WO2019130381A1 - 加工システム、測定プローブ、形状測定装置、及びプログラム - Google Patents

加工システム、測定プローブ、形状測定装置、及びプログラム Download PDF

Info

Publication number
WO2019130381A1
WO2019130381A1 PCT/JP2017/046371 JP2017046371W WO2019130381A1 WO 2019130381 A1 WO2019130381 A1 WO 2019130381A1 JP 2017046371 W JP2017046371 W JP 2017046371W WO 2019130381 A1 WO2019130381 A1 WO 2019130381A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
time
measurement
acquisition
position information
Prior art date
Application number
PCT/JP2017/046371
Other languages
English (en)
French (fr)
Inventor
山田 智明
静雄 西川
敏 宮本
淳一 森下
Original Assignee
株式会社ニコン
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン, Dmg森精機株式会社 filed Critical 株式会社ニコン
Priority to PCT/JP2017/046371 priority Critical patent/WO2019130381A1/ja
Priority to EP17936150.6A priority patent/EP3733345B1/en
Priority to CN201780098150.2A priority patent/CN111629862B/zh
Priority to JP2019561398A priority patent/JP7314056B2/ja
Priority to US16/957,176 priority patent/US11766757B2/en
Publication of WO2019130381A1 publication Critical patent/WO2019130381A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2452Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces
    • B23Q17/2471Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces of workpieces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • G01B7/008Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points using coordinate measuring machines
    • G01B7/012Contact-making feeler heads therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37193Multicoordinate measuring system, machine, cmm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37526Determine time or position to take a measurement

Definitions

  • the present invention relates to a processing system, a measurement probe, a shape measurement apparatus, and a program.
  • Such non-contact shape measuring apparatus may be used to measure the surface shape of a processing object of an NC (numerically-controlled) machine tool.
  • NC number of machines
  • shape data of the processing object is obtained by performing coordinate conversion calculation based on the relative position of the measuring probe with respect to the processing object on the image of the processing object acquired by the measuring probe.
  • the coordinates of the measurement probe may be controlled by the NC machine tool, and an image of the processing object for calculating the shape of the processing object may be acquired by the measurement probe.
  • the non-contact shape measuring apparatus acquires an image of the processing target from the measurement probe and coordinates of the measurement probe from the NC machine tool.
  • One aspect of the present invention generates a machine tool including a measurement unit that outputs measurement information for calculating a shape of a processing target, and position information regarding a position of the measurement unit at the time of measuring the processing target, A control unit that outputs the generated position information and a generation time signal indicating a time when the position information is generated; an acquisition unit that acquires the output position information and the generation time signal; and the acquisition unit
  • the position information is generated based on an acquisition interval calculation unit that calculates a statistical value indicating an interval of acquisition time of a plurality of the generation time signals acquired by the image generation unit, and the statistical value calculated by the acquisition interval calculation unit.
  • It is a processing system provided with an estimation part which presumes time, and a shape calculation part which computes the shape of the processing object based on the measurement information, the position information, and the time which the estimation part estimated.
  • One aspect of the present invention is a measurement unit that is attachable to a machine tool and generates measurement information for calculating the shape of a processing object of the machine tool, and the measurement unit at the time of measuring the processing object
  • An acquisition unit for acquiring position information generated by the machine tool and a generation time signal indicating a time when the position information is generated as the information related to the position of the plurality of generation time signals acquired by the acquisition unit
  • An acquisition interval calculation unit that calculates a statistical value indicating an interval between acquisition times of the first and second estimation units that estimates the time when the position information is generated based on the statistical value calculated by the acquisition interval calculation unit; It is a shape calculation system provided with the shape calculation part which calculates the shape of the said process target object based on information, the said positional information, and the time which the said estimation part estimated.
  • One aspect of the present invention is a shape measurement probe attachable to a machine tool, wherein the measurement unit generates measurement information of the machined object by imaging the machined object of the machine tool, and the machined object
  • An acquisition interval calculation unit that calculates a statistical value indicating an interval of acquisition time of a time signal; and an estimation unit that estimates the time when the position information is generated based on the statistical value calculated by the acquisition interval calculation unit;
  • It is a shape measurement probe provided with an output part which outputs the measurement information, the information about the time which the measurement information, the position information, the estimation part presumed, and the measurement information.
  • a measurement information acquisition unit for acquiring measurement information for calculating a shape of a processing object of the machine tool generated by a measurement unit attachable to a machine tool, and measuring the processing object
  • Position information acquisition unit acquiring position information generated by the machine tool, and signal acquisition unit acquiring a generation time signal indicating time when the position information is generated from the machine tool, as information related to the position of the measurement unit in
  • An acquisition interval calculation unit that calculates a statistical value indicating an interval of acquisition times of the plurality of generation time signals acquired by the acquisition unit; and the position based on the statistical value calculated by the acquisition interval calculation unit.
  • a estimation unit configured to estimate a time when information is generated; and a shape calculation unit configured to calculate a shape of the processing object based on the measurement information, the position information, and the time estimated by the estimation unit. It is obtain shape calculating device.
  • One aspect of the present invention is to obtain measurement information for calculating a shape of a processing object of the machine tool output by a measurement unit attachable to a machine tool, and the measurement at the time of measuring the processing object Acquiring position information generated by the machine tool as information related to the position of a part; acquiring a generation time signal generated by the machine tool as a signal indicating a time when the position information is generated; Calculating a statistical value indicating intervals of acquisition times for the plurality of generation time signals; estimating the time when the position information was generated based on the calculated statistical values;
  • a shape measuring method comprising: calculating a shape of the processing object based on measurement information, the acquired position information, and an estimated time.
  • a measuring unit attachable to a machine tool generates measurement information for calculating a shape of a processing object, and positional information on a position of the measuring unit at the time of measuring the processing object Generating a generation time signal indicating a time at which the position information is generated, and calculating a statistical value indicating an acquisition time interval for the plurality of acquired generation time signals. It is a manufacturing method of a processing subject having computing the shape of the above-mentioned processing subject based on the acquired above-mentioned measurement information, the acquired above-mentioned position information, and the above-mentioned presumed time.
  • FIG. 1 is a diagram showing an example of a functional configuration of a processing system 1 according to the present embodiment.
  • the processing system 1 includes a processing machine 100, a shape calculation device 200, and a measurement probe PB.
  • the processing machine 100 is, for example, a machine tool (for example, an NC machine tool), and processes the object OBJ by controlling the position coordinates of the tool spindle MS.
  • a measurement probe PB is attached to the tool spindle MS.
  • the measurement probe PB can also be reworded as a measurement unit.
  • the measurement probe PB is configured to be removable from the tool spindle MS, and in addition to the measurement probe PB, a tool (for example, a cutting tool or a milling cutter) for processing the object OBJ is a measurement probe PB And are attached interchangeably.
  • the measurement probe PB (measurement unit) includes a light projection unit PRJ and an imaging unit CAM.
  • the light projection unit PRJ projects line light having a line-like intensity distribution on the surface of the processing object OBJ.
  • the imaging unit CAM images the surface of the processing object OBJ on which the line light is projected by the light projection unit PRJ, and generates the image data IM.
  • the image data IM is information output from the imaging unit CAM.
  • the light projection unit PRJ and the imaging unit CAM are fixed in a common housing. Therefore, the positional relationship between the projection direction of the line light from the light projection unit PRJ and the imaging direction by the imaging unit CAM is kept fixed.
  • the light projection unit PRJ includes a light source (not shown) and a projection optical system that linearly modulates the spatial light intensity distribution of the light emitted from the light source and projects the light intensity onto the object OBJ.
  • the light source comprises a laser diode and the projection optics consists of a plurality of optical elements comprising a cylindrical lens.
  • the light emitted from the laser diode is spread in the direction in which the cylindrical lens has positive power and exits along the projection direction.
  • the imaging unit CAM includes an imaging device (not shown) and an imaging optical system for forming an image of the processing object OBJ on which the line light is projected from the light projection unit PRJ on the imaging device.
  • the imaging device outputs a signal of a predetermined intensity for each pixel based on the image of the processed object OBJ captured.
  • the imaging device is a solid-state imaging device such as a CCD or CMOS, and the imaging optical system is composed of a plurality of optical devices such as a lens.
  • the imaging unit CAM generates a series of signals linked to the coordinates of each pixel based on the signal output from the imaging device, and the imaging unit CAM generates data based on the signals as image data IM.
  • the image data IM is information (for example, 2) in which a value (for example, a pixel value) of a signal of a predetermined intensity output from each pixel of the imaging device is associated with the coordinates of the pixel.
  • the present invention is not limited thereto, and the image data IM may be data processed by an existing process based on a signal output from an imaging device, It may be an unprocessed signal output from the element.
  • the generated image data IM is used for three-dimensional shape measurement of the processing object OBJ by the light cutting method.
  • the processing object OBJ on which the line light is projected by projecting the line light (a light having a linear shape projected on a plane) from the measurement probe PB onto the surface of the processing object OBJ.
  • Image of the line light on the surface of the object ie, image data IM including the image of line light on the surface of the object OBJ
  • the positional coordinates of the entire surface of the processing object OBJ are determined by relatively moving the measurement probe PB and the processing object OBJ as described above.
  • the position coordinates of the tool spindle MS (also referred to as machine coordinates MC in the following description) It is possible to obtain the position coordinates of the measurement probe PB by calculating the machine coordinates MC, which is an example of position information on the position of the measurement probe PB at the time of measurement of the object OBJ.
  • the processing system 1 shown in one example measures the three-dimensional shape of the processing object OBJ based on the machine coordinates MC and the image data IM generated by the measurement probe PB at the machine coordinates MC.
  • the machine coordinate MC is generated by the processing machine 100 that performs position control of the tool spindle MS, and the image data IM is generated by the measurement probe PB. That is, the device for generating the machine coordinates MC and the device for generating the image data IM are different from each other. For this reason, it is difficult to keep the timing of generating the machine coordinate MC and the timing of generating the image data IM strictly synchronized, and fluctuation between these two timings (in other words, an accidental error, So-called jitter ⁇ ) occurs. When this jitter ⁇ occurs, an error occurs in the measurement result of the three-dimensional shape calculated based on the image data IM generated by the measurement probe PB.
  • the processing system 1 of the present embodiment reduces an error due to the jitter ⁇ generated in the measurement result of the three-dimensional shape.
  • this embodiment makes an example the case where the processing system 1 performs measurement of a three-dimensional shape by the light cutting method is demonstrated, it is not restricted to this. Even if it is a shape measurement method other than the light cutting method, an apparatus for generating information (for example, image data IM) indicating the shape of the processing object OBJ and information for indicating the position at which this information is generated (for example, machine coordinates MC) In the case where the device generating the signal) is a separate device from each other, the problem due to the above-mentioned jitter ⁇ occurs. That is, the processing system 1 may measure the shape of the processing object OBJ by a known non-contact type shape measurement method other than the light cutting method or a known contact type shape measurement method. The processing system 1 also functions as a shape measurement system that generates information indicating the shape of the processing object OBJ.
