WO2019131036A1 - 油井用低合金高強度継目無鋼管 - Google Patents
油井用低合金高強度継目無鋼管 Download PDFInfo
- Publication number
- WO2019131036A1 WO2019131036A1 PCT/JP2018/044836 JP2018044836W WO2019131036A1 WO 2019131036 A1 WO2019131036 A1 WO 2019131036A1 JP 2018044836 W JP2018044836 W JP 2018044836W WO 2019131036 A1 WO2019131036 A1 WO 2019131036A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cao
- mgo
- less
- steel pipe
- ssc
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/06—Deoxidising, e.g. killing
Definitions
- the present invention is a high strength seamless steel pipe for oil wells and gas wells (hereinafter simply referred to as oil wells), and is particularly excellent in sulfide stress corrosion cracking (SSC) in a sour environment containing hydrogen sulfide.
- SSC sulfide stress corrosion cracking
- This invention relates to low alloy high strength seamless steel pipe.
- “high strength” here shall mean the case where the yield strength has the intensity
- Patent Document 1 For such a demand, for example, in Patent Document 1, C: 0.15 to 0.30%, Si: 0.05 to 0.5%, Mn: 0.05 to 1% by weight. Al: 0.005 to 0.5%, Cr: 0.2 to 1.5%, Mo: 0.1 to 1%, V: 0.05 to 0.3%, and Nb: 0.003 to 0
- the balance contains Fe and unavoidable impurities, and as impurities, P is not more than 0.025%, S is not more than 0.01%, N is not more than 0.01%, O (oxygen) is not more than 0.
- the total content of precipitated carbides is 1.5 to 4% by mass, the ratio of MC carbides to the total amount of carbides is 5 to 45% by mass, and M 23 C 6 carbides
- Patent Document 2 C: 0.22 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, P: 0.025% or less in mass%.
- the yield strength is 758 to 862 MPa and the crack initiation limit stress ( ⁇ th) is 85% or more of the standard minimum strength (SMYS) of the steel material.
- Patent Document 3 C: 0.2 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.05 to 1.0%, P: 0.025 by mass%. % Or less, S: 0.01% or less, Al: 0.005 to 0.10%, Cr: 0.1 to 1.0%, Mo: 0.5 to 1.0%, Ti: 0.002 to 0.05%, V: 0.05 to 0.3%, B: 0.0001 to 0.005%, N: 0.01% or less, O: 0.01% or less of [211]
- a low alloy oil well steel having a yield strength of 861 MPa or more, which is excellent in sulfide stress corrosion cracking resistance, is disclosed by defining an equation consisting of a plane half width and a hydrogen diffusion coefficient to predetermined values.
- the sulfide stress corrosion cracking resistance of the steel of the technology disclosed in these Patent Documents 1 to 3 refers to a round bar tensile test specimen defined in NACE (abbreviation of National Association of Corrosion Engineering) TM0177 method A. It means the presence or absence of SSC generation upon immersion for 720 hours with a constant stress applied in a test bath saturated with hydrogen sulfide gas.
- the hydrogen ion (H + ) present in the test solution undergoes atomic hydrogenation to reduce the amount of hydrogen that penetrates into the test piece per unit time.
- H + hydrogen ion
- the immersion evaluation in 720 hours of the SSC test especially in the environment where the hydrogen sulfide gas partial pressure is low is insufficient, and it is necessary to conduct the SSC test with a longer immersion time and still not generate SSC.
- the present invention has been made in view of such problems, and while having high strength with a yield strength of 862 MPa or more, a higher hydrogen sulfide gas saturated environment, specifically a hydrogen sulfide gas partial pressure of 0.01 MPa
- An object of the present invention is to provide a low alloy high strength seamless steel pipe for oil well having excellent resistance to sulfide stress corrosion cracking (SSC resistance) under the following sour environment.
- the present inventors firstly set the immersion time to 1500 hours based on NACE TM0177 method A for seamless steel pipes having various chemical compositions and yield strength of 862 MPa or more.
- the average of the breaking times for each of the three SSC tests conducted is arranged by the yield strength of each steel pipe.
- the vertical axis is the average (hr) of the breaking time of each of the three SSC tests
- the horizontal axis is the yield strength YS (MPa) of the steel pipe.
- FIG. 2 shows an example of a ternary composition diagram of Al 2 O 3 , CaO and MgO of inclusions having a major axis of 5 ⁇ m or more in a steel pipe having a breaking time average of more than 720 hours and less than 1500 hours in FIG.
- the number of Al 2 O 3 -MgO composite inclusions having a relatively small CaO ratio is very large.
- FIG. 3 shows an example of a ternary composition diagram of Al 2 O 3 , CaO and MgO of inclusions having a major axis of 5 ⁇ m or more in a steel pipe whose average breaking time in FIG. 1 is 720 hours or less.
- FIG. 3 in contrast to FIG.
- FIG. 4 shows an example of a ternary composition diagram of Al 2 O 3 , CaO, and MgO of inclusions having a major axis of 5 ⁇ m or more in a steel pipe in which three tubes did not break in three tubes in 1500 hours in FIG. Show.
- FIG. 4 it can be seen that the number of inclusions having a smaller CaO ratio and inclusions having a larger CaO ratio is smaller than those in FIGS. 2 and 3.
- the inclusion composition which was mostly present in the steel pipe in which SSC was generated from the surface of the test piece with a break time average of more than 720 hours and less than 1500 hours, and with a break time average of 720 hours or less
- a break time average of more than 720 hours and less than 1500 hours and with a break time average of 720 hours or less
- (CaO), (Al 2 O 3 ) and (MgO) are mass% of CaO, Al 2 O 3 and MgO in non-metallic inclusions in oxide-based steel, respectively.
- V 0.02 to 0.3%
- W 0.03 to 0.2%
- Ta 0.03 to 0.3% is selected.
- the low alloy high strength seamless steel pipe for oil well according to the above-mentioned [1], which contains one or more kinds. [3] In addition to the above-mentioned composition, the above-mentioned composition further contains, in mass%, one or two selected from Ti: 0.003 to 0.10%, Zr: 0.003 to 0.10%.
- the low alloy high strength seamless steel pipe for oil wells according to [1] or [2].
- high strength here refers to having the strength whose yield strength is 862 Mpa or more (125 ksi or more).
- the low alloy high strength seamless steel pipe for oil well of the present invention is excellent in sulfide stress corrosion cracking resistance (SSC resistance).
- Sulfide resistance to stress corrosion cracking is an SSC test based on NACE TM0177 method A, and in particular, 0.5 mass% CH at 24 ° C. saturated with hydrogen sulfide gas at 0.1 atm (0.01 MPa). Three SSC tests each using a mixed solution of 3 COOH and CH 3 COONa as a test bath are tested, and all indicate that the breaking time is 1500 hours or more (preferably 3000 hours or more).
- the oxide system containing CaO, Al 2 O 3 and MgO is formed by the reaction between Ca added for the purpose of shape control of MnS in steel and the like and O contained in molten steel.
- CaO and Al which is a deoxidizing material added when tapping a molten steel refined by a converter method or the like into a ladle, or after O, contained in the molten steel
- FIG. 1 is a graph of the yield strength of a steel pipe and the average breaking time of three SSC tests.
- FIG. 2 is an example of a ternary composition diagram of Al 2 O 3 , CaO, and MgO of inclusions having a major axis of 5 ⁇ m or more in a steel pipe having a breaking time average of more than 720 hours and less than 1500 hours in the SSC test.
- FIG. 3 is an example of a ternary composition diagram of Al 2 O 3 , CaO and MgO of inclusions having a major axis of 5 ⁇ m or more in a steel pipe whose average breaking time is 720 hours or less in the SSC test.
- FIG. 2 is an example of a ternary composition diagram of Al 2 O 3 , CaO and MgO of inclusions having a major axis of 5 ⁇ m or more in a steel pipe whose average breaking time is 720 hours or less in the SSC test.
- FIG. 4 is an example of a ternary composition diagram of Al 2 O 3 , CaO, and MgO of inclusions having a major axis of 5 ⁇ m or more in a steel pipe in which three do not break in three tests in 1500 hours in the SSC test.
