウム遷移金属酸化物は、0.02モル%以上の硫酸イオンを含み、前記リチウム遷移金属酸化物は、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅nが、0.30°≦n≦0.50°であることを特徴とする。この非水電解質二次電池用正極活物質を用いた場合における、充放電サイクル特性の低下、充放電時の電荷移動抵抗の増加、及び電池容量の低下が抑制される理由としては、十分に明らかでないが、以下のように推定される。
 Ni及びAl含有リチウム遷移金属酸化物は、例えば、Ni及びAl等の遷移金属層、Li層、酸素層を有する層状構造であり、Li層に存在するLiイオンが可逆的に出入りすることで、電池の充放電反応が進行する。ここで、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅は、Li層と遷移金属層間の配列の揺らぎを表す指標であるが、この値が上記所定の範囲にある場合には、Li層と遷移金属層間の配列に適度な揺らぎが生じ、Li層のLiイオンの束縛がある程度緩和された状態になっているため、充放電反応時には、Li層のLiイオンの出入りがスムーズになり、充放電サイクル特性の低下が抑制されると考えられる。また、リチウム遷移金属酸化物に上記所定量の硫酸イオンを含むことで、リチウム遷移金属酸化物の表面が改質されイオン伝導性が特異的に高くなるため、電荷移動抵抗の増加が抑制され、ひいては電池容量の低下が抑制されると考えられる。
 以下に、本開示の一態様である非水電解質二次電池用正極活物質を用いた非水電解質二次電池の一例について説明する。
 実施形態の一例である非水電解質二次電池は、正極と、負極と、非水電解質とを備える。正極と負極との間には、セパレータを設けることが好適である。具体的には、正極及び負極がセパレータを介して巻回されてなる巻回型の電極体と、非水電解質とが外装体に収容された構造を有する。電極体は、巻回型の電極体に限定されず、正極及び負極がセパレータを介して積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。また、非水電解質二次電池の形態としては、特に限定されず、円筒型、角型、コイン型、ボタン型、ラミネート型などが例示できる。
 以下、実施形態の一例である非水電解質二次電池に用いられる正極、負極、非水電解質、セパレータについて詳述する。
<正極>
 正極は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極活物質層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極活物質層は、例えば、正極活物質、結着材、導電材等を含む。
 正極は、例えば、正極活物質、結着材、導電材等を含む正極合材スラリーを正極集電体上に塗布・乾燥することによって、正極集電体上に正極活物質層を形成し、当該正極活物質層を圧延することにより得られる。
 正極活物質は、Ni及びAl含有リチウム遷移金属酸化物を含む。当該リチウム遷移金属酸化物中のリチウムを除く金属元素の総モル数に対するNiの割合は、91モル%以上であり、好ましくは、91モル%~99モル%の範囲であり、より好ましくは91モル%~96モル%の範囲である。なお、Niの割合が91モル%未満であると、そもそも電池の高容量化を図ることが困難である。
 Ni及びAl含有リチウム遷移金属酸化物中のAlは、例えば、Ni含有リチウム遷移金属酸化物の結晶構造内に均一に分散していてもよいし、結晶構造内の一部に存在していてもよい。また、当該リチウム遷移金属酸化物の製造段階において、結晶構造内に含まれるAlの一部が、当該リチウム遷移金属酸化物の粒子表面に析出する場合があるが、この析出したAlも、当該リチウム遷移金属酸化物に含まれるAlである。
 Ni及びAl含有リチウム遷移金属酸化物は、Al以外の元素を含んでいてもよく、例えば、以下の一般式で表される。
 LiNiCoAl    (1)
 上式においてNiの割合を示すaは、x≧0.91であればよいが、0.91≦x≦0.99であることが好ましく、0.91≦x≦0.96であることがより好ましい。上式においてCoの割合を示すbは、充放電サイクル特性の低下抑制等の点で、b<0.06であることが好ましく、0.005≦b≦0.045であることがより好ましい。上式においてAlの割合を示すcは、充放電サイクル特性の低下抑制等の点で、0.03<cであることが好ましく、0.04≦c≦0.06であることがより好ましい。
 上式のMは、Li、Ni、Al、Co以外の元素であれば特に制限されるものではなく、例えば、Ti、Nb、Mn、Si、Mo、Zr、V、Fe、Mg、Cr、Cu、Sn、Ta、W、Na、K、Ba、Sr、Bi、Be、Zn、Ca及びBから選ばれる少なくとも1種の元素等が挙げられる。これらの中では、充放電サイクル特性の低下抑制等の点で、上式のMは、Ti、Nb、Mn、Si及びMoから選ばれる少なくとも1種の元素が好ましい。上式においてMの割合を示すdは、0≦d≦0.03であることが好ましく、0.005≦d≦0.025であることがより好ましい。
