WO2017110063A1 - 非水電解質二次電池用正極活物質、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2017110063A1
WO2017110063A1 PCT/JP2016/005137 JP2016005137W WO2017110063A1 WO 2017110063 A1 WO2017110063 A1 WO 2017110063A1 JP 2016005137 W JP2016005137 W JP 2016005137W WO 2017110063 A1 WO2017110063 A1 WO 2017110063A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
active material
electrode active
positive electrode
electrolyte secondary
Prior art date
Application number
PCT/JP2016/005137
Other languages
English (en)
French (fr)
Inventor
良憲 青木
元治 斉藤
毅 小笠原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017557696A priority Critical patent/JP6660599B2/ja
Priority to CN201680069803.XA priority patent/CN108292750A/zh
Priority to US16/062,007 priority patent/US20180375096A1/en
Publication of WO2017110063A1 publication Critical patent/WO2017110063A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • Lithium nickel composite oxide (LiNiO 2 ), which is one of the positive electrode materials for lithium ion secondary batteries, has a higher capacity than lithium cobalt composite oxide (LiCoO 2 ), and nickel is cheaper than cobalt. It is expected as a next-generation cathode material because it has advantages such as being available stably. However, since lithium nickel composite oxide is generally inferior in durability to lithium cobalt composite oxide, attempts have been made to improve the durability of lithium nickel composite oxide.
  • a non-aqueous electrolyte secondary battery including a nickel-containing lithium composite oxide as a positive electrode active material and a non-aqueous electrolyte containing a specific concentration of an organic acid, the nickel-containing lithium composite oxide is Li
  • a battery having excellent cycle characteristics at high temperatures can be obtained when it contains an element selected from the group consisting of a specific metal.
  • the present disclosure aims to provide a non-aqueous electrolyte secondary battery having good durability and high charge / discharge capacity while containing a lithium nickel composite oxide having a high Ni content.
  • the present disclosure it is possible to produce a nonaqueous electrolyte secondary battery having good durability and high charge / discharge capacity while the positive electrode active material contains a lithium nickel composite oxide having a high Ni content. .
  • FIG. 1 is a diagram showing a powder X-ray diffraction pattern of lithium nickel composite oxide produced in Examples and Comparative Examples.
  • FIG. 2 is an enlarged view of a part of the powder X-ray diffraction pattern of the lithium nickel composite oxide produced in Examples and Comparative Examples.
  • FIG. 3 is an enlarged view of another part of the powder X-ray diffraction pattern of the lithium nickel composite oxide produced in Examples and Comparative Examples.
  • the present inventors have added a specific amount of silicon to the lithium nickel composite oxide, thereby strengthening the bond between oxygen and transition metal, which are the skeleton of the crystal structure, and improving durability by stabilizing the structure. Furthermore, by setting the half-value width n of the diffraction peak of the (211) plane representing the arrangement of the transition metal in and between the layers to 0.28 ° ⁇ n ⁇ 0.50 °, the nonaqueous electrolyte The present inventors have found that a secondary battery can exhibit a high charge / discharge capacity.
  • a non-aqueous electrolyte secondary battery (hereinafter also simply referred to as “secondary battery”) that is an example of an embodiment of the present disclosure includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • a separator is preferably provided between the positive electrode and the negative electrode.
  • the nonaqueous electrolyte secondary battery has, for example, a structure in which a wound electrode body in which a positive electrode and a negative electrode are wound via a separator, and a nonaqueous electrolyte are housed in an exterior body.
  • the wound electrode body instead of the wound electrode body, other types of electrode bodies such as a stacked electrode body in which a positive electrode and a negative electrode are stacked via a separator may be applied.
  • the form of the nonaqueous electrolyte secondary battery is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape.
  • the positive electrode includes a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector.
  • a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector.
  • a metal foil that is stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the positive electrode active material layer preferably includes a conductive material and a binder in addition to the positive electrode active material. The conductive material is used to increase the electrical conductivity of the positive electrode active material layer.
  • the conductive material examples include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. One of these may be used, or two or more may be used in combination.
  • the content of the conductive material is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, and particularly preferably 0.1 to 10% by mass with respect to the total mass of the positive electrode active material layer.
  • the binder is used to maintain a good contact state between the positive electrode active material and the conductive material and to increase the binding property of the positive electrode active material and the like to the surface of the positive electrode current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride, polyvinyl acetate, polymethacrylate, polyacrylate, polyacrylonitrile, polyvinyl alcohol, or a mixture of two or more thereof.
  • the binder may be used in combination with a thickener such as carboxymethyl cellulose (CMC) or polyethylene oxide (PEO). One of these may be used, or two or more may be used in combination.
  • the content of the binder is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, and particularly preferably 0.1 to 10% by mass with respect to the total mass of the positive electrode active material layer.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery that is an example of an embodiment of the present disclosure (hereinafter also simply referred to as “positive electrode active material”) is represented by the following composition formula (1) and belongs to the space group R-3m.
  • a lithium nickel-containing layered oxide having a layered crystal structure and having a half-value width n of the diffraction peak of the (211) plane in the X-ray diffraction pattern in a specific range is included.
  • the lithium nickel-containing layered oxide represented by the following composition formula (1) contained in the positive electrode active material according to the present disclosure is also simply referred to as “layered oxide”.
  • transition metals in addition to Ni and Co, including Al present in the same layer as Ni and Co, these may be collectively referred to as “transition metals”.
  • X in the composition formula (1) represents the content (molar ratio) of lithium (Li) with respect to the total amount of Ni, Co and Al.
  • Y in composition formula (1) indicates the content (molar ratio) of nickel (Ni) with respect to the total amount of Ni, Co and Al.
  • Ni nickel
  • y in the composition formula (1) is preferably 0.85 ⁇ y ⁇ 1.
  • ⁇ in the composition formula (1) indicates the content (molar ratio) of cobalt (Co) with respect to the total amount of Ni, Co and Al.
  • the durability of the nonaqueous electrolyte secondary battery can be improved.
  • ⁇ in the composition formula (1) is preferably 0.03 ⁇ ⁇ 0.12.
  • ⁇ in the composition formula (1) indicates the content (molar ratio) of aluminum (Al) with respect to the total amount of Ni, Co and Al.
  • the durability of the nonaqueous electrolyte secondary battery can be improved.
  • ⁇ in the composition formula (1) is preferably 0.005 ⁇ ⁇ 0.05.
  • Z in the composition formula (1) indicates the content (molar ratio) of silicon (Si) with respect to the total amount of Ni, Co and Al.
  • the layered oxide contains silicon within the range of 0 ⁇ z ⁇ 0.02, the durability of the nonaqueous electrolyte secondary battery can be improved. This is probably because silicon is solid-dissolved in the layered oxide and the covalent bond between oxygen and the transition metal contained in the layered oxide is increased, thereby strengthening the bulk structure skeleton of the layered oxide.
  • a lithium silicon oxide may produce
  • z is preferably 0.005 ⁇ z ⁇ 0.02, and more preferably 0.008 ⁇ z ⁇ 0.012, from the above viewpoint.
  • FIG. 1 shows an X-ray diffraction pattern obtained by analysis based on a powder X-ray diffraction method for a lithium nickel composite oxide prepared by changing the composition or manufacturing conditions.
