WO2019198351A1 - 非水電解質二次電池 - Google Patents
非水電解質二次電池 Download PDFInfo
- Publication number
- WO2019198351A1 WO2019198351A1 PCT/JP2019/006773 JP2019006773W WO2019198351A1 WO 2019198351 A1 WO2019198351 A1 WO 2019198351A1 JP 2019006773 W JP2019006773 W JP 2019006773W WO 2019198351 A1 WO2019198351 A1 WO 2019198351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- lithium
- active material
- electrode active
- secondary battery
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This disclosure relates to a non-aqueous electrolyte secondary battery.
- Non-aqueous electrolyte secondary batteries are used as power sources for electric devices and the like, and are also being used as power sources for electric vehicles (EV, HEV, etc.). Further, for non-aqueous electrolyte secondary batteries, further improvement in characteristics such as improvement in energy density, improvement in output density, and improvement in cycle characteristics is desired.
- Patent Document 1 includes a positive electrode active material including a metal oxide, and a positive electrode additive including one or more oxides selected from lithium copper oxide, lithium iron oxide, and lithium manganese oxide;
- a non-aqueous electrolyte secondary battery comprising a positive electrode containing a negative electrode having a negative electrode active material containing a titanium-containing oxide and a non-aqueous electrolyte is described.
- Patent Document 2 discloses that a positive electrode including a positive electrode active material composed of a lithium-containing transition metal oxide having a layered crystal structure, a negative electrode active material composed of a Ti-based oxide, and lithium at a more noble potential than the negative electrode active material.
- a non-aqueous electrolyte secondary battery comprising a negative electrode including an additive made of a reactive fluorinated carbon and configured such that a battery voltage reaches a discharge end voltage by a potential change of the negative electrode.
- charge / discharge is performed between charge and discharge in the first cycle at an average operating voltage of the positive electrode used as the battery (for example, 2.8 V to 4.3 V vs. Li / Li + ).
- This charge / discharge capacity difference is an irreversible capacity corresponding to the amount of lithium ions released from the positive electrode by charging but not occluded by discharging.
- the ratio of the discharge capacity to the charge capacity of the first cycle of the positive electrode is referred to as the charge / discharge efficiency of the positive electrode.
- An object of the present disclosure is to provide a non-aqueous electrolyte secondary battery in which the structure deterioration of the positive electrode active material at the end of discharge of a charge / discharge cycle is suppressed and charge / discharge cycle characteristics are improved.
- a non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
- the positive electrode is provided on a surface of the positive electrode current collector and the positive electrode current collector.
- a positive electrode active material layer containing a positive electrode additive the positive electrode active material containing 50 mol% or more of nickel with respect to the total amount of metals other than lithium, and having a compressive fracture strength of 130 MPa or more
- the composite oxide is contained, and the positive electrode additive contains a lithium-containing metal oxide having an inverted fluorite structure.
- a non-aqueous electrolyte secondary battery that controls the electrode on the side that controls discharge termination at the end of discharge of a charge / discharge cycle, suppresses structural deterioration of the positive electrode active material, and has improved charge / discharge cycle characteristics Can be provided.
- the present inventors have included a lithium-containing metal oxide having a reverse fluorite structure as a positive electrode additive, and 50 mol% as a positive electrode active material with respect to the total amount of metals other than lithium.
- a nonaqueous electrolyte secondary battery which is an example of an embodiment includes a positive electrode, a negative electrode, a nonaqueous electrolyte, a separator, and a battery case. Specifically, it has a structure in which a wound electrode body in which a positive electrode and a negative electrode are wound via a separator, and a nonaqueous electrolyte are housed in a battery case.
- the electrode body is not limited to a wound electrode body, and other forms of electrode bodies such as a stacked electrode body in which a positive electrode and a negative electrode are stacked via a separator may be applied.
- a metal case such as a cylindrical shape, a square shape, a coin shape, or a button shape, a resin case obtained by molding a sheet obtained by laminating a metal foil with a resin sheet (for example, a laminated battery).
- the positive electrode includes, for example, a positive electrode current collector such as a metal foil and a positive electrode active material layer provided on the positive electrode current collector and including a positive electrode active material and a positive electrode additive.
- a positive electrode current collector such as a metal foil and a positive electrode active material layer provided on the positive electrode current collector and including a positive electrode active material and a positive electrode additive.
- a metal foil that is stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
- the positive electrode active material contained in the positive electrode active material layer contains a lithium nickel composite oxide (hereinafter referred to as “LiNi composite”) containing 50 mol% or more of nickel with respect to the total amount of metals other than lithium and having a compressive fracture strength of 130 MPa or more. (Also referred to as “oxide”).
- the positive electrode additive contained in the positive electrode active material layer contains a lithium-containing metal oxide having a reverse fluorite structure (hereinafter also referred to as “Li-containing oxide”).
- the positive electrode active material layer preferably further includes a conductive material and a binder.
- the positive electrode is formed by, for example, applying a positive electrode mixture slurry containing a positive electrode active material, a positive electrode additive, a conductive material, a binder, etc. to the surface of the positive electrode current collector, and drying the coating film. After forming the positive electrode active material layer on the surface, the positive electrode active material layer can be produced by rolling.
- the thickness of the positive electrode current collector is not particularly limited, but is, for example, about 10 ⁇ m or more and 100 ⁇ m or less.
- the positive electrode active material used for the non-aqueous electrolyte secondary battery according to the present embodiment contains, as a main component, a LiNi composite oxide containing lithium and 50 mol% or more of nickel with respect to the total amount of metals other than lithium.
- “including as a main component” means that the content of the first composite oxide with respect to the total amount of the positive electrode active material is, for example, 90% by mass or more, and preferably 99% by mass or more.
- the LiNi composite oxide contains at least lithium (Li) and nickel (Ni).
- the lithium content in the composite oxide is preferably 90 mol% or more and 120 mol% or less with respect to the total amount of metals other than lithium, for example. It is because the charge / discharge capacity of the nonaqueous electrolyte secondary battery can be improved by containing lithium in this range.
- the LiNi composite oxide contains 50 mol% or more of nickel with respect to the total amount of metals other than lithium.
- the LiNi composite oxide contains nickel in this range, an increase in the negative electrode potential at the end of discharge can be suppressed, the durability of the negative electrode can be improved, and the capacity can be improved. From this point of view, the charge / discharge efficiency in the first cycle is low and the positive electrode is easily regulated, and the effect of suppressing deterioration in cycle characteristics according to the present embodiment is high. Therefore, the LiNi composite oxide is 80% of the total amount of metals other than lithium. It is preferable to contain mol% or more nickel, and it is preferable to contain 85 mol% or more nickel.
- the upper limit of the nickel content is not particularly limited, but from the viewpoint of thermal stability, the LiNi composite oxide preferably contains 95 mol% or less of nickel with respect to the total amount of metals other than lithium.
- the LiNi composite oxide can be represented by, for example, the general formula Li a Ni x M 1-x O 2 .
- M represents a metal element other than lithium and nickel, and a and x satisfy 0.9 ⁇ x ⁇ 1.2 and 0.5 ⁇ x ⁇ 1, respectively.
- Examples of the metal element M in the general formula include at least one metal element selected from transition metal elements other than Ni, alkaline earth metal elements, and Group 12 to Group 14 elements.
- Specific examples of the metal element M include, for example, cobalt (Co), aluminum (Al), manganese (Mn), magnesium (Mg), calcium (Ca), chromium (Cr), zirconium (Zr), and molybdenum (Mo). , Silicon (Si), titanium (Ti), iron (Fe), boron (B), copper (Cu), zinc (Zn), tin (Sn), barium (Ba) and strontium (Sr).
- cobalt, aluminum and manganese are preferable.
- the LiNi composite oxide preferably contains cobalt.
- cobalt 3 mol% with respect to the total amount of metals other than lithium (Ni and M in the above general formula) It is more preferable to contain 15 mol% or less of cobalt.
- the LiNi composite oxide preferably contains aluminum, for example, preferably contains 1 mol% or more and 5 mol% or less of aluminum with respect to the total amount of metals other than lithium (Ni and M in the above general formula). .
- aluminum for example, preferably contains 1 mol% or more and 5 mol% or less of aluminum with respect to the total amount of metals other than lithium (Ni and M in the above general formula).
- the LiNi composite oxide represented by the above general formula is not necessarily limited to one in which the molar ratio of the total amount of nickel and metal element M to oxygen atoms is strictly 1: 2. For example, even when the molar ratio is 1: 1.9 or more and 1: 2.1 or less, it can be handled as being included in the LiNi composite oxide represented by the above general formula.
- composition of the LiNi composite oxide contained in the positive electrode active material and the Li-containing oxide contained in the positive electrode additive described later is, for example, an ICP emission spectroscopic analyzer (for example, product name “iCAP6300” manufactured by Thermo Fisher Scientific, Inc.). Etc.).
- ICP emission spectroscopic analyzer for example, product name “iCAP6300” manufactured by Thermo Fisher Scientific, Inc.). Etc.
- the positive electrode active material used for the nonaqueous electrolyte secondary battery according to the present embodiment is a particle having a compressive fracture strength of 130 MPa or more.
- the compressive fracture strength (St) is a scale for evaluating the hardness of the positive electrode active material.
- St 2 described in “The Journal of the Japan Mining Association” Vol. 81, No. 932, December 1965, pages 1024-1030 .8P / ( ⁇ d 2 ) (wherein P represents the load applied to the particles and d represents the particle size). Since the compressive fracture strength is divided by the square of the particle size, the dependence on the particle size is high. The smaller the particle, the greater the compressive fracture strength.
- the compressive fracture strength is preferably defined as the compressive fracture strength at a predetermined particle size.
- the compressive fracture strength of the positive electrode active material can be measured using, for example, a micro compression tester (manufactured by Shimadzu Corporation, model name “MCT-W201”).