 上式においてLiの割合を示すxは、電池容量の向上等の点で、0.95≦x≦1.10を満たすことが好ましく、0.97≦x≦1.03を満たすことがより好ましい。
 Ni及びAl含有リチウム遷移金属酸化物は、硫酸イオンを含む。硫酸イオンは、SO化合物として当該リチウム遷移金属酸化物の粒子表面に付着している場合、SO化合物として当該リチウム遷移金属酸化物の二次粒子内に取り込まれている場合、Ni及びAl含有リチウム遷移金属酸化物の結晶構造内に含まれている場合等、いずれの形態も含まれる。
 粒子表面に付着している、もしくは二次粒子内に取り込まれているSO化合物としては、例えば、Al(SO、Ti(SO、MnSO、Nb(SO、Si(SO、Mo(SO、Fe(SO、BaSO、CaSO、CuSO4 、MgSO、SrSO4 、ZnSO4 等が挙げられる。
 Ni及びAl含有リチウム遷移金属酸化物に含まれる硫酸イオン含有量は、充放電時の電荷移動抵抗や電池容量の低下を抑制する点で、0.02モル%以上であればよいが、0.02モル%~0.12モル%の範囲が好ましく、0.03~0.1の範囲がより好ましい。ここで、硫酸イオンの含有量は、以下のようにして測定される。
 Ni及びAl含有リチウム遷移金属酸化物1gを、純水50mLに添加して得られた試料溶液を室温で24時間振とうする。撹拌後の試料溶液を濾過し、濾液を採取する。採取した濾液中の硫酸イオン量をイオンクロマトグラフィーにより測定する。また、Ni及びAl含有リチウム遷移金属酸化物を構成する元素の含有量は、誘導結合プラズマ発光分光分析装置(ICP-AES)や電子線マイクロアナライザー(EPMA)、エネルギー分散型X線分析装置(EDX)等により測定することができる。
 Ni及びAl含有リチウム遷移金属酸化物において、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅nは、充放電サイクル特性の低下を抑制する点で、0.30°≦n≦0.50°であればよいが、好ましくは0.30°≦n≦0.45°である。(208)面の回折ピークの半値幅nが、0.30°未満の場合、上記範囲を満たす場合と比較して、Li層のLiイオンの束縛が強く、充放電サイクル特性が低下する。また、(208)面の回折ピークの半値幅nが、0.50°を超える場合、上記範囲を満たす場合と比較して、Ni含有Li遷移金属酸化物の結晶性が低下し、結晶構造の骨格が脆くなり、充放電サイクル特性が低下する。
 X線回折パターンは、粉末X線回折装置(株式会社リガク製、商品名「RINT-TTR」、線源Cu-Kα)を用いて、以下の条件による粉末X線回折法によって得られる。
測定範囲;15-120°
スキャン速度;4°/min
解析範囲;30-120°
バックグラウンド;B-スプライン
プロファイル関数;分割型擬Voigt関数
束縛条件;Li(3a) + Ni(3a)=1
     Ni(3a) + Ni(3b)=y
ICSD No.;98-009-4814
 Ni及びAl含有リチウム遷移金属酸化物の含有量は、例えば、充放電サイクル特性の低下、充放電時の電荷移動抵抗の低下、或いは電池容量の低下を効果的に抑制すること等の点で、非水電解質二次電池用正極活物質の総質量に対して90質量%以上であることが好ましく、99質量%以上であることが好ましい。
 また、本実施形態の非水電解質二次電池用正極活物質は、Ni及びAl含有リチウム遷移金属酸化物以外に、その他のリチウム遷移金属酸化物を含んでいても良い。その他のリチウム遷移金属酸化物としては、例えば、Ni含有率が0モル%~91モル%未満のリチウム遷移金属酸化物等が挙げられる。
 Ni及びAl含有リチウム遷移金属酸化物の製造方法の一例について説明する。
 Ni含有リチウム遷移金属酸化物の製造方法は、例えば、Ni含有化合物、Li化合物、金属元素含有SO化合物、金属元素含有の非SO化合物を混合する第1工程と、当該混合物を焼成する第2工程と、を備える。
 第1工程において用いられるNi含有化合物は、Ni以外にAlやCo等の他の元素を含む複合化合物であってもよく、例えば、Ni等を含む酸化物等が挙げられる。第1工程において用いられるLi化合物は、例えば、炭酸リチウム、水酸化リチウム等である。
 第1工程において用いられる金属元素含有SO化合物は、Al、Ti、Nb、Mn、Si、Mo、Fe、Ba、Ca、Cu、Mg、Sr、Zn等の金属元素を含有するSO化合物等であり、例えば、Al(SO、Ti(SO、MnSO4、Nb(SO、Si(SO、Mo(SO、Fe(SO、BaSO、CaSO、CuSO4 、MgSO、SrSO4 、ZnSO4 等が挙げられる。
 第1工程において用いられる金属元素含有の非SO化合物は、上記SO化合物に含まれる金属元素と同じ元素又は異なる元素を含有する化合物であり、例えば、Al、Ti、Nb、Mn、Si、Mo、Fe、Ba、Ca、Cu、Mg、Sr、Zn等の金属元素を含有する水酸化物又は酸化物等が挙げられる。
 金属元素含有SO化合物及び金属元素含有の非SO化合物の両方を添加することで、最終的に得られるNi及びAl含有リチウム遷移金属酸化物における(208)面の回折ピークの半値幅nを上記所定の範囲に制御することが容易となる。なお、Ni及びAl含有リチウム遷移金属酸化物に含まれる硫酸イオン量を上記所定の範囲に制御することだけであれば、Ni含有化合物、Li化合物、金属元素含有SO化合物を混合して、この混合物を焼成すればよいが、この場合には、最終的に得られるNi及びAl含有リチウム遷移金属酸化物における(208)面の回折ピークの半値幅nを上記所定の範囲に制御することが困難となる。