  • image data IM image data IM
  • information for indicating the position at which this information is generated for example, machine coordinates MC
  • the processing system 1 may measure
  • the processing machine 100 includes a processing machine control unit 110 and a probe control unit 120.
  • the processing machine control unit 110 includes a machine coordinate generation unit 111 and a trigger pulse output unit 112 as its functional units.
  • the processing machine control unit 110 may realize the functions of the machine coordinate generation unit 111 and the trigger pulse output unit 112 by hardware, or may realize these functions by software.
  • the processing machine control unit 110 may realize part of the functions of the machine coordinate generation part 111 and the trigger pulse output part 112 by hardware and other parts of these functions by software.
  • the processing machine control unit 110 may be realized by an ASIC or a programmable logic device, when a part or all of the functions of the machine coordinate generation unit 111 and the trigger pulse output unit 112 are realized by hardware. In addition, the processing machine control unit 110 may integrate and realize all the functions of the machine coordinate generation unit 111 and the trigger pulse output unit 112, or may not even integrate some of these functions. Good. In this example, the processing machine control unit 110 includes an operation unit such as a microprocessor, and implements part of the functions of the machine coordinate generation unit 111 and the trigger pulse output unit 112 by software.
  • the machine control unit 110 moves the tool spindle MS relative to the object OBJ by controlling a driving device (not shown).
  • the machine coordinate generation unit 111 generates a machine coordinate MC indicating the current position coordinate of the tool spindle MS with a predetermined cycle Tgen.
  • the machine coordinate MC may be a coordinate of a gauge line on the tool spindle MS, or may be a coordinate indicating any position of the measurement probe PB.
  • the predetermined cycle Tgen is, for example, 4 [msec].
  • the machine coordinate generation unit 111 detects the current position coordinate of the tool spindle MS every 4 [msec], and generates a machine coordinate MC indicating this position coordinate.
  • the machine coordinate generation unit 111 outputs the generated machine coordinates MC to the shape calculation device 200.
  • the machine coordinate generation unit 111 when the machine coordinate generation unit 111 generates the machine coordinate MC, the machine coordinate generation unit 111 outputs a trigger pulse output instruction TPC to the trigger pulse output unit 112.
  • the trigger pulse output instruction TPC is a signal that the machine coordinate generation unit 111 instructs the trigger pulse output unit 112 to output the trigger pulse signal TPS.
  • the timing when the machine coordinate generation unit 111 generates the machine coordinates MC is the time when the machine coordinates MC are generated, the elapsed time from the start of operation of the processing machine 100, the elapsed time from the start of operation of the measurement probe PB, and the shape calculation device In addition to the elapsed time from the start of the operation of 200, etc., it is based on the elapsed time from the reference time.
  • timing is also referred to as time. That is, the timing when the machine coordinate generation unit 111 generates the machine coordinates MC may be referred to as the time when the machine coordinate generation unit 111 generates the machine coordinates MC.
  • the processing machine 100 and the measurement probe PB have clocks independent of each other, and synchronize the time of generating the machine coordinates MC and the time of generating the image data IM.
  • the trigger pulse output unit 112 outputs a trigger pulse signal TPS to the shape calculation device 200 in accordance with the trigger pulse output instruction TPC output from the machine coordinate generation unit 111. Specifically, when the trigger pulse output instruction TPC is output from the machine coordinate generation unit 111, the trigger pulse output unit 112 detects the trigger pulse output instruction TPC. When the trigger pulse output unit TPC is detected, the trigger pulse output unit 112 outputs a trigger pulse signal TPS to the shape calculation device 200.
  • the trigger pulse signal TPS is a signal indicating a timing (timing) at which the machine coordinate MC is generated by the machine coordinate generation unit 111.
  • the trigger pulse signal TPS is also referred to as a generation timing signal.
  • the trigger pulse signal TPS can also be reworded as a signal indicating that the machine coordinate MC has been generated, and can also be reworded as a signal indicating the timing (timing) at which the trigger output instruction TPC is received.
  • the timing at which the machine coordinate MC is generated corresponds to the rising edge of the trigger pulse signal TPS.
  • the machine coordinate generation unit 111 raises the trigger pulse output instruction TPC at the timing of generating the machine coordinate MC. That is, in this case, the rising edge of the trigger pulse output instruction TPC indicates the timing at which the machine coordinate MC is generated.
  • the trigger pulse output unit 112 raises the trigger pulse signal TPS when detecting the rising edge of the trigger pulse output instruction TPC. That is, in this case, the rising edge of the trigger pulse signal TPS indicates the rising edge detection timing of the trigger pulse output instruction TPC by the trigger pulse output unit 112.
  • the timing when the machine coordinate generation unit 111 generates the machine coordinate MC and the timing when the trigger pulse output unit 112 outputs the trigger pulse signal TPS will be described with reference to FIG.
  • FIG. 2 is a diagram showing the timing of the operation of the processing system 1 of the present embodiment.
  • the machine coordinates MC generated by the machine coordinate generation unit 111 are represented as coordinates Cn as an example, and are shown in FIG. As described above, the machine coordinate generation unit 111 generates the machine coordinate MC indicating the current position coordinate of the tool main axis MS by the cycle Tgen.
  • Machine coordinate generating unit 111 generates coordinates C1 as a mechanical coordinate MC at time t1 1. In this case, the time t1 1 is a generation timing of the coordinates C1.
  • the machine coordinate generation unit 111 outputs a trigger pulse output instruction TPC to the trigger pulse output unit 112.
  • Trigger pulse output unit 112 acquires the signal, and outputs a trigger pulse signal TPS at time t1 2.
  • the trigger pulse output timing T1c coordinates C1, a time t1 2. That is, in this case, a delay error of (time t1 2 -time t1 1 ) occurs between the generation timing of the coordinate C1 and the trigger pulse output timing T1 c.
  • the probe control unit 120 controls while synchronizing the projection operation of the line light by the light projection unit PRJ of the measurement probe PB and the imaging operation by the imaging unit CAM. Synchronous control of the projection operation of the light projection unit PRJ by the probe control unit 120 and the imaging operation of the imaging unit CAM causes the imaging unit CAM to image the image while projecting line light from the light projection unit PRJ onto the processing object OBJ be able to.
  • the measurement probe PB images the processing object OBJ every 30 [msec] under the control of the probe control unit 120. That is, the imaging cycle of the measurement probe PB is 30 [msec] in this example.
  • the probe control unit 120 outputs an imaging instruction signal to the imaging unit CAM.
  • the imaging unit CAM images the processing object OBJ, and generates image data IM based on the intensity of the signal output from each pixel of the imaging element.
  • the measurement probe PB imaging unit CAM
  • the timing at which the imaging unit CAM images the object OBJ based on the imaging instruction signal output from the probe control unit 120 is also referred to as the exposure timing of the imaging unit CAM.
  • the exposure timing of the imaging unit CAM of the imaging unit CAM can be reworded as the timing when the processing object OBJ is imaged by the imaging unit CAM by the imaging unit CAM, and the image data IM is generated by the imaging unit CAM It can also be reworded as
  • the probe control unit 120 acquires the image data IM generated by the imaging unit CAM.
  • the probe control unit 120 associates the acquired image data IM with the exposure timing TEm of the imaging unit CAM for the acquired image data IM, and outputs the result to the shape calculation apparatus 200.
  • the probe control unit 120 is described as being provided in the processing machine 100, but the present invention is not limited to this.
  • the probe control unit 120 may be incorporated in the measurement probe PB, or may be included in an apparatus other than the processing machine 100 (for example, the shape calculation apparatus 200).
  • the shape calculation apparatus 200 includes a machine coordinate acquisition unit 210, a trigger pulse acquisition unit 220, an image information acquisition unit 230, a timing information addition unit 240, a machine coordinate estimation unit 250, and a point cloud information generation unit 260. Equipped as a functional unit.
  • the shape calculation apparatus 200 has the functions of the machine coordinate acquisition unit 210, the trigger pulse acquisition unit 220, the image information acquisition unit 230, the timing information addition unit 240, the machine coordinate estimation unit 250, and the point cloud information generation unit 260. It may be realized by software, or these functions may be realized by software. In addition, the processing machine control unit 110 may realize part of these functions by hardware and other parts of these functions by software.
  • the processing machine control unit 110 may be realized by an ASIC or a programmable logic device, when some or all of these functions are realized by hardware.
  • the processing machine control unit 110 may be realized by integrating all of these functions or may be realized without integrating some of these functions.
  • the shape calculation device 200 is, for example, a personal computer, and includes a machine coordinate acquisition unit 210, a trigger pulse acquisition unit 220, an image information acquisition unit 230, a timing information addition unit 240, a machine coordinate estimation unit 250, and a point cloud.
  • a part of the function of the information generation unit 260 is realized by software.
  • the machine coordinate acquisition unit 210 acquires the machine coordinate MC output by the machine coordinate generation unit 111.
  • the machine coordinate acquisition unit 210 outputs the acquired machine coordinate MC to the machine coordinate estimation unit 250.
  • the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS output from the trigger pulse output unit 112.
  • the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS assuming that the rising edge of the trigger pulse signal TPS is the timing at which the machine coordinate MC is generated.
  • the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS assuming that the rising edge of the trigger pulse signal TPS is the time when the machine coordinates MC are generated. It is an example that the rising edge of the trigger pulse signal TPS is the timing at which the machine coordinate MC is generated, and the trigger pulse acquisition unit 220 generates the falling edge of the trigger pulse signal TPS by the machine coordinate MC.
  • the intermediate timing between the rising edge and the falling edge of the trigger pulse signal TPS may be the timing at which the machine coordinate MC is generated.
  • the trigger pulse acquisition unit 220 generates a trigger pulse acquisition timing Tn.
  • the trigger pulse acquisition timing Tn is a time stamp indicating the timing at which the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS.
  • the trigger pulse acquisition timing Tn is expressed by the time or time when the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS.
  • the trigger pulse acquisition timing Tn is indicated by the time when the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS, the elapsed time from the start of operation of the shape calculation apparatus 200, and the like.
  • the trigger pulse acquisition unit 220 outputs the trigger pulse acquisition timing Tn to the timing information addition unit 240.
  • the trigger pulse acquisition timing Tn will be described with reference to FIG. First, the systematic error ⁇ and the jitter ⁇ will be described.
  • the processing machine control unit 110 and the shape calculation device 200 are separate computer devices. Therefore, a time delay, that is, an error occurs in the exchange of signals and information between the processing machine control unit 110 and the shape calculation device 200.
  • This error includes a systematic error ⁇ that does not change over a long period depending on the configuration of the processing system 1 and a jitter ⁇ that changes in a short period.
  • This jitter ⁇ is also called an accidental error.
  • the systematic error refers to generation of the machine coordinate MC by the machine coordinate generation unit 111 and output of the trigger pulse output instruction TPC, output of the trigger pulse signal TPS by the trigger pulse output unit 112, and trigger pulse by the trigger pulse acquisition unit 220.
  • An error which occurs in repetition of a series of processes until acquisition of the signal TPS is an error which is constant (almost constant) without change, and the accidental error is from the generation of the machine coordinate MC mentioned above to the acquisition of the trigger pulse signal TPS.