- the positive electrode active material preferably has a compressive fracture strength of 130 MPa or more when the particle size is specified to be about 8 ⁇ m. “The particle size is about 8 ⁇ m” means that the particle size is included in a range of 8 ⁇ m ⁇ 5% or less, for example.
- the compressive fracture strength of the positive electrode active material is 130 MPa or more, the structure of the positive electrode active material becomes stronger, and structural deterioration at the end of discharge can be suppressed. As a result, the capacity deterioration during the long-term cycle of the nonaqueous electrolyte secondary battery according to the present embodiment is suppressed, and the cycle characteristics can be improved.
- the compression fracture strength of the positive electrode active material is preferably 230 MPa or less, and more preferably 200 MPa or less.
- the compressive fracture strength is in the above range, damage to the metal foil serving as the positive electrode current collector due to rolling during the production of the positive electrode can be suppressed.
- a positive electrode active material having a compressive fracture strength in the above range can be produced, for example, by adding silicon to the positive electrode active material. More specifically, it can be synthesized by the following method. First, a lithium-containing compound, a compound containing nickel and a metal element represented by M in the above general formula, and a silicon-containing compound are mixed at a mixing ratio based on the target LiNi composite oxide. Examples of the lithium-containing compound include lithium hydroxide, chloride, nitrate, carbonate and the like. Examples of the compound containing nickel and the metal element represented by M in the above general formula include oxides, hydroxides, chlorides, nitrates, carbonates, sulfates, and organic acid salts.
- Examples of the silicon-containing compound include silicon monoxide (SiO) and silicon dioxide (SiO 2 ).
- SiO silicon monoxide
- SiO 2 silicon dioxide
- the obtained mixture is fired to synthesize a LiNi composite oxide containing silicon.
- the mixture is fired in the air or in an oxygen stream.
- the firing temperature is about 600 to 1100 ° C.
- the firing time is about 1 to 10 hours when the firing temperature is 600 to 1100 ° C.
- silicon is considered to be in solid solution with other metal elements.
- the silicon contained in the positive electrode active material may be contained in any form, but is preferably in solid solution with the LiNi composite oxide. This is because when silicon is in solid solution with the LiNi composite oxide, the bond between silicon and oxygen is strengthened, the crystal lattice becomes stronger, and the compressive fracture strength of the positive electrode active material can be improved.
- the LiNi composite oxide in solid solution with silicon is represented by the above general formula Li x Ni y M z O 2 , and M corresponds to a compound containing silicon.
- the positive electrode active material containing silicon may be composed of secondary particles in which primary particles are aggregated, and may contain a silicon compound at the joint (grain boundary) between the primary particles.
- Examples of the silicon compound at this time include silicon oxides such as SiO 2 and SiO, and lithium silicate which is an oxide of lithium and silicon.
- the silicon content is preferably 0.1 mol% or more with respect to the total amount of metal elements other than lithium contained in the LiNi composite oxide constituting the positive electrode active material. 0.5 mol% or more is more preferable. Further, from the viewpoint of suppressing damage to the positive electrode current collector described above and from the viewpoint of stabilizing the crystal structure of the positive electrode active material, the silicon content is 5 mol% or less with respect to the total amount of metal elements other than lithium. Is preferable, and 3 mol% or less is more preferable.
- the method for producing a positive electrode active material having a compressive fracture strength in the above range is not limited to a method in which silicon is contained in the positive electrode active material.
- the volume average particle diameter of the secondary particles of the positive electrode active material is, for example, 1 ⁇ m or more and 50 ⁇ m or less, and preferably 5 ⁇ m or more and 20 ⁇ m or less.
- the volume average particle diameter is a volume average particle diameter of the positive electrode active material measured by a laser diffraction scattering method, and means a particle diameter at which the volume integrated value is 50% in the particle size distribution.
- the volume average particle diameter of the positive electrode active material can be measured using, for example, a laser diffraction / scattering particle size distribution measuring apparatus (manufactured by Horiba, Ltd.).
- a positive electrode additive composed of a Li-containing oxide having a reverse fluorite structure together with a positive electrode active material is used for the positive electrode.
- the reverse fluorite-type crystal structure is a crystal structure in which a cation having a positive charge enters a tetrahedral site of a face-centered cubic lattice composed of anions having a negative charge. That is, it is composed of 4 anions per unit cell, and a maximum of 8 cation atoms can enter.
- Examples of the inverted fluorite structure include a crystal structure belonging to the space group Fm3m.
- Li-containing oxide examples include Li 2 O in which the anion is mainly composed of an oxygen atom and the cation is mainly composed of lithium, and the anion is mainly composed of an oxygen atom, and the cation is lithium and at least one kind.
- Li-containing oxides containing transition metal elements examples include Li-containing oxides containing transition metal elements.
- the Li-containing oxide composed of lithium and at least one transition metal element is, for example, an oxide represented by the general formula Li b Me y O 4 , where 4 ⁇ b ⁇ 7, 0.5 ⁇ y ⁇ 1.5 is satisfied, and Me represents at least one transition metal selected from Co, Fe, Mn, Zn, Al, Ga, Ge, Ti, Si, and Sn.
- the positive electrode additive having a reverse fluorite structure releases lithium during charging and occludes lithium during discharging, so the composition ratio of lithium in the Li-containing oxide changes.
- the oxidation number of the transition metal element changes from the law of charge neutrality, and the increase / decrease in charge due to insertion / extraction of Li is compensated.
- the Li-containing oxide is selected from the group consisting of lithium iron oxide, lithium copper oxide, and lithium manganese oxide from the viewpoint of charge compensation described above, ease of synthesis of the positive electrode additive, relatively light weight, and the like. It is preferable to include at least one selected.
- lithium iron oxide examples include Li 5 FeO 4 , LiFeO 2 , LiFe 5 O 8 , Li 3 Fe 5 O 8 , Li 2 Fe 3 O 4 , Li 5 Fe 5 O 8 , and Li 2 Fe 3 O 5.
- Examples of the lithium copper oxide include Li 2 CuO 2 , LiCuO, Li 6 CuO 4 , Li 2 Cu 2 O 3 , LiCu 3 O 3 , LiCu 2 O 2 , LiCuO 2 , Li 3 Cu 2 O 4 , and Li 3 CuO. 3 and one or more oxides selected from the group consisting of LiCu 3 O 3 .
- lithium manganese oxide examples include one or more oxides selected from the group consisting of LiMnO 2 , Li 2 MnO 3 , Li 3 MnO 4 , LiMn 3 O 4 , Li 4 Mn 5 O 12 , and LiMnO 4.
- the Li-containing oxide is preferably lithium iron oxide, and particularly preferably Li 5 FeO 4 from the viewpoints of stability and solubility during initial charge.
- the Li-containing oxide used as the positive electrode additive can be synthesized, for example, in the same manner as the above-described LiNi composite oxide synthesis method. More specifically, first, a lithium-containing compound and a compound containing a transition metal element represented by Me in the above general formula are mixed at a mixing ratio based on a target Li-containing oxide.
- the lithium-containing compound include lithium hydroxide, chloride, nitrate, carbonate and the like.
- Examples of the compound containing a transition metal element represented by Me in the general formula include oxides, hydroxides, chlorides, nitrates, carbonates, sulfates, and organic acid salts.
- the mixture is fired in the air or in an oxygen stream.
- the firing temperature is about 600 to 1100 ° C.
- the firing time is about 1 to 10 hours when the firing temperature is 600 to 1100 ° C.
- the total amount of the positive electrode active material layer (positive electrode active material, positive electrode additive, conductive material and binder) It is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more. Further, in order to ensure the capacity of the battery and maintain high energy density, the content of the positive electrode additive in the positive electrode active material layer is preferably 10% by mass or less, and preferably 5% by mass or less with respect to the total amount of the positive electrode active material layer. Is more preferable.
- the presence of the positive electrode additive having an inverted fluorite structure in the positive electrode active material layer can be analyzed by a known method based on a powder X-ray diffraction method.
- the presence of the positive electrode additive having a structure can be confirmed.
- Examples of the conductive material included in the positive electrode active material layer include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more.
- the content of the conductive material may be, for example, from 0.1% by mass to 20% by mass with respect to the total amount of the positive electrode active material layer (positive electrode active material, positive electrode additive, conductive material, and binder). 1 mass% or more and 10 mass% or less are preferable.
- binder examples of the binder contained in the positive electrode active material layer include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and And polyolefin resins.
- PTFE polytetrafluoroethylene
- PVdF polyvinylidene fluoride
- PAN polyacrylonitrile
- PAN polyacrylonitrile
- polyimide resins acrylic resins
- And polyolefin resins A binder may be used independently and may be used in combination of 2 or more types. Further, these binder, carboxymethyl cellulose (CMC) or a salt thereof (CMC-Na, may be a CMC-K, CMC-NH 4, etc., also partially neutralized type of salt), polyethylene oxide (PEO ) Etc. may be used in combination.
- CMC carboxymethyl cellulose
- CMC-Na may be a C
- the content of the binder may be, for example, 0.1% by mass or more and 20% by mass or less with respect to the total amount of the positive electrode active material layer (positive electrode active material, positive electrode additive, conductive material and binder). 0.1 mass% or more and 10 mass% or less are preferable.
- the negative electrode includes, for example, a negative electrode current collector such as a metal foil, and a negative electrode active material layer formed on the surface of the negative electrode current collector.
- a negative electrode current collector such as a metal foil
- a negative electrode active material layer formed on the surface of the negative electrode current collector.
- the negative electrode active material layer preferably includes a binder in addition to the negative electrode active material capable of inserting and extracting lithium ions. The binder may be used in combination with a thickener.