 金属元素含有SO化合物及び金属元素含有の非SO化合物の混合比は、例えば、1:9~7:3の範囲であることが好ましい。金属元素含有SO化合物の比率が少なくなると、最終的に得られるNi及びAl含有リチウム遷移金属酸化物に含まれる硫酸イオン量を上記所定の範囲に制御することができない場合があり、金属元素含有SO化合物の比率が多くなると、最終的に得られるNi及びAl含有リチウム遷移金属酸化物の結晶構造中に存在するLi量が低減し、電池容量の低下が引き起こされる場合がある。
 第2工程において、第1工程で得られた混合物を所定の温度及び時間で焼成し、本実施形態に係るNi及びAl含有リチウム遷移金属酸化物を得る。第2工程における混合物の焼成は、例えば、500℃~900℃の範囲であることが好ましい。焼成時間は、例えば、6~24時間であることが好ましい。第2工程で得られた混合物の焼成は、酸素気流中で行うことが好ましい。
 以下に、正極活物質層に含まれるその他の材料について説明する。
 正極活物質層に含まれる導電材としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素粉末等が挙げられる、これらは、1種単独でもよいし、2種以上を組み合わせて用いてもよい。
 正極活物質層に含まれる結着材としては、例えば、フッ素系高分子、ゴム系高分子等が挙げられる。フッ素系高分子としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、またはこれらの変性体等が挙げられ、ゴム系高分子としては、例えば、エチレンープロピレンーイソプレン共重合体、エチレンープロピレンーブタジエン共重合体等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて使用してもよい。
<負極>
 負極は、例えば金属箔等の負極集電体と、負極集電体上に形成された負極活物質層とを備える。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極活物質層は、例えば、負極活物質、結着材、増粘材等を含む。
 負極は、例えば、負極活物質、増粘材、結着材を含む負極合材スラリーを負極集電体上に塗布・乾燥することによって、負極集電体上に負極活物質層を形成し、当該負極活物質層を圧延することにより得られる。
 負極活物質層に含まれる負極活物質としては、リチウムイオンを吸蔵・放出することが可能な材料であれば特に制限されるものではなく、例えば、炭素材料、リチウムと合金を形成することが可能な金属またはその金属を含む合金化合物等が挙げられる。炭素材料としては、天然黒鉛、難黒鉛化性炭素、人造黒鉛等のグラファイト類、コークス類等を用いることができ、合金化合物としては、リチウムと合金形成可能な金属を少なくとも1種類含むものが挙げられる。リチウムと合金形成可能な元素としてはケイ素やスズであることが好ましく、これらが酸素と結合した、酸化ケイ素や酸化スズ等も用いることもできる。また、上記炭素材料とケイ素やスズの化合物とを混合したものを用いることができる。上記の他、チタン酸リチウム等の金属リチウムに対する充放電の電位が、炭素材料等より高いものも用いることができる。
 負極活物質層に含まれる結着材としては、例えば、正極の場合と同様にフッ素系高分子、ゴム系高分子等を用いることもできるが、スチレンーブタジエン共重合体(SBR)又はこの変性体等を用いてもよい。負極活物質層に含まれる結着材としては、正極の場合と同様にフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等を用いることができる。水系溶媒を用いて負極合材スラリーを調製する場合は、スチレン-ブタジエンゴム(SBR)、CMC又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等を用いることが好ましい。
 負極活物質層に含まれる増粘材としては、例えば、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)等が挙げられる。これらは、1種単独でもよく、2種以上を組み合わせて用いてもよい。
<非水電解質>
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ-ブチロラクトン等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、非水溶媒1L当り0.8~1.8molとすることが好ましい。
<セパレータ>
 セパレータは、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよく、セパレータの表面にアラミド樹脂等が塗布されたものを用いてもよい。セパレータと正極及び負極の少なくとも一方との界面には、無機物のフィラーを含むフィラー層が形成されてもよい。無機物のフィラーとしては、例えばチタン(Ti)、アルミニウム(Al)、ケイ素(Si)、マグネシウム(Mg)の少なくとも1種を含有する酸化物、リン酸化合物またその表面が水酸化物等で処理されているものなどが挙げられる。フィラー層は、例えば当該フィラーを含有するスラリーを正極、負極、又はセパレータの表面に塗布して形成することができる。