  • FIG. 2 shows an enlarged view of a range in which the diffraction angle (2 ⁇ ) of the X-ray diffraction pattern shown in FIG. 1 is 15 ° to 40 °.
  • X-ray diffraction peaks indicating the presence of lithium silicon oxide appear at around 22 °, around 28 °, and around 34 °.
  • “2- ⁇ ” in the composition formula (1) indicates the content (molar ratio) of oxygen atoms (O) with respect to the total amount of Ni, Co and Al.
  • indicates the amount of oxygen deficiency, and when the value of ⁇ increases, the amount of divalent Ni increases accordingly, so-called “rock chloride” in which the layered oxide has a rock-salt structure occurs, and charge and discharge The capacity is thought to decrease. For this reason, the charge / discharge capacity can be improved by setting ⁇ , which is an acceleration factor of rock chloride, in the range of 0 ⁇ ⁇ ⁇ 0.05.
  • the layered oxide may contain a metal element other than Li, Ni, Co, Al and Si as long as the object of the present disclosure is not impaired.
  • the layered oxide contains Ni with a high content exceeding 0.80, for example, if manganese (Mn) is contained instead of Al, the durability is lowered.
  • Mn manganese
  • the Al content is 0.03
  • the capacity retention rate after 100 cycles was about 90%
  • the Mn content was 0.03.
  • the capacity retention rate after 100 cycles was reduced to about 85%. For this reason, it is preferable that a layered oxide does not contain Mn.
  • the crystal structure belonging to the space group R-3m is a structure in which a lithium-oxygen octahedral layer and a transition metal-oxygen octahedral layer are stacked.
  • a lithium-oxygen octahedral layer and a transition metal-oxygen octahedral layer are stacked.
  • lithium nickelate (LiNiO 2 ) and lithium cobaltate ( LiCoO 2 ) has a crystal structure.
  • the layered oxide represented by the composition formula (1) is also considered to have a crystal structure belonging to the space group R-3m.
  • the layered oxide has a crystal structure belonging to the space group R-3m.
  • the half width (full width at half maximum) n of the diffraction peak of the (211) plane in the X-ray diffraction pattern is in the range of 0.28 ° ⁇ n ⁇ 0.50 °. It contains a layered oxide.
  • the half-value width n of the diffraction peak of the (211) plane in the X-ray diffraction pattern of the layered oxide is the arrangement of the transition metals (Ni, Co, and Al) within and between the layers in the crystal structure belonging to the space group R-3m. It is considered to indicate the state.
  • the half-value width n is in the range of 0.28 ° ⁇ n ⁇ 0.50 °, in the layered oxide, moderate “fluctuation” occurs in the transition metal layer and between the layers, and lithium is bound. Since it is relieved, it is considered that a high charge / discharge capacity can be obtained in the secondary battery.
  • the half-value width n of the diffraction peak of the (211) plane in the X-ray diffraction pattern of the layered oxide is preferably in the range of 0.28 ° ⁇ n ⁇ 0.50 °, and is 0.40 °. More preferably, it is in the range of ⁇ n ⁇ 0.45 °.
  • the diffraction peak on the (003) plane indicates the state of arrangement in the stacking direction of the transition metal layer and the lithium layer. As described above, in the present invention, without changing the crystal structure of the layered oxide in the stacking direction, only the transition metal layer and the arrangement between the layers are adjusted within a range in which moderate fluctuation occurs.
  • the half width n of the diffraction peak of the (211) plane in the layered oxide can be adjusted, for example, according to the production conditions of the layered oxide. More specifically, in the synthesis of the layered oxide, the half-value width n can be narrowed by increasing the firing time when firing the mixture of each metal compound as a raw material.
  • the half width n can also be adjusted by the Si content z in the composition formula (1). For example, the half width n increases as the Si content z increases.
  • the half value width n can be narrowed also by making baking temperature high. Note that, even if the half-value width n is adjusted by any of the above methods, the half-value width m of the diffraction peak on the (003) plane does not show any obvious fluctuation.
  • the layered oxide has a crystallite size s calculated by Scherrer equation from the half-value width of the diffraction peak of the (104) plane in the X-ray diffraction pattern obtained by the analysis based on the powder X-ray diffraction method. It is preferable that 1200 ⁇ ⁇ s ⁇ 2800 ⁇ . Scherrer's formula is the following formula (2):
  • D is the crystallite size
  • is the X-ray wavelength
  • B is the full width at half maximum of the diffraction peak on the (104) plane
  • is the diffraction angle (rad)
  • K is the Scherrer constant. In this embodiment, K is set to 0.9.
  • a layered oxide having a crystallite size s in the range of 1200 ⁇ ⁇ s ⁇ 2800 ⁇ ⁇ ⁇ can be prepared, for example, by changing the firing time.
  • the crystallite size s is preferably in the range of 1200 ⁇ ⁇ s ⁇ 2200 ⁇ .
  • a Li-containing compound, a compound containing Ni, Co and Al, and a Si-containing compound are mixed at a mixing ratio based on the target layered oxide, It can synthesize
  • the mixture is fired in the air or in an oxygen stream.
  • the firing temperature is about 600 to 1100 ° C.
  • the firing time is about 1 to 50 hours when the firing temperature is 600 to 1100 ° C.
  • the layered oxide having the half width n of the diffraction peak of the target (211) plane can be synthesized by appropriately adjusting the firing time.
  • silicon-containing oxides may be included within a range not impairing the object of the present disclosure.
  • the silicon-containing oxide is preferably 1% by mass or less with respect to the layered oxide represented by the composition formula (1).
  • the ratio of the layered oxide to the total amount of the positive electrode active material is preferably 90% or more, and more preferably 99% or more.
  • the negative electrode includes, for example, a negative electrode current collector such as a metal foil, and a negative electrode active material layer formed on the surface of the negative electrode current collector.
  • a negative electrode current collector such as a metal foil
  • a negative electrode active material layer formed on the surface of the negative electrode current collector.
  • the negative electrode active material layer preferably contains a binder in addition to the negative electrode active material capable of inserting and extracting lithium ions. Further, a conductive material may be included as necessary.
  • Examples of the negative electrode active material include natural graphite, artificial graphite, lithium, silicon, carbon, tin, germanium, aluminum, lead, indium, gallium, lithium alloy, carbon in which lithium is previously occluded, silicon, and alloys and mixtures thereof. Can be used.
  • PTFE or the like can be used as in the case of the positive electrode, but it is preferable to use a styrene-butadiene copolymer (SBR) or a modified product thereof.
  • SBR styrene-butadiene copolymer
  • the binder may be used in combination with a thickener such as CMC.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • the non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • esters include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, acetic acid
  • carboxylic acid esters such as methyl, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and ⁇ -butyrolactone.
  • ethers include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4- Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether
  • the non-aqueous solvent preferably contains a halogen substitution product obtained by substituting hydrogen of the above various solvents with a halogen atom such as fluorine.
  • a fluorinated cyclic carbonate and a fluorinated chain carbonate are preferable, and it is more preferable to use a mixture of both. Thereby, a good protective film is formed not only in the negative electrode but also in the positive electrode, and the cycle characteristics are improved.