- the low alloy high strength seamless steel pipe for oil well of the present invention is, by mass%, C: 0.25 to 0.50%, Si: 0.01 to 0.40%, Mn: 0.3 to 1.5% P: 0.010% or less, S: 0.001% or less, O: 0.0015% or less, Al: 0.015 to 0.080%, Cu: 0.02 to 0.09%, Cr: 0 .5 to 0.8%, Mo: 0.5 to 1.3%, Nb: 0.005 to 0.05%, B: 0.0005 to 0.0040%, Ca: 0.0010 to 0.0020 %, Mg: 0.001% or less, N: 0.005% or less, and the composition has the balance Fe and unavoidable impurities, and the composition has a composition ratio of the following formulas (1) and (2) The number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO with a long diameter of 5 ⁇ m or more satisfying 10% or more per 100 mm 2 Below, the number of nonmetallic inclusions in the
- V 0.02 to 0.3%
- W 0.03 to 0.2%
- Ta 0.03 to 0.3% in mass%
- It can contain one or more of the following. Further, it may contain, by mass%, one or two selected from Ti: 0.003 to 0.10% and Zr: 0.003 to 0.10%.
- (CaO), (Al 2 O 3 ) and (MgO) are mass% of CaO, Al 2 O 3 and MgO in non-metallic inclusions in oxide-based steel, respectively.
- C 0.25 to 0.50% C has the effect of increasing the strength of the steel and is an important element to ensure the desired high strength.
- the content of C In order to realize the high strength with a yield strength of 862 MPa or more targeted in the present invention, the content of C of 0.25% or more is required.
- C is set to 0.25 to 0.50%.
- C is preferably 0.26% or more, more preferably 0.27% or more.
- C is preferably 0.40% or less, more preferably 0.30% or less.
- Si 0.01 to 0.40%
- Si is an element which acts as a deoxidizing agent, is solid-solved in the steel to increase the strength of the steel, and has the function of suppressing rapid softening during tempering. In order to obtain such an effect, it is necessary to contain 0.01% or more of Si. On the other hand, when the content of Si exceeds 0.40%, coarse oxide-based inclusions are formed and become the starting point of SSC. Therefore, the Si content is set to 0.01 to 0.40%.
- Si is preferably 0.02% or more.
- Si is preferably 0.15% or less, more preferably 0.04% or less.
- Mn 0.3 to 1.5%
- Mn is an element having the function of increasing the strength of steel through the improvement of the hardenability, and combining with S to fix S as MnS to prevent intergranular embrittlement due to S.
- it is necessary to contain 0.3% or more of Mn.
- the Mn is set to 0.3 to 1.5%.
- Mn is preferably 0.90% or more, more preferably 1.20% or more.
- Mn is preferably 1.45% or less, more preferably 1.40% or less.
- P 0.010% or less P is segregated in grain boundaries and the like in a solid solution state, and tends to cause intergranular embrittlement cracking and the like. Although it is desirable to reduce as much as possible in the present invention, up to 0.010% is acceptable. Because of this, P is made 0.010% or less. P is preferably 0.009% or less, more preferably 0.008% or less.
- S 0.001% or less S is mostly present as sulfide inclusions in steel, and reduces the ductility, toughness, and corrosion resistance such as sulfide stress corrosion cracking resistance. A part of S may be present in a solid solution state, but in that case, it tends to segregate at grain boundaries and the like and cause intergranular brittleness cracking and the like. For this reason, it is desirable to reduce S as much as possible in the present invention, but excessive reduction raises the refining cost. From these facts, in the present invention, S is made 0.001% or less at which the adverse effect is acceptable.
- O (oxygen) 0.0015% or less O (oxygen) is present as an unavoidable impurity in steel as an oxide of Al, Si, Mg, Ca and the like.
- a composition ratio satisfying (CaO) / (Al 2 O 3 ) ⁇ 0.25 and 1.0 ⁇ (Al 2 O 3 ) / (MgO) ⁇ 9.0
- the number of oxides having a major axis of 5 ⁇ m or more exceeds 10 per 100 mm 2 , these oxides form SSCs that break from the surface of the test piece in a long time.
- Al acts as a deoxidizing agent and combines with N to form AlN, which contributes to the reduction of solid solution N.
- Al needs to be contained at 0.015% or more.
- (CaO) / (Al 2 O 3 ) ⁇ 0.25 the cleanliness in the steel decreases, and as described later, in the SSC test, in particular, (CaO) / (Al 2 O 3 ) ⁇ 0.25, and When the number of oxides having a major axis of 5 ⁇ m or more exceeds 10 per 100 mm 2 , the oxides are the starting point, with a composition ratio satisfying 1.0 ⁇ (Al 2 O 3 ) / (MgO) ⁇ 9.0.
- the Al content is 0.015% to 0.080% where the adverse effect is acceptable.
- Al is preferably 0.025% or more, more preferably 0.050% or more.
- Al is preferably at most 0.075%, more preferably at most 0.070%.
- Cu 0.02 to 0.09%
- Cu is an element having an effect of improving the corrosion resistance.
- a small amount of Cu is contained, a dense corrosion product is formed, the formation and growth of pits serving as the starting point of SSC are suppressed, and the resistance to sulfide stress corrosion cracking is significantly improved.
- it is necessary to contain 0.02% or more of Cu.
- Cu is set to 0.02 to 0.09%.
- Cu is preferably at most 0.07%, more preferably at most 0.04%.
- Cr 0.5 to 0.8% Cr is an element that contributes to an increase in the strength of the steel and improves the corrosion resistance through an increase in hardenability. Further, Cr combines with C during tempering to form carbides such as M 3 C, M 7 C 3 and M 23 C 6 . In particular, the M 3 C-based carbides improve the resistance to temper softening, reduce the change in strength due to tempering, and contribute to the improvement of the yield strength. In order to achieve the yield strength of 862 MPa or more targeted by the present invention, it is necessary to contain 0.5% or more of Cr. On the other hand, even if it is contained in a large amount exceeding 0.8%, the above effect is saturated, which is economically disadvantageous. Therefore, Cr is set to 0.5 to 0.8%. Cr is preferably 0.6% or more.
- Mo 0.5 to 1.3%
- Mo is an element that contributes to an increase in the strength of steel through the increase in hardenability and improves the corrosion resistance.
- Mo 2 C carbide which precipitates secondarily after tempering improves temper softening resistance, reduces strength change due to tempering, and contributes to improvement in yield strength.
- Mo is set to 0.5 to 1.3%.
- Mo is preferably 0.85% or more, more preferably 1.05% or more.
- Mo is preferably 1.28% or less, more preferably 1.25% or less.
- Nb 0.005 to 0.05%
- Nb retards recrystallization in the austenite ( ⁇ ) temperature region, contributes to the refinement of ⁇ grains, and works extremely effectively for the refinement of the steel substructure (eg, packet, block, lath) immediately after quenching. Is an element that In order to obtain such an effect, it is necessary to contain Nb of 0.005% or more. On the other hand, the content of Nb exceeding 0.05% significantly increases the hardness of the steel, and even if high temperature tempering is performed, the hardness does not decrease and the sulfide stress corrosion cracking susceptibility is significantly impaired. From this, Nb is made 0.005 to 0.05%.
- Nb is preferably 0.006% or more, more preferably 0.007% or more.
- Nb is preferably 0.030% or less, more preferably 0.010% or less.
- B 0.0005 to 0.0040%
- B is an element which contributes to the improvement of the hardenability with a slight content.
- the B content of 0.0005% or more is required.
- B is set to 0.0005 to 0.0040%.
- B is preferably 0.0010% or more, more preferably 0.0015% or more.
- B is preferably 0.0030% or less, more preferably 0.0025% or less.
- Ca 0.0010 to 0.0020% Ca is positively added to control the morphology of oxide inclusions in the steel.
- the number of Al 2 O 3 -MgO-based composite oxides is 10 per 100 mm 2
- the (Al 2 O 3 ) / (MgO) ratio is 1.0 to 9.0. If more than one are present, these oxides form SSCs that break from the surface of the test piece over a long period of time.
- the present invention requires the content of Ca of 0.0010% or more.
- the content of Ca exceeding 0.0020% has a composition ratio that satisfies (CaO) / (Al 2 O 3 ) ⁇ 2.33 and (CaO) / (MgO) ⁇ 1.0.