 以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
[正極活物質の作製]
 Ni、Co及びAlを含む複合酸化物(Ni0.92Co0.03Al0.05)と、LiOHと、Ti(SO及びTi(OH)をモル比3:7で混合した混合物とを、モル比で、100:101:1になるように混合した。当該混合物を酸素気流中にて700℃で20時間焼成し、リチウム遷移金属酸化物を得た。得られたリチウム遷移金属酸化物における硫酸イオン量を測定した結果、0.03モル%であった。また、得られたリチウム遷移金属酸化物のNi、Co、Al及びTiの総モル数に対するNi、Co、Al及びTiの各割合を測定した結果、Niの割合は91モル%、Coの割合は3モル%、Alの割合は5モル%、Tiの割合は1モル%であった。また、得られたリチウム遷移金属酸化物における(208)面の回折ピークの半値幅nは0.44°であった。測定方法は前述した通りである。このリチウム遷移金属酸化物を実施例1の正極活物質とした。
<実施例2>
 Ti(SO及びTi(OH)をモル比7:3で混合した混合物を用いたこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.06モル%であり、Niの割合は91モル%、Coの割合は3モル%、Alの割合は5モル%、Tiの割合は1モル%であり、(208)面の回折ピークの半値幅nは0.45°であった。このリチウム遷移金属酸化物を実施例2の正極活物質とした。
<実施例3>
 Ni、Co及びAlを含む複合酸化物(Ni0.92Co0.03Al0.05)と、LiOHと、Al(SO及びTi(OH)をモル比3:7で混合した混合物とを、モル比で、100:101:1になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.04モル%であり、Niの割合は91モル%、Coの割合は3モル%、Alの割合は5.3モル%、Tiの割合は0.7モル%であり、(208)面の回折ピークの半値幅nは0.41°であった。このリチウム遷移金属酸化物を実施例3の正極活物質とした。
<実施例4>
 Al(SO及びTi(OH)をモル比7:3で混合した混合物を用いたこと以外は、実施例3と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.12モル%であり、Niの割合は91モル%、Coの割合は3モル%、Alの割合は5.7モル%、Tiの割合は0.3モル%であり、(208)面の回折ピークの半値幅nは0.39°であった。このリチウム遷移金属酸化物を実施例4の正極活物質とした。
<実施例5>
 Ni、Co及びAlを含む複合酸化物(Ni0.94Co0.015Al0.045)と、LiOHと、MnSO及びAl(OH)をモル比3:7で混合した混合物とを、モル比で、100:101:1.5になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.03モル%であり、Niの割合は92.5モル%、Coの割合は1.5モル%、Alの割合は5モル%、Mnの割合は1モル%であり、(208)面の回折ピークの半値幅nは0.33°であった。このリチウム遷移金属酸化物を実施例5の正極活物質とした。
<実施例6>
 MnSO及びAl(OH)をモル比7:3で混合した混合物を用いたこと以外は、実施例5と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.07モル%であり、Niの割合は92.5モル%、Coの割合は1.5モル%、Alの割合は5.5モル%、Mnの割合は0.5モル%であり、(208)面の回折ピークの半値幅nは0.37°であった。このリチウム遷移金属酸化物を実施例6の正極活物質とした。
<実施例7>
 Ni、Co及びAlを含む複合酸化物(Ni0.94Co0.015Al0.045)と、LiOHと、Al(SO及びLiNbOをモル比3:7で混合した混合物とを、モル比で、100:101:1.5になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.04モル%であり、Niの割合は92.5モル%、Coの割合は1.5モル%、Alの割合は5モル%、Nbの割合は1モル%であり、(208)面の回折ピークの半値幅nは0.37°であった。このリチウム遷移金属酸化物を実施例7の正極活物質とした。
<実施例8>
 Al(SO及びLiNbOをモル比7:3で混合した混合物を用いたこと以外は、実施例7と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.12モル%であり、Niの割合は92.5モル%、Coの割合は1.5モル%、Alの割合は5.5モル%、Nbの割合は0.5モル%であり、(208)面の回折ピークの半値幅nは0.41°であった。このリチウム遷移金属酸化物を実施例8の正極活物質とした。