  • Preferred examples of the fluorinated cyclic carbonate include 4-fluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,4,5-trifluoroethylene carbonate, 4,4,5 , 5-tetrafluoroethylene carbonate and the like.
  • Preferable examples of the fluorinated chain ester include ethyl 2,2,2-trifluoroacetate, methyl 3,3,3-trifluoropropionate, methyl pentafluoropropionate and the like.
  • the electrolyte salt is preferably a lithium salt.
  • lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (l , m is an integer of 1 or more), LiC (C p F2 p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2) (p, q, r is an integer of 1 or more), Li [B (C 2 O 4) 2] ( bis (oxalato) lithium borate (LiBOB)), Li [B (C 2 O 4) F 2], Li [P (C 2 O 4) F 4], Li [P (C 2 O 4 ) 2 F 2 ], LiPO 2 F 2 and the like.
  • One type of these lithium salts may be used, or two or more types may be used
  • separator a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • olefinic resins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • Example 1 [Preparation of positive electrode active material (lithium nickel-containing layered oxide)]
  • a nickel cobalt aluminum composite hydroxide represented by the composition formula of Ni 0.88 Co 0.09 Al 0.03 (OH) 2 was obtained by coprecipitation and then heat-treated at 500 ° C. to prepare a composite oxide.
  • LiOH, the composite oxide, and SiO were mixed in such an amount that the total amount of Li, transition metals (Ni, Co, and Al) and the molar ratio of Si were 1.03: 1: 0.005. Thereafter, the mixture is fired in an oxygen stream at 750 ° C. for 10 hours to obtain a layered oxide A1 represented by a composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0.03 Si 0.005 O 2. Prepared.
  • the crystal structure of the layered oxide A1 was analyzed by a powder X-ray diffraction method using a powder X-ray diffractometer (manufactured by Rigaku Corporation, trade name “RINT2200”, radiation source Cu-K ⁇ ).
  • the crystal structure of the layered oxide A1 is a layered crystal structure belonging to the space group R-3m, and the half-value width n (2 ⁇ ) of the diffraction peak corresponding to the (211) plane was 0.40 °. .
  • the crystallite size s calculated using Scherrer's equation based on the half width and diffraction angle of the diffraction peak corresponding to the (104) plane was 1486 mm.
  • Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 3: 3: 4.
  • a nonaqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) in the mixed solvent so as to have a concentration of 1.2 mol / liter.
  • test cell A1 The positive electrode and a negative electrode made of lithium metal foil were laminated so as to face each other with a separator interposed therebetween, and wound to prepare a wound electrode body. Next, the spirally wound electrode body and the nonaqueous electrolyte were inserted into an aluminum exterior body to produce a nonaqueous electrolyte secondary battery (test cell A1).
  • Example 2 In the preparation of the positive electrode active material, LiOH, the composite oxide, and SiO are added in an amount such that the total amount of Li, transition metals (Ni, Co, and Al) and the molar ratio of Si are 1.03: 1: 0.01.
  • the layered oxide A2 represented by the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0.03 Si 0.01 O 2 , and non-aqueous, except that it was mixed, in the same manner as in Example 1.
  • An electrolyte secondary battery (test cell A2) was produced.
  • the crystal structure of the layered oxide A2 is a layered crystal structure belonging to the space group R-3m, and has a diffraction peak corresponding to the (211) plane.
  • the half width n (2 ⁇ ) was 0.45 °, and the calculated crystallite size s was 1480cm.
  • Example 3 In the preparation of the positive electrode active material, LiOH, the composite oxide, and SiO are added in such an amount that the total amount of Li, transition metals (Ni, Co, and Al) and the molar ratio of Si are 1.03: 1: 0.02.
  • the layered oxide A3 represented by the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0.03 Si 0.02 O 2 , and non-aqueous, except that it was mixed, in the same manner as in Example 1.
  • An electrolyte secondary battery (test cell A3) was produced.
  • the layered oxide A3 is a layered crystal structure belonging to the space group R-3m, and has a diffraction peak corresponding to the (211) plane.
  • the full width at half maximum n (2 ⁇ ) was 0.50 °, and the calculated crystallite size s was 1690 ⁇ .
  • Example 4 In the preparation of the positive electrode active material, the composition formula Li 1.03 Ni 0.88 was obtained in the same manner as in Example 2 except that the mixture of LiOH, the composite oxide and SiO was baked in an oxygen stream at 750 ° C. for 20 hours.
  • a layered oxide A4 represented by Co 0.09 Al 0.03 Si 0.01 O 2 and a nonaqueous electrolyte secondary battery (test cell A4) were produced.
  • the crystal structure of the layered oxide A4 is a layered crystal structure belonging to the space group R-3m, and has a diffraction peak corresponding to the (211) plane.
  • the full width at half maximum (2 ⁇ ) was 0.28 °, and the calculated crystallite size s was 2524 mm.
  • ⁇ Comparative Example 1> In the preparation of the positive electrode active material, SiO was not used, and LiOH and the composite oxide were mixed in an amount such that the total amount of Li and transition metals (Ni, Co, and Al) was 1.03: 1.
  • the layered oxide B1 represented by the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0.03 O 2 and the nonaqueous electrolyte secondary battery (test cell B1) was made.
  • the crystal structure of the layered oxide B1 is a layered crystal structure belonging to the space group R-3m, and has a diffraction peak corresponding to the (211) plane.
  • the full width at half maximum n (2 ⁇ ) was 0.36 °, and the calculated crystallite size s was 1527 mm.
  • ⁇ Comparative example 2> In the preparation of the positive electrode active material, LiOH, the composite oxide, and SiO are added in such an amount that the total amount of Li, transition metals (Ni, Co, and Al) and the molar ratio of Si are 1.03: 1: 0.03.
  • the layered oxide B2 represented by the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0.03 Si 0.03 O 2 , and non-aqueous, except that it was mixed, in the same manner as in Example 1.
  • An electrolyte secondary battery (test cell B2) was produced.
  • the crystal structure of the layered oxide B2 is a layered crystal structure belonging to the space group R-3m, and has a diffraction peak corresponding to the (211) plane.
  • the full width at half maximum n (2 ⁇ ) was 0.64 °, and the calculated crystallite size s was 1192 °.
  • the composition formula Li 1.03 Ni 0.88 was obtained in the same manner as in Example 2 except that the mixture of LiOH, the composite oxide and SiO was baked in an oxygen stream at 750 ° C. for 40 hours.
  • a layered oxide B3 represented by Co 0.09 Al 0.03 Si 0.01 O 2 and a non-aqueous electrolyte secondary battery (test cell B3) were produced.
  • the crystal structure of the layered oxide B3 is a layered crystal structure belonging to the space group R-3m, and has a diffraction peak corresponding to the (211) plane.
  • the full width at half maximum n (2 ⁇ ) was 0.18 °, and the calculated crystallite size s was 3320 mm.
  • Table 1 shows the Si content (molar ratio) z in the layered oxides A1 to A4 and B1 to B3, the firing conditions when preparing the layered oxide, the half width n of the diffraction peak on the (211) plane, and the crystallite The size s is indicated.
  • Table 1 shows the initial discharge capacities and capacity retention rates of the test cells A1 to A4 and B1 to B3 obtained by the output characteristic test.