- This causes an increase in the number of oxides having a major axis of 5 ⁇ m or more, and these oxides form SSCs that break within a short time from the inside of the test piece. Therefore, Ca is set to 0.0010 to 0.0020%.
- Ca is preferably 0.0012% or more.
- Ca is preferably 0.0017% or less.
- Mg not more than 0.001% Mg is not added positively, but during desulfurization treatment such as Ladle furnace (LF) performed for low S, refractory of MgO-C composition of ladle, In the reaction with CaO-Al 2 O 3 -SiO 2 -based slag used for desulfurization, it infiltrates into molten steel as Mg component.
- LF Ladle furnace
- the number of Al 2 O 3 -MgO-based composite oxides is 10 per 100 mm 2
- the (Al 2 O 3 ) / (MgO) ratio is 1.0 to 9.0.
- Mg is made 0.001% or less at which the adverse effect is acceptable. Mg is preferably 0.0008% or less, more preferably 0.0005% or less.
- N 0.005% or less
- N is an unavoidable impurity in steel and combines with a nitride-forming element such as Ti, Nb or Al to form a MN-type precipitate. Furthermore, the remaining surplus N forming these nitrides combines with B to also form BN precipitates. At this time, since the hardenability improvement effect by B addition is lost, it is desirable to reduce the excess N as much as possible. For this reason, N is made 0.005% or less. N is preferably 0.004% or less.
- the balance other than the above components is Fe and unavoidable impurities.
- V 0.02 to 0.3%
- W 0.03 to 0.2%
- Ta 0.03 to 0.
- One or more selected from 3% can be contained. Further, it may contain, by mass%, one or two selected from Ti: 0.003 to 0.10% and Zr: 0.003 to 0.10%.
- V 0.02 to 0.3%
- V is an element which forms carbides or nitrides and contributes to strengthening of the steel. In order to acquire such an effect, it is preferable to make it contain V 0.02% or more.
- V is preferably set to 0.02 to 0.3%.
- V is more preferably 0.03% or more. More preferably, it is 0.04% or more. More preferably, V is at most 0.09%. More preferably, it is 0.06% or less.
- W 0.03 to 0.2%
- W is also an element that forms carbides or nitrides and contributes to strengthening of the steel. In order to acquire such an effect, it is preferable to make it contain W 0.03% or more.
- W-based carbides are coarsened to become a starting point of sulfide stress corrosion cracking, and there is a possibility that SSC will be generated. Therefore, when W is contained, W is preferably set to 0.03 to 0.2%. W is more preferably 0.07% or more, and more preferably 0.1% or less.
- Ta 0.03 to 0.3%
- Ta is also an element that forms carbides or nitrides and contributes to strengthening of the steel. In order to obtain such an effect, it is preferable to contain 0.03% or more of Ta. On the other hand, if the content of Ta exceeds 0.3%, the Ta-based carbides coarsen and become a starting point of sulfide stress corrosion cracking, and there is a possibility that SSC may be generated. Therefore, when Ta is contained, the Ta content is preferably 0.03 to 0.3%. Ta is more preferably 0.08% or more, and more preferably 0.2% or less.
- Ti 0.003 to 0.10% Ti is an element that forms a nitride and contributes to the prevention of coarsening due to the pinning effect of austenite grains at the time of quenching of steel. Furthermore, by making austenite grains finer, resistance to hydrogen sulfide cracking is improved. In particular, the required austenite grain refinement can be achieved without repeating quenching (Q) and tempering (T) described later two to three times. In order to obtain such an effect, it is preferable to contain 0.003% or more of Ti.
- Ti when Ti is contained in excess of 0.10%, the coarsened Ti-based nitride becomes a starting point of sulfide stress corrosion cracking, and there is a possibility that SSC is generated. Therefore, when Ti is contained, Ti is preferably 0.003 to 0.10%, and more preferably 0.005% or more. More preferably, it is 0.008% or more. More preferably, Ti is 0.050% or less. More preferably, it is 0.030% or less.
- Zr 0.003 to 0.10%
- Zr also forms nitrides like Ti, prevents coarsening due to the pinning effect of austenite grains during quenching of steel, and improves resistance to hydrogen sulfide cracking. In particular, the effect is remarkable by complex addition with Ti. In order to acquire such an effect, it is preferable to set it as 0.003% or more of containing of Zr.
- the content of Zr exceeds 0.10%, the coarsened Zr-based nitride or Ti—Zr composite nitride becomes a starting point of sulfide stress corrosion cracking, and there is a possibility that SSC is generated. Therefore, in the case of containing Zr, it is preferable to set Zr to 0.003 to 0.10%.
- Zr is more preferably 0.005% or more, and more preferably 0.050% or less.
- the number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major axis of 5 ⁇ m or more and a composition ratio satisfying the following formulas (1) and (2) is 10 or less per 100 mm 2 CaO) / (Al 2 O 3 ) ⁇ 0.25 (1) 1.0 ⁇ (Al 2 O 3 ) / (MgO) ⁇ 9.0 (2)
- (CaO), (Al 2 O 3 ) and (MgO) are mass% of CaO, Al 2 O 3 and MgO in non-metallic inclusions in oxide-based steel, respectively.
- Equations (1) and (2) show this range quantitatively. Furthermore, in the SSC test, if the number is 10 or less per 100 mm 2 according to comparison with the number of inclusions of 5 ⁇ m or more in the same inclusion composition of the steel pipe in which all test pieces were not broken in 1500 hours It turned out that it does not break in time. Therefore, the number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major diameter of 5 ⁇ m or more satisfying the equations (1) and (2) is 10 or less per 100 mm 2. .
- the inclusions of these compositions were exposed on the surface of the test piece as the reason that inclusions having a major diameter of 5 ⁇ m or more satisfying such expressions (1) and (2) adversely affect sulfide stress corrosion cracking resistance.
- the inclusions themselves dissolve in the test bath, and then pitting progresses gradually, and accumulation of the amount of hydrogen intruding from the pitting portion after about 720 hours generates SSC. As a result of exceeding a sufficient amount of hydrogen, it is considered that breakage occurred.
- the number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major axis of 5 ⁇ m or more and a composition ratio satisfying the following equations (3) and (4) is 30 or less per 100 mm 2 CaO) / (Al 2 O 3 ) ⁇ 2.33 (3) (CaO) / (MgO) ⁇ 1.0 (4)
- (CaO), (Al 2 O 3 ) and (MgO) are mass% of CaO, Al 2 O 3 and MgO in non-metallic inclusions in oxide-based steel, respectively.
- the number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major diameter of 5 ⁇ m or more satisfying the equations (3) and (4) is 30 or less per 100 mm 2. . Preferably, it is 20 or less.
- CaO is (CaO) / (Al 2 O 3 ) ratio
- the method for producing a steel pipe material having the above-mentioned composition is not particularly limited.
- molten steel having the above-described composition is melted by a commonly known melting method such as a converter, electric furnace, vacuum melting furnace, etc., and billet is formed by a conventional method such as continuous casting method And other steel pipe materials.
- the converter in order to make the number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major axis of 5 ⁇ m or more having the two types of inclusion compositions described above, the converter, It is preferable to carry out deoxidation treatment with Al immediately after melting by a generally known melting method such as an electric furnace or a vacuum melting furnace. Furthermore, desulfurization treatment such as ladle furnace (LF) is continued to reduce sulfur (S) in the molten steel, and then N and O (oxygen) in the molten steel are reduced by the degassing apparatus, and then Ca addition is performed. It is preferred to carry out the treatment and to cast it last.
- a generally known melting method such as an electric furnace or a vacuum melting furnace.
- desulfurization treatment such as ladle furnace (LF) is continued to reduce sulfur (S) in the molten steel, and then N and O (oxygen) in the molten steel are reduced by the degassing apparatus, and then Ca addition
- the concentration of Ca in the alloy raw material used during the degassing treatment is reduced as much as possible so that the Ca concentration in the molten steel before carrying out the Ca addition treatment becomes 0.0004 mass% or less. It is preferable to carry out management.
- the Ca concentration in the molten steel before carrying out the Ca addition treatment exceeds 0.0004 mass%, it will instead be in the molten steel when added with the appropriate Ca addition amount [% Ca *] at the time of performing the Ca addition treatment described later
- the number of CaO-Al 2 O 3 -MgO complex oxides, in which the CaO ratio is high and the (CaO) / (MgO) ratio is 1.0 or more is increased.