  • the error that occurs in the repetition of a series of processes is a variation error. That is, since the jitter ⁇ is not a systematic error but an accidental error, it is an error (variation) in which an error generated in repetition of a series of processes from the generation of the machine coordinate MC to the acquisition of the trigger pulse signal TPS changes.
  • FIG. 2C shows the trigger pulse acquisition timing Tno when the jitter ⁇ is not included, that is, when only the systematic error ⁇ is included.
  • the trigger pulse acquisition timing Tn in the case where the systematic error ⁇ includes the jitter ⁇ in addition to the systematic error ⁇ is shown in FIG.
  • the trigger pulse acquisition unit 220 outputs the trigger pulse acquisition timing Tn to the timing information addition unit 240 and the acquisition interval calculation unit 270.
  • the image information acquisition unit 230 acquires the image data IM output by the probe control unit 120 and the exposure timing TEm.
  • the image information acquisition unit 230 outputs the acquired image data IM and the exposure timing TEm to the timing information addition unit 240.
  • the timing information adding unit 240 acquires the image data IM and the exposure timing TEm from the image information acquisition unit 230. Further, the timing information adding unit 240 acquires the trigger pulse acquisition timing Tn from the trigger pulse acquisition unit 220. The timing information adding unit 240 associates the image data IM, the exposure timing TEm, and the trigger pulse acquisition timing Tn, and outputs the result to the machine coordinate estimating unit 250.
  • the acquisition interval calculation unit 270 calculates an average value of time intervals at the timing when the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS, that is, an average acquisition interval ITV. Specifically, the acquisition interval calculation unit 270 acquires the trigger pulse acquisition timing Tn from the trigger pulse acquisition unit 220 each time the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS. The acquisition interval calculation unit 270 calculates a time difference between the acquisition timings of two trigger pulse signals TPS whose timings are adjacent to each other. For example, when the acquisition timing of two trigger pulse signals TPS whose timings are adjacent is the trigger pulse acquisition timing Tn and the trigger pulse acquisition timing Tn + 1, the acquisition interval calculation unit 270 calculates the trigger pulse acquisition timing Tn and the trigger pulse acquisition timing Tn + 1.
  • the acquisition interval calculation unit 270 calculates statistical operation on the calculated time difference to calculate an acquisition interval of the trigger pulse signal TPS.
  • the acquisition interval calculation unit 270 calculates the average value of the time difference as the average acquisition interval ITV of the trigger pulse signal TPS.
  • the acquisition interval calculation unit 270 calculates a difference between the calculated average acquisition interval ITV and a cycle predetermined as an output cycle of the trigger pulse signal TPS in the machine control unit 110 as the average jitter ⁇ AVE .
  • the cycle predetermined as the output cycle of the trigger pulse signal TPS in the processing machine control unit 110 is 4 [msec].
  • the acquisition interval calculation unit 270 calculates the average jitter ⁇ AVE by subtracting 4 [msec] from the calculated average acquisition interval ITV.
  • the acquisition interval calculation unit 270 may perform statistical calculation on the time difference of trigger pulse acquisition timing, and in addition to the average acquisition interval ITV described above, values such as the median and the mode in the time difference of each trigger pulse acquisition timing May be calculated as an acquisition interval of the trigger pulse signal TPS.
  • the acquisition interval calculation unit 270 may evaluate the accuracy of the acquisition interval of the trigger pulse signal TPS based on the dispersion or standard deviation of the frequency distribution of the time difference of each trigger pulse acquisition timing. For example, the acquisition interval calculation unit 270 may calculate the acquisition interval based on a frequency distribution having a smaller variance among the plurality of frequency distributions obtained by dividing the time distribution into a plurality of times. Further, for example, the acquisition interval calculation unit 270 may change the reliability of the generated machine coordinates MC according to the size of the variance of the frequency distribution and the size of the standard deviation.
  • the acquisition interval calculation unit 270 outputs the calculated average jitter ⁇ AVE to the machine coordinate estimation unit 250.
  • the machine coordinate estimation unit 250 estimates the trigger pulse output timing Tnc, that is, the timing at which the machine coordinates MC (coordinates Cn) are generated, based on the average jitter ⁇ AVE and the systematic error ⁇ .
  • the machine coordinate estimation unit 250 estimates the coordinates of the measurement probe PB at the exposure timing TEm of the image data IM based on the estimation result of the trigger pulse output timing Tnc.
  • the machine coordinate estimation unit 250 includes the machine coordinates MC output by the machine coordinate acquisition unit 210, the trigger pulse acquisition timing Tn and the exposure timing TEm output by the timing information addition unit 240, and the acquisition interval calculation unit 270.
  • the output average jitter ⁇ AVE is acquired respectively.
  • the machine coordinate estimation unit 250 may also acquire the image data IM output by the timing information addition unit 240.
  • the machine coordinate estimation unit 250 corrects the trigger pulse acquisition timing Tn associated with the image data IM based on the average jitter ⁇ AVE among the acquired information and the systematic error ⁇ calculated in advance. .
  • the machine coordinate estimation unit 250 estimates the trigger pulse acquisition timing Tno not including the jitter ⁇ but including the systematic error ⁇ by subtracting the time for the average jitter ⁇ AVE from the trigger pulse acquisition timing Tn. .
  • the estimated value of the trigger pulse acquisition timing Tno is also referred to as estimated trigger pulse acquisition timing ATn.
  • the machine coordinate estimation unit 250 calculates the estimated trigger pulse acquisition timing ATn by subtracting the time for the average jitter ⁇ AVE from the trigger pulse acquisition timing Tn. Furthermore, the machine coordinate estimation unit 250 estimates the trigger pulse output timing Tnc, that is, the timing at which the machine coordinate MC (coordinate Cn) is generated, by subtracting the systematic error ⁇ from the calculated estimated trigger pulse acquisition timing ATn. The machine coordinate estimation unit 250 sets the estimated trigger pulse output timing Tnc as the corrected trigger pulse acquisition timing Tn. The machine coordinate estimation unit 250 estimates the coordinates of the measurement probe PB at the exposure timing TEm based on the corrected trigger pulse acquisition timing Tn and the exposure timing TEm. The machine coordinate estimation unit 250 outputs the estimated coordinates as an estimated machine coordinate EMC to the point cloud information generation unit 260 together with the image data IM.
  • the point cloud information generation unit 260 acquires the image data IM output by the machine coordinate estimation unit 250 and the estimated machine coordinate EMC.
  • the point cloud information generation unit 260 calculates the shape of the processing object OBJ by a known triangulation method based on the acquired image data IM and the estimated machine coordinates EMC of the measurement probe PB (that is, coordinates of the point group calculate).
  • FIG. 3 is a diagram showing an example of an operation flow of the processing system 1 of the present embodiment.
  • the shape calculation device 200 instructs the processing machine 100 on the scan path of the measurement probe PB.
  • the processing machine control unit 110 of the processing machine 100 starts moving the measurement probe PB based on the scan path instructed in step S210.
  • the probe control unit 120 starts imaging by the imaging unit CAM.
  • the probe control unit 120 causes the imaging unit CAM to perform imaging at a predetermined cycle. In this example, the predetermined cycle is 30 [msec].
  • the probe control unit 120 associates the generated image data IM with the exposure timing TEm of the imaging unit CAM, and sequentially outputs them to the shape calculation apparatus 200.
  • Step S220 The image information acquisition unit 230 of the shape calculation apparatus 200 acquires the image data IM output from the probe control unit 120 and the exposure timing TEm.
  • the image information acquisition unit 230 associates the acquired image data IM with the exposure timing TEm and sequentially stores them in a storage unit (not shown) of the shape calculation device 200.
  • the machine coordinate generation unit 111 of the processing machine control unit 110 acquires the position of the measurement probe PB at a predetermined cycle Tgen, and generates machine coordinates MC indicating the position of the measurement probe PB.
  • the predetermined cycle Tgen is 4 [msec].
  • the machine coordinate generation unit 111 also outputs a trigger pulse output instruction TPC to the trigger pulse output unit 112 each time the machine coordinates MC are generated.
  • the trigger pulse output unit 112 outputs a trigger pulse signal TPS to the shape calculation device 200.
  • the machine coordinate generation unit 111 stores the generated machine coordinates MC in the storage unit (not shown) of the processing machine control unit 110.
  • Step S140 The processing machine control unit 110 moves the measurement probe PB along the scan path instructed in step S210. While moving the measurement probe PB based on the scan path instructed in step S210, the processing machine control unit 110 repeatedly executes steps S120 and S130. Specifically, the processing machine control unit 110 determines whether or not the position of the measurement probe PB has reached the end point of the scan path. If it is determined that the end point of the scan path has not been reached (step S140; NO), the processing machine control unit 110 returns the process to step S120. If it is determined that the end point of the scan path has been reached (step S140; YES), the processing machine control unit 110 ends the movement of the measurement probe PB and advances the process to step S150. As a result, the machine coordinates MC of the measurement probe PB along the scan path are sequentially accumulated in the storage unit (not shown) of the processing machine control unit 110.
  • Step S230 The trigger pulse acquisition unit 220 of the shape calculation device 200 acquires the trigger pulse signal TPS output in step S120.
  • Step S240 The timing information adding unit 240 associates the trigger pulse acquisition timing Tn generated by the trigger pulse acquisition unit 220 with the image data IM acquired by the image information acquisition unit 230 and the exposure timing TEm, and the shape calculation device The data is sequentially stored in the storage unit 200 (not shown).
  • Step S250 When the movement of the measurement probe PB in accordance with the scan path ends and the output of the trigger pulse signal TPS from the processing machine 100 stops, the shape calculation device 200 ends acquisition of the image data IM.
  • Step S 260 The shape calculation device 200 requests the processing machine 100 to output the machine coordinates MC stored in the storage unit (not shown) of the processing machine control unit 110.
  • Step S150 The machine coordinate generation unit 111 collectively outputs the machine coordinates MC accumulated in the storage unit (not shown) of the processing machine control unit 110 in response to a request for the output of the machine coordinates MC in step S260. .
  • Step S270 The acquisition interval calculation unit 270 of the shape calculation device 200 calculates the average acquisition interval ITV of the trigger pulse signal TPS. Furthermore, the acquisition interval calculation unit 270 calculates the average jitter ⁇ AVE based on the calculated average acquisition interval ITV and the output cycle of the trigger pulse signal TPS that is determined in advance.
  • Step S280 The machine coordinate estimation unit 250 of the shape calculation apparatus 200 estimates the coordinates of the measurement probe PB at the exposure timing TEm based on the average jitter ⁇ AVE calculated in step S270.
  • the machine coordinate estimation unit 250 outputs the estimated coordinates as an estimated machine coordinate EMC to the point cloud information generation unit 260 together with the image data IM.
  • the point cloud information generation unit 260 obtains the shape of the processing object OBJ by a known triangulation method based on the image data IM and the estimated machine coordinates EMC estimated by the machine coordinates estimation unit 250 (that is, , Calculate the point group coordinates).
  • the processing machine 100 accumulates the generated machine coordinates MC in the storage unit (not shown), and collectively accumulates the accumulated machine coordinates MC based on the request of the shape calculation apparatus 200 to the shape calculation apparatus 200. Although it was supposed to be output, it is not limited to this.