  • FIG. 1 shows X-ray diffraction patterns of the layered oxides A1 to A4 and B1 to B3 obtained in Examples 1 to 4 and Comparative Examples 1 to 3.
  • FIG. 2 shows an enlarged view of the diffraction angle (2 ⁇ ) near 15 ° to 40 °
  • FIG. 3 shows an enlarged view of the diffraction angle (2 ⁇ ) around 105 ° to 120 °.
  • Comparative Example 2 in which the Si content z exceeded the range of the present disclosure, the initial discharge capacity decreased.
  • FIG. 2 in the X-ray diffraction pattern of Comparative Example 2, a clear X-ray diffraction peak of lithium silicon oxide was observed. That is, in the layered oxide B2 of Comparative Example 2, since the Si content was excessive, a composite oxide of lithium and silicon contained in the positive electrode active material was formed, and the movable lithium decreased. It is thought that the capacity has decreased.
  • Example 2 Example 4, and Comparative Example 3
  • the first discharge is performed as the half-value width n of the diffraction peak of the (211) plane increases. Capacity improved. Further, the capacity retention rate decreased as the half width n increased.
  • the full width at half maximum n is in a specific range, and moderate fluctuation occurs in the transition metal layer and between the layers. It is done.
  • the lithium nickel composite oxide having a high Ni content ratio by adjusting the silicon content and the half width of the diffraction peak of the (211) plane, good durability and A nonaqueous electrolyte secondary battery having a high charge / discharge capacity can be produced.
  • the present invention can be used for a positive electrode active material for a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

非水電解質二次電池用正極活物質であって、組成式LiNiCoαAlβSi2-γ(式中、x、y、α、β、z及びγはそれぞれ特定の範囲に含まれる0.95<x<1.05、0.80<y<1、0<α<0.15、0<β<0.05、y+α+β=1、0<z≦0.02、及び0≦γ<0.05を満たす。)で表され、空間群R-3mに属する層状結晶構造を有する。さらに、X線回折パターンにおける(211)面の回折ピークの半値幅nが0.28°≦n≦0.50°である層状酸化物を含む。

Description

非水電解質二次電池用正極活物質、及び非水電解質二次電池
 本開示は非水電解質二次電池用正極活物質、及び非水電解質二次電池に関する。
 リチウムイオン二次電池の正極材料の一つであるリチウムニッケル複合酸化物(LiNiO)は、リチウムコバルト複合酸化物(LiCoO)と比べて、高容量であること、ニッケルがコバルトよりも安価であり、安定して入手可能であることなどの利点を有しているため、次世代の正極材料として期待されている。しかし、リチウムニッケル複合酸化物は概して、リチウムコバルト複合酸化物と比べて耐久性が劣るため、リチウムニッケル複合酸化物の耐久性を改良する試みが行われている。
 特許文献1には、正極活物質としてニッケル含有リチウム複合酸化物を含み、非水電解液が特定の濃度の有機酸を含む非水電解液二次電池において、当該ニッケル含有リチウム複合酸化物がLi、Ni並びにCo及びMnの少なくとも1種に加えて、特定の金属よりなる群から選択される元素を含む場合、高温でのサイクル特性に優れた電池が得られると記載されている。
特開2006-351242
 ところで、正極活物質としてNi含有量の高いリチウムニッケル複合酸化物を使用する場合、当該リチウムニッケル複合酸化物にLi、Ni、Co及びMn以外の金属を添加して耐久性(サイクル特性)の向上を図ると、充放電容量が低下するという課題がある。
 本開示は、Ni含有量の高いリチウムニッケル複合酸化物を含有していながら、良好な耐久性と高い充放電容量とを有する非水電解質二次電池を提供することを目的とする。
 本開示に係る非水電解質二次電池用正極活物質は、組成式LiNiCoαAlβSi2-γ(式中、x、y、α、β、z及びγはそれぞれ、0.95<x<1.05、0.80<y<1、0<α<0.15、0<β<0.05、y+α+β=1、0<z≦0.02、及び0≦γ<0.05を満たす。)で表され、空間群R-3mに属する層状結晶構造を有する。さらに、X線回折パターンにおける(211)面の回折ピークの半値幅nが0.28°≦n≦0.50°である層状酸化物を含むことを特徴とする。
 本開示によれば、正極活物質がNi含有量の高いリチウムニッケル複合酸化物を含有していながら、良好な耐久性と高い充放電容量とを有する非水電解質二次電池を作製することができる。
図1は、実施例及び比較例で作製したリチウムニッケル複合酸化物の粉末X線回折パターンを示す図である。 図2は、実施例及び比較例で作製したリチウムニッケル複合酸化物の粉末X線回折パターンの一部分の拡大図である。 図3は、実施例及び比較例で作製したリチウムニッケル複合酸化物の粉末X線回折パターンの他の部分の拡大図である。
 耐久性向上を目的として、リチウムニッケル複合酸化物に金属を添加して結晶性を向上させると、結晶子が成長し過ぎることなどにより、充放電容量が低下する。一方、リチウムニッケル複合酸化物の結晶性が低過ぎると、結晶構造の骨格が脆くなり、耐久性が低下してしまう。このように、Ni含有比率の高いリチウムニッケル複合酸化物を正極活物質として使用する場合において、充放電容量及び耐久性の両立が困難であった。
 本発明者らは、鋭意検討した結果、リチウムニッケル複合酸化物にケイ素を特定量添加することで、結晶構造の骨格である酸素と遷移金属との結合を強固にし、構造安定化による耐久性向上を図ることができ、更に、遷移金属の層内及び層間の配列を表す(211)面の回折ピークの半値幅nを0.28°≦n≦0.50°とすることで、非水電解質二次電池において高い充放電容量の発現を可能にすることを見出した。これにより、Ni含有比率の高いリチウムニッケル複合酸化物を正極活物質として有する非水電解質二次電池であっても、良好な耐久性と高い充放電容量の両立を図ることができる。
 以下、本開示の実施形態の一例について詳説する。
 本開示の実施形態の一例である非水電解質二次電池(以下単に「二次電池」ともいう)は、正極と、負極と、非水電解質とを備える。正極と負極との間には、セパレータを設けることが好適である。非水電解質二次電池は、例えば、正極及び負極がセパレータを介して巻回されてなる巻回型の電極体と、非水電解質とが外装体に収容された構造を有する。或いは、巻回型の電極体の代わりに、正極及び負極がセパレータを介して積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。また、非水電解質二次電池の形態としては、特に限定されず、円筒型、角型、コイン型、ボタン型、ラミネート型などが例示できる。
 [正極]
 正極は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極活物質層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極活物質層は、正極活物質の他に、導電材及び結着剤を含むことが好適である。導電材は、正極活物質層の電気伝導性を高めるために用いられる。