- a negative electrode mixture slurry containing a negative electrode active material, a binder and a thickener is applied on a negative electrode current collector, the coating film is dried, and then rolled to collect a negative electrode active material layer. It can be produced by forming on both sides of the body.
- the thickness of the negative electrode current collector is preferably 5 ⁇ m or more and 40 ⁇ m or less, and more preferably 10 ⁇ m or more and 20 ⁇ m or less from the viewpoint of current collection, mechanical strength, and the like.
- Examples of the negative electrode active material include natural graphite, artificial graphite, lithium, silicon, carbon, tin, germanium, aluminum, lead, indium, gallium, lithium alloy, carbon and silicon in which lithium is previously occluded, and alloys and mixtures thereof. Etc. can be used.
- binder for example, as in the case of the positive electrode, a fluorine-based polymer, a rubber-based polymer, or the like may be used, or a styrene-butadiene copolymer (SBR) or a modified body thereof may be used. Also good.
- the thickener include carboxymethyl cellulose (CMC) and polyethylene oxide (PEO). These may be used individually by 1 type and may be used in combination of 2 or more type.
- the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
- the electrolyte salt is preferably a lithium salt.
- the lithium salt those generally used as a supporting salt in a conventional nonaqueous electrolyte secondary battery can be used.
- LiPF 6 and Li x P y O z F ⁇ (x is an integer of 1 to 4, y is 1 or 2, z is an integer of 1 to 8, ⁇ is an integer of 1 to 4) and the like are preferable.
- Examples of Li x P y O z F ⁇ include lithium monofluorophosphate and lithium difluorophosphate. These lithium salts may be used alone or in combination of two or more.
- nonaqueous solvent used for the nonaqueous electrolyte examples include cyclic carbonates, chain carbonates, and carboxylic acid esters.
- cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, vinylene carbonate; dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate Chain carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate; chain carboxylic acid esters such as methyl propionate (MP), ethyl propionate, methyl acetate, ethyl acetate and propyl acetate; and ⁇ -butyrolactone (GBL) And cyclic carboxylic acid esters such as ⁇ -valerolactone (GVL).
- EC ethylene carbonate
- PC propylene carbonate
- PC butylene carbonate
- non-aqueous solvents used for non-aqueous electrolytes include ethers, nitriles, and amides such as dimethylformamide.
- cyclic ethers include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether and the like.
- chain ethers examples include 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, Pentylphenyl ether, methoxytoluene, benzylethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1 , 1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, Tiger ethylene glycol dimethyl ether and the like.
- nitriles include acetonitrile, propionitrile, butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, 1,2,3-propanetricarbonitrile, 1,3, Examples include 5-pentanetricarbonitrile.
- the non-aqueous electrolyte may contain a halogen substitution product.
- halogen-substituted product include fluorine such as fluorinated cyclic carbonate such as 4-fluoroethylene carbonate (FEC), fluorinated chain carbonate, methyl 3,3,3-trifluoropropionate (FMP), and the like. And chain carboxylic acid esters.
- a porous sheet having ion permeability and insulation is used.
- the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
- olefinic resins such as polyethylene and polypropylene, cellulose and the like are suitable.
- the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
- the multilayer separator containing a polyethylene layer and a polypropylene layer may be sufficient, and what applied resin, such as an aramid resin, to the surface of a separator may be used.
- a cobalt aluminum composite hydroxide was obtained. It was fired to produce a nickel cobalt aluminum composite oxide.
- the complex oxide and lithium carbonate were mixed using a rough mortar.
- the mixing ratio (molar ratio) between lithium and a metal other than lithium (Ni, Co, Al) was 1.03: 1.0.
- SiO in such an amount that Si becomes 1 mol% with respect to metals other than lithium (Ni, Co, Al) was added to the mixture.
- the mixture was baked in air at 900 ° C. for 10 hours and then pulverized to prepare a positive electrode active material a1 made of a LiNi composite oxide containing Si.
- the positive electrode active material a1 had a composition formula of Li 1.03 Ni It was composed of a LiNi composite oxide represented by 0.88 Co 0.09 Al 0.03 Si 0.005 O 2 . That is, the positive electrode active material a1 contained 0.5 mol% Si with respect to the metal (Ni, Co, Al) other than lithium constituting the LiNi composite oxide in the total amount of the positive electrode active material a1. Moreover, as a result of measuring using the laser diffraction scattering type particle size distribution measuring apparatus (made by Horiba, Ltd.), the volume average particle diameter of positive electrode active material a1 was 12 micrometers.
- the compressive fracture strength (St) of the positive electrode active material a1 was measured.
- the measurement of the compressive fracture strength is performed on five positive electrode active materials a1 having a particle size of about 8 ⁇ m (within 8 ⁇ m ⁇ 5%) under the following measurement conditions, and the average of the obtained measured values is the positive electrode active material
- the compressive fracture strength was a1.
- the compression fracture strength of the positive electrode active material a1 was 130 MPa.
- Test temperature Normal temperature (25 ° C)
- Test apparatus Micro compression tester, manufactured by Shimadzu Corporation, model name “MCT-W201”
- Upper pressure indenter flat surface with a diameter of 50 ⁇ m
- Measurement mode compression test
- Test load 90 mN Load speed: 2.6478 mN / sec
- Lithium carbonate and an oxide represented by Fe 2 O 3 were mixed in a rough mortar so that the molar ratio of metal elements (Fe) other than Li and Li was 5: 1.
- the mixture was heat-treated at 600 ° C. for 12 hours in a nitrogen atmosphere, and then pulverized to prepare a positive electrode additive b1 made of a Li-containing oxide.
- the positive electrode active material a1 elemental analysis of the positive electrode additive b1 was performed, and it was composed of a Li-containing oxide represented by the composition formula Li 5 FeO 4 .
- the volume average particle size of the positive electrode additive b1 was 10 ⁇ m.
- the crystal structure of the positive electrode additive b1 was analyzed by a powder X-ray diffraction method using a powder X-ray diffractometer (manufactured by Rigaku Corporation, trade name “RINT2200”, source Cu—K ⁇ ).
- the measurement conditions were a 2 ⁇ / ⁇ continuous scan method, and measurement was performed at a speed of 4 ° per minute in steps of 0.02 from 15 ° to 120 °.
- the measurement voltage / current was 40 kV / 40 mA
- the divergence slit was 1 °
- the scattering slit was 1 °
- the light receiving slit was 0.3 mm
- the crystal structure of the positive electrode additive b1 was an inverted fluorite structure belonging to the space group Fm3m.
- Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) were mixed at a volume ratio (room temperature) of 30:30:40.
- LiPF 6 is dissolved in an amount such that the concentration in the prepared non-aqueous electrolyte is 1.3 mol / L, and further, the concentration in the prepared non-aqueous electrolyte is 0.3 mass%.
- Vinylene carbonate was dissolved to prepare a non-aqueous electrolyte.
- Example 1 A Ni—Co—Al-based material containing no Si was used in the same manner as the production method of the positive electrode active material a1 of Example 1, except that SiO was not added to the mixture of the nickel cobalt aluminum composite oxide and lithium carbonate.
- a first composite oxide a2 (positive electrode active material) was produced.
- the positive electrode active material a2 was composed of a LiNi composite oxide represented by the composition formula Li 1.1 Ni 0.88 Co 0.09 Al 0.03 O 2 .
- the volume average particle diameter of the positive electrode active material a2 was 11 ⁇ m.
- the compression fracture strength (St) of the positive electrode active material a2 was 110 MPa.
- the positive electrode In the production of the positive electrode, a mixture obtained by mixing the positive electrode active material a2, carbon black, and polyvinylidene fluoride (PVDF) at a mass ratio of 100: 1: 1 is used, and the positive electrode additive b1 is used.
- a cylindrical nonaqueous electrolyte secondary battery (battery B1) was produced in the same manner as in Example 1 except that there was not.
- ⁇ Comparative Example 2> In the production of the positive electrode, a cylindrical nonaqueous electrolyte secondary battery (battery B2) was produced in the same manner as in Example 1 except that the positive electrode active material a2 was used instead of the positive electrode active material a1.
- ⁇ Comparative Example 3> In the production of the positive electrode, a mixture obtained by mixing the positive electrode active material a1, carbon black, and polyvinylidene fluoride (PVDF) at a mass ratio of 100: 1: 1 is used, and the positive electrode additive b1 is used. A cylindrical nonaqueous electrolyte secondary battery (battery B3) was produced in the same manner as in Example 1 except that there was not.
- PVDF polyvinylidene fluoride
- the capacity deterioration rate which is the ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 1st cycle.
- the capacity deterioration rate after 50 cycles of the battery B1 of Comparative Example 1 as a reference (100%) the capacity deterioration rates after 50 cycles of the battery A1 of Example 1 and the batteries B2 to B3 of Comparative Examples 2 to 3 were calculated. .