  • the processing machine 100 may output the generated machine coordinates MC to the shape calculation device 200 each time the machine coordinates MC are generated (that is, without being stored in the storage unit).
  • the calculation procedure of the estimated machine coordinate EMC by the machine coordinate estimating unit 250 in step S280 will be described in more detail.
  • the point cloud information generation unit 260 generates point cloud information of the processing object OBJ based on the position coordinates of the measurement probe PB at the exposure timing of the imaging unit CAM.
  • associating the exposure timing of the imaging unit CAM with the position coordinates of the measurement probe PB at that timing is referred to as “linking” or “matching”.
  • the association between the image data IM and the position coordinate of the measurement probe PB is performed based on the exposure timing TEm of the imaging unit CAM and the timing at which the position coordinate of the measurement probe PB is generated.
  • the trigger pulse signal TPS is output.
  • the trigger pulse signal TPS is output from the trigger pulse output unit 112 when the trigger pulse output unit 112 detects the trigger pulse output instruction TPC output at the timing when the machine coordinate generation unit 111 generates the machine coordinates MC. .
  • the trigger pulse acquisition timing Tn indicates the true timing at which the machine coordinate MC is generated.
  • the machine coordinate MC and the exposure timing TEm of the imaging unit CAM can be linked as it is.
  • a trigger pulse acquisition timing T1o when time t1 2 does not include the jitter .delta.1 trigger pulse acquisition timing when the time t1 3 comprises a jitter .delta.1 It is T1. That is, the time difference between the time t1 2 the time t1 3 is jitter .delta.1.
  • a delay error of (time t1 2 -time t1 1 ) occurs between the generation timing of the machine coordinate MC1 and the trigger pulse acquisition timing T1 o.
  • the delay error (time t1 2 -time t1 1 ) includes the systematic error ⁇ 1 and does not include the jitter ⁇ 1.
  • a delay error of (time t1 3 -time t1 1 ) occurs between the generation timing of the coordinate C1 and the trigger pulse acquisition timing T1.
  • the delay error (time t1 3 -time t1 1 ) includes the systematic error ⁇ 1 and the jitter ⁇ 1.
  • the trigger pulse signal TPS corresponding to the generated coordinate C1 is output from the trigger pulse output unit 112 at the trigger pulse output timing T1 c (time t1 1 ).
  • the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS output at the trigger pulse output timing T1c (time t1 1 ) at the trigger pulse acquisition timing T1 (time t1 3 ).
  • a delay error of (time t1 3 -time t1 1 ) occurs between the trigger pulse output timing T1 c and the trigger pulse acquisition timing T1. That is, in this case, a delay error of (time t1 3 -time t1 1 ) occurs between the timing when the coordinate C1 is generated and the trigger pulse acquisition timing T1.
  • a time difference occurs between the true timing at which the machine coordinate MC is generated in the machine coordinate generation unit 111 and the timing at which the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS. Therefore, when linking the image data IM with the position coordinates of the measurement probe PB based on the timing at which the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS, the systematic error ⁇ and jitter ⁇ in the position accuracy of the point cloud information The error derived from is included. For example, as shown in FIG. 2, a trigger pulse output timing Tnc, which is the true timing at which the coordinate Cn is generated by the machine coordinate generation unit 111, and a trigger at which the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS.
  • the machine coordinate estimation unit 250 of the present embodiment reduces the influence of errors derived from the above-mentioned systematic error ⁇ and jitter ⁇ as follows.
  • FIG. 4 is a diagram showing an example of a calculation procedure of the estimated machine coordinate EMC by the machine coordinate estimating unit 250 of the present embodiment.
  • the machine coordinate estimation unit 250 acquires the average jitter ⁇ AVE calculated by the acquisition interval calculation unit 270 and the systematic error ⁇ stored in the storage unit (not shown).
  • FIG. 5 is a diagram showing an example of an acquisition procedure of the systematic error ⁇ in the present embodiment.
  • the systematic error ⁇ can be obtained from the difference in position coordinates when an object of a known shape is observed by the measurement probe PB.
  • the case where the hemisphere BL is scanned by the measurement probe PB will be described.
  • the hemisphere BL is placed on the xy plane in the xyz orthogonal coordinate system shown in the figure, and the measurement probe PB is scanned in the x-axis direction to measure the height of the hemisphere BL in the z-axis direction
  • the measurement probe PB is scanned in the x-axis direction to measure the height of the hemisphere BL in the z-axis direction
  • this hemisphere BL is scanned by the measurement probe PB, according to the delay time of coordinate generation between the true coordinates of the hemisphere BL at the observation position of the measurement probe PB and the coordinates of the observed hemisphere BL Coordinate difference is generated.
  • measurement is performed twice: measurement in which the scanning direction of the measurement probe PB is in the positive direction of the x axis and measurement in which the scanning direction is in the negative direction of the x axis.
  • the second measurement in which the measurement probe PB is moved from the coordinate x3 to the coordinate x1 via the coordinate x2 Make a second measurement.
  • the coordinates (z2 + ⁇ ) when the scanning direction is the positive direction of the x axis are obtained respectively.
  • the coordinate difference ⁇ is a measurement error with respect to the true coordinates of the spherical core of the hemisphere BL.
  • the value of this coordinate difference ⁇ can be obtained by halving the difference (that is, 2 ⁇ ) between the coordinate (z2 + ⁇ ) and the coordinate (z2- ⁇ ).
  • the absolute values of the moving velocity (+ v) of the measurement probe PB when scanning in the positive direction of the x axis and the moving velocity (-v) of the measurement probe PB when scanning in the negative direction of the x axis are mutually Assuming that the movement speed v is equal regardless of the movement direction, the delay time, that is, the systematic error ⁇ can be determined based on the speed v and the coordinate difference ⁇ .
  • the machine coordinate estimation unit 250 calculates the trigger pulse output timing Tnc based on the systematic error ⁇ obtained in advance as described above.
  • the shape calculation apparatus 200 of the present embodiment stores the systematic error ⁇ obtained as described above in a storage unit (not shown).
  • a storage unit not shown.
  • the systematic error ⁇ 1 to the systematic error ⁇ n shown in FIG. 2 are constant values, and the values are all consistent with the systematic error ⁇ obtained by the above-described procedure. Do.
  • the machine coordinate estimation unit 250 may have a function of calculating the systematic error ⁇ .
  • the machine coordinate estimation unit 250 may have a function of calculating the systematic error ⁇ .
  • systematic errors ⁇ differ from one another for each of the processing machine 100 and the shape calculation device 200 or for each time measured.
  • the so-called ball bar is placed on the stage as the above-mentioned hemisphere BL, and the machine coordinate estimation unit 250 (or other functional unit)
  • the systematic error ⁇ is calculated.
  • the machine coordinate estimating unit 250 acquires the trigger pulse acquisition timing Tn corresponding to the exposure timing TEm for each of the image data IM. Specifically, the machine coordinate estimating unit 250 acquires the trigger pulse acquisition timing Tn stored in the timing information adding unit 240, the image data IM, and the exposure timing TEm from the storage unit (not shown).
  • Step S2830 The machine coordinate estimating unit 250 calculates the estimated trigger pulse acquisition timing ATn based on the trigger pulse acquisition timing Tn acquired in step S2820 and the average jitter ⁇ AVE .
  • the estimated trigger pulse acquisition timing ATn will be described with reference to FIG.
  • FIG. 6 is a diagram showing an example of the estimated trigger pulse acquisition timing ATn of the present embodiment.
  • the systematic error ⁇ and the jitter ⁇ are included in the trigger pulse acquisition timing Tn acquired in step S2820 as a timing error from the timing at which the coordinate Cn is generated (that is, the trigger pulse output timing Tnc) (FIG. 6) (A) and FIG. 6 (B).
  • the jitter ⁇ may change in magnitude each time the trigger pulse signal TPS is output, as described above.
  • the acquisition interval calculation unit 270 of this embodiment calculates the average value of the jitter ⁇ as the average jitter ⁇ AVE .
  • the average jitter ⁇ AVE is, for example, (time tn 3 -time tn 2a ).
  • the machine coordinate estimation unit 250 calculates the estimated trigger pulse acquisition timing ATn (time tn 2a ) by subtracting the average jitter ⁇ AVE from the trigger pulse acquisition timing Tn (time tn 3 ) (FIG. 6 (C)).
  • the machine coordinate estimation unit 250 calculates estimated trigger pulse acquisition timing AT2 to estimated trigger pulse acquisition timing ATn + 1 in the same manner as the estimated trigger pulse acquisition timing ATn.
  • the machine coordinate estimating unit 250 calculates the estimated trigger pulse acquisition timing AT1 on the assumption that the jitter ⁇ is 0 (zero). That is, the machine coordinate estimation unit 250 calculates the trigger pulse acquisition timing T1 as the estimated trigger pulse acquisition timing AT1.
  • Step S2840 The machine coordinate estimation unit 250 subtracts the systematic error ⁇ from the estimated trigger pulse acquisition timing ATn to calculate the estimated trigger pulse acquisition timing ATn.
  • the moving speed of the measurement probe PB is known (for example, a constant speed) between the generation timing of the coordinate Cn-1 and the generation timing of the coordinate Cn
  • interpolation of the measurement probe PB between these timings is performed.
  • the position coordinates can be determined.
  • FIG. 6D the case where the exposure timing TEm is between the generation timing of the coordinate Cn-1 and the generation timing of the coordinate Cn will be described.
  • the time from the generation timing of the coordinate Cn-1 to the center of the exposure timing TEm is time Fm
  • the time from the center of the exposure timing TEm to the generation timing of the coordinate Cn is time Bm.
  • the coordinate Cmcent at the center of the exposure timing TEm is expressed as equation (1).
  • Step S2850 the machine coordinate estimating unit 250 calculates coordinates Cmcent as the estimated machine coordinates EMC by interpolating the coordinates Cn-1 and the coordinates Cn according to the above-mentioned equation (1).
  • Step S2860 The machine coordinate estimating unit 250 links the calculated estimated machine coordinate EMC to the image data IM.
  • Step S2870 Machine coordinate estimating unit 250 determines whether or not linking of image data IM corresponding to all trigger pulse signals TPS has ended. If the machine coordinate estimation unit 250 determines that the image data IM corresponding to all the trigger pulse signals TPS has not been linked (step S2870; NO), the process returns to step S2820. When it is determined that the linking of the image data IM corresponding to all the trigger pulse signals TPS is completed (step S2870; YES), the machine coordinate estimating unit 250 ends the process of calculating the estimated machine coordinates EMC.
  • the processing system 1 of the present embodiment includes the machine coordinate estimation unit 250.
  • the machine coordinate estimation unit 250 estimates the timing at which the machine coordinate MC is generated, based on the timing at which the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS.
  • the acquisition timing of the trigger pulse signal TPS acquired by the trigger pulse acquisition unit 220 includes the systematic error ⁇ and the jitter ⁇ with respect to the generation timing of the true machine coordinates MC.
  • the systematic error ⁇ And jitter .delta causes a decrease in position accuracy.
  • the processing system 1 of the present embodiment generates point cloud information based on the estimated machine coordinates EMC.