 導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。これらは、1種類を使用してもよく、2種類以上を組み合わせて使用してもよい。導電材の含有率は、正極活物質層の総質量に対して0.1~30質量%が好ましく、0.1~20質量%がより好ましく、0.1~10質量%が特に好ましい。
 結着剤は、正極活物質及び導電材間の良好な接触状態を維持し、且つ正極集電体表面に対する正極活物質等の結着性を高めるために用いられる。結着剤には、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、ポリビニルアセテート、ポリメタクリレート、ポリアクリレート、ポリアクリロニトリル、ポリビニルアルコール、又はこれらの2種以上の混合物等が用いられる。結着剤は、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)等の増粘剤と併用されてもよい。これらは、1種類を使用してもよく、2種類以上を組み合わせて使用してもよい。結着剤の含有率は、正極活物質層の総質量に対して0.1~30質量%が好ましく、0.1~20質量%がより好ましく、0.1~10質量%が特に好ましい。
 以下、正極活物質について詳説する。
 本開示の実施形態の一例である非水電解質二次電池用正極活物質(以下単に「正極活物質」ともいう)は、下記の組成式(1)で表され、空間群R-3mに属する層状結晶構造を有し、X線回折パターンにおける(211)面の回折ピークの半値幅nが特定の範囲にあるリチウムニッケル含有層状酸化物を含む。以下、本開示に係る正極活物質が含有する、下記の組成式(1)で表されるリチウムニッケル含有層状酸化物を、単に「層状酸化物」とも記載する。
 層状酸化物は、下記の組成式(1):
LiNiCoαAlβSi2-γ   (1)
で表され、式中、x、y、α、β、z及びγはそれぞれ、0.95<x<1.05、0.80<y<1、0<α<0.15、0<β<0.05、y+α+β=1、0<z≦0.02、及び0≦γ<0.05を満たす。
 上記の通り、組成式(1)においては、Ni、Co及びAlの総量を1モルとして、即ち、y+α+β=1として、各元素のモル存在比を示す。なお、層状酸化物の結晶構造等について言及する際、Ni及びCoに加え、Ni及びCoと同じ層内に存在するAlを含めて、これらを「遷移金属」と総称する場合がある。
 組成式(1)のxは、Ni、Co及びAlの総量に対するリチウム(Li)の含有量(モル比)を示す。0.95<x<1.05の範囲でリチウムを含有することにより、非水電解質二次電池の充放電容量を向上することができる。
 組成式(1)のyは、Ni、Co及びAlの総量に対するニッケル(Ni)の含有量(モル比)を示す。0.80<y<1の範囲でニッケルを含有することにより、非水電解質二次電池の充放電容量を向上することができる。この観点から、組成式(1)のyは、0.85<y<1であることが好ましい。
 組成式(1)のαは、Ni、Co及びAlの総量に対するコバルト(Co)の含有量(モル比)を示す。層状酸化物がコバルトを含有することにより、非水電解質二次電池の耐久性を向上することができる。また、α<0.15の範囲でコバルトを含有することにより、非水電解質二次電池の充放電容量を向上することができる。組成式(1)のαは、0.03<α<0.12であることが好ましい。
 組成式(1)のβは、Ni、Co及びAlの総量に対するアルミニウム(Al)の含有量(モル比)を示す。層状酸化物がアルミニウムを含有することにより、非水電解質二次電池の耐久性を向上することができる。また、β<0.05の範囲でアルミニウムを含有するであることにより、非水電解質二次電池の充放電容量を向上することができる。組成式(1)のβは、0.005<β<0.05であることが好ましい。
 組成式(1)のzは、Ni、Co及びAlの総量に対するケイ素(Si)の含有量(モル比)を示す。層状酸化物が0<z≦0.02の範囲でケイ素を含有することにより、非水電解質二次電池の耐久性を向上することができる。ケイ素が層状酸化物に固溶して、層状酸化物に含まれる酸素と遷移金属との共有結合性が増加することにより、層状酸化物のバルク構造の骨格が強固になるためと考えられる。一方、ケイ素の含有量が多過ぎると、場合によって、リチウムケイ素酸化物が生成して充放電容量が低下することがある。組成式(1)のzは、上記の観点から、0.005≦z≦0.02であることが好ましく、0.008≦z≦0.012であることがより好ましい。
 図1に、組成または製造条件を変えて調製されたリチウムニッケル複合酸化物について、粉末X線回折法に基づく解析によって得られたX線回折パターンを示す。図2には、図1に示すX線回折パターンの回折角(2θ)が15°~40°である範囲の拡大図を示す。図1及び図2に示すX線回折パターンにおいて、リチウムケイ素酸化物の存在を示すX線回折ピークは、22°付近、28°付近、及び34°付近に現れている。
 組成式(1)の「2-γ」は、Ni、Co及びAlの総量に対する酸素原子(O)の含有量(モル比)を示す。ここでγは酸素欠損量を示し、γの値が増加すると、それに応じて2価のNiの量が増加して、層状酸化物が岩塩型構造となるいわゆる「岩塩化」が生じ、充放電容量が低下すると考えられる。このため、岩塩化の促進因子であるγを0≦γ<0.05の範囲とすることにより、充放電容量の向上を図ることができる。
 層状酸化物は、本開示の目的を損なわない範囲でLi、Ni、Co、Al及びSi以外の金属元素を含有していてもよい。但し、層状酸化物は0.80を超える高い含有量でNiを含有するため、例えばAlに代えてマンガン(Mn)を含有すると耐久性が低下する。例えば、本発明者による予備的な試験では、Alの含有量が0.03である場合、100サイクル後の容量維持率は約90%であったのに対し、Mnの含有量が0.03である場合、100サイクル後の容量維持率は約85%に低下した。このため、層状酸化物は、Mnを含まないことが好ましい。
 空間群R-3mに属する結晶構造は、リチウム-酸素八面体層と遷移金属-酸素八面体層とが積層してなる構造であり、例えば、ニッケル酸リチウム(LiNiO)、及びコバルト酸リチウム(LiCoO)が有する結晶構造である。組成式(1)で表される層状酸化物もまた、空間群R-3mに属する結晶構造を有すると考えられる。
 層状酸化物が空間群R-3mに属する結晶構造を有することは、そのX線回折パターンにおいて確認することができる。
 本開示の実施形態の一例である正極活物質は、X線回折パターンにおける(211)面の回折ピークの半値幅(半値全幅)nが0.28°≦n≦0.50°の範囲にある層状酸化物を含有することを特徴とする。図3に、図1のX線回折パターンの回折角(2θ)が105°~120°である範囲の拡大図を示す。図3に示す各回折パターンにおいて、層状酸化物の(211)面の回折ピークは回折角(2θ)=110°付近に現れている。
 層状酸化物のX線回折パターンにおける(211)面の回折ピークの半値幅nは、空間群R-3mに属する結晶構造において、遷移金属(Ni、Co及びAl)の層内及び層間における配列の状態を示していると考えられる。当該半値幅nが0.28°≦n≦0.50°の範囲にあると、層状酸化物において、遷移金属の層内及び層間の配列に適度な「揺らぎ」が生じて、リチウムの束縛が緩和されるため、二次電池において高い充放電容量が得られると考えられる。一方、当該半値幅nが0.50を超えて大きくなり過ぎると、層状酸化物の結晶性が低下し、結晶構造の骨格が脆くなり、空間群R-3mに属する結晶構造を保持できなくなるため、耐久性が低下すると考えられる。上記の観点から、層状酸化物のX線回折パターンにおける(211)面の回折ピークの半値幅nは、0.28°≦n≦0.50°の範囲にあることが好ましく、0.40°≦n≦0.45°の範囲にあることがより好ましい。
 組成式(1)で表される層状酸化物、及び当該層状酸化物以外のリチウムニッケル複合酸化物の回折パターンが記載されている図1及び図3に示すように、(211)面の回折ピーク(回折角(2θ)=110°付近)の半値幅nは変動しているのに対して、メインピークである(003)面の回折ピーク(回折角(2θ)=18°付近)の半値幅mは、0.14~0.15であり、明確な変動は見られない。(003)面の回折ピークは遷移金属層とリチウム層の積層方向における配列の状態を示す。このように、本発明においては、層状酸化物の積層方向の結晶構造を変えずに、遷移金属の層内及び層間の配列のみが適度の揺らぎが生じる範囲に調整されている。
 層状酸化物における(211)面の回折ピークの半値幅nは、例えば、層状酸化物の製造条件によって調整することができる。より具体的には、層状酸化物の合成において、原料となる各金属化合物の混合物を焼成する際の焼成時間を長くすることにより、当該半値幅nを狭くすることができる。また、当該半値幅nは組成式(1)におけるSi含有量zによっても調整することができ、例えば、Si含有量zが増加するにつれて半値幅nが広がる。また、焼成温度を高くすることでも半値幅nを狭くすることができる。なお、上記のいずれの方法によって半値幅nを調整しても、(003)面の回折ピークの半値幅mは明らかな変動を示さない。