- these oxides are the starting point, and the SSC which is broken in a short time from the inside of the test piece is generated.
- oxygen in molten steel [% T.O.
- Ca concentration ratio with respect to molten steel weight, [% Ca *]
- O value oxygen in molten steel [% T.
- the appropriate Ca concentration [% Ca *] can be determined according to the O] value. 0.63 ⁇ [% Ca *] / [% T. O] ⁇ 0.91 (5)
- [% Ca *] / [% T. When O] is less than 0.63, as a result of insufficient Ca addition, the CaO ratio is low and the (Al 2 O 3 ) / (MgO) ratio is 1. even if the Ca value of the steel pipe is within the range of the present invention.
- the number of Al 2 O 3 -MgO-based composite oxides increases from 0 to 9.0. As a result, in the SSC test, these oxides are the starting point, and SSC which is broken in a long time from the surface of the test piece is generated. Meanwhile, [% Ca *] / [% T. When O] exceeds 0.91, the number of CaO-Al 2 O 3 -MgO composite oxides, in which the CaO ratio is high and the (CaO) / (MgO) ratio is 1.0 or more, is increased. As a result, in the SSC test, these oxides are the starting point, and the SSC which is broken in a short time from the inside of the test piece is generated.
- the obtained steel pipe material is formed into a seamless steel pipe by hot forming.
- the hot forming method can be carried out by a generally known method.
- a hot forming method a steel pipe material is heated, pierced by piercing, then formed into a predetermined thickness using a method of mandrel mill rolling or plug mill rolling, and then hot rolling up to appropriate diameter reduction rolling It will be.
- the heating temperature of the steel pipe material is preferably in the range of 1150 to 1280 ° C. When the heating temperature is less than 1150 ° C., the deformation resistance of the steel pipe material at the time of heating is large, and the piercing failure is caused.
- the heating temperature is preferably 1150 ° C. or more, preferably 1280 ° C. or less.
- the heating temperature is more preferably 1200 ° C. or more.
- the rolling end temperature is preferably 900 ° C. or more, and preferably 1080 ° C. or less. In the present invention, it is preferable to carry out direct quenching (DQ) after hot rolling from the viewpoint of grain refining.
- DQ direct quenching
- the quenching temperature at this time is preferably 930 ° C. or less from the viewpoint of grain refinement.
- the quenching temperature is preferably set to 860 to 930 ° C.
- the tempering temperature needs to be below Ac 1 temperature to avoid austenite re-transformation, but if it is less than 600 ° C., secondary precipitation of carbide of Mo or V, W, or Ta can not be secured. Therefore, the tempering temperature is preferably at least 600 ° C. or higher. In particular, the final tempering temperature is preferably 620 ° C. or more, more preferably 640 ° C. or more. Furthermore, it is preferable to repeat the quenching (Q) and the tempering (T) at least twice or more in order to improve the resistance to hydrogen sulfide cracking by grain refinement. When Ti and Zr are not added, it is preferable to repeat three times or more.
- DQ can not be applied after hot rolling, composite addition of Ti and Zr is performed, or hardening and tempering are performed at least three times or more, and in particular, the initial hardening temperature is set to 950 ° C. or more to substitute the effect of DQ. can do.
- Example 1 A steel with the composition shown in Table 1 is melted by the converter method, and immediately after Al deoxidation, secondary refining is performed in the order of LF-degassing treatment, followed by Ca addition treatment, and finally continuous Casting was carried out to produce a steel pipe material.
- Al deoxidizing, LF and an alloy raw material used at the time of degassing treatment used high purity not containing Ca impurity.
- a molten steel sample was collected and analyzed for Ca in molten steel. The analysis results are shown in Tables 2-1 and 2-2.
- oxygen in molten steel [% T.O. O]
- [% Ca *] which is a ratio of analyzed value and Ca addition amount to molten steel weight, [% Ca *] / [% T. O] The values were calculated and listed in Tables 2-1 and 2-2.
- a 15 mm ⁇ 15 mm inspection surface inclusion inspection sample, a tensile test piece and an SSC test piece were respectively collected from any one thickness center in the circumferential direction of the pipe end.
- three SSC specimens were collected. And it evaluated by the following methods.
- Inclusion investigation samples were mirror-polished, followed by SEM observation of inclusions in a region of 10 mm ⁇ 10 mm with a scanning electron microscope (SEM), and the chemical composition of inclusions with a characteristic X-ray analyzer accompanying the SEM. It analyzed and calculated the mass%. And the number of inclusions having a major diameter of 5 ⁇ m or more satisfying the composition ratio of the equations (1) and (2), and the equations (3) and (4), respectively, was counted and listed in Tables 2-1 and 2-2. .
- the yield strength of the steel pipe obtained in the test is shown in Table 2-1 and Table 2-2. Here, the yield strength passed 862 MPa or more.
- the SSC test was performed based on NACE TM0177 method A using the collected SSC test piece.
- the pH of the test bath was adjusted to 3.5 at the end of saturation of each hydrogen sulfide gas.
- the test stress in the SSC test was 90% of the actual yield strength of each steel pipe.
- the test time was 1500 hours, those which were not broken at the time of 1500 hours were broken until the test was continued until it reached 3000 hours.
- the rupture times of each of the three SSC specimens obtained in the test are shown in Tables 2-1 and 2-2, respectively.
- all three test pieces having a breaking time of 1500 hours or more were regarded as pass.
- the invention examples (Steel pipe No. 1-1 and Steel pipe Nos. 1-6 to 1-13), which were in the scope of the invention, all have a yield strength of 862 MPa or more, and three rupture times of three SSC tests were performed. Both were over 1500 hours.
- Chemical composition O exceeds the range of the present invention, and the number of inclusions having a major axis of 5 ⁇ m or more in the composition ratio satisfying the equations (1) and (2), and the equations (3) and (4) satisfy
- the comparative example (steel pipe No. 1-20) in which the number of inclusions having a major axis of 5 ⁇ m or more in the composition ratio was out of the range of the present invention, all three SSC tests broke within 1500 hours.
- Example 2 A steel with the composition shown in Table 3 is melted by the converter method, and after immediate deoxidation with Al, secondary refining is performed in the order of LF-degassing treatment, followed by Ca addition treatment, and finally continuous treatment Casting was carried out to produce a steel pipe material.
- Al deoxidizing, LF, and an alloy raw material used at the time of degassing treatment used a high purity one containing no Ca impurity.
- a molten steel sample was collected and analyzed for Ca in molten steel.
- the analysis results are shown in Table 4-1 and Table 4-2.
- oxygen in molten steel [% T.O. O]
- [% Ca *] which is a ratio of analyzed value and Ca addition amount to molten steel weight, [% Ca *] / [% T. O] The values were calculated and listed in Table 4-1 and Table 4-2.
- a 15 mm ⁇ 15 mm inspection surface inclusion inspection sample, a tensile test piece and an SSC test piece were respectively collected from any one thickness center in the circumferential direction of the pipe end.
- three SSC specimens were collected. And it evaluated by the following methods.
- Inclusion investigation samples were mirror-polished, followed by SEM observation of inclusions in a region of 10 mm ⁇ 10 mm with a scanning electron microscope (SEM), and the chemical composition of inclusions with a characteristic X-ray analyzer accompanying the SEM. It analyzed and calculated the mass%. And the number of inclusions having a major diameter of 5 ⁇ m or more satisfying the composition ratio of the equations (1) and (2), and the equations (3) and (4), respectively, was counted and listed in Tables 4-1 and 4-2. .
- SEM scanning electron microscope
- the yield strength of the steel pipe obtained in the test is shown in Table 4-1 and Table 4-2. Here, the yield strength passed 862 MPa or more.
- the SSC test was performed based on NACE TM0177 method A using the collected SSC test piece.
- the pH of the test bath was adjusted to 3.5 at the end of saturation of each hydrogen sulfide gas.
- the test stress in the SSC test was 90% of the actual yield strength of each steel pipe.