  • the estimated machine coordinates EMC are machine coordinates of the measurement probe PB estimated based on the acquisition timing of the trigger pulse signal TPS. Therefore, the positional accuracy of the point cloud information can be improved as compared with the case where the point cloud information is generated assuming that the acquisition timing of the trigger pulse signal TPS is the timing at which the machine coordinate MC is generated as it is. In other words, according to the processing system 1 of the present embodiment, it is possible to suppress the decrease in the position accuracy of the point cloud information.
  • the processing system 1 of the present embodiment generates the estimated machine coordinates EMC based on the average jitter ⁇ AVE .
  • the average jitter ⁇ AVE is calculated based on the acquisition timing of the trigger pulse signal TPS observable by the shape calculation device 200. That is, in the processing system 1, the shape calculation device 200 estimates a predetermined cycle Tgen in which the machine coordinate generation unit 111 generates the machine coordinates MC. Therefore, according to the processing system 1 of the present embodiment, the estimated machine coordinates EMC can be generated even if the shape calculation device 200 does not grasp the cycle Tgen, which is the generation cycle of the machine coordinates MC, in advance.
  • the shape calculation device 200 changes the average jitter ⁇ AVE following the change.
  • the shape calculation device 200 may sequentially store the acquisition timing of the trigger pulse signal TPS and obtain the statistical value (for example, the average value) of the interval of the timing. , Does not require complicated operations. That is, according to the processing system 1 of the present embodiment, the estimated machine coordinate EMC can be generated with a simple configuration.
  • the processing system 1 of this embodiment produces
  • the machine coordinates MC are generated in a first cycle (for example, 4 [msec]), and the trigger pulse signal TPS is longer than the first cycle. It may be output according to the second cycle (for example, 40 [msec]).
  • the second cycle for example, 40 [msec]
  • the calculation load of the processing machine control unit 110 may be high.
  • the accuracy of the generation timing of the trigger pulse signal TPS may be reduced, and the jitter ⁇ may be further increased.
  • the processing system 1 of the present embodiment reduces the calculation load of the processing machine control unit 110 by making the output period of the trigger pulse signal TPS longer than the generation period of the machine coordinates MC. Therefore, the processing system 1 of the present embodiment can reduce the jitter ⁇ more by suppressing the decrease in the accuracy of the generation timing of the trigger pulse signal TPS.
  • the machine coordinates are estimated based on the exposure center timing (exposure timing TEm) of the imaging unit CAM.
  • the machine coordinate estimation unit 250 may estimate machine coordinates based on the leading edge of the exposure timing of the imaging unit CAM and the trailing edge of the exposure timing.
  • the machine coordinate estimation unit 250 determines an average trigger leading edge period Taf and an average trigger trailing edge period Tab, which are average values of trigger intervals, based on the acquired trigger pulse acquisition timing T1, ..., trigger pulse acquisition timing Tn. Calculate each.
  • the average trigger leading period Taf and the average trigger trailing period Tab are equal. Therefore, the calculation can be performed using the average trigger period Taave instead of the average trigger leading edge period Taf and the average trigger trailing edge period Tab.
  • the time from the generation timing of the coordinate Cn-1 to the leading edge of the exposure timing is time Fmf
  • the time from the leading edge of the exposure timing to the generation timing of the coordinate Cn is time Bmf.
  • the timing Cmf of the leading edge of the exposure timing is expressed by equation (2).
  • the time from the generation timing of the coordinate Cn-1 to the trailing edge of the exposure timing is time Fmb
  • the time from the trailing edge of the exposure timing to the generation timing of the coordinate Cn is time Bmb.
  • the timing Cmb of the trailing edge of the exposure timing is given by equation (3).
  • the timing Cmcent is expressed by Equation (4). It can be asked.
  • the machine coordinate estimating unit 250 calculates the coordinate Cmcent obtained by the equation (4) as the estimated machine coordinate EMC by interpolation between the coordinates Cn-1 and the coordinates Cn.
  • weighted average calculation as shown in the equation (5) may be performed. it can.
  • the machine coordinate estimation unit 250 of this embodiment is not limited to the case based on the time at the center of the exposure timing described in the first embodiment, and may be the time of the leading edge of the exposure timing or the time after the exposure timing.
  • the estimated machine coordinates EMC can be calculated based on the time of the edge.
  • the jitter ⁇ n is between the timing at which the trigger pulse output unit 112 outputs the trigger pulse signal TPS and the timing at which the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS.
  • the present invention is not limited to this case, and jitter may occur in any period from when the machine coordinate generation unit 111 generates the machine coordinates MC to when the trigger pulse acquisition unit 220 acquires the trigger pulse signal TPS. Even if it occurs, the above-mentioned shape measurement method can be used.
  • the point cloud information generation unit 260 can calculate the shape of the processing target OBJ with high accuracy based on the machine coordinates (that is, the estimated machine coordinates EMC) estimated by the machine coordinates estimation unit 250 and the image data IM.
  • the measurement probe PB is configured to be removable from the tool spindle MS, and the state where the measurement probe PB is attached to the tool spindle MS (that is, the tool spindle from the tool spindle MS)
  • the shape of the object to be processed OBJ is measured in a state where the processing tool such as a milling cutter is removed), but the present invention is not limited to this configuration.
  • a processing tool such as a cutting tool or a milling cutter may be attached to the tool spindle MS, and the measurement probe PB may be installed near the tool spindle MS.
  • the measurement probe PB may be attached to a part other than the part to which the processing tool is attached. In this case, it is possible to measure the shape of the processing object OBJ with the measurement probe PB while processing the processing object OBJ in a state where the processing tool is attached to the tool spindle MS.