- the results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本開示の一態様に係る非水電解質二次電池は、正極と、負極と、非水電解質とを備え、正極は、正極集電体と、正極集電体の表面に設けられ、正極活物質及び正極添加剤を含む正極活物質層とを有する。正極活物質は、リチウム以外の金属の総量に対して50モル%以上のニッケルを含み、かつ、圧縮破壊強度が130MPa以上であるリチウムニッケル複合酸化物を含有する。正極添加剤は、逆蛍石型構造を有するリチウム含有金属酸化物を含有する。
Description
本開示は非水電解質二次電池に関する。
非水電解質二次電池は、電気機器等の電源として使用されており、さらに、電気自動車(EV、HEV等)の電源としても使用されつつある。そして、非水電解質二次電池は、例えば、エネルギー密度の向上、出力密度の向上、サイクル特性の向上等の更なる特性向上が望まれている。
例えば、特許文献1には、金属酸化物を含む正極活物質と、リチウム銅酸化物、リチウム鉄酸化物及びリチウムマンガン酸化物から選択される酸化物のうち一つ以上を含む正極添加物と、を含む正極と、チタン含有酸化物を含む負極活物質を有する負極と、非水電解質とを備える非水電解質二次電池が記載されている。
また特許文献2には、層状結晶構造を有するリチウム含有遷移金属酸化物からなる正極活物質を含む正極と、Ti系酸化物からなる負極活物質と、負極活物質よりも貴な電位でリチウムと反応するフッ素化系炭素からなる添加剤と、を含む負極とを備え、負極の電位変化によって電池電圧が放電終止電圧に達するように構成した非水電解質二次電池が記載されている。
非水電解質二次電池では、電池として使用される正極の平均作動電圧(例えば、2.8V~4.3V vs.Li/Li+)において、1サイクル目の充電と放電の間には充放電容量差がある。この充放電容量差は、充電により正極から放出されたが、放電では吸蔵できないリチウムイオンの量に相当する不可逆容量である。また、正極の1サイクル目の充電容量に対する放電容量の比率は正極の充放電効率と称される。正極の不可逆容量が大きく、充放電効率が低下した非水電解質二次電池では、放電末期において、負極電位の上昇に先立って正極電位が低下して電池電圧が放電終止電圧に達する正極規制となる傾向にある。正極規制となった非水電解質二次電池では、放電末期の正極電位の急激な低下により、正極活物質の構造劣化が引き起こされ、充放電サイクル特性が低下することがある。
本開示の課題は、充放電サイクルの放電末期における正極活物質の構造劣化を抑制し、充放電サイクル特性が改善された非水電解質二次電池を提供することにある。
本開示の一態様に係る非水電解質二次電池は、正極と、負極と、非水電解質とを備え、正極は、正極集電体と、正極集電体の表面に設けられ、正極活物質及び正極添加剤を含む正極活物質層とを有し、正極活物質は、リチウム以外の金属の総量に対して50モル%以上のニッケルを含み、かつ、圧縮破壊強度が130MPa以上であるリチウムニッケル複合酸化物を含有し、正極添加剤は、逆蛍石型構造を有するリチウム含有金属酸化物を含有する。
本開示によれば、充放電サイクルの放電末期における放電終止を規制する側の極を制御し、かつ正極活物質の構造劣化を抑制し、充放電サイクル特性が改善された非水電解質二次電池を提供することが可能となる。
従来技術では、正極活物質の特定のニッケル含有量の範囲において、電池の放電末期を正極規制とした場合、正極活物質の放電深度が深くなり、粒子構造が保てず耐久性が低下するという課題が発生していた。例えば、特許文献2では、正極電位の低下に先立って負極電位が上昇して電池電圧が放電終止電圧に達する負極規制にすることにより、層状結晶構造を有する正極活物質の単極電位が大きく変化する放電末期領域でリチウムの挿入脱離に伴う結晶構造変化を抑制することが可能となり、電池の耐久性を改善するというような手段がとられている。一方でこのように負極規制とした場合、負極表面での被膜(SEI)形成などの副反応による、活物質であるリチウムの消費が顕著となり、サイクル特性の低下が生じる。
そこで、本発明者らは鋭意検討した結果、正極添加剤として逆蛍石型構造を有するリチウム含有金属酸化物を含有するとともに、正極活物質として、リチウム以外の金属の総量に対して50モル%以上のニッケルを含み、かつ、圧縮破壊強度が130MPa以上であるリチウムニッケル複合酸化物を同時に使用することにより、電池の放電終止を規制する側の極の制御と正極の放電末期の粒子構造の安定化による、相乗効果で、電池の耐久性が飛躍的に改善することを見出だした。この効果は正極添加剤として逆蛍石型構造を有するリチウム含有金属酸化物を用いたのみでは、正極活物質の粒界が不安定で粒子構造が保てないため十分な効果が得られない。あるいは、圧縮破壊強度が130MPa以上であるリチウムニッケル複合酸化物のみでは、負極でのリチウム消費により、電池の容量支配極が負極規制となりやすく十分な効果が得られない。
以下に、本開示の一態様である非水電解質二次電池の実施形態について説明する。以下で説明する実施形態は一例であって、本開示はこれに限定されるものではない。
<非水電解質二次電池>
実施形態の一例である非水電解質二次電池は、正極と、負極と、非水電解質と、セパレータと、電池ケースとを備える。具体的には、正極及び負極がセパレータを介して巻回されてなる巻回型の電極体と、非水電解質とが電池ケースに収容された構造を有する。電極体は、巻回型の電極体に限定されず、正極及び負極がセパレータを介して積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。
実施形態の一例である非水電解質二次電池は、正極と、負極と、非水電解質と、セパレータと、電池ケースとを備える。具体的には、正極及び負極がセパレータを介して巻回されてなる巻回型の電極体と、非水電解質とが電池ケースに収容された構造を有する。電極体は、巻回型の電極体に限定されず、正極及び負極がセパレータを介して積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。
電極体及び非水電解質を収容する電池ケースとしては、円筒形、角形、コイン形、ボタン形等の金属製ケース、金属箔を樹脂シートでラミネートしたシートを成型して得られた樹脂製ケース(ラミネート型電池)などが例示できる。
以下、実施形態の一例である非水電解質二次電池に用いられる正極、負極、非水電解質、セパレータについて詳述する。
<正極>
正極は、例えば金属箔等の正極集電体と、正極集電体上に設けられ、正極活物質及び正極添加剤を含む正極活物質層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。
正極は、例えば金属箔等の正極集電体と、正極集電体上に設けられ、正極活物質及び正極添加剤を含む正極活物質層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。
正極活物質層に含まれる正極活物質は、リチウム以外の金属の総量に対して50モル%以上のニッケルを含み、かつ、圧縮破壊強度が130MPa以上であるリチウムニッケル複合酸化物(以下「LiNi複合酸化物」とも記載する)を含有する。正極活物質層に含まれる正極添加剤として、逆蛍石型構造を有するリチウム含有金属酸化物(以下「Li含有酸化物」とも記載する)を含有する。正極活物質層は、導電材及び結着材を更に含むことが好適である。
正極は、例えば、正極活物質、正極添加剤、導電材、結着材等を含む正極合材スラリーを正極集電体の表面に塗布し、塗膜を乾燥することによって、正極集電体の表面に正極活物質層を形成した後、当該正極活物質層を圧延することにより作製できる。正極集電体の厚さは、特に制限されないが、例えば10μm以上100μm以下程度である。
[正極活物質]
本実施形態に係る非水電解質二次電池に用いられる正極活物質は、リチウムと、リチウム以外の金属の総量に対して50モル%以上のニッケルとを含むLiNi複合酸化物を主成分として含む。ここで「主成分として含む」とは、正極活物質の総量に対する第1複合酸化物の含有量が、例えば90質量%以上、好ましくは99質量%以上であることである。
本実施形態に係る非水電解質二次電池に用いられる正極活物質は、リチウムと、リチウム以外の金属の総量に対して50モル%以上のニッケルとを含むLiNi複合酸化物を主成分として含む。ここで「主成分として含む」とは、正極活物質の総量に対する第1複合酸化物の含有量が、例えば90質量%以上、好ましくは99質量%以上であることである。
LiNi複合酸化物は、少なくともリチウム(Li)とニッケル(Ni)とを含む。複合酸化物におけるリチウムの含有量は、例えば、リチウム以外の金属の総量に対して90モル%以上120モル%以下であることが好ましい。この範囲でリチウムを含有することにより、非水電解質二次電池の充放電容量を向上できるためである。
LiNi複合酸化物は、上述の通り、リチウム以外の金属の総量に対して50モル%以上のニッケルを含有する。LiNi複合酸化物がこの範囲でニッケルを含有することにより、放電末期における負極電位の上昇を抑え、負極の耐久性を向上させるとともに、容量を向上することができる。この観点、並びに、1サイクル目の充放電効率が低く正極規制となり易く、本実施形態によるサイクル特性の劣化抑制効果が高いことから、LiNi複合酸化物は、リチウム以外の金属の総量に対して80モル%以上のニッケルを含有することが好ましく、85モル%以上のニッケルを含有することが好ましい。ニッケル含有量の上限は特に制限されないが、熱安定性の観点から、LiNi複合酸化物はリチウム以外の金属の総量に対して95モル%以下のニッケルを含有することが好ましい。
LiNi複合酸化物は、例えば、一般式LiaNixM1-xO2で表すことができる。式中、Mはリチウム及びニッケル以外の金属元素を表し、a及びxはそれぞれ、0.9≦x≦1.2、0.5≦x≦1を満たす。
上記一般式における金属元素Mは、例えば、Ni以外の遷移金属元素、アルカリ土類金属元素、第12族~第14族元素から選ばれる少なくとも1種以上の金属元素が挙げられる。金属元素Mの具体例としては、例えば、コバルト(Co)、アルミニウム(Al)、マンガン(Mn)、マグネシウム(Mg)、カルシウム(Ca)、クロム(Cr)、ジルコニウム(Zr)、モリブデン(Mo)、ケイ素(Si)、チタン(Ti)、鉄(Fe)、ホウ素(B)、銅(Cu)、亜鉛(Zn)、錫(Sn)、バリウム(Ba)及びストロンチウム(Sr)等が挙げられる。上記一般式における金属元素Mとしては、コバルト、アルミニウム及びマンガンが好ましい。
LiNi複合酸化物は、非水電解質二次電池の耐久性の観点から、コバルトを含有することが好ましく、例えば、リチウム以外の金属(上記一般式におけるNi及びM)の総量に対して3モル%以上15モル%以下のコバルトを含有することがより好ましい。
LiNi複合酸化物は、アルミニウムを含有することが好ましく、例えば、リチウム以外の金属(上記一般式におけるNi及びM)の総量に対して1モル%以上5モル%以下のアルミニウムを含有することが好ましい。LiNi複合酸化物がアルミニウムを含有することにより、非水電解質二次電池の耐久性をより向上できるためである。また、5モル%以下の量でアルミニウムを含有することにより、非水電解質二次電池の充放電容量をより向上できるためである。