- the test time was 1500 hours, those which were not broken at the time of 1500 hours were broken until the test was continued until it reached 3000 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Heat Treatment Of Steel (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
[1] 質量%で、C:0.25~0.50%、Si:0.01~0.40%、Mn:0.3~1.5%、P:0.010%以下、S:0.001%以下、O:0.0015%以下、Al:0.015~0.080%、Cu:0.02~0.09%、Cr:0.5~0.8%、Mo:0.5~1.3%、Nb:0.005~0.05%、B:0.0005~0.0040%、Ca:0.0010~0.0020%、Mg:0.001%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成を有し、組織は、組成比が下記(1)式および(2)式を満足する長径5μm以上のCaO、Al2O3、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm2当り10個以下、組成比が下記(3)式および(4)式を満足する長径5μm以上のCaO、Al2O3、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm2当り30個以下であり、降伏強度が862MPa以上である油井用低合金高強度継目無鋼管。
(CaO)/(Al2O3)≦0.25 (1)
1.0≦(Al2O3)/(MgO)≦9.0 (2)
(CaO)/(Al2O3)≧2.33 (3)
(CaO)/(MgO)≧1.0 (4)
ここで(CaO)、(Al2O3)、(MgO)はそれぞれ酸化物系の鋼中非金属介在物中の、CaO、Al2O3、MgOの質量%である。
[2] 前記組成に加えてさらに、質量%で、V:0.02~0.3%、W:0.03~0.2%、Ta:0.03~0.3%のうちから選ばれた1種または2種以上を含有する上記[1]に記載の油井用低合金高強度継目無鋼管。
[3] 前記組成に加えてさらに、質量%で、Ti:0.003~0.10%、Zr:0.003~0.10%のうちから選ばれた1種または2種を含有する上記[1]または[2]に記載の油井用低合金高強度継目無鋼管。
また、本発明の油井用低合金高強度継目無鋼管は、耐硫化物応力腐食割れ性(耐SSC性)に優れている。耐硫化物応力腐食割れ性に優れるとは、NACE TM0177 methodAにもとづくSSC試験であって、特に0.1気圧(0.01MPa)の硫化水素ガスを飽和させた24℃の0.5質量%CH3COOHとCH3COONaとの混合水溶液を試験浴としたSSC試験を各3本ずつ試験し、そのいずれもが破断時間が1500時間以上(好適には3000時間以上)であることを指す。
また、本発明において、CaO、Al2O3、MgOを含む酸化物系とは、鋼中のMnS等の形態制御等の目的で添加されるCaと溶鋼中に含まれるOとの反応で生成されるCaO、および、転炉法等で精錬された溶鋼を取鍋に出鋼する際、あるいは出鋼後に添加される脱酸材のAlと溶鋼中に含まれるOとの反応で生成されるAl2O3、さらには、溶鋼の脱硫処理中に、取鍋のMgO‐C組成の耐火物と、脱硫のために用いられるCaO‐Al2O3‐SiO2系スラグとの反応で、溶鋼中に溶出したMgO、といった酸化物が連続鋳造法あるいは造塊法などの鋳造時に凝集・複合したまま凝固後の鋼中に残存したものを意味する。
(CaO)/(Al2O3)≦0.25 (1)
1.0≦(Al2O3)/(MgO)≦9.0 (2)
(CaO)/(Al2O3)≧2.33 (3)
(CaO)/(MgO)≧1.0 (4)
ここで(CaO)、(Al2O3)、(MgO)はそれぞれ酸化物系の鋼中非金属介在物中の、CaO、Al2O3、MgOの質量%である。
Cは、鋼の強度を増加させる作用を有し、所望の高強度を確保するために重要な元素である。本発明で目的とする降伏強度が862MPa以上の高強度化を実現するためには、0.25%以上のCの含有を必要とする。一方、0.50%を超えるCの含有は、高温焼戻しを実施してもなお硬さが低下せずに耐硫化物応力腐食割れ感受性を著しく阻害する。このためCは、0.25~0.50%とする。Cは、好ましくは0.26%以上であり、より好ましくは0.27%以上である。Cは、好ましくは0.40%以下であり、より好ましくは0.30%以下である。
Siは、脱酸剤として作用するとともに、鋼中に固溶して鋼の強度を増加させ、焼戻時の急激な軟化を抑制する作用を有する元素である。このような効果を得るためには、0.01%以上のSiの含有を必要とする。一方、0.40%を超えるSiの含有は、粗大な酸化物系介在物を形成し、SSCの起点となる。このため、Siは、0.01~0.40%とする。Siは、好ましくは0.02%以上である。Siは、好ましくは0.15%以下であり、より好ましくは0.04%以下である。
Mnは、焼入れ性の向上を介して、鋼の強度を増加させるとともに、Sと結合しMnSとしてSを固定して、Sによる粒界脆化を防止する作用を有する元素である。本発明では0.3%以上のMnの含有を必要とする。一方、1.5%を超えるMnの含有は、鋼の硬さを著しく上昇させ、高温焼戻しを実施してもなお硬さが低下せずに耐硫化物応力腐食割れ感受性を著しく阻害する。このためMnは、0.3~1.5%とする。Mnは、好ましくは0.90%以上であり、より好ましくは1.20%以上である。Mnは、好ましくは1.45%以下であり、より好ましくは1.40%以下である。
Pは、固溶状態では粒界等に偏析し、粒界脆化割れ等を引き起こす傾向を示す。本発明ではできるだけ低減することが望ましいが、0.010%までは許容できる。このようなことから、Pは0.010%以下とする。Pは、好ましくは0.009%以下であり、より好ましくは0.008%以下である。
Sは、鋼中ではほとんどが硫化物系介在物として存在し、延性、靭性や、耐硫化物応力腐食割れ性等の耐食性を低下させる。Sの一部は固溶状態で存在する場合があるが、その場合には粒界等に偏析し、粒界脆化割れ等を引き起こす傾向を示す。このため、Sは、本発明ではできるだけ低減することが望ましいが、過剰な低減は精錬コストを高騰させる。このようなことから、本発明では、Sは、その悪影響が許容できる0.001%以下とする。
O(酸素)は不可避的不純物として、Al、Si、Mg、Ca等の酸化物として鋼中に存在する。後述するように、SSC試験において、特に、(CaO)/(Al2O3)≦0.25、かつ1.0≦(Al2O3)/(MgO)≦9.0を満たす組成比の、長径5μm以上の酸化物数が100mm2当り10個を超える場合、これらの酸化物が起点となって、試験片の表面から長時間で破断するSSCが発生する。また、SSC試験において、(CaO)/(Al2O3)≧2.33、かつ(CaO)/(MgO)≧1.0を満たす組成比の、長径5μm以上の酸化物数が100mm2当り30個を超える場合、これらの酸化物が起点となって、試験片内部から短時間で破断するSSCが発生する。このため、O(酸素)は、その悪影響が許容できる0.0015%以下とする。O(酸素)は、好ましくは0.0012%以下であり、より好ましくは0.0010%以下である。
Alは、脱酸剤として作用するとともに、Nと結合しAlNを形成して固溶Nの低減に寄与する。このような効果を得るために、Alは0.015%以上の含有を必要とする。一方、0.080%を超えてAlを含有すると、鋼中の清浄度が低下し、後述するように、SSC試験において、特に、(CaO)/(Al2O3)≦0.25、かつ1.0≦(Al2O3)/(MgO)≦9.0を満たす組成比の、長径5μm以上の酸化物数が100mm2当り10個を超える場合、これらの酸化物が起点となって、試験片の表面から長時間で破断するSSCが発生する。このため、Alは、その悪影響が許容できる0.015~0.080%とする。Alは、好ましくは0.025%以上であり、より好ましくは0.050%以上である。Alは、好ましくは0.075%以下であり、より好ましくは0.070%以下である。
Cuは、耐食性を向上させる作用を有する元素である。Cuを微量に含有した場合、緻密な腐食生成物が形成され、SSCの起点となるピットの生成および成長が抑制されて、耐硫化物応力腐食割れ性が顕著に向上する。このため、本発明では、0.02%以上のCuの含有を必要とする。一方、0.09%を超えてCuを含有すると、継目無鋼管の製造プロセス時の熱間加工性が低下する。このため、Cuは0.02~0.09%とする。Cuは、好ましくは0.07%以下であり、より好ましくは0.04%以下である。
Crは、焼入れ性の増加を介して、鋼の強度の増加に寄与するとともに、耐食性を向上させる元素である。また、Crは、焼戻時にCと結合し、M3C系、M7C3系、M23C6系等の炭化物を形成する。特にM3C系炭化物は焼戻軟化抵抗を向上させ、焼戻しによる強度変化を少なくして、降伏強度の向上に寄与する。本発明で目的とする862MPa以上の降伏強度の達成には、0.5%以上のCrの含有を必要とする。一方、0.8%を超えて多量に含有しても、上記効果が飽和するため、経済的に不利となる。このため、Crは、0.5~0.8%とする。Crは、好ましくは0.6%以上である。
Moは、焼入れ性の増加を介して、鋼の強度の増加に寄与するとともに、耐食性を向上させる元素である。特に、焼戻し後に2次析出するMo2C炭化物は焼戻軟化抵抗を向上させ、焼戻による強度変化を少なくして、降伏強度の向上に寄与する。このような効果を得るためには、0.5%以上のMoの含有を必要とする。一方、1.3%を超えて多量に含有しても、上記効果が飽和するため、経済的に不利となる。このため、Moは、0.5~1.3%とする。Moは、好ましくは0.85%以上であり、より好ましくは1.05%以上である。Moは、好ましくは1.28%以下であり、より好ましくは1.25%以下である。