  • the intensity distribution of light projected from the light projection unit PRJ onto the processing object OBJ is not limited to linear, and may be an existing predetermined intensity distribution.
  • the respective configurations of the light projection unit PRJ and the imaging unit CAM are not limited to the above-described configurations, and other existing configurations may be applied.
  • other existing probes such as phase shift method and stereo method using triangulation method can be applied to measurement probe PB, and existing shape measurement methods other than triangulation method such as lens focusing method can be applied. Probes can also be applied.
  • the light projection unit PRJ may not be necessary, and the imaging unit CAM which captures an image of the processing object OBJ may be provided.
  • the probe control unit 120 may control the imaging operation of the imaging unit CAM.
  • a program for executing each process of the processing system 1 in the embodiment described above is recorded in a computer readable recording medium, and the computer system reads the program recorded in the recording medium and executes it.
  • the various processes described above may be performed.
  • the “computer system” referred to here may include an OS and hardware such as peripheral devices.
  • the “computer system” also includes a homepage providing environment (or display environment) if the WWW system is used.
  • “computer readable recording medium” refers to flexible disks, magneto-optical disks, ROMs, writable nonvolatile memories such as flash memories, portable media such as CD-ROMs, hard disks incorporated in computer systems, etc. Storage devices.
  • the “computer-readable recording medium” is a volatile memory (for example, DRAM (Dynamic Memory) inside a computer system that becomes a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line).
  • DRAM Dynamic Memory
  • the program which holds the program for a fixed time is included.
  • the program may be transmitted from a computer system in which the program is stored in a storage device or the like to another computer system via a transmission medium or by transmission waves in the transmission medium.
  • the “transmission medium” for transmitting the program is a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above.
  • it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
  • DESCRIPTION OF SYMBOLS 1 ... processing system, 100 ... processing machine, 110 ... processing machine control part, 111 ... machine coordinate generation part, 112 ... trigger pulse output part, 120 ... probe control part, 200 ... shape calculation apparatus, 210 ... machine coordinate acquisition part, 220 ... trigger pulse acquisition unit, 230 ... image information acquisition unit, 240 ... timing information addition unit, 250 ... machine coordinate estimation unit, 260 ... point cloud information generation unit, 270 ... acquisition interval calculation unit, PB ... measurement probe, OBJ ... Processing object

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

加工システムは、加工対象物の測定時における測定部の位置に関する位置情報を生成し、生成した位置情報と、当該位置情報が生成された時期を示す生成時期信号とを出力する制御部と、出力された位置情報と生成時期信号とを取得する取得部と、取得部が取得した複数の生成時期信号についての取得時期の間隔を示す統計値を算出する取得間隔算出部と、取得間隔算出部が算出する統計値に基づいて、位置情報が生成された時期を推定する推定部と、測定情報と位置情報と推定部が推定した時期とに基づいて、加工対象物の形状を算出する形状算出部とを備える。

Description

加工システム、測定プローブ、形状測定装置、及びプログラム
 本発明は、加工システム、測定プローブ、形状測定装置、及びプログラムに関するものである。
 従来、測定対象物の表面を非接触に走査して当該測定対象物の表面形状を測定する非接触形状測定装置が知られている(例えば、特許文献1を参照)。
特開2012-225701号公報
 このような非接触形状測定装置は、NC(numerically-controlled)工作機の加工対象物の表面形状の測定に用いられる場合がある。この場合、例えば、NC工作機の工具主軸に取り付けられた測定プローブを、NC工作機による座標制御によって加工対象物に対して相対的に移動させることにより加工対象物の表面形状を算出するための画像を取得する。このような非接触形状測定装置においては、測定プローブが取得した加工対象物の画像に対して、加工対象物に対する測定プローブの相対位置に基づく座標変換演算を施すことにより、加工対象物の形状データを算出する。
 このような非接触形状測定装置においては、測定プローブの座標はNC工作機によって制御され、加工対象物の形状を算出するための加工対象物の画像は測定プローブによって取得される場合がある。この場合、非接触形状測定装置は、加工対象物の形状データを算出するためには、加工対象物の画像を測定プローブから、測定プローブの座標をNC工作機からそれぞれ取得する。
 しかしながら、測定プローブから画像が取得されるタイミングと、NC工作機から測定プローブの座標が取得されるタイミングとの間には時間的な誤差が生じ、さらにこの時間的な誤差には誤差間のばらつきが生じる。このため、従来の非接触形状測定装置においては、算出される加工対象物の形状データの精度が低下してしまうという問題があった。
 本発明の一態様は、加工対象物の形状を算出するための測定情報を出力する測定部を含む工作機械と、前記加工対象物の測定時における前記測定部の位置に関する位置情報を生成し、生成した前記位置情報と、当該位置情報が生成された時期を示す生成時期信号とを出力する制御部と、出力された前記位置情報と前記生成時期信号とを取得する取得部と、前記取得部が取得した複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出する取得間隔算出部と、前記取得間隔算出部が算出する前記統計値に基づいて、前記位置情報が生成された時期を推定する推定部と、前記測定情報と前記位置情報と前記推定部が推定した時期とに基づいて、前記加工対象物の形状を算出する形状算出部とを備える加工システムである。
 本発明の一態様は、工作機械に取り付け可能であって、前記工作機械の加工対象物の形状を算出するための測定情報を生成する測定部と、前記加工対象物の測定時における前記測定部の位置に関する情報として、前記工作機械が生成する位置情報と、当該位置情報が生成された時期を示す生成時期信号とを取得する取得部と、前記取得部が取得した複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出する取得間隔算出部と、前記取得間隔算出部が算出する前記統計値に基づいて、前記位置情報が生成された時期を推定する推定部と、前記測定情報と前記位置情報と前記推定部が推定した時期とに基づいて、前記加工対象物の形状を算出する形状算出部とを備える形状算出システムである。
 本発明の一態様は、工作機械に取り付け可能な形状測定プローブであって、前記工作機械の加工対象物を撮像することにより前記加工対象物の測定情報を生成する測定部と、前記加工対象物の測定時における前記形状測定プローブの位置に関する情報として、前記工作機械が生成する位置情報が生成された時期を示す生成時期信号とを取得する取得部と、前記取得部が取得した複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出する取得間隔算出部と、前記取得間隔算出部が算出する前記統計値に基づいて、前記位置情報が生成された時期を推定する推定部と、前記測定情報と前記位置情報と前記推定部が推定した時期に関する情報と前記測定情報とを出力する出力部と、を備える形状測定プローブである。
 本発明の一態様は、工作機械に取り付け可能な測定部が生成する前記工作機械の加工対象物の形状を算出するための測定情報を取得する測定情報取得部と、前記加工対象物の測定時における前記測定部の位置に関する情報として、前記工作機械が生成する位置情報を取得する位置情報取得部と、前記工作機械から前記位置情報が生成された時期を示す生成時期信号を取得する信号取得部と、前記取得部が取得した複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出する取得間隔算出部と、前記取得間隔算出部が算出する前記統計値に基づいて、前記位置情報が生成された時期を推定する推定部と、前記測定情報と前記位置情報と前記推定部が推定した時期とに基づいて、前記加工対象物の形状を算出する形状算出部とを備える形状算出装置である。
 本発明の一態様は、工作機械に取り付け可能な測定部が出力する前記工作機械の加工対象物の形状を算出するための測定情報を取得することと、前記加工対象物の測定時における前記測定部の位置に関する情報として前記工作機械が生成する位置情報を取得することと、前記位置情報が生成された時期を示す信号として前記工作機械が生成する生成時期信号を取得することと、取得された複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出することと、算出された前記統計値に基づいて、前記位置情報が生成された時期を推定することと、取得された前記測定情報と、取得された前記位置情報と、推定された時期とに基づいて、前記加工対象物の形状を算出することとを有する形状測定方法である。
 本発明の一態様は、コンピュータに、工作機械に取り付け可能な測定部が出力する前記工作機械の加工対象物の形状を算出するための測定情報を前記測定部から取得することと、前記加工対象物の測定時における前記測定部の位置に関する情報として前記工作機械が生成する位置情報を取得することと、前記位置情報が生成された時期を示す信号として前記工作機械が生成する生成時期信号を取得することと、取得された複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出することと、算出された前記統計値に基づいて、前記位置情報が生成された時期を推定することと、取得された前記測定情報と、取得された前記位置情報と、推定された前記時期とに基づいて、前記加工対象物の形状を算出することとを実行させるためのプログラムである。
 本発明の一態様は、工作機械に取り付け可能な測定部で加工対象物の形状を算出するための測定情報を生成することと、前記加工対象物の測定時における前記測定部の位置に関する位置情報を生成することと、前記位置情報が生成された時期を示す生成時期信号を取得することと、取得された複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出することと、取得された前記測定情報と、取得された前記位置情報と、推定された前記時期とに基づいて、前記加工対象物の形状を算出することとを有する加工対象物の生産方法である。
本実施形態による加工システムの機能構成の一例を示す図である。 本実施形態の加工システムの動作のタイミングを示す図である。 本実施形態の加工システムの動作フローの一例を示す図である。 本実施形態の機械座標推定部による推定機械座標の算出手順の一例を示す図である。 本実施形態における系統誤差の取得手順の一例を示す図である。 本実施形態の推定トリガパルス取得タイミングの一例を示す図である。