なお、上記一般式で表されるLiNi複合酸化物は、必ずしも、ニッケル及び金属元素Mの総量と酸素原子とのモル比が厳密に1:2であるものに限定されない。例えば、当該モル比が1:1.9以上1:2.1以下である場合であっても、上記一般式で表されるLiNi複合酸化物に含まれるものとして取り扱うことができる。
正極活物質に含まれるLiNi複合酸化物、及び、後述する正極添加剤に含まれるLi含有酸化物の組成は、例えば、ICP発光分光分析装置(例えば、Thermo Fisher Scientific社製、商品名「iCAP6300」等)を用いて測定することができる。
本実施形態に係る非水電解質二次電池に用いられる正極活物質は、130MPa以上の圧縮破壊強度を有する粒子である。圧縮破壊強度(St)は、正極活物質の硬さを評価する尺度であり、「日本鉱業会誌」81巻、932号、1965年12月号、1024~1030頁に記載される数式St=2.8P/(πd2)(式中、Pは粒子にかかった荷重を示し、dは粒径を示す)により算出される。圧縮破壊強度は、粒径の2乗で除するため粒径の依存度が高く、小さい粒子ほど圧縮破壊強度が大きい結果となる。ゆえに、圧縮破壊強度については、所定の粒径であるときの圧縮破壊強度として規定することが好ましい。正極活物質の圧縮破壊強度は、例えば、微小圧縮試験機(株式会社島津製作所製、形式名「MCT-W201」)等を用いて測定することができる。
正極活物質は、粒径を8μm程度に規定したときの圧縮破壊強度が130MPa以上であることが好ましい。なお「粒径が8μm程度」とは、例えば、粒径が8μm±5%以内の範囲に含まれることをいう。本実施形態では、正極活物質の当該圧縮破壊強度が130MPa以上であることにより、正極活物質の構造がより強固となり、放電末期における構造劣化を抑制することができる。その結果、本実施形態に係る非水電解質二次電池の長期サイクル時の容量劣化が抑制され、サイクル特性を改善することができる。
また、正極活物質の当該圧縮破壊強度は230MPa以下であることが好ましく、200MPa以下であることがより好ましい。当該圧縮破壊強度が上記範囲にあると、正極作製時の圧延による正極集電体となる金属箔の損傷を抑えることができる。
圧縮破壊強度が上記の範囲にある正極活物質は、例えば、正極活物質にケイ素を含有させることによって作製することができる。より具体的には、下記の方法で合成することができる。まず、リチウム含有化合物と、ニッケル及び上記一般式のMで表される金属元素を含有する化合物と、ケイ素含有化合物とを、目的とするLiNi複合酸化物に基づく混合比率で混合する。リチウム含有化合物としては、例えばリチウムの水酸化物、塩化物、硝酸塩、炭酸塩等が挙げられる。ニッケル及び上記一般式のMで表される金属元素を含有する化合物としては、例えば酸化物、水酸化物、塩化物、硝酸塩、炭酸塩、硫酸塩、有機酸塩等が挙げられる。ケイ素含有化合物としては、一酸化ケイ素(SiO)、二酸化ケイ素(SiO2)等が挙げられる。次いで、得られた混合物を焼成することにより、ケイ素を含有するLiNi複合酸化物を合成することができる。当該混合物の焼成は、大気中又は酸素気流中で行う。焼成温度は600~1100℃程度であり、焼成時間は、焼成温度が600~1100℃である場合、1~10時間程度である。
このようにして合成されるLiNi複合酸化物では、ケイ素が他の金属元素と固溶していると考えられる。正極活物質に含有されているケイ素は、いずれの形態で含まれていてもよいが、LiNi複合酸化物と固溶していることが好ましい。ケイ素がLiNi複合酸化物と固溶している場合、ケイ素と酸素の結合が強化され、結晶格子がより強固になり、正極活物質の圧縮破壊強度を向上させることができるためである。ケイ素と固溶しているLiNi複合酸化物は、上記一般式LixNiyMzO2で表され、Mがケイ素を含む化合物に相当する。
ケイ素を含有する正極活物質は、一次粒子が凝集した二次粒子で構成され、一次粒子どうしの接合部(粒界)にケイ素化合物を含有するものであってもよい。このときのケイ素化合物としては、例えば、SiO2及びSiO等のケイ素酸化物やリチウムと珪素の酸化物であるケイ酸リチウムが挙げられる。
正極活物質に含まれるケイ素の含有量は、正極活物質の圧縮破壊強度が上記の範囲となるように適宜調整すればよい。正極活物質の圧縮破壊強度向上の観点から、ケイ素の含有量は、正極活物質を構成するLiNi複合酸化物に含まれるリチウム以外の金属元素の総量に対して、0.1モル%以上が好ましく、0.5モル%以上がより好ましい。また、上述の正極集電体の損傷を抑える観点と、正極活物質の結晶構造の安定化の観点から、ケイ素の含有量は、当該リチウム以外の金属元素の総量に対して、5モル%以下が好ましく、3モル%以下がより好ましい。
なお、圧縮破壊強度が上記の範囲にある正極活物質を作製する方法は、正極活物質にケイ素を含有させる方法に限定されるものではない。
正極活物質の二次粒子の体積平均粒径は、例えば1μm以上50μm以下であり、好ましくは5μm以上20μm以下である。体積平均粒径とは、レーザー回折散乱法で測定される正極活物質の体積平均粒径であって、粒度分布において体積積算値が50%となる粒径を意味する。正極活物質の体積平均粒径は、例えばレーザ回折散乱式粒度分布測定装置(株式会社堀場製作所製)を用いて測定することができる。
[正極添加剤]
本実施形態に係る非水電解質二次電池では、正極活物質とともに逆蛍石型構造を有するLi含有酸化物で構成される正極添加剤を正極に使用する。これにより、放電末期における負極電位の上昇を抑え、負極の耐久性を向上させることができる。逆蛍石型結晶構造とは、負電荷を有するアニオンによって構成される面心立方格子の四面体サイトに正電荷を有するカチオンが入る結晶構造である。すなわち、単位格子あたり4個のアニオンで構成されており、かつ最大で8個のカチオンの原子が入り得る。逆蛍石型構造としては、例えば、空間群Fm3mに属する結晶構造が挙げられる。
本実施形態に係る非水電解質二次電池では、正極活物質とともに逆蛍石型構造を有するLi含有酸化物で構成される正極添加剤を正極に使用する。これにより、放電末期における負極電位の上昇を抑え、負極の耐久性を向上させることができる。逆蛍石型結晶構造とは、負電荷を有するアニオンによって構成される面心立方格子の四面体サイトに正電荷を有するカチオンが入る結晶構造である。すなわち、単位格子あたり4個のアニオンで構成されており、かつ最大で8個のカチオンの原子が入り得る。逆蛍石型構造としては、例えば、空間群Fm3mに属する結晶構造が挙げられる。
Li含有酸化物としては、例えば、アニオンが主として酸素原子で構成され、カチオンが主としてリチウムで構成されているLi2O等、並びに、アニオンが主として酸素原子で構成され、カチオンがリチウム及び少なくとも1種の遷移金属元素等を含むLi含有酸化物等が挙げられる。リチウム及び少なくとも1種の遷移金属元素等で構成されるLi含有酸化物は、例えば一般式LibMeyO4で表される酸化物であり、式中、4≦b≦7、0.5≦y≦1.5を満たし、MeはCo、Fe、Mn、Zn、Al、Ga、Ge、Ti、Si、Snから選択される少なくとも1種の遷移金属等を示す。
逆蛍石型構造を有する正極添加剤は、充電時にリチウムを放出し、放電時にはリチウムを吸蔵するため、Li含有酸化物中のリチウムの組成比は変化する。このとき、リチウム以外に遷移金属元素等を含有するLi含有酸化物では、電荷中性の法則から当該遷移金属元素の酸化数が変化し、Liの吸蔵/放出による電荷の増減が補償される。Li含有酸化物としては、上述の電荷補償の観点、正極添加剤の合成の容易さ、比較的軽量であること等から、リチウム鉄酸化物、リチウム銅酸化物及びリチウムマンガン酸化物からなる群より選択される少なくとも1つを含むことが好ましい。
リチウム鉄酸化物としては、例えばLi5FeO4、LiFeO2、LiFe5O8、Li3Fe5O8、Li2Fe3O4、Li5Fe5O8、及びLi2Fe3O5からなる群より選択される1つ以上の酸化物が挙げられる。リチウム銅酸化物としては、例えばLi2CuO2、LiCuO、Li6CuO4、Li2Cu2O3、LiCu3O3、LiCu2O2、LiCuO2、Li3Cu2O4、Li3CuO3、及びLiCu3O3からなる群より選択される1つ以上の酸化物が挙げられる。リチウムマンガン酸化物としては、例えばLiMnO2、Li2MnO3、Li3MnO4、LiMn3O4、Li4Mn5O12、及びLiMnO4からなる群より選択される1つ以上の酸化物が挙げられる。中でも、Li含有酸化物は、初回充電時の安定性及び溶解性の観点から、リチウム鉄酸化物であることが好ましく、Li5FeO4であることが特に好ましい。
正極添加剤として使用するLi含有酸化物は、例えば、上述のLiNi複合酸化物の合成方法と同様にして、合成することができる。より具体的には、まず、リチウム含有化合物と、上記一般式のMeで表される遷移金属元素を含有する化合物とを、目的とするLi含有酸化物に基づく混合比率で混合する。リチウム含有化合物としては、例えばリチウムの水酸化物、塩化物、硝酸塩、炭酸塩等が挙げられる。上記一般式のMeで表される遷移金属元素を含有する化合物としては、例えば酸化物、水酸化物、塩化物、硝酸塩、炭酸塩、硫酸塩、有機酸塩等が挙げられる。次いで、得られた混合物を焼成することにより、リチウムと少なくとも1種の遷移元素とを含有し、逆蛍石型構造を有するLi含有酸化物を合成することができる。当該混合物の焼成は、大気中又は酸素気流中で行う。焼成温度は600~1100℃程度であり、焼成時間は、焼成温度が600~1100℃である場合、1~10時間程度である。
正極活物質層における正極添加剤の含有量は、放電末期の負極電位の上昇をより抑制できるため、正極活物質層(正極活物質、正極添加剤、導電材及び結着材)の総量に対して0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。また、電池の容量を確保し、エネルギー密度を高く維持するため、正極活物質層における正極添加剤の含有量は、正極活物質層の総量に対して10質量%以下が好ましく、5質量%以下がより好ましい。
正極活物質層における逆蛍石型構造を有する正極添加剤の存在は、粉末X線回折法に基づく公知の方法で解析することができる。例えば、Li5FeO4はX線回折パターンにおいて、回折角(2θ)=23.7°付近に出現する逆蛍石型構造の(121)面の回折ピークを検出することによって、逆蛍石型構造を有する正極添加剤の存在を確認することができる。
[導電材]
正極活物質層に含まれる導電材の例としては、カーボンブラック、アセチレンブラック、ケッチェンブラック及び黒鉛等の炭素材料等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。導電材の含有量は、正極活物質層(正極活物質、正極添加剤、導電材及び結着材)の総量に対して、例えば0.1質量%以上20質量%以下であればよく、0.1質量%以上10質量%以下が好ましい。
正極活物質層に含まれる導電材の例としては、カーボンブラック、アセチレンブラック、ケッチェンブラック及び黒鉛等の炭素材料等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。導電材の含有量は、正極活物質層(正極活物質、正極添加剤、導電材及び結着材)の総量に対して、例えば0.1質量%以上20質量%以下であればよく、0.1質量%以上10質量%以下が好ましい。
[結着材]