Nbは、オーステナイト(γ)温度域での再結晶を遅延させ、γ粒の微細化に寄与し、焼入直後の鋼の下部組織(例えばパケット、ブロック、ラス)の微細化に極めて有効に作用する元素である。このような効果を得るためには、0.005%以上のNbの含有を必要とする。一方、0.05%を超えるNbの含有は、鋼の硬さを著しく上昇させ、高温焼戻しを実施してもなお硬さが低下せずに耐硫化物応力腐食割れ感受性を著しく阻害する。このことからNbは、0.005~0.05%とする。Nbは、好ましくは0.006%以上であり、より好ましくは0.007%以上である。Nbは、好ましくは0.030%以下であり、より好ましくは0.010%以下である。
Bは、微量の含有で焼入れ性向上に寄与する元素である。本発明では0.0005%以上のBの含有を必要とする。一方、0.0040%を超えてBを含有しても、上記効果が飽和するか、あるいはFe硼化物(Fe-B)の形成により、逆に所望の効果が期待できなくなり、経済的に不利となる。このため、Bは0.0005~0.0040%とする。Bは、好ましくは0.0010%以上であり、より好ましくは0.0015%以上である。Bは、好ましくは0.0030%以下であり、より好ましくは0.0025%以下である。
Caは、鋼中の酸化物系介在物の形態制御のため、積極的に添加する。上述したように、SSC試験において、特に、(Al2O3)/(MgO)比が1.0~9.0となる、Al2O3‐MgO主体の複合酸化物数が100mm2当り10個を超えて存在すると、これらの酸化物が起点となって、試験片の表面から長時間で破断するSSCが発生する。このような、Al2O3‐MgO主体の複合酸化物生成抑制のため、本発明では0.0010%以上のCaの含有を必要とする。一方、SSC試験において、0.0020%を超えるCaの含有は、(CaO)/(Al2O3)≧2.33、かつ(CaO)/(MgO)≧1.0を満たす組成比の、長径5μm以上の酸化物数の増加を引き起こし、これらの酸化物が起点となって、試験片内部から短時間で破断するSSCが発生する。このため、Caは、0.0010~0.0020%とする。Caは、好ましくは0.0012%以上である。Caは、好ましくは0.0017%以下である。
Mgは、積極的に添加はしないが、低Sのために行われるレードルファーネス(LF)のような脱硫処理中に、取鍋のMgO‐C組成の耐火物と、脱硫のために用いられるCaO‐Al2O3‐SiO2系スラグとの反応で、溶鋼中にMg成分として侵入する。上述したように、SSC試験において、特に、(Al2O3)/(MgO)比が1.0~9.0となる、Al2O3‐MgO主体の複合酸化物数が100mm2当り10個を超えて存在すると、これらの酸化物が起点となって、試験片の表面から長時間で破断するSSCが発生する。このため、Mgは、その悪影響が許容できる0.001%以下とする。Mgは、好ましくは0.0008%以下であり、より好ましくは0.0005%以下である。
Nは、鋼中不可避的不純物であり、Ti、Nb、Al等の窒化物形成元素と結合しMN型の析出物を形成する。さらに、これらの窒化物を形成した残りの余剰Nは、Bと結合してBN析出物も形成する。この際、B添加による焼入れ性向上効果が失われるため、余剰Nはできるだけ低減することが望ましい。このため、Nは0.005%以下とする。Nは、好ましくは0.004%以下である。
Vは、炭化物あるいは窒化物を形成し、鋼の強化に寄与する元素である。このような効果を得るためには、0.02%以上のVの含有とすることが好ましい。一方、0.3%を超えてVを含有すると、V系炭化物が粗大化して硫化物応力腐食割れの起点となり、SSCが発生するおそれがある。このため、Vを含有する場合には、Vは0.02~0.3%とすることが好ましい。Vは、より好ましくは0.03%以上である。さらに好ましくは0.04%以上である。Vは、より好ましくは0.09%以下である。さらに好ましくは0.06%以下である。
Wもまた、炭化物あるいは窒化物を形成し、鋼の強化に寄与する元素である。このような効果を得るためには、0.03%以上のWの含有とすることが好ましい。一方、0.2%を超えてWを含有すると、W系炭化物が粗大化して硫化物応力腐食割れの起点となり、SSCが発生するおそれがある。このため、Wを含有する場合には、Wは0.03~0.2%とすることが好ましい。Wは、より好ましくは0.07%以上であり、より好ましくは0.1%以下である。
Taもまた、炭化物あるいは窒化物を形成し、鋼の強化に寄与する元素である。このような効果を得るためには、0.03%以上のTaの含有とすることが好ましい。一方、0.3%を超えてTaを含有すると、Ta系炭化物が粗大化して硫化物応力腐食割れの起点となり、SSCが発生するおそれがある。このため、Taを含有する場合には、Taは0.03~0.3%とすることが好ましい。Taは、より好ましくは0.08%以上であり、より好ましくは0.2%以下である。
Tiは、窒化物を形成し、鋼の焼入れ時においてオーステナイト粒のピン止め効果による粗大化の防止に寄与する元素である。さらに、オーステナイト粒を細粒化することで、耐硫化水素割れ感受性が改善される。特に、後述する焼き入れ(Q)、焼き戻し(T)を2回ないし3回と繰り返すことなく、必要とするオーステナイト粒の細粒化を達成することができる。このような効果を得るためには、0.003%以上のTiの含有とすることが好ましい。一方、0.10%を超えてTiを含有すると、粗大化したTi系窒化物が硫化物応力腐食割れの起点となり、SSCが発生するおそれがある。このため、Tiを含有する場合には、Tiは0.003~0.10%とすることが好ましいTiは、より好ましくは0.005%以上である。さらに好ましくは0.008%以上である。Tiは、より好ましくは0.050%以下である。さらに好ましくは0.030%以下である。
Zrもまた、Tiと同様に窒化物を形成し、鋼の焼入れ時においてオーステナイト粒のピン止め効果による粗大化を防止し、耐硫化水素割れ感受性を改善する。特に、Tiとの複合添加によってその効果は著しくなる。このような効果を得るためには、0.003%以上のZrの含有とすることが好ましい。一方、0.10%を超えてZrを含有すると、粗大化したZr系窒化物あるいはTi-Zr複合窒化物が硫化物応力腐食割れの起点となり、SSCが発生するおそれがある。このため、Zrを含有する場合には、Zrは0.003~0.10%とすることが好ましい。Zrは、より好ましくは0.005%以上であり、より好ましくは0.050%以下である。
(CaO)/(Al2O3)≦0.25 (1)
1.0≦(Al2O3)/(MgO)≦9.0 (2)
ここで(CaO)、(Al2O3)、(MgO)はそれぞれ酸化物系の鋼中非金属介在物中の、CaO、Al2O3、MgOの質量%である。
(CaO)/(Al2O3)≧2.33 (3)
(CaO)/(MgO)≧1.0 (4)
ここで(CaO)、(Al2O3)、(MgO)はそれぞれ酸化物系の鋼中非金属介在物中の、CaO、Al2O3、MgOの質量%である。
Ca添加処理を実施する前の溶鋼中のCa濃度が0.0004質量%を超える場合、後述するCa添加処理をする際の適正なCa添加量[%Ca*]で添加した場合にかえって溶鋼中Ca濃度が増加する結果、CaO比が高く、かつ(CaO)/(MgO)比が1.0以上となる、CaO‐Al2O3‐MgO複合酸化物数が増加する。その結果、SSC試験において、これらの酸化物が起点となって、試験片内部から短時間で破断するSSCが発生する。脱ガス処理終了後、Ca添加処理をする際は、溶鋼中酸素[%T.O]値に応じて適正なCa濃度(Ca添加量の溶鋼重量に対する比、[%Ca*])となるよう添加することが好ましい。例えば、下記の(5)式に従い、脱ガス処理終了時に迅速に分析して得られた溶鋼中酸素[%T.O]値に応じて、適正Ca濃度[%Ca*]を決めることができる。
0.63≦[%Ca*]/[%T.O]≦0.91 (5)
ここで、[%Ca*]/[%T.O]が0.63未満の場合、Ca添加が不足する結果、鋼管のCa値が本願の範囲内であってもCaO比が低く、かつ(Al2O3)/(MgO)比が1.0~9.0となる、Al2O3-MgO主体の複合酸化物数が増加する。その結果、SSC試験において、これらの酸化物が起点となって、試験片の表面から長時間で破断するSSCが発生する。一方、[%Ca*]/[%T.O]が0.91を超える場合、CaO比が高く、かつ(CaO)/(MgO)比が1.0以上となる、CaO‐Al2O3‐MgO複合酸化物数が増加する。その結果、SSC試験において、これらの酸化物が起点となって、試験片内部から短時間で破断するSSCが発生する。
また、圧延終了温度は、750~1100℃の範囲とすることが好ましい。圧延終了温度が750℃未満では、縮径圧延時の荷重負荷が大きく成形不良となる。一方、圧延終了温度が1100℃超えでは、圧延再結晶による細粒化が不十分で、後述する焼入れ時の細粒化が困難となる。圧延終了温度は、好ましくは900℃以上であり、好ましくは1080℃以下である。
なお、本発明では、細粒化の観点から、熱間圧延後に直接焼入れ(DQ)を実施することが好ましい。
焼戻し温度は、オーステナイト再変態を避けるため、Ac1温度以下とする必要があるが、600℃未満だとMoあるいはV、W、Taの炭化物の2次析出量が確保できない。このため、焼戻し温度は、少なくとも600℃以上とすることが好ましい。特に最終の焼戻し温度は、好ましくは620℃以上であり、より好ましくは640℃以上である。さらに、細粒化による耐硫化水素割れ感受性の改善のため、少なくとも2回以上、焼入れ(Q)および焼戻し(T)を繰り返すことが好ましい。TiやZrが無添加の場合、3回以上繰り返すことが好ましい。
なお、熱間圧延後にDQを適用できない場合は、TiとZrの複合添加を行うか、あるいは少なくとも3回以上、焼入れおよび焼戻しを行い、特に初回の焼入れ温度を950℃以上としてDQの効果を代替することができる。