 層状酸化物は、粉末X線回折法に基づく解析によって得られたX線回折パターンにおける(104)面の回折ピークの半値幅からシェラーの式(Scherrer equation)により算出される結晶子サイズsが、1200Å≦s≦2800Åであることが好ましい。シェラーの式は、下記式(2):
Figure JPOXMLDOC01-appb-M000001
で表される。式(2)において、Dは結晶子サイズ、λはX線の波長、Bは(104)面の回折ピークの半値全幅、θは回折角(rad)、KはScherrer定数である。本実施形態においてKは0.9とした。
 層状酸化物の結晶子サイズsが1200Åより小さいと、場合により、結晶性が低下して、耐久性が低下することがある。また、層状酸化物の結晶子サイズsが2500Åを越えると、場合により、レート特性が低下することがある。結晶子サイズsが1200Å≦s≦2800Åの範囲にある層状酸化物は、例えば、焼成時間を変化させることによって調製することができる。結晶子サイズsは1200Å≦s≦2200Åの範囲にあることが好ましい。
 組成式(1)で表される層状酸化物は、例えば、Li含有化合物、Ni、Co及びAlを含有する化合物、及びSi含有化合物を、目的とする層状酸化物に基づく混合比率で混合し、当該混合物を焼成することにより、合成することができる。当該混合物の焼成は、大気中又は酸素気流中で行う。焼成温度は600~1100℃程度であり、焼成時間は、焼成温度が600~1100℃である場合、1~50時間程度である。上記の通り、焼成時間を適宜調整することによって、目的とする(211)面の回折ピークの半値幅nを有する層状酸化物を合成することができる。
 組成式(1)で表される層状酸化物以外に、本開示の目的を損なわない範囲で他のケイ素含有酸化物を含んでいてもよい。当該ケイ素含有酸化物は、組成式(1)で表される層状酸化物に対して1質量%以下であることが好ましい。
 正極活物質の総量に対する当該層状酸化物の割合は、好ましくは90%以上であり、より好ましくは99%以上である。
 [負極]
 負極は、例えば金属箔等の負極集電体と、負極集電体の表面に形成された負極活物質層とを備える。負極集電体には、アルミニウムや銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極活物質層は、リチウムイオンを吸蔵・放出可能な負極活物質の他に、結着剤を含むことが好適である。また、必要により導電材を含んでいてもよい。
 負極活物質としては、天然黒鉛、人造黒鉛、リチウム、珪素、炭素、錫、ゲルマニウム、アルミニウム、鉛、インジウム、ガリウム、リチウム合金、予めリチウムを吸蔵させた炭素、珪素、及びこれらの合金並びに混合物等を用いることができる。結着剤としては、正極の場合と同様にPTFE等を用いることもできるが、スチレン-ブタジエン共重合体(SBR)又はこの変性体等を用いることが好ましい。結着剤は、CMC等の増粘剤と併用されてもよい。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。
 エステル類の例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のカルボン酸エステル類などが挙げられる。
 エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等の鎖状エーテル類などが挙げられる。
 非水溶媒は、上記各種溶媒の水素をフッ素等のハロゲン原子で置換したハロゲン置換体を含有することが好適である。特に、フッ素化環状炭酸エステル、フッ素化鎖状炭酸エステルが好ましく、両者を混合して用いることがより好ましい。これにより、負極はもとより正極においても良好な保護被膜が形成されてサイクル特性が向上する。フッ素化環状炭酸エステルの好適な例としては、4-フルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,4,5-トリフルオロエチレンカーボネート、4,4,5,5-テトラフルオロエチレンカーボネート等が挙げられる。フッ素化鎖状エステルの好適な例としては、2,2,2-トリフルオロ酢酸エチル、3,3,3-トリフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸メチル等が挙げられる。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiPF、LiBF、LiAsF、LiClO、LiCFSO、LiN(FSO、LiN(C2l+1SO)(C2m+1SO)(l,mは1以上の整数)、LiC(CF2p+1SO)(C2q+1SO)(C2r+1SO)(p,q,rは1以上の整数)、Li[B(C](ビス(オキサレート)ホウ酸リチウム(LiBOB))、Li[B(C)F] 、Li[P(C)F]、Li[P(C]、LiPO等が挙げられる。これらのリチウム塩は、1種類を使用してもよく、2種類以上を組み合わせて使用してもよい。
 [セパレータ]
 セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。
 以下、実施例により本開示をさらに詳しく説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極活物質(リチウムニッケル含有層状酸化物)の調製]
 Ni0.88Co0.09Al0.03(OH)の組成式で表されるニッケルコバルトアルミニウム複合水酸化物を共沈により得た後、500℃で熱処理して複合酸化物を調製した。次に、LiOH、当該複合酸化物及びSiOを、Li、遷移金属(Ni、Co及びAl)の合計量及びSiのモル比が1.03:1:0.005となる量で混合した。その後、当該混合物を酸素気流中750℃で10時間焼成して、組成式Li1.03Ni0.88Co0.09Al0.03Si0.005で表される層状酸化物A1を調製した。
 層状酸化物A1の結晶構造を、粉末X線回折装置(株式会社リガク製、商品名「RINT2200」、線源Cu-Kα)を用いて、粉末X線回折法により解析した。解析の結果、層状酸化物A1の結晶構造は空間群R-3mに帰属する層状結晶構造であり、(211)面に対応する回折ピークの半値幅n(2θ)は0.40°であった。また、上記の通り(104)面に対応する回折ピークの半値幅及び回折角に基づいてシェラーの式を用いて算出された結晶子サイズsは、1486Åであった。
 [正極の作製]
 正極活物質として上記で調製された層状酸化物A1を91質量部、導電材としてアセチレンブラックを7質量部、結着剤としてポリフッ化ビニリデンを2質量部の割合で混合した。当該混合物を混練機(T.K.ハイビスミックス、プライミクス株式会社製)を用いて混練し、正極合材スラリーを調製した。次いで、正極合材スラリーを厚さ15μmのアルミニウム箔に塗布し、塗膜を乾燥してアルミニウム箔に正極合材層を形成して、電極(正極)を作製した。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した。当該混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度となるように溶解させて、非水電解質を調製した。
 [試験セルの作製]
 上記正極と、リチウム金属箔からなる負極とを、セパレータを介して互いに対向するように積層し、巻回して、巻回電極体を作製した。次いで、巻回電極体及び上記非水電解質をアルミニウム製の外装体に挿入し、非水電解質二次電池(試験セルA1)を作製した。
 <実施例2>
 正極活物質の調製において、LiOH、当該複合酸化物及びSiOを、Li、遷移金属(Ni、Co及びAl)の合計量及びSiのモル比が1.03:1:0.01となる量で混合したこと以外は、実施例1と同様にして、組成式Li1.03Ni0.88Co0.09Al0.03Si0.01で表される層状酸化物A2、及び非水電解質二次電池(試験セルA2)を作製した。層状酸化物A2の結晶構造を粉末X線回折法により解析した結果、層状酸化物A2の結晶構造は空間群R-3mに帰属する層状結晶構造であり、(211)面に対応する回折ピークの半値幅n(2θ)は0.45°であり、算出された結晶子サイズsは1480Åであった。
 <実施例3>
 正極活物質の調製において、LiOH、当該複合酸化物及びSiOを、Li、遷移金属(Ni、Co及びAl)の合計量及びSiのモル比が1.03:1:0.02となる量で混合したこと以外は、実施例1と同様にして、組成式Li1.03Ni0.88Co0.09Al0.03Si0.02で表される層状酸化物A3、及び非水電解質二次電池(試験セルA3)を作製した。層状酸化物A3の結晶構造を粉末X線回折法により解析した結果、層状酸化物A3の結晶構造は空間群R-3mに帰属する層状結晶構造であり、(211)面に対応する回折ピークの半値幅n(2θ)は0.50°であり、算出された結晶子サイズsは1690Åであった。
 <実施例4>
 正極活物質の調製において、LiOH、当該複合酸化物及びSiOの混合物を酸素気流中750℃で20時間焼成したこと以外は、実施例2と同様にして、組成式Li1.03Ni0.88Co0.09Al0.03Si0.01で表される層状酸化物A4、及び非水電解質二次電池(試験セルA4)を作製した。層状酸化物A4の結晶構造を粉末X線回折法により解析した結果、層状酸化物A4の結晶構造は空間群R-3mに帰属する層状結晶構造であり、(211)面に対応する回折ピークの半値幅n(2θ)は0.28°であり、算出された結晶子サイズsは2524Åであった。