正極活物質層に含まれる結着材の例としては、ポリテトラフルオロエチレン(PTFE)及びポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、並びに、ポリオレフィン系樹脂等が挙げられる。結着材は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。また、これらの結着材に、カルボキシメチルセルロース(CMC)又はその塩(CMC-Na、CMC-K、CMC-NH4等、また部分中和型の塩であってもよい)、ポリエチレンオキシド(PEO)等を併用してもよい。結着剤の含有量は、正極活物質層(正極活物質、正極添加剤、導電材及び結着材)の総量に対して、例えば0.1質量%以上20質量%以下であればよく、0.1質量%以上10質量%以下が好ましい。
正極活物質層に含まれる結着材の例としては、ポリテトラフルオロエチレン(PTFE)及びポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、並びに、ポリオレフィン系樹脂等が挙げられる。結着材は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。また、これらの結着材に、カルボキシメチルセルロース(CMC)又はその塩(CMC-Na、CMC-K、CMC-NH4等、また部分中和型の塩であってもよい)、ポリエチレンオキシド(PEO)等を併用してもよい。結着剤の含有量は、正極活物質層(正極活物質、正極添加剤、導電材及び結着材)の総量に対して、例えば0.1質量%以上20質量%以下であればよく、0.1質量%以上10質量%以下が好ましい。
<負極>
負極は、例えば金属箔等の負極集電体と、負極集電体の表面に形成された負極活物質層とを備える。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、銅などの負極の電位範囲で安定な金属を表層に配置したフィルム等を用いることができる。負極活物質層は、リチウムイオンを吸蔵・脱離可能な負極活物質の他に、結着材を含むことが好適である。結着材は増粘剤と併用されてもよい。
負極は、例えば金属箔等の負極集電体と、負極集電体の表面に形成された負極活物質層とを備える。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、銅などの負極の電位範囲で安定な金属を表層に配置したフィルム等を用いることができる。負極活物質層は、リチウムイオンを吸蔵・脱離可能な負極活物質の他に、結着材を含むことが好適である。結着材は増粘剤と併用されてもよい。
負極は、例えば負極集電体上に負極活物質、結着材及び増粘剤等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して負極活物質層を集電体の両面に形成することにより作製できる。負極集電体の厚さは、集電性、機械的強度等の観点から、5μm以上40μm以下が好ましく、10μm以上20μm以下がより好ましい。
負極活物質としては、例えば天然黒鉛、人造黒鉛、リチウム、珪素、炭素、錫、ゲルマニウム、アルミニウム、鉛、インジウム、ガリウム、リチウム合金、予めリチウムを吸蔵させた炭素並びに珪素、及びこれらの合金並びに混合物等を用いることができる。
結着材としては、例えば、正極の場合と同様に、フッ素系高分子、ゴム系高分子等を用いてもよく、また、スチレンーブタジエン共重合体(SBR)又はこの変性体等を用いてもよい。増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<非水電解質>
非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。
非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。
電解質塩は、リチウム塩であることが好ましい。リチウム塩には、従来の非水電解質二次電池において支持塩として一般に使用されているものを用いることができる。例えば、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiC(C2F5SO2)3、LiCF3CO2、Li(P(C2O4)F4)、Li(P(C2O4)F2)、LiPF6-x(CnF2n+1)x(1≦x≦6、nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li2B4O7、Li(B(C2O4)2)[リチウム-ビスオキサレートボレート(LiBOB)]、Li(B(C2O4)F2)等のホウ酸塩類、LiN(FSO2)2、LiN(ClF2l+1SO2)(CmF2m+1SO2){l、mは0以上の整数}等のイミド塩類、LixPyOzFα(xは1~4の整数、yは1又は2、zは1~8の整数、αは1~4の整数)等が挙げられる。これらの中では、LiPF6やLixPyOzFα(xは1~4の整数、yは1又は2、zは1~8の整数、αは1~4の整数)等が好ましい。LixPyOzFαとしては、例えばモノフルオロリン酸リチウム、ジフルオロリン酸リチウム等が挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。
非水電解質に用いる非水溶媒としては、環状カーボネート類、鎖状カーボネート類、カルボン酸エステル類が例示できる。具体的には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類;ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状カーボネート類;プロピオン酸メチル(MP)、プロピオン酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル等の鎖状カルボン酸エステル;及び、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル等が挙げられる。
非水電解質に用いる非水溶媒の他の例としては、エーテル類、ニトリル類、及び、ジメチルホルムアミド等のアミド類が例示できる。環状エーテル類としては、例えば、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等が挙げられる。
鎖状エーテル類としては、例えば、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等が挙げられる。
ニトリル類としては、例えば、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等が挙げられる。
非水電解質はハロゲン置換体を含んでいてもよい。ハロゲン置換体の例としては、例えば、4-フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、メチル3,3,3-トリフルオロプロピオネート(FMP)等のフッ素化鎖状カルボン酸エステル等が挙げられる。
<セパレータ>
セパレータには、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロース等が好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド系樹脂等の樹脂が塗布されたものを用いてもよい。
セパレータには、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロース等が好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド系樹脂等の樹脂が塗布されたものを用いてもよい。
以下、実施例及び比較例を挙げ、本開示をより具体的に詳細に説明するが、本開示は、以下の実施例に限定されるものではない。
<実施例1>
[正極活物質の作製]
NiSO4、CoSO4及びAl2(SO4)3を水溶液中で混合して共沈させることにより、Ni0.88Co0.09Al0.03(OH)2の組成式で表されるニッケルコバルトアルミニウム複合水酸化物を得た。それを焼成して、ニッケルコバルトアルミニウム複合酸化物を作製した。次に、当該複合酸化物と、炭酸リチウムとをらいかい乳鉢を用いて混合した。この混合物における、リチウムと、リチウム以外の金属(Ni、Co、Al)との混合比(モル比)は1.03:1.0であった。更に、リチウム以外の金属(Ni、Co、Al)に対してSiが1モル%となる量のSiOを、当該混合物に加えた。この混合物を空気中において900℃で10時間焼成した後、粉砕することにより、Siを含有するLiNi複合酸化物からなる正極活物質a1を作製した。
[正極活物質の作製]
NiSO4、CoSO4及びAl2(SO4)3を水溶液中で混合して共沈させることにより、Ni0.88Co0.09Al0.03(OH)2の組成式で表されるニッケルコバルトアルミニウム複合水酸化物を得た。それを焼成して、ニッケルコバルトアルミニウム複合酸化物を作製した。次に、当該複合酸化物と、炭酸リチウムとをらいかい乳鉢を用いて混合した。この混合物における、リチウムと、リチウム以外の金属(Ni、Co、Al)との混合比(モル比)は1.03:1.0であった。更に、リチウム以外の金属(Ni、Co、Al)に対してSiが1モル%となる量のSiOを、当該混合物に加えた。この混合物を空気中において900℃で10時間焼成した後、粉砕することにより、Siを含有するLiNi複合酸化物からなる正極活物質a1を作製した。
ICP発光分光分析装置(Thermo Fisher Scientific社製、商品名「iCAP6300」)を用いてICP発光分析法により正極活物質a1の元素分析を行ったところ、正極活物質a1は組成式Li1.03Ni0.88Co0.09Al0.03Si0.005O2で表されるLiNi複合酸化物で構成されていた。即ち、正極活物質a1は、正極活物質a1の総量にLiNi複合酸化物を構成するリチウム以外の金属(Ni、Co、Al)に対して0.5モル%のSiを含有していた。また、レーザ回折散乱式粒度分布測定装置(株式会社堀場製作所製)を用いて測定した結果、正極活物質a1の体積平均粒径は12μmであった。
正極活物質a1の圧縮破壊強度(St)を測定した。圧縮破壊強度の測定は、下記の測定条件で、粒径が8μm程度(8μm±5%以内)である5個の正極活物質a1に対して行い、得られた測定値の平均を正極活物質a1の圧縮破壊強度とした。測定の結果、正極活物質a1の圧縮破壊強度は130MPaであった。
<測定条件>
試験温度:常温(25℃)
試験装置:微小圧縮試験機、株式会社島津製作所製、形式名「MCT-W201」
上部加圧圧子:直径50μmの平面
測定モード:圧縮試験
試験荷重:90mN
負荷速度:2.6478mN/秒
<測定条件>
試験温度:常温(25℃)
試験装置:微小圧縮試験機、株式会社島津製作所製、形式名「MCT-W201」
上部加圧圧子:直径50μmの平面
測定モード:圧縮試験
試験荷重:90mN
負荷速度:2.6478mN/秒
[正極添加剤の作製]
炭酸リチウムと、Fe2O3で表される酸化物とを、LiとLi以外の金属元素(Fe)のモル比が5:1になるようにらいかい乳鉢にて混合した。当該混合物を窒素雰囲気中にて600℃で12時間熱処理した後、粉砕することにより、Li含有酸化物からなる正極添加剤b1を作製した。
炭酸リチウムと、Fe2O3で表される酸化物とを、LiとLi以外の金属元素(Fe)のモル比が5:1になるようにらいかい乳鉢にて混合した。当該混合物を窒素雰囲気中にて600℃で12時間熱処理した後、粉砕することにより、Li含有酸化物からなる正極添加剤b1を作製した。