<実施例9>
 Ni、Co及びAlを含む複合酸化物(Ni0.945Co0.005Al0.050)と、LiOHと、Al(SO及びSiOをモル比7:3で混合した混合物とを、モル比で、100:101:1になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.05モル%であり、Niの割合は93.5モル%、Coの割合は0.5モル%、Alの割合は5.7モル%、Siの割合は0.3モル%であり、(208)面の回折ピークの半値幅nは0.34°であった。このリチウム遷移金属酸化物を実施例9の正極活物質とした。
<実施例10>
 Ni、Co及びAlを含む複合酸化物(Ni0.955Co0.005Al0.04)と、LiOHと、Al(SO及びTi(OH)をモル比1:9で混合した混合物とを、モル比で、100:101:3.5になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.03モル%であり、Niの割合は92モル%、Coの割合は0.5モル%、Alの割合は4.5モル%、Tiの割合は3モル%であり、(208)面の回折ピークの半値幅nは0.39°であった。このリチウム遷移金属酸化物を実施例10の正極活物質とした。
<実施例11>
 Ni、Co及びAlを含む複合酸化物(Ni0.94Co0.015Al0.045)と、LiOHと、Ti(SO及びLiNbOをモル比7:3で混合した混合物とを、モル比で、100:101:1.5になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.05モル%であり、Niの割合は93モル%、Coの割合は1.3モル%、Alの割合は4.2モル%、Tiの割合は1モル%、Nbの割合は0.5モル%であり、(208)面の回折ピークの半値幅nは0.34°であった。このリチウム遷移金属酸化物を実施例11の正極活物質とした。
<実施例12>
 Ni、Co及びAlを含む複合酸化物(Ni0.94Co0.015Al0.045)と、LiOHと、Ti(SO及びLiNbOをモル比5:5で混合した混合物とを、モル比で、100:101:1になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.04モル%であり、Niの割合は93モル%、Coの割合は1.5モル%、Alの割合は4.5モル%、Tiの割合は0.5モル%、Nbの割合は0.5モル%であり、(208)面の回折ピークの半値幅nは0.37°であった。このリチウム遷移金属酸化物を実施例12の正極活物質とした。
<実施例13>
 Ni及びAlを含む複合酸化物(Ni0.955Al0.045)と、LiOHと、Al(SO及びLiMoOをモル比2:8で混合した混合物とを、モル比で、100:101:0.6になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.03モル%であり、Niの割合は95モル%、Alの割合は4.5モル%、Moの割合は0.5モル%であり、(208)面の回折ピークの半値幅nは0.34°であった。このリチウム遷移金属酸化物を実施例13の正極活物質とした。
<実施例14>
 Ni、Co及びAlを含む複合酸化物(Ni0.94Co0.015Al0.045)と、LiOHと、Ti(SO及びLiMoOをモル比5:5で混合した混合物とを、モル比で、100:101:1になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.04モル%であり、Niの割合は93モル%、Coの割合は1.5モル%、Alの割合は4.5モル%、Tiの割合は0.5モル%、Moの割合は0.5モル%であり、(208)面の回折ピークの半値幅nは0.35°であった。このリチウム遷移金属酸化物を実施例14の正極活物質とした。
<比較例1>
 Ni、Co及びAlを含む複合酸化物(Ni0.92Co0.04Al0.04)と、LiOHと、Ti(SOとを、モル比で、100:101:1になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.1モル%であり、Niの割合は91モル%、Coの割合は4モル%、Alの割合は4モル%、Tiの割合は1モル%であり、(208)面の回折ピークの半値幅nは0.25°であった。このリチウム遷移金属酸化物を比較例1の正極活物質とした。
<比較例2>
 Ni、Co及びAlを含む複合酸化物(Ni0.92Co0.03Al0.05)と、LiOHと、Al(SOとを、モル比で、100:101:1になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.17モル%であり、Niの割合は91モル%、Coの割合は3モル%、Alの割合は6モル%であり、(208)面の回折ピークの半値幅nは0.27°であった。このリチウム遷移金属酸化物を比較例2の正極活物質とした。
<比較例3>