 <比較例1>
 正極活物質の調製において、SiOを使用せず、LiOH及び当該複合酸化物を、Li及び遷移金属(Ni、Co及びAl)の合計量が1.03:1となる量で混合したこと以外は、実施例1と同様にして、組成式Li1.03Ni0.88Co0.09Al0.03で表される層状酸化物B1、及び非水電解質二次電池(試験セルB1)を作製した。層状酸化物B1の結晶構造を粉末X線回折法により解析した結果、層状酸化物B1の結晶構造は空間群R-3mに帰属する層状結晶構造であり、(211)面に対応する回折ピークの半値幅n(2θ)は0.36°であり、算出された結晶子サイズsは1527Åであった。
 <比較例2>
 正極活物質の調製において、LiOH、当該複合酸化物及びSiOを、Li、遷移金属(Ni、Co及びAl)の合計量及びSiのモル比が1.03:1:0.03となる量で混合したこと以外は、実施例1と同様にして、組成式Li1.03Ni0.88Co0.09Al0.03Si0.03で表される層状酸化物B2、及び非水電解質二次電池(試験セルB2)を作製した。層状酸化物B2の結晶構造を粉末X線回折法により解析した結果、層状酸化物B2の結晶構造は空間群R-3mに帰属する層状結晶構造であり、(211)面に対応する回折ピークの半値幅n(2θ)は0.64°であり、算出された結晶子サイズsは1192Åであった。
 <比較例3>
 正極活物質の調製において、LiOH、当該複合酸化物及びSiOの混合物を酸素気流中750℃で40時間焼成したこと以外は、実施例2と同様にして、組成式Li1.03Ni0.88Co0.09Al0.03Si0.01で表される層状酸化物B3及び非水電解質二次電池(試験セルB3)を作製した。層状酸化物B3の結晶構造を粉末X線回折法により解析した結果、層状酸化物B3の結晶構造は空間群R-3mに帰属する層状結晶構造であり、(211)面に対応する回折ピークの半値幅n(2θ)は0.18°であり、算出された結晶子サイズsは3320Åであった。
 [出力特性試験]
 上記で作製した試験セルA1~A4及びB1~B3をそれぞれ用いて、25℃の温度条件下、電圧が4.3Vになるまで電流値6mAで定電流充電を行い、次いで、電流値が1.5mAになるまで4.3Vで定電圧充電を行った。その後、電圧が2.5Vになるまで1.5mAで定電流放電を行った。この定電流放電により試験セルから放電された容量を、各試験セルの初回放電容量(mAh/g)とした。
 次いで、試験セルA1~A4及びB1~B3のそれぞれに対して、下記の条件による充放電サイクルを繰り返した。充放電時の環境温度は25℃に設定した。最初に電圧が4.3Vになるまで電流値6mAで定電流充電を行った後、電流値が1.5mAになるまで4.3Vで定電圧充電をした。次いで、放電終止電圧を2.5Vとして電流値1.5mAで定電流放電をした。充電と放電との間には20分間の休止時間をそれぞれ設けた。この充放電サイクルを1サイクルとして、充放電を40サイクル繰り返した。この40サイクル目において放電された容量の上記初回放電容量に対する割合(百分率)を容量維持率として算出し、この容量維持率によって各試験セルのサイクル特性を評価した。
 表1に、層状酸化物A1~A4及びB1~B3における、Si含有量(モル比)z、層状酸化物の調製時の焼成条件、(211)面の回折ピークの半値幅n、及び結晶子サイズsを示す。また、表1に、出力特性試験により得られた試験セルA1~A4及びB1~B3の初回放電容量、及び容量維持率を示す。
Figure JPOXMLDOC01-appb-T000001
 図1に、実施例1~4及び比較例1~3により得られた層状酸化物A1~A4及びB1~B3のX線回折パターンを示す。また、各X線回折パターンについて、図2に回折角(2θ)15°~40°付近の拡大図を示し、図3に回折角(2θ)105°~120°付近の拡大図を示す。
 表1から、層状酸化物のSi含有量zが増加するにつれて、試験セルの容量維持率が向上していることがわかる。これは、固溶したSiがNi等の遷移金属と置換したことにより、酸素原子と遷移金属との共有結合性が増加し、バルク構造の骨格が強固になったためと考えられる。
 一方、Si含有量zが本開示の範囲を超える比較例2では、初回放電容量が低下した。また、図2に示す通り、比較例2のX線回折パターンにおいて、リチウムケイ素酸化物の明瞭なX線回折ピークが観察された。即ち、比較例2の層状酸化物B2はSi含有量が過剰であったことにより、正極活物質に含まれるリチウムとケイ素との複合酸化物が形成され、移動可能なリチウムが減少したため、初回放電容量が低下したものと考えられる。
 また、実施例2、実施例4及び比較例3の比較から明らかなように、Si含有量zが同じであっても、(211)面の回折ピークの半値幅nが広くなるにつれて、初回放電容量が向上した。また、容量維持率は半値幅nが広くなるにつれて低下した。(211)面の回折ピーク(2θ=110°付近)の半値幅nは、遷移金属の層内及び層間における配列の状態を示す。本開示の正極活物質を備える二次電池は、当該半値幅nが特定の範囲にあり、遷移金属の層内と層間の配列において適度の揺らぎが生じたため、高い初回放電容量が得られたと考えられる。
 以上説明したように、本実施形態では、Ni含有比率の高いリチウムニッケル複合酸化物において、ケイ素の含有量と(211)面の回折ピークの半値幅とを調整することにより、良好な耐久性と高い充放電容量とを有する非水電解質二次電池を作製することができる。
 本発明は、非水電解質二次電池用正極活物質、及び非水電解質二次電池に利用できる。

Claims (3)

  1.  組成式LiNiCoαAlβSi2-γ(式中、x、y、α、β、z及びγはそれぞれ、0.95<x<1.05、0.80<y<1、0<α<0.15、0<β<0.05、y+α+β=1、0<z≦0.02、及び0≦γ<0.05を満たす。)で表され、空間群R-3mに属する層状結晶構造を有し、X線回折パターンにおける(211)面の回折ピークの半値幅nが0.28°≦n≦0.50°である層状酸化物を含む、非水電解質二次電池用正極活物質。
  2.  前記X線回折パターンにおける(104)面の回折ピークの半値幅からシェラーの式により算出される前記層状酸化物の結晶子サイズsが1200Å≦s≦2800Åである、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  請求項1または2に記載の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備える、非水電解質二次電池。
PCT/JP2016/005137 2015-12-25 2016-12-15 非水電解質二次電池用正極活物質、及び非水電解質二次電池 WO2017110063A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017557696A JP6660599B2 (ja) 2015-12-25 2016-12-15 非水電解質二次電池用正極活物質、及び非水電解質二次電池
CN201680069803.XA CN108292750A (zh) 2015-12-25 2016-12-15 非水电解质二次电池用正极活性物质和非水电解质二次电池
US16/062,007 US20180375096A1 (en) 2015-12-25 2016-12-15 Positive electrode active material for non-aqueous-electrolyte secondary battery and non-aqueous-electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015253463 2015-12-25
JP2015-253463 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110063A1 true WO2017110063A1 (ja) 2017-06-29

Family

ID=59089968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005137 WO2017110063A1 (ja) 2015-12-25 2016-12-15 非水電解質二次電池用正極活物質、及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US20180375096A1 (ja)
JP (1) JP6660599B2 (ja)
CN (1) CN108292750A (ja)
WO (1) WO2017110063A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180090757A1 (en) * 2016-09-26 2018-03-29 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for a battery and battery including positive electrode active material