表1に示す組成の鋼を転炉法で溶製し、ただちにAl脱酸を行った後、LF-脱ガス処理の順で2次精錬を行い、引き続きCa添加処理を行って、最後に連続鋳造を実施し、鋼管素材を作製した。ここで、一部を除いてAl脱酸、LFおよび脱ガス処理時に使用する合金原料にはCa不純物を含まない高純度なものを使用した。そして、脱ガス処理後に溶鋼サンプルを採取し、溶鋼中Ca分析を行った。分析結果は表2-1および表2-2に示す。また、上述のCa添加処理に当り、溶鋼中酸素[%T.O]分析値とCa添加量の溶鋼重量に対する比である[%Ca*]について、[%Ca*]/[%T.O]値を算出し、表2-1および表2-2に記載した。
表3に示す組成の鋼を転炉法で溶製し、ただちにAl脱酸を行った後、LF-脱ガス処理の順で2次精錬を行い、引き続きCa添加処理を行って、最後に連続鋳造を実施し、鋼管素材を作製した。ここで、一部を除いてAl脱酸、LF、および脱ガス処理時に使用する合金原料にはCa不純物を含まない高純度なものを使用した。そして、脱ガス処理後に溶鋼サンプルを採取し、溶鋼中Ca分析を行った。分析結果は表4-1および表4-2に示す。また、上述のCa添加処理に当り、溶鋼中酸素[%T.O]分析値とCa添加量の溶鋼重量に対する比である[%Ca*]について、[%Ca*]/[%T.O]値を算出し、表4-1および表4-2に記載した。
Claims (3)
- 質量%で、
C:0.25~0.50%、
Si:0.01~0.40%、
Mn:0.3~1.5%、
P:0.010%以下、
S:0.001%以下、
O:0.0015%以下、
Al:0.015~0.080%、
Cu:0.02~0.09%、
Cr:0.5~0.8%、
Mo:0.5~1.3%、
Nb:0.005~0.05%、
B:0.0005~0.0040%、
Ca:0.0010~0.0020%、
Mg:0.001%以下、
N:0.005%以下
を含有し、残部Feおよび不可避的不純物からなる組成を有し、
組織は、
組成比が下記(1)式および(2)式を満足する長径5μm以上のCaO、Al2O3、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm2当り10個以下、
組成比が下記(3)式および(4)式を満足する長径5μm以上のCaO、Al2O3、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm2当り30個以下であり、
降伏強度が862MPa以上である油井用低合金高強度継目無鋼管。
(CaO)/(Al2O3)≦0.25 (1)
1.0≦(Al2O3)/(MgO)≦9.0 (2)
(CaO)/(Al2O3)≧2.33 (3)
(CaO)/(MgO)≧1.0 (4)
ここで(CaO)、(Al2O3)、(MgO)はそれぞれ酸化物系の鋼中非金属介在物中の、CaO、Al2O3、MgOの質量%である。 - 前記組成に加えてさらに、質量%で、
V:0.02~0.3%、
W:0.03~0.2%、
Ta:0.03~0.3%
のうちから選ばれた1種または2種以上を含有する
請求項1に記載の油井用低合金高強度継目無鋼管。 - 前記組成に加えてさらに、質量%で、
Ti:0.003~0.10%、
Zr:0.003~0.10%
のうちから選ばれた1種または2種を含有する
請求項1または請求項2に記載の油井用低合金高強度継目無鋼管。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18893782.5A EP3733890B1 (en) | 2017-12-26 | 2018-12-06 | Low alloy high strength seamless steel pipe for oil country tubular goods |
JP2019514055A JP6551631B1 (ja) | 2017-12-26 | 2018-12-06 | 油井用低合金高強度継目無鋼管 |
MX2020006772A MX2020006772A (es) | 2017-12-26 | 2018-12-06 | Tubo de acero sin costura de alta resistencia y baja aleacion para productos tubulares de region petrolifera. |
BR112020012515-6A BR112020012515B1 (pt) | 2017-12-26 | 2018-12-06 | Tubo de aço sem costura de alta resistência e baixa liga para produtos tubulares de indústria petrolífera |
US16/956,805 US11453924B2 (en) | 2017-12-26 | 2018-12-06 | Low-alloy high-strength seamless steel pipe for oil country tubular goods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017248910 | 2017-12-26 | ||
JP2017-248910 | 2017-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019131036A1 true WO2019131036A1 (ja) | 2019-07-04 |
Family
ID=67067083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/044836 WO2019131036A1 (ja) | 2017-12-26 | 2018-12-06 | 油井用低合金高強度継目無鋼管 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11453924B2 (ja) |
EP (1) | EP3733890B1 (ja) |
JP (1) | JP6551631B1 (ja) |
AR (1) | AR113702A1 (ja) |
BR (1) | BR112020012515B1 (ja) |
MX (1) | MX2020006772A (ja) |
WO (1) | WO2019131036A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113862560B (zh) * | 2021-09-06 | 2022-08-09 | 北京科技大学 | 一种低成本高强韧140ksi钢级无缝钢管及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000297344A (ja) | 1999-04-09 | 2000-10-24 | Sumitomo Metal Ind Ltd | 靭性と耐硫化物応力腐食割れ性に優れる油井用鋼およびその製造方法 |
JP2001131698A (ja) | 1999-10-28 | 2001-05-15 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性に優れた鋼管 |
JP2005350754A (ja) | 2004-06-14 | 2005-12-22 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性に優れた低合金油井管用鋼 |
WO2011155140A1 (ja) * | 2010-06-08 | 2011-12-15 | 住友金属工業株式会社 | 耐硫化物応力割れ性に優れた鋼管用鋼 |
JP2016094649A (ja) * | 2014-11-14 | 2016-05-26 | Jfeスチール株式会社 | 継目無鋼管およびその製造方法 |
WO2018043570A1 (ja) * | 2016-09-01 | 2018-03-08 | 新日鐵住金株式会社 | 鋼材及び油井用鋼管 |
WO2018066689A1 (ja) * | 2016-10-06 | 2018-04-12 | 新日鐵住金株式会社 | 鋼材、油井用鋼管、及び、鋼材の製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2358222A1 (fr) | 1976-07-13 | 1978-02-10 | Siderurgie Fse Inst Rech | Nouveaux procede et dispositif pour le brassage electromagnetique de produits metalliques coules en continu |
JP3562353B2 (ja) | 1998-12-09 | 2004-09-08 | 住友金属工業株式会社 | 耐硫化物応力腐食割れ性に優れる油井用鋼およびその製造方法 |
JP3666372B2 (ja) | 2000-08-18 | 2005-06-29 | 住友金属工業株式会社 | 耐硫化物応力腐食割れ性に優れた油井用鋼とその製造方法 |
JP4135691B2 (ja) | 2004-07-20 | 2008-08-20 | 住友金属工業株式会社 | 窒化物系介在物形態制御鋼 |
WO2009023847A1 (en) | 2007-08-16 | 2009-02-19 | Caldera Pharmaceuticals, Inc. | Well plate |
US8163010B1 (en) | 2008-06-03 | 2012-04-24 | Cardica, Inc. | Staple-based heart valve treatment |
AR075976A1 (es) | 2009-03-30 | 2011-05-11 | Sumitomo Metal Ind | Metodo para la manufactura de tuberias sin costura |
JP5728836B2 (ja) | 2009-06-24 | 2015-06-03 | Jfeスチール株式会社 | 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管の製造方法 |