正極活物質a1と同様に、正極添加剤b1の元素分析を行ったところ、組成式Li5FeO4で表されるLi含有酸化物で構成されていた。レーザ回折散乱式粒度分布測定装置(株式会社堀場製作所製)を用いて測定した結果、正極添加剤b1の体積平均粒径は10μmであった。また、正極添加剤b1の結晶構造を、粉末X線回折装置(株式会社リガク製、商品名「RINT2200」、線源Cu-Kα)を用いて、粉末X線回折法により解析した。測定条件は2θ/θ連続スキャン方式で、15°から120°までを0.02ステップで1分あたり4°の速さで測定した。測定電圧/電流は40kV/40mA、発散スリット1°、散乱スリット1°、受光スリット0.3mm、モノクロ受光スリットなしとした。解析の結果、正極添加剤b1の結晶構造は空間群Fm3mに帰属する逆蛍石型構造であった。
[正極の作製]
正極活物質a1と、正極添加剤b1を100:1.5の質量比で混合した後、この正極活物質混合体と、カーボンブラックと、ポリフッ化ビニリデン(PVDF)とを、100:1:1の質量比で混合した。当該混合物に分散媒としてN-メチル-2-ピロリドン(NMP)を添加して混練し、正極合材スラリーを調製した。次に、正極集電体であるアルミニウム箔の表面に正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延ローラにより圧延した。このようにして、アルミニウム箔の両面に正極活物質層が形成された正極を作製した。
正極活物質a1と、正極添加剤b1を100:1.5の質量比で混合した後、この正極活物質混合体と、カーボンブラックと、ポリフッ化ビニリデン(PVDF)とを、100:1:1の質量比で混合した。当該混合物に分散媒としてN-メチル-2-ピロリドン(NMP)を添加して混練し、正極合材スラリーを調製した。次に、正極集電体であるアルミニウム箔の表面に正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延ローラにより圧延した。このようにして、アルミニウム箔の両面に正極活物質層が形成された正極を作製した。
[負極の作製]
黒鉛と、カルボキシメチルセルロース(CMC)と、スチレン-ブタジエンゴム(SBR)とを、100:1:1の質量比で混合し、水を添加した。これを混合機(プライミクス製、T.K.ハイビスミックス)を用いて攪拌し、負極合材スラリーを調製した。次に、負極集電体である銅箔の表面に負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延ローラにより圧延した。このようにして、銅箔の両面に負極活物質層が形成された負極を作製した。
黒鉛と、カルボキシメチルセルロース(CMC)と、スチレン-ブタジエンゴム(SBR)とを、100:1:1の質量比で混合し、水を添加した。これを混合機(プライミクス製、T.K.ハイビスミックス)を用いて攪拌し、負極合材スラリーを調製した。次に、負極集電体である銅箔の表面に負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延ローラにより圧延した。このようにして、銅箔の両面に負極活物質層が形成された負極を作製した。
[非水電解質の調製]
エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)を、30:30:40の体積比(室温)で混合した。当該混合溶媒に、調製後の非水電解質における濃度が1.3モル/Lとなる量のLiPF6を溶解させ、さらに、調製後の非水電解質における濃度が0.3質量%となる量のビニレンカーボネートを溶解させて、非水電解質を調製した。
エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)を、30:30:40の体積比(室温)で混合した。当該混合溶媒に、調製後の非水電解質における濃度が1.3モル/Lとなる量のLiPF6を溶解させ、さらに、調製後の非水電解質における濃度が0.3質量%となる量のビニレンカーボネートを溶解させて、非水電解質を調製した。
[電池の作製]
上記の正極及び負極をそれぞれ所定の寸法にカットした後、上記正極にアルミニウムリードを、上記負極にニッケルリードをそれぞれ取り付けた。ポリエチレン製の微多孔膜をセパレータとして用い、セパレータを介して正極及び負極を渦巻き状に巻回することにより巻回型の電極体を作製した。この電極体を、外径18mm、高さ65mmの有底円筒形状の電池ケース本体に収容し、上記非水電解質を注入した後、ガスケット及び封口体により電池ケース本体の開口部を封口して、18650型の円筒形非水電解質二次電池を作製した。これを実施例1の電池A1と称する。
上記の正極及び負極をそれぞれ所定の寸法にカットした後、上記正極にアルミニウムリードを、上記負極にニッケルリードをそれぞれ取り付けた。ポリエチレン製の微多孔膜をセパレータとして用い、セパレータを介して正極及び負極を渦巻き状に巻回することにより巻回型の電極体を作製した。この電極体を、外径18mm、高さ65mmの有底円筒形状の電池ケース本体に収容し、上記非水電解質を注入した後、ガスケット及び封口体により電池ケース本体の開口部を封口して、18650型の円筒形非水電解質二次電池を作製した。これを実施例1の電池A1と称する。
<比較例1>
ニッケルコバルトアルミニウム複合酸化物と炭酸リチウムとの混合物にSiOを添加しなかったこと以外は、実施例1の正極活物質a1の作製方法と同様にして、Siを含有しないNi-Co-Al系の第1複合酸化物a2(正極活物質)を作製した。ICP発光分析法による元素分析の結果、正極活物質a2は組成式Li1.1Ni0.88Co0.09Al0.03O2で表されるLiNi複合酸化物で構成されていた。レーザ回折散乱式粒度分布測定装置(株式会社堀場製作所製)を用いて測定した結果、正極活物質a2の体積平均粒径は11μmであった。また、正極活物質a2の圧縮破壊強度(St)は110MPaであった。
ニッケルコバルトアルミニウム複合酸化物と炭酸リチウムとの混合物にSiOを添加しなかったこと以外は、実施例1の正極活物質a1の作製方法と同様にして、Siを含有しないNi-Co-Al系の第1複合酸化物a2(正極活物質)を作製した。ICP発光分析法による元素分析の結果、正極活物質a2は組成式Li1.1Ni0.88Co0.09Al0.03O2で表されるLiNi複合酸化物で構成されていた。レーザ回折散乱式粒度分布測定装置(株式会社堀場製作所製)を用いて測定した結果、正極活物質a2の体積平均粒径は11μmであった。また、正極活物質a2の圧縮破壊強度(St)は110MPaであった。
正極の作製において、正極活物質a2と、カーボンブラックと、ポリフッ化ビニリデン(PVDF)とを、100:1:1の質量比で混合して得られる混合物を使用し、正極添加剤b1を使用しなかったこと以外は実施例1と同様にして、円筒形非水電解質二次電池(電池B1)を作製した。
<比較例2>
正極の作製において、正極活物質a1に換えて正極活物質a2を使用したこと以外は実施例1と同様にして、円筒形非水電解質二次電池(電池B2)を作製した。
正極の作製において、正極活物質a1に換えて正極活物質a2を使用したこと以外は実施例1と同様にして、円筒形非水電解質二次電池(電池B2)を作製した。
<比較例3>
正極の作製において、正極活物質a1と、カーボンブラックと、ポリフッ化ビニリデン(PVDF)とを、100:1:1の質量比で混合して得られる混合物を使用し、正極添加剤b1を使用しなかったこと以外は実施例1と同様にして、円筒形非水電解質二次電池(電池B3)を作製した。
正極の作製において、正極活物質a1と、カーボンブラックと、ポリフッ化ビニリデン(PVDF)とを、100:1:1の質量比で混合して得られる混合物を使用し、正極添加剤b1を使用しなかったこと以外は実施例1と同様にして、円筒形非水電解質二次電池(電池B3)を作製した。
[サイクル特性試験]
上記で作製した実施例1の電池A1、比較例1~3の電池B1~B3を用いて、25℃の温度条件下、充放電電流1It(1Itは電池容量を1時間で放電する電流値であり、ここでは1Itを3000mAとする)、充電終止電圧4.1V、放電終止電圧3Vで充放電を1回行った。この1サイクル目の放電時の放電容量を測定した。次いで、25℃の温度条件下、充放電電流1It、充電終止電圧4.1V、放電終止電圧3Vでの充放電サイクル試験を50回行い、50サイクル目の放電時の放電容量を測定した。
上記で作製した実施例1の電池A1、比較例1~3の電池B1~B3を用いて、25℃の温度条件下、充放電電流1It(1Itは電池容量を1時間で放電する電流値であり、ここでは1Itを3000mAとする)、充電終止電圧4.1V、放電終止電圧3Vで充放電を1回行った。この1サイクル目の放電時の放電容量を測定した。次いで、25℃の温度条件下、充放電電流1It、充電終止電圧4.1V、放電終止電圧3Vでの充放電サイクル試験を50回行い、50サイクル目の放電時の放電容量を測定した。
実施例1の電池A1、及び比較例1~3の電池B1~B3について、1サイクル目の放電容量に対する50サイクル目の放電容量の比率である容量劣化率を算出した。比較例1の電池B1の50サイクル後の容量劣化率を基準(100%)として、実施例1の電池A1及び比較例2~3の電池B2~B3の50サイクル後の容量劣化率を算出した。その結果を表1に示す。
表1の結果から明らかなように、比較例1の電池B1に対して、逆蛍石型構造を有する第2複合酸化物が正極活物質層に含まれる比較例2の電池B2、及び、正極活物質の圧縮破壊強度を高めた比較例3の電池B3では、充放電サイクル特性の改善効果が見られなかった。これに対し、逆蛍石型構造を有する第2複合酸化物が正極活物質層に含まれ、且つ、正極活物質の圧縮破壊強度を高めた実施例1の電池A1では、比較例1の電池B1に比較して容量劣化率が低下し、充放電サイクル特性が格段に向上したことを示した。
Claims (6)
- 正極と、負極と、非水電解質とを備える非水電解質二次電池であって、
前記正極は、正極集電体と、前記正極集電体の表面に設けられ、正極活物質及び正極添加剤を含む正極活物質層とを有し、
前記正極活物質は、リチウム以外の金属の総量に対して50モル%以上のニッケルを含み、かつ、圧縮破壊強度が130MPa以上であるリチウムニッケル複合酸化物を含有し、
前記正極添加剤は、逆蛍石型構造を有するリチウム含有金属酸化物を含有する、非水電解質二次電池。 - 前記正極添加剤の前記正極活物質層に対する含有量が0.5質量%以上5質量%以下である、請求項1に記載の非水電解質二次電池。
- 前記リチウム含有金属酸化物が、リチウム鉄酸化物、リチウム銅酸化物及びリチウムマンガン酸化物からなる群より選択される少なくとも1つを含む、請求項1又は2に記載の非水電解質二次電池。
- 前記リチウム含有金属酸化物がLi5FeO4である、請求項3に記載の非水電解質二次電池。
- 前記正極活物質がケイ素を更に含有する、請求項1~4のいずれか一項に記載の非水電解質二次電池。
- 前記ケイ素の含有量が、前記リチウムニッケル複合酸化物に含まれるリチウム以外の金属の総量に対して0.1モル%以上5モル%以下である、請求項5に記載の非水電解質二次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/045,261 US20210167396A1 (en) | 2018-04-10 | 2019-02-22 | Nonaqueous electrolyte secondary battery |
CN201980025068.6A CN111937195B (zh) | 2018-04-10 | 2019-02-22 | 非水电解质二次电池 |