WO2019193875A1 (ja) * 2018-04-02 2019-10-10 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2020110590A1 (ja) * 2018-11-28 2020-06-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
JP2023500220A (ja) * 2019-10-23 2023-01-05 エルジー・ケム・リミテッド 正極活物質、これを含む正極およびリチウム二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020262348A1 (ja) * 2019-06-27 2020-12-30

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147199A (ja) * 2008-01-28 2008-06-26 Canon Inc 正極活物質材料の適否判定方法
JP2009076383A (ja) * 2007-09-21 2009-04-09 Panasonic Corp 非水電解質二次電池およびその製造方法
JP2009105061A (ja) * 2009-01-06 2009-05-14 Sumitomo Chemical Co Ltd 非水二次電池用電極材料
WO2011099494A1 (ja) * 2010-02-09 2011-08-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法、および該正極活物質を用いた非水系電解質二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068168A (ja) * 1999-08-31 2001-03-16 Hitachi Ltd リチウム二次電池
JP5173145B2 (ja) * 2006-02-08 2013-03-27 三洋電機株式会社 非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076383A (ja) * 2007-09-21 2009-04-09 Panasonic Corp 非水電解質二次電池およびその製造方法
JP2008147199A (ja) * 2008-01-28 2008-06-26 Canon Inc 正極活物質材料の適否判定方法
JP2009105061A (ja) * 2009-01-06 2009-05-14 Sumitomo Chemical Co Ltd 非水二次電池用電極材料
WO2011099494A1 (ja) * 2010-02-09 2011-08-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法、および該正極活物質を用いた非水系電解質二次電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180090757A1 (en) * 2016-09-26 2018-03-29 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for a battery and battery including positive electrode active material
US10586981B2 (en) * 2016-09-26 2020-03-10 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for a battery and battery including positive electrode active material
WO2019193875A1 (ja) * 2018-04-02 2019-10-10 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN112005410A (zh) * 2018-04-02 2020-11-27 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池
JPWO2019193875A1 (ja) * 2018-04-02 2021-04-08 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP7336679B2 (ja) 2018-04-02 2023-09-01 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2020110590A1 (ja) * 2018-11-28 2020-06-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
JPWO2020110590A1 (ja) * 2018-11-28 2021-10-14 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
JP7316565B2 (ja) 2018-11-28 2023-07-28 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
JP2023500220A (ja) * 2019-10-23 2023-01-05 エルジー・ケム・リミテッド 正極活物質、これを含む正極およびリチウム二次電池
JP7386988B2 (ja) 2019-10-23 2023-11-27 エルジー・ケム・リミテッド 正極活物質、これを含む正極およびリチウム二次電池

Also Published As

Publication number Publication date
US20180375096A1 (en) 2018-12-27
JP6660599B2 (ja) 2020-03-11
CN108292750A (zh) 2018-07-17
JPWO2017110063A1 (ja) 2018-10-11

Similar Documents

Publication Publication Date Title
CN109643800B (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池
JP6660599B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2018043189A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
KR20110023736A (ko) 리튬 이온 이차 전지
JP7336778B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2007087820A (ja) 非水電解質二次電池
JP2015179661A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
JP2023111960A (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN110383545B (zh) 非水电解质二次电池用正极活性物质
KR20230048486A (ko) 리튬 이차전지용 전극
WO2018179936A1 (ja) 非水電解質二次電池用正極活物質及びその製造方法
JP2007242420A (ja) 非水電解質二次電池および非水電解質二次電池用正極活物質の製造方法
JP2023118858A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
EP2824074B1 (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including the same
KR101981659B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR101392525B1 (ko) 양극 활물질, 이의 제조방법 및 이를 이용한 이차전지
WO2018123604A1 (ja) 非水電解質二次電池用正極活物質
KR20190081610A (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR101426148B1 (ko) 리튬금속산화물 및 이를 이용한 리튬이차전지
WO2014103303A1 (ja) 非水電解質二次電池用正極活物質及びこれを用いた非水電解質二次電池
KR101587209B1 (ko) 리튬 망간 복합 산화물의 제조 방법 및 비수전해질 이차 전지
KR101443500B1 (ko) 리튬금속산화물 및 이를 포함하는 리튬이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877968

Country of ref document: EP

Kind code of ref document: A1