 Ni、Co及びAlを含む複合酸化物(Ni0.935Co0.015Al0.05)と、LiOHと、MnSOとを、質量比で、100:101:1.5になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は、0.13モル%であり、Niの割合は92モル%、Coの割合は1.5モル%、Alの割合は5モル%、Mnの割合は1.5モル%であり、(208)面の回折ピークの半値幅nは0.28°であった。このリチウム遷移金属酸化物を比較例3の正極活物質とした。
<比較例4>
 Ni、Co及びAlを含む複合酸化物(Ni0.93Co0.03Al0.04)と、LiOHとを、モル比で、100:101になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は0.01モル%であり、Niの割合は93モル%、Coの割合は3モル%、Alの割合は4モル%であり、(208)面の回折ピークの半値幅nは0.23°であった。このリチウム遷移金属酸化物を比較例4の正極活物質とした。
<比較例5>
 Ni、Co及びAlを含む複合酸化物(Ni0.935Co0.01Al0.055)と、LiOHと、Alを、モル比で、100:101:1になるように混合したこと以外は、実施例1と同様にリチウム遷移金属酸化物を作製した。当該リチウム遷移金属酸化物における硫酸イオン量は0.01モル%であり、Niの割合は92.5モル%、Coの割合は1モル%、Alの割合は6.5モル%であり、(208)面の回折ピークの半値幅nは0.28°であった。このリチウム遷移金属酸化物を比較例5の正極活物質とした。
[正極の作製]
 実施例1の正極活物質を91質量部、導電材としてアセチレンブラックを7質量部、結着剤としてポリフッ化ビニリデンを2質量部の割合で混合した。当該混合物を混練機(T.K.ハイビスミックス、プライミクス株式会社製)を用いて混練し、正極合材スラリーを調製した。次いで、正極合材スラリーを厚さ15μmのアルミニウム箔に塗布し、塗膜を乾燥してアルミニウム箔に正極活物質層を形成した。これを実施例1の正極とした。その他の実施例及び比較例も同様にして正極を作製した。
[非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した。当該混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度となるように溶解させて、非水電解質を調製した。
[試験セルの作製]
 実施例1の正極と、リチウム金属箔からなる負極とを、セパレータを介して互いに対向するように積層して、電極体を作製した。次いで、電極体及び上記非水電解質をアルミニウム製の外装体に挿入し、試験セルを作製した。その他の実施例及び比較例も同様にして試験セルを作製した。
[充放電サイクル特性における容量維持率の測定]
 環境温度25℃の下、各実施例及び各比較例の試験セルを0.2Cの定電流で電池電圧が4.3Vになるまで定電流充電した後、電流値が0.05mAになるまで4.3Vで定電圧充電し、0.2Cの定電流で電池電圧が2.5Vになるまで定電流放電した。この充放電サイクルを20サイクル行い、以下の式により、各実施例及び各比較例の試験セルの充放電サイクルにおける容量維持率を求めた。この値が高いほど、充放電サイクル特性の低下が抑制されていることを示している。
 容量維持率=(20サイクル目の放電容量/1サイクル目の放電容量)×100
[電荷移動抵抗の測定]
 上記の充電条件で、各実施例及び各比較例の試験セルを充電した後、10mHz~100kHzの範囲で、交流インピーダンス測定を行い、Cole-Coleプロットを作成した。得られたCole-Coleプロットに現れる略半円の大きさから、電荷移動抵抗を求めた。
 表1に、各実施例及び各比較例の試験セルの電池容量(1サイクル目の放電容量)、電荷移動抵抗、容量維持率の結果を示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~14のはいずれも、高い容量維持率及び電池容量を示し、また、低い電荷移動抵抗を示した。一方、比較例1~5は、低い容量維持率を示すもの、低い電池容量を示すもの、或いは高い電荷移動抵抗を示すものであった。この結果から、Ni及びAl含有リチウム遷移金属酸化物を有し、前記リチウム遷移金属酸化物中のNiの割合は、Liを除く金属元素の総モル数に対して91モル%以上であり、前記リチウム遷移金属酸化物は、0.02モル%以上の硫酸イオンを含み、前記リチウム遷移金属酸化物は、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅nが、0.30°≦n≦0.50°である正極活物質を用いることで、充放電サイクル特性の低下を抑制すると共に、充放電時の電荷移動抵抗の増加を抑制し、ひいては電池容量の低下を抑制することが可能となる。

Claims (2)

  1.  Ni及びAl含有リチウム遷移金属酸化物を有し、
     前記リチウム遷移金属酸化物中のNiの割合は、Liを除く金属元素の総モル数に対して91モル%以上であり、
     前記リチウム遷移金属酸化物は、0.02モル%以上の硫酸イオンを含み、
     前記リチウム遷移金属酸化物は、X線回折によるX線回折パターンの(208)面の回折ピークの半値幅nが、0.30°≦n≦0.50°である、非水電解質二次電池用正極活物質。