JP5397154B2 (ja) | 2009-10-23 | 2014-01-22 | 新日鐵住金株式会社 | 高強度・高耐食性油井管用鋼材の溶製方法 |
ES2755750T3 (es) | 2012-03-07 | 2020-04-23 | Nippon Steel Corp | Método para producir tubería de acero sin juntas que tiene elevada resistencia y excelente resistencia a la fisuración por tensión de sulfuro |
BR112017004534B1 (pt) | 2014-09-08 | 2021-05-04 | Jfe Steel Corporation | tubo de aço sem costura de alta resistência para produtos tubulares para a indústria petrolífera e método de fabricação do mesmo |
EP3222740B1 (en) | 2014-11-18 | 2020-03-11 | JFE Steel Corporation | High-strength seamless steel pipe for oil wells and method for producing same |
US10876182B2 (en) | 2014-12-24 | 2020-12-29 | Jfe Steel Corporation | High-strength seamless steel pipe for oil country tubular goods and method of producing the same |
WO2018013768A1 (en) | 2016-07-13 | 2018-01-18 | Pyxa Solutions, Llc | Computer-implemented infrastructure, methods, systems, and computer-readable media for generating and managing product labels for a product across a plurality of jurisdictions |
KR102607791B1 (ko) | 2016-10-07 | 2023-11-30 | 삼성전자주식회사 | 거래 이력 기반의 서비스 제공 방법 및 그 전자 장치 |
-
2018
- 2018-12-06 WO PCT/JP2018/044836 patent/WO2019131036A1/ja unknown
- 2018-12-06 EP EP18893782.5A patent/EP3733890B1/en active Active
- 2018-12-06 US US16/956,805 patent/US11453924B2/en active Active
- 2018-12-06 BR BR112020012515-6A patent/BR112020012515B1/pt active IP Right Grant
- 2018-12-06 MX MX2020006772A patent/MX2020006772A/es unknown
- 2018-12-06 JP JP2019514055A patent/JP6551631B1/ja active Active
- 2018-12-21 AR ARP180103788A patent/AR113702A1/es active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000297344A (ja) | 1999-04-09 | 2000-10-24 | Sumitomo Metal Ind Ltd | 靭性と耐硫化物応力腐食割れ性に優れる油井用鋼およびその製造方法 |
JP2001131698A (ja) | 1999-10-28 | 2001-05-15 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性に優れた鋼管 |
JP2005350754A (ja) | 2004-06-14 | 2005-12-22 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性に優れた低合金油井管用鋼 |
WO2011155140A1 (ja) * | 2010-06-08 | 2011-12-15 | 住友金属工業株式会社 | 耐硫化物応力割れ性に優れた鋼管用鋼 |
JP2016094649A (ja) * | 2014-11-14 | 2016-05-26 | Jfeスチール株式会社 | 継目無鋼管およびその製造方法 |
WO2018043570A1 (ja) * | 2016-09-01 | 2018-03-08 | 新日鐵住金株式会社 | 鋼材及び油井用鋼管 |
WO2018066689A1 (ja) * | 2016-10-06 | 2018-04-12 | 新日鐵住金株式会社 | 鋼材、油井用鋼管、及び、鋼材の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3733890A4 |
Also Published As
Publication number | Publication date |
---|---|
AR113702A1 (es) | 2020-06-03 |
BR112020012515B1 (pt) | 2023-11-14 |
BR112020012515A2 (pt) | 2020-11-24 |
JP6551631B1 (ja) | 2019-07-31 |
MX2020006772A (es) | 2020-08-24 |
US20210071275A1 (en) | 2021-03-11 |
EP3733890A1 (en) | 2020-11-04 |
EP3733890A4 (en) | 2020-11-04 |
EP3733890B1 (en) | 2024-01-31 |
JPWO2019131036A1 (ja) | 2020-01-16 |
US11453924B2 (en) | 2022-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7264684B2 (en) | Steel for steel pipes | |
CA2766028C (en) | High-strength seamless steel tube, having excellent resistance to sulfide stress cracking, for oil wells and method for manufacturing the same | |
CN110050082B (zh) | 高Mn钢板及其制造方法 | |
JP6229640B2 (ja) | 継目無鋼管およびその製造方法 | |
US9834931B2 (en) | H-section steel and method of producing the same | |
WO2017149570A1 (ja) | 油井用低合金高強度継目無鋼管 | |
JP2009046759A (ja) | 二相ステンレス鋼管の製造方法 | |
EP3770289A1 (en) | Wear-resistant steel and method for producing same | |
WO2017149571A1 (ja) | 油井用低合金高強度継目無鋼管 | |
EP3438312B1 (en) | High-strength steel material and production method therefor | |
WO2017149572A1 (ja) | 油井用低合金高強度厚肉継目無鋼管 | |
JP2016003377A (ja) | 二相ステンレス鋼管 | |
JP6551632B1 (ja) | 油井用低合金高強度継目無鋼管 | |
JP5329632B2 (ja) | 二相ステンレス鋼、二相ステンレス鋼鋳片、および、二相ステンレス鋼鋼材 | |
JP6551631B1 (ja) | 油井用低合金高強度継目無鋼管 | |
JP6152930B1 (ja) | 油井用低合金高強度厚肉継目無鋼管 | |
JP6551633B1 (ja) | 油井用低合金高強度継目無鋼管 | |
JP6152928B1 (ja) | 油井用低合金高強度継目無鋼管 | |
JP6152929B1 (ja) | 油井用低合金高強度継目無鋼管 | |
RU2387727C2 (ru) | Модификатор для углеродистой и низколегированной стали для проката и труб повышенной коррозионной стойкости | |
JP7127751B2 (ja) | 鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019514055 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18893782 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018893782 Country of ref document: EP Effective date: 20200727 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020012515 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112020012515 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200619 |