 [第1の実施形態]
 以下、図面を参照して、本発明の第1の実施形態について説明する。
 図1は、本実施形態による加工システム1の機能構成の一例を示す図である。
 [加工システム1の機能構成]
 加工システム1は、加工機100と、形状算出装置200と、測定プローブPBとを備える。加工機100は、例えば工作機械(例えば、NC工作機)であって、工具主軸MSの位置座標を制御することにより、加工対象物OBJを加工する。この工具主軸MSには、測定プローブPBが取り付けられている。
 なお、測定プローブPBは測定部と言い換えることもできる。また、測定プローブPBは、工具主軸MSに取り外し可能に構成されており、工具主軸MSには、測定プローブPBの他、加工対象物OBJを加工する工具(例えば、バイトやフライス)が測定プローブPBと交換可能に取り付けられる。
 測定プローブPB(測定部)は、光投影部PRJと撮像部CAMとを備えている。光投影部PRJは、加工対象物OBJの表面にライン状の強度分布を有するライン光を投影する。また、撮像部CAMは、光投影部PRJによりライン光が投影された加工対象物OBJの表面を撮像して画像データIMを生成する。この画像データIMは、撮像部CAMから出力される情報である。光投影部PRJと撮像部CAMは共通の筐体で固定されている。したがって、光投影部PRJからのライン光の投影方向と撮像部CAMによる撮像方向とのそれぞれの位置関係は固定された状態に保たれている。したがって、ライン光の投影方向と撮像部CAMの撮像方向の関係を基に、画像データIMにおいて検出されたライン光の像の位置から三角測量法に基づき、加工対象物OBJの三次元空間における位置(すなわち、加工対象物OBJの形状)を求めることができる。ここで、画像データIMは、加工対象物OBJの形状を算出するための測定情報である。光投影部PRJは、不図示の光源と、光源から照射された光の空間的な光強度分布をライン状に変調して加工対象物OBJに投影する投影光学系を備える。一例として、光源はレーザーダイオードを含み、投影光学系はシリンドリカルレンズを含む複数の光学素子から成る。レーザーダイオードから照射された光は、シリンドリカルレンズが正のパワーを有する方向に広げられて、投影方向に沿って出射する。撮像部CAMは、不図示の撮像素子と光投影部PRJからライン光が投影された加工対象物OBJの像を撮像素子へ結像させる結像光学系を備える。撮像素子は、撮像した加工対象物OBJの像に基づき、画素毎に所定の強度の信号を出力する。一例として、撮像素子は、CCDやCMOS等の固体撮像素子であり、結像光学系はレンズなどの複数の光学素子から成る。撮像部CAMは、撮像素子から出力された信号に基づき、各画素の座標に紐付けられた一連の信号を生成し、撮像部CAMはその信号に基づいたデータを画像データIMとして生成する。
 ここで、画像データIMとは、撮像素子の各画素から出力される所定の強度の信号の値(例えば、画素値)が、画素の座標に対応付けられて構成されている情報(例えば、2次元画像を生成するための情報)であるとして説明するが、これに限られず、画像データIMは、撮像素子から出力された信号に基づいて既存の処理で加工されたデータであってもし、撮像素子から出力された未処理の信号であってもよい。
 本実施形態の一例では、生成された画像データIMは、光切断法による加工対象物OBJの三次元形状測定に用いられる。ここで、光切断法とは、加工対象物OBJの表面に測定プローブPBからライン光(平面に投影した形状がライン状の光)を投影することにより、ライン光が投影された加工対象物OBJの表面におけるライン光の像(すなわち、加工対象物OBJの表面におけるライン光の像を含む画像データIMを利用して、三角測量により加工対象物OBJの表面の位置座標を幾何学的に求める非接触三次元形状測定法である。本実施形態の一例では、測定プローブPBと加工対象物OBJとを相対的に移動させることにより、加工対象物OBJの表面全体の位置座標を求める。上述したように本実施形態の一例において測定プローブPBは工具主軸MSに取り付けられているため、工具主軸MSの位置座標(以下の説明において、機械座標MCとも記載する。)を求めれば、測定プローブPBの位置座標を求めることができる。この機械座標MCとは、加工対象物OBJの測定時における測定プローブPBの位置に関する位置情報の一例である。本実施形態の一例に示す加工システム1は、機械座標MCと、この機械座標MCにおいて測定プローブPBが生成する画像データIMとに基づいて、加工対象物OBJの三次元形状を測定する。
 ここで、機械座標MCは工具主軸MSの位置制御を行う加工機100が生成し、画像データIMは測定プローブPBが生成する。すなわち、機械座標MCを生成する装置と、画像データIMを生成する装置とが互いに別の装置である。このため、機械座標MCを生成するタイミングと、画像データIMを生成するタイミングとを厳密に同期させつづけることが困難であり、これら2つのタイミング間にはゆらぎ(言い換えると偶発的な誤差であり、いわゆるジッタδ)が生じる。このジッタδが生じると、測定プローブPBが生成した画像データIMに基づいて算出される三次元形状の測定結果に誤差が生じる。以下、本実施形態の加工システム1が、三次元形状の測定結果に生じるジッタδによる誤差を低減する仕組みについて説明する。
 なお、本実施形態では、加工システム1が三次元形状の測定を光切断法によって行う場合を一例にして説明するがこれに限られない。光切断法以外の形状測定方法であったとしても、加工対象物OBJの形状を示す情報(例えば画像データIM)を生成する装置と、この情報が生成された位置を示す情報(例えば機械座標MC)を生成する装置とが互いに別装置の場合には、上述したジッタδによる課題が生じる。すなわち、加工システム1が、光切断法以外の周知の非接触式の形状測定方法や周知の接触式の形状測定方法によって加工対象物OBJの形状を測定するものであってもよい。
 なお、加工システム1は、加工対象物OBJの形状を示す情報を生成する形状測定システムとしても機能する。
 [加工機100の機能構成]
 加工機100は、加工機制御部110と、プローブ制御部120とを備える。加工機制御部110は、機械座標生成部111と、トリガパルス出力部112とをその機能部として備える。ここで、加工機制御部110は、機械座標生成部111及びトリガパルス出力部112の機能をハードウエアによって実現していてもよいし、これらの機能をソフトウエアによって実現していてもよい。また、加工機制御部110は、機械座標生成部111及びトリガパルス出力部112の機能の一部をハードウエアによって、これらの機能の他の一部をソフトウエアによって実現していてもよい。加工機制御部110は、機械座標生成部111及びトリガパルス出力部112の機能の一部又は全部をハードウエアによって実現する場合には、ASICやプログラマブルロジックデバイスによって実現していてもよい。また、加工機制御部110は、機械座標生成部111及びトリガパルス出力部112の機能のすべてを統合して実現してもよいし、これらの機能の一部を統合せずに実現してもよい。
 この一例において、加工機制御部110は、マイクロプロセッサなどの演算部を備えており、機械座標生成部111及びトリガパルス出力部112の機能の一部をソフトウエアによって実現する。
 加工機制御部110は、駆動装置(不図示)を制御することにより工具主軸MSを加工対象物OBJに対して相対的に移動させる。機械座標生成部111は、所定の周期Tgenによって工具主軸MSの現在の位置座標を示す機械座標MCを生成する。なお、この機械座標MCは、工具主軸MS上のゲージラインの座標であってもよいし、測定プローブPBのいずれかの位置を示す座標であってもよい。この所定の周期Tgenは、一例として、4[msec]である。この一例において、機械座標生成部111は、4[msec]毎に工具主軸MSの現在の位置座標を検出し、この位置座標を示す機械座標MCを生成する。
 機械座標生成部111は、生成した機械座標MCを、形状算出装置200に対して出力する。
 また、機械座標生成部111は、機械座標MCを生成すると、トリガパルス出力部112に対してトリガパルス出力指示TPCを出力する。このトリガパルス出力指示TPCとは、機械座標生成部111がトリガパルス出力部112に対してトリガパルス信号TPSの出力を指示する信号である。なお、機械座標生成部111が機械座標MCを生成するタイミングは、機械座標MCを生成した時刻、加工機100の稼働開始からの経過時間、測定プローブPBの稼働開始からの経過時間、形状算出装置200の稼働開始からの経過時間などの他、基準となる時刻からの経過時間などに基づく。
 また、タイミングとは、時期とも称される。すなわち、機械座標生成部111が機械座標MCを生成するタイミングとは、機械座標生成部111が機械座標MCを生成する時期と称してもよい。
 例えば、機械座標MCを生成するタイミングと画像データIMを生成するタイミングとの同期の一例として、時刻どうしを同期させる場合について説明する。この場合、加工機100と測定プローブPBとがそれぞれ独立した時計を備えており、機械座標MCを生成する時刻と、画像データIMを生成する時刻とを同期させる。
 トリガパルス出力部112は、機械座標生成部111が出力するトリガパルス出力指示TPCに応じて、形状算出装置200に対してトリガパルス信号TPSを出力する。具体的には、トリガパルス出力部112は、機械座標生成部111からトリガパルス出力指示TPCが出力されると、そのトリガパルス出力指示TPCを検出する。トリガパルス出力部112は、トリガパルス出力指示TPCを検出すると、形状算出装置200に対してトリガパルス信号TPSを出力する。このトリガパルス信号TPSとは、機械座標生成部111によって機械座標MCが生成されたタイミング(時期)を示す信号である。このトリガパルス信号TPSのことを生成時期信号とも称する。また、トリガパルス信号TPSは、機械座標MCが生成されたことを示す信号と言い換えることもできるし、トリガ出力指示TPCが受信されたタイミング(時期)を示す信号と言い換えることもできる。
 なお、本実施形態の一例では、機械座標MCが生成されたタイミングは、トリガパルス信号TPSの立ち上がりエッジに対応する。具体的には、機械座標生成部111は、機械座標MCを生成するタイミングでトリガパルス出力指示TPCを立ち上げる。つまりこの場合、トリガパルス出力指示TPCの立ち上がりエッジは、機械座標MCが生成されたタイミングを示す。また、本実施形態の一例では、トリガパルス出力部112は、トリガパルス出力指示TPCの立ち上がりエッジを検出すると、トリガパルス信号TPSを立ち上げる。つまりこの場合、トリガパルス信号TPSの立ち上がりエッジは、トリガパルス出力部112によるトリガパルス出力指示TPCの立ち上がりエッジ検出タイミングを示す。
 図2を参照して、機械座標生成部111が機械座標MCを生成するタイミングと、トリガパルス出力部112がトリガパルス信号TPSを出力するタイミングとについて説明する。
 図2は、本実施形態の加工システム1の動作のタイミングを示す図である。機械座標生成部111が生成する機械座標MCを一例として座標Cnと表し、図2(A)に示す。機械座標生成部111は、上述したように、周期Tgenによって工具主軸MSの現在の位置座標を示す機械座標MCを生成する。機械座標生成部111は、時刻t1において座標C1を機械座標MCとして生成する。この場合、時刻t1は座標C1の生成タイミングである。機械座標生成部111は、座標C1を生成すると、トリガパルス出力部112に対してトリガパルス出力指示TPCを出力する。トリガパルス出力部112は、この信号を取得すると、時刻t1においてトリガパルス信号TPSを出力する。この場合、座標C1のトリガパルス出力タイミングT1cとは、時刻t1である。つまりこの場合、座標C1の生成タイミングとトリガパルス出力タイミングT1cとの間には、(時刻t1-時刻t1)の遅れ誤差が生じる。
 図1に戻り加工システム1の機能構成の説明を続ける。プローブ制御部120は、測定プローブPBの光投影部PRJによるライン光の投影動作と、撮像部CAMによる撮像動作とを同期させつつ制御する。プローブ制御部120による光投影部PRJの投影動作と撮像部CAMの撮像動作の同期制御によって、光投影部PRJから加工対象物OBJへライン光を投影させつつ、その像を撮像部CAMで撮像することができる。この一例では、測定プローブPBは、プローブ制御部120の制御により30[msec]毎に加工対象物OBJを撮像する。つまり、測定プローブPBの撮像周期は、この一例の場合、30[msec]である。
 一例として、プローブ制御部120は、撮像部CAMに対して撮像指示信号を出力する。撮像部CAMは、プローブ制御部120から撮像指示信号が出力されると加工対象物OBJを撮像し、撮像素子の各画素から出力される信号の強度に基づく画像データIMを生成する。測定プローブPB(撮像部CAM)は、生成した画像データIMをプローブ制御部120に出力する。なお、以下の説明においてプローブ制御部120から出力される撮像指示信号に基づいて、撮像部CAMが加工対象物OBJを撮像するタイミングを、撮像部CAMの露光タイミングとも称する。なお、撮像部CAMのなお、撮像部CAMの露光タイミングは、撮像部CAMで加工対象物OBJが撮像部CAMで撮像されるタイミングとも言い換えることができるし、撮像部CAMで画像データIMが生成されるタイミングとも言い換えることもできる。
 プローブ制御部120は、撮像部CAMが生成した画像データIMを取得する。プローブ制御部120は、取得した画像データIMと、取得した画像データIMについての撮像部CAMの露光タイミングTEmとを対応付けて、形状算出装置200に出力する。
 なお、本実施形態の一例では、プローブ制御部120は、加工機100に備えられているとして説明するがこれに限られない。プローブ制御部120は、測定プローブPBに内蔵されていてもよいし、加工機100以外の装置(例えば、形状算出装置200)に備えられていてもよい。
 [形状算出装置200の機能構成]
 形状算出装置200は、機械座標取得部210と、トリガパルス取得部220と、画像情報取得部230と、タイミング情報付加部240と、機械座標推定部250と、点群情報生成部260とをその機能部として備える。ここで、形状算出装置200は、機械座標取得部210、トリガパルス取得部220、画像情報取得部230、タイミング情報付加部240、機械座標推定部250、及び点群情報生成部260の機能をハードウエアによって実現していてもよいし、これらの機能をソフトウエアによって実現していてもよい。また、加工機制御部110は、これらの機能の一部をハードウエアによって、これらの機能の他の一部をソフトウエアによって実現していてもよい。加工機制御部110は、これらの機能の一部又は全部をハードウエアによって実現する場合には、ASICやプログラマブルロジックデバイスによって実現していてもよい。また、加工機制御部110は、これらの機能のすべてを統合して実現してもよいし、これらの機能の一部を統合せずに実現してもよい。
 この一例において、形状算出装置200は、例えばパーソナルコンピュータであって、機械座標取得部210、トリガパルス取得部220、画像情報取得部230、タイミング情報付加部240、機械座標推定部250、及び点群情報生成部260の機能の一部をソフトウエアによって実現する。
 機械座標取得部210は、機械座標生成部111が出力する機械座標MCを取得する。機械座標取得部210は、取得した機械座標MCを機械座標推定部250に出力する。