  2.  請求項1に記載の非水電解質二次電池用正極活物質を含む正極を備える、非水電解質二次電池。
PCT/JP2019/007310 2018-04-02 2019-02-26 非水電解質二次電池用正極活物質及び非水電解質二次電池 WO2019193875A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19781698.6A EP3780178A4 (en) 2018-04-02 2019-02-26 POSITIVE ELECTRODE ACTIVE SUBSTANCE FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
CN201980022879.0A CN112005410B (zh) 2018-04-02 2019-02-26 非水电解质二次电池用正极活性物质和非水电解质二次电池
US17/040,154 US20210020937A1 (en) 2018-04-02 2019-02-26 Positive electrode active substance for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2020511643A JP7336679B2 (ja) 2018-04-02 2019-02-26 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2023125672A JP2023143960A (ja) 2018-04-02 2023-08-01 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-070906 2018-04-02
JP2018070906 2018-04-02

Publications (1)

Publication Number Publication Date
WO2019193875A1 true WO2019193875A1 (ja) 2019-10-10

Family

ID=68100628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007310 WO2019193875A1 (ja) 2018-04-02 2019-02-26 非水電解質二次電池用正極活物質及び非水電解質二次電池

Country Status (5)

Country Link
US (1) US20210020937A1 (ja)
EP (1) EP3780178A4 (ja)
JP (2) JP7336679B2 (ja)
CN (1) CN112005410B (ja)
WO (1) WO2019193875A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120413A1 (ja) * 2021-12-20 2023-06-29 パナソニックエナジー株式会社 二次電池用正極活物質、及び二次電池用正極活物質の製造方法
JP7560644B2 (ja) 2020-07-07 2024-10-02 巴斯夫杉杉▲電▼池材料有限公司 リチウムイオン電池正極活性材料及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202702A (ja) 2005-01-24 2006-08-03 Hitachi Maxell Ltd 非水電解質二次電池
JP2010070431A (ja) 2008-09-22 2010-04-02 Sumitomo Metal Mining Co Ltd ニッケル含有水酸化物、ニッケル含有酸化物、リチウム複合ニッケル酸化物およびこれらの製造方法
JP2015125833A (ja) * 2013-12-25 2015-07-06 トヨタ自動車株式会社 非水電解液二次電池
JP2016110889A (ja) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質、およびリチウムイオン二次電池
WO2017110063A1 (ja) * 2015-12-25 2017-06-29 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP2018022689A (ja) * 2016-08-03 2018-02-08 三星電子株式会社Samsung Electronics Co., Ltd. 複合正極活物質、それを含む正極、及びリチウム電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327309A (ja) * 2003-04-25 2004-11-18 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP6460575B2 (ja) * 2015-01-06 2019-01-30 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
JP6764655B2 (ja) * 2015-03-02 2020-10-07 株式会社Gsユアサ リチウム二次電池