JP2020513102A JP7373732B2 (ja) | 2018-04-10 | 2019-02-22 | 非水電解質二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-075538 | 2018-04-10 | ||
JP2018075538 | 2018-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019198351A1 true WO2019198351A1 (ja) | 2019-10-17 |
Family
ID=68163126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/006773 WO2019198351A1 (ja) | 2018-04-10 | 2019-02-22 | 非水電解質二次電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210167396A1 (ja) |
JP (1) | JP7373732B2 (ja) |
CN (1) | CN111937195B (ja) |
WO (1) | WO2019198351A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113921788A (zh) * | 2021-09-29 | 2022-01-11 | 蜂巢能源科技(马鞍山)有限公司 | 一种包覆型锰基正极材料及其制备方法 |
WO2023054303A1 (ja) * | 2021-09-30 | 2023-04-06 | パナソニックIpマネジメント株式会社 | 二次電池用正極および二次電池 |
JP7412485B1 (ja) | 2022-07-15 | 2024-01-12 | 住友化学株式会社 | 金属複合水酸化物粒子及びリチウム二次電池用正極活物質の製造方法 |
EP4261929A4 (en) * | 2021-02-09 | 2024-06-26 | Tayca Corporation | ENERGY STORAGE DEVICE PRE-DOPING AGENT AND PRODUCTION METHOD THEREFOR |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102698848B1 (ko) * | 2019-09-20 | 2024-08-23 | 주식회사 엘지에너지솔루션 | 이차전지용 양극재에 포함되는 비가역 첨가제, 이를 포함하는 양극재, 및 양극재를 포함하는 이차전지 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009076383A (ja) * | 2007-09-21 | 2009-04-09 | Panasonic Corp | 非水電解質二次電池およびその製造方法 |
JP2015088268A (ja) * | 2013-10-29 | 2015-05-07 | 株式会社豊田自動織機 | 蓄電装置 |
JP2017168255A (ja) * | 2016-03-15 | 2017-09-21 | 株式会社東芝 | 非水電解質二次電池、電池パック及び車両 |
WO2017169184A1 (ja) * | 2016-03-30 | 2017-10-05 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極活物質、及び非水電解質二次電池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070141468A1 (en) * | 2003-04-03 | 2007-06-21 | Jeremy Barker | Electrodes Comprising Mixed Active Particles |
US9947924B2 (en) * | 2012-12-27 | 2018-04-17 | Sanyo Electric Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
WO2014118834A1 (ja) | 2013-01-31 | 2014-08-07 | 三洋電機株式会社 | 非水電解質二次電池用正極及び非水電解質二次電池 |
JP6428647B2 (ja) * | 2014-01-31 | 2018-11-28 | 三洋電機株式会社 | 非水電解質二次電池及び非水電解質二次電池の製造方法 |
KR20180123188A (ko) * | 2014-12-26 | 2018-11-14 | 닛산 지도우샤 가부시키가이샤 | 전기 디바이스 |
KR20170134049A (ko) * | 2016-05-27 | 2017-12-06 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 |
-
2019
- 2019-02-22 WO PCT/JP2019/006773 patent/WO2019198351A1/ja active Application Filing
- 2019-02-22 JP JP2020513102A patent/JP7373732B2/ja active Active
- 2019-02-22 US US17/045,261 patent/US20210167396A1/en active Pending
- 2019-02-22 CN CN201980025068.6A patent/CN111937195B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009076383A (ja) * | 2007-09-21 | 2009-04-09 | Panasonic Corp | 非水電解質二次電池およびその製造方法 |
JP2015088268A (ja) * | 2013-10-29 | 2015-05-07 | 株式会社豊田自動織機 | 蓄電装置 |
JP2017168255A (ja) * | 2016-03-15 | 2017-09-21 | 株式会社東芝 | 非水電解質二次電池、電池パック及び車両 |
WO2017169184A1 (ja) * | 2016-03-30 | 2017-10-05 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極活物質、及び非水電解質二次電池 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4261929A4 (en) * | 2021-02-09 | 2024-06-26 | Tayca Corporation | ENERGY STORAGE DEVICE PRE-DOPING AGENT AND PRODUCTION METHOD THEREFOR |
CN113921788A (zh) * | 2021-09-29 | 2022-01-11 | 蜂巢能源科技(马鞍山)有限公司 | 一种包覆型锰基正极材料及其制备方法 |
WO2023054303A1 (ja) * | 2021-09-30 | 2023-04-06 | パナソニックIpマネジメント株式会社 | 二次電池用正極および二次電池 |
JP7412485B1 (ja) | 2022-07-15 | 2024-01-12 | 住友化学株式会社 | 金属複合水酸化物粒子及びリチウム二次電池用正極活物質の製造方法 |
WO2024014557A1 (ja) * | 2022-07-15 | 2024-01-18 | 住友化学株式会社 | 金属複合化合物及びリチウム二次電池用正極活物質の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210167396A1 (en) | 2021-06-03 |
CN111937195B (zh) | 2023-12-01 |
JPWO2019198351A1 (ja) | 2021-04-22 |
JP7373732B2 (ja) | 2023-11-06 |
CN111937195A (zh) | 2020-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7373732B2 (ja) | 非水電解質二次電池 | |
US11349121B2 (en) | Positive electrode active substance for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
WO2018155121A1 (ja) | 非水電解質二次電池用正極活物質、及び非水電解質二次電池 | |
JP7245785B2 (ja) | 非水電解質二次電池用正極活物質、非水電解質二次電池用正極及び非水電解質二次電池 | |
CN109478633B (zh) | 非水电解质二次电池用负极和非水电解质二次电池 | |
JP7522109B2 (ja) | 非水電解質二次電池用正極活物質、及び非水電解質二次電池 | |
JP7336778B2 (ja) | 非水電解質二次電池用正極活物質及び非水電解質二次電池 | |
WO2018061298A1 (ja) | 非水電解質二次電池用正極、及び非水電解質二次電池 | |
WO2020044614A1 (ja) | 非水電解質二次電池用正極活物質及び非水電解質二次電池 | |
US20180375096A1 (en) | Positive electrode active material for non-aqueous-electrolyte secondary battery and non-aqueous-electrolyte secondary battery | |
CN112996752B (zh) | 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极活性物质的制造方法和非水电解质二次电池 | |
JP7133776B2 (ja) | 非水電解質二次電池 | |
JP6865398B2 (ja) | 非水電解質二次電池 | |
CN112005410B (zh) | 非水电解质二次电池用正极活性物质和非水电解质二次电池 | |
US20220069300A1 (en) | Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell | |
CN110892569B (zh) | 非水电解质二次电池用正极活性物质和非水电解质二次电池 | |
WO2018123604A1 (ja) | 非水電解質二次電池用正極活物質 | |
JP7570003B2 (ja) | 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19784916 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020513102 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19784916 Country of ref document: EP Kind code of ref document: A1 |