JP6766322B2 (ja) * 2015-04-28 2020-10-14 住友金属鉱山株式会社 アルミニウム被覆ニッケルコバルト複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202702A (ja) 2005-01-24 2006-08-03 Hitachi Maxell Ltd 非水電解質二次電池
JP2010070431A (ja) 2008-09-22 2010-04-02 Sumitomo Metal Mining Co Ltd ニッケル含有水酸化物、ニッケル含有酸化物、リチウム複合ニッケル酸化物およびこれらの製造方法
JP2015125833A (ja) * 2013-12-25 2015-07-06 トヨタ自動車株式会社 非水電解液二次電池
JP2016110889A (ja) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質、およびリチウムイオン二次電池
WO2017110063A1 (ja) * 2015-12-25 2017-06-29 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP2018022689A (ja) * 2016-08-03 2018-02-08 三星電子株式会社Samsung Electronics Co., Ltd. 複合正極活物質、それを含む正極、及びリチウム電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780178A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7560644B2 (ja) 2020-07-07 2024-10-02 巴斯夫杉杉▲電▼池材料有限公司 リチウムイオン電池正極活性材料及びその製造方法
WO2023120413A1 (ja) * 2021-12-20 2023-06-29 パナソニックエナジー株式会社 二次電池用正極活物質、及び二次電池用正極活物質の製造方法

Also Published As

Publication number Publication date
JP7336679B2 (ja) 2023-09-01
US20210020937A1 (en) 2021-01-21
EP3780178A4 (en) 2021-06-02
CN112005410A (zh) 2020-11-27
CN112005410B (zh) 2024-10-18
JPWO2019193875A1 (ja) 2021-04-08
JP2023143960A (ja) 2023-10-06
EP3780178A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
JP7113243B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極及び非水電解質二次電池
WO2017098679A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP7300610B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP7336778B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2018061298A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
JPWO2019131194A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極及び非水電解質二次電池
WO2018003477A1 (ja) 正極活物質、正極、及び非水電解質二次電池
WO2019198351A1 (ja) 非水電解質二次電池
JP2023143960A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
JP7316565B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
JP2024036438A (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN110892569B (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池
WO2018123604A1 (ja) 非水電解質二次電池用正極活物質
JPWO2019107160A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池用正極活物質の製造方法
JP7570003B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019781698

Country of ref document: EP

Effective date: 20201102