 トリガパルス取得部220は、トリガパルス出力部112が出力するトリガパルス信号TPSを取得する。トリガパルス取得部220は、トリガパルス信号TPSの立ち上がりエッジを機械座標MCが生成されたタイミングであるとして、トリガパルス信号TPSを取得する。換言すれば、トリガパルス取得部220は、トリガパルス信号TPSの立ち上がりエッジを機械座標MCが生成された時期であるとして、トリガパルス信号TPSを取得する。
 なお、トリガパルス信号TPSの立ち上がりエッジを機械座標MCが生成されたタイミングであるとするのは一例であって、トリガパルス取得部220は、トリガパルス信号TPSの立ち下りエッジを機械座標MCが生成されたタイミングであるとしてもよく、トリガパルス信号TPSの立ち上がりエッジと立ち下りエッジとの中間を機械座標MCが生成されたタイミングであるとしてもよい。
 また、トリガパルス取得部220は、トリガパルス取得タイミングTnを生成する。このトリガパルス取得タイミングTnとは、トリガパルス取得部220がトリガパルス信号TPSを取得したタイミングを示すタイムスタンプである。この場合、トリガパルス取得タイミングTnは、トリガパルス取得部220がトリガパルス信号TPSを取得した時刻又は時間によって表現される。
 具体的には、トリガパルス取得タイミングTnは、トリガパルス取得部220がトリガパルス信号TPSを取得した時刻や形状算出装置200の稼働開始からの経過時間などによって示される。
 トリガパルス取得部220は、トリガパルス取得タイミングTnをタイミング情報付加部240に出力する。
 ここで、図2を参照して、トリガパルス取得タイミングTnについて説明する。まず、系統誤差εとジッタδとについて説明する。
 [系統誤差εとジッタδ]
 加工機制御部110と形状算出装置200とは互いに別々のコンピュータ装置である。したがって、加工機制御部110と形状算出装置200との間の信号や情報のやり取りには時間的な遅れ、すなわち誤差が生じる。この誤差には、加工システム1の構成に依存し長期にわたって変化しない系統誤差εと、短期間で変化してしまうジッタδとが含まれる。このジッタδを偶然誤差ともいう。ここで、系統誤差とは、機械座標生成部111による機械座標MCの生成及びトリガパルス出力指示TPCの出力、トリガパルス出力部112によるトリガパルス信号TPSの出力、及びトリガパルス取得部220によるトリガパルス信号TPSの取得までの一連の過程の繰り返しにおいて生じる誤差が変化せずに一定(ほぼ一定)である誤差であり、偶然誤差とは、上述した機械座標MCの生成からトリガパルス信号TPSの取得までの一連の過程の繰り返しにおいて生じる誤差が変化する(ばらつく)誤差である。すなわち、ジッタδは、系統誤差ではなく偶然誤差であるから、上述した機械座標MCの生成からトリガパルス信号TPSの取得までの一連の過程の繰り返しにおいて生じる誤差が変化する(ばらつく)誤差である。ジッタδを含まない場合、すなわち系統誤差εのみを含む場合のトリガパルス取得タイミングTnoを、図2(C)に示す。系統誤差εに加えジッタδを含む場合のトリガパルス取得タイミングTnを、図2(D)に示す。
 図1に戻り、トリガパルス取得部220は、トリガパルス取得タイミングTnをタイミング情報付加部240及び取得間隔算出部270に出力する。
 画像情報取得部230は、プローブ制御部120が出力する画像データIMと露光タイミングTEmとを取得する。画像情報取得部230は、取得した画像データIMと露光タイミングTEmとをタイミング情報付加部240に出力する。
 タイミング情報付加部240は、画像情報取得部230から画像データIMと露光タイミングTEmとを取得する。また、タイミング情報付加部240は、トリガパルス取得部220からトリガパルス取得タイミングTnを取得する。タイミング情報付加部240は、画像データIMと、露光タイミングTEmと、トリガパルス取得タイミングTnとを対応付けて機械座標推定部250に出力する。
 取得間隔算出部270は、トリガパルス取得部220がトリガパルス信号TPSを取得したタイミングの時間間隔の平均値、すなわち平均取得間隔ITVを算出する。具体的には、取得間隔算出部270は、トリガパルス取得部220がトリガパルス信号TPSを取得する毎に、トリガパルス取得部220からトリガパルス取得タイミングTnを取得する。取得間隔算出部270は、タイミングが隣接する2つのトリガパルス信号TPSの取得タイミングの時間差を算出する。例えば、タイミングが隣接する2つのトリガパルス信号TPSの取得タイミングがトリガパルス取得タイミングTn及びトリガパルス取得タイミングTn+1である場合、取得間隔算出部270は、トリガパルス取得タイミングTnとトリガパルス取得タイミングTn+1との時間差を算出する。取得間隔算出部270は、算出した時間差に対して統計演算を行い、トリガパルス信号TPSの取得間隔を算出する。この一例では、取得間隔算出部270は、時間差の平均値をトリガパルス信号TPSの平均取得間隔ITVとして算出する。
 取得間隔算出部270は、算出した平均取得間隔ITVと、加工機制御部110においてトリガパルス信号TPSの出力周期として予め定められている周期との差分を、平均ジッタδAVEとして算出する。本実施形態の具体例においては、加工機制御部110においてトリガパルス信号TPSの出力周期として予め定められている周期は、4[msec]である。この具体例の場合、取得間隔算出部270は、算出した平均取得間隔ITVから4[msec]を差し引くことにより平均ジッタδAVEを算出する。
 なお、取得間隔算出部270は、トリガパルス取得タイミングの時間差についての統計演算を行えばよく、上述した平均取得間隔ITVのほか、各トリガパルス取得タイミングの時間差における中央値や最頻値などの値を、トリガパルス信号TPSの取得間隔として算出してもよい。
 また、取得間隔算出部270は、各トリガパルス取得タイミングの時間差の度数分布の分散や標準偏差などに基づいてトリガパルス信号TPSの取得間隔の精度を評価してもよい。例えば、取得間隔算出部270は、時間差の度数分布を複数回に分けて求め、求めた複数の度数分布のうち、分散がより小さい度数分布に基づいて取得間隔を算出してもよい。また例えば、取得間隔算出部270は、度数分布の分散の大きさや標準偏差の大きさに応じて、生成された機械座標MCの信頼性を変化させてもよい。
 取得間隔算出部270は、算出した平均ジッタδAVEを機械座標推定部250に出力する。
 機械座標推定部250は、平均ジッタδAVEと、系統誤差εとに基づいてトリガパルス出力タイミングTnc、すなわち、機械座標MC(座標Cn)が生成されたタイミングを推定する。機械座標推定部250は、トリガパルス出力タイミングTncの推定結果に基づいて、画像データIMの露光タイミングTEmにおける測定プローブPBの座標を推定する。具体的には、機械座標推定部250は、機械座標取得部210が出力した機械座標MCと、タイミング情報付加部240が出力したトリガパルス取得タイミングTn及び露光タイミングTEmと、取得間隔算出部270が出力した平均ジッタδAVEとをそれぞれ取得する。また、機械座標推定部250は、タイミング情報付加部240が出力した画像データIMを取得してもよい。
 機械座標推定部250は、取得した各情報のうち、平均ジッタδAVEと、予め求められている系統誤差εとに基づいて、画像データIMに対応付けられているトリガパルス取得タイミングTnを補正する。本実施形態における一例として、機械座標推定部250は、トリガパルス取得タイミングTnから平均ジッタδAVE分の時間を差し引くことにより、ジッタδを含まず系統誤差εを含むトリガパルス取得タイミングTnoを推定する。このトリガパルス取得タイミングTnoの推定値を推定トリガパルス取得タイミングATnとも称する。すなわち、機械座標推定部250は、トリガパルス取得タイミングTnから平均ジッタδAVE分の時間を差し引くことにより、推定トリガパルス取得タイミングATnを算出する。さらに、機械座標推定部250は、算出した推定トリガパルス取得タイミングATnから系統誤差εを差し引くことによりトリガパルス出力タイミングTnc、すなわち、機械座標MC(座標Cn)が生成されたタイミングを推定する。機械座標推定部250は、推定されたトリガパルス出力タイミングTncを補正後のトリガパルス取得タイミングTnとする。
 機械座標推定部250は、補正後のトリガパルス取得タイミングTn及び露光タイミングTEmに基づいて露光タイミングTEmにおける測定プローブPBの座標を推定する。機械座標推定部250は、推定した座標を推定機械座標EMCとして、画像データIMとともに点群情報生成部260に出力する。
 点群情報生成部260は、機械座標推定部250が出力する画像データIMと、推定機械座標EMCとを取得する。点群情報生成部260は、取得した画像データIMと、測定プローブPBの推定機械座標EMCとに基づいて、既知の三角測量手法によって加工対象物OBJの形状を算出(すなわち、点群の座標を算出する)。
 次に、図3を参照して加工システム1の動作フローの一例について説明する。
 [加工システム1の動作フロー]
 図3は、本実施形態の加工システム1の動作フローの一例を示す図である。
 (ステップS210)形状算出装置200は、加工機100に対して測定プローブPBのスキャンパスの指示を行う。
 (ステップS110)加工機100の加工機制御部110は、ステップS210において指示されたスキャンパスに基づく測定プローブPBの移動を開始する。プローブ制御部120は、撮像部CAMによる撮像を開始する。プローブ制御部120は、撮像部CAMに所定の周期によって撮像させる。この一例において、所定の周期とは、30[msec]である。プローブ制御部120は、生成された画像データIMと、この撮像部CAMの露光タイミングTEmとを対応付けて、形状算出装置200に対して順次出力する。
 (ステップS220)形状算出装置200の画像情報取得部230は、プローブ制御部120から出力される画像データIMと露光タイミングTEmとを取得する。画像情報取得部230は、取得した画像データIMと露光タイミングTEmとを対応付けて、形状算出装置200の記憶部(不図示)に順次記憶させる。
 (ステップS120)加工機制御部110の機械座標生成部111は、所定の周期Tgenによって測定プローブPBの位置を取得し、この測定プローブPBの位置を示す機械座標MCを生成する。この一例において、所定の周期Tgenとは、4[msec]である。また、機械座標生成部111は、機械座標MCを生成する毎に、トリガパルス出力指示TPCをトリガパルス出力部112に出力する。トリガパルス出力部112は、機械座標生成部111からトリガパルス出力指示TPCが出力されると、トリガパルス信号TPSを形状算出装置200に対して出力する。
 (ステップS130)機械座標生成部111は、生成した機械座標MCを加工機制御部110の記憶部(不図示)に記憶させる。
 (ステップS140)加工機制御部110は、ステップS210において指示されたスキャンパスに沿って測定プローブPBを移動させる。加工機制御部110は、ステップS210において指示されたスキャンパスに基づいて測定プローブPBを移動させている間、ステップS120及びステップS130を繰り返し実行する。具体的には、加工機制御部110は、測定プローブPBの位置がスキャンパスの終点に到達したか否かを判定する。加工機制御部110は、スキャンパスの終点に到達していないと判定した場合(ステップS140;NO)には、処理をステップS120に戻す。加工機制御部110は、スキャンパスの終点に到達したと判定した場合(ステップS140;YES)には、測定プローブPBの移動を終了させ、処理をステップS150に進める。
この結果、加工機制御部110の記憶部(不図示)には、スキャンパスに沿った測定プローブPBの機械座標MCが順次蓄積される。
 (ステップS230)形状算出装置200のトリガパルス取得部220は、ステップS120において出力されたトリガパルス信号TPSを取得する。
 (ステップS240)タイミング情報付加部240は、トリガパルス取得部220が生成したトリガパルス取得タイミングTnと、画像情報取得部230が取得した画像データIM及び露光タイミングTEmとを対応づけて、形状算出装置200の記憶部(不図示)に順次記憶させる。
 (ステップS250)形状算出装置200は、スキャンパスに従った測定プローブPBの移動が終了し、加工機100からのトリガパルス信号TPSの出力が止まると、画像データIMの取得を終了する。
 (ステップS260)形状算出装置200は、加工機100に対して加工機制御部110の記憶部(不図示)に蓄積されている機械座標MCの出力を要求する。
 (ステップS150)機械座標生成部111は、ステップS260における機械座標MCの出力を要求に応じて、加工機制御部110の記憶部(不図示)に蓄積されている機械座標MCをまとめて出力する。
 (ステップS270)形状算出装置200の取得間隔算出部270は、トリガパルス信号TPSの平均取得間隔ITVを算出する。さらに、取得間隔算出部270は、算出した平均取得間隔ITVと、予め定められているトリガパルス信号TPSの出力周期とに基づいて、平均ジッタδAVEを算出する。
 (ステップS280)形状算出装置200の機械座標推定部250は、ステップS270において算出された平均ジッタδAVEに基づいて、露光タイミングTEmにおける測定プローブPBの座標を推定する。機械座標推定部250は、推定した座標を推定機械座標EMCとして、画像データIMとともに点群情報生成部260に出力する。
 (ステップS290)点群情報生成部260は、画像データIMと、機械座標推定部250が推定した推定機械座標EMCとに基づいて、既知の三角測量手法によって加工対象物OBJの形状を求める(すなわち、点群の座標を算出する)。
 なお、上述の一例では、加工機100は、生成した機械座標MCを記憶部(不図示)に蓄積し、蓄積した機械座標MCを形状算出装置200の要求に基づいてまとめて形状算出装置200に出力するとしたが、これに限られない。加工機100は、機械座標MCを生成する毎に(すなわち、記憶部に蓄積することなく)、生成した機械座標MCを形状算出装置200に対して出力してもよい。
 次に、ステップS280における機械座標推定部250による推定機械座標EMCの算出手順について、より詳しく説明する。
 [点群情報の精度低下の要因について]
 上述したように、点群情報生成部260は、撮像部CAMの露光タイミングにおける測定プローブPBの位置座標に基づいて、加工対象物OBJの点群情報を生成する。以下の説明において、撮像部CAMの露光タイミングと、そのタイミングにおける測定プローブPBの位置座標とを対応付けることを「紐づけ」又は「マッチング」と記載する。
 この画像データIMと測定プローブPBの位置座標との紐づけは、撮像部CAMの露光タイミングTEmと、測定プローブPBの位置座標が生成されたタイミングとに基づいて行われる。上述したように、測定プローブPBの位置座標(すなわち、機械座標MC)が生成された後、トリガパルス信号TPSが出力される。このトリガパルス信号TPSは、機械座標生成部111が機械座標MCを生成したタイミングにおいて出力されるトリガパルス出力指示TPCをトリガパルス出力部112が検出したことにより、トリガパルス出力部112から出力される。加工システム1の系統誤差ε及びジッタδが、仮にいずれも0(ゼロ)であれば、トリガパルス取得タイミングTnは、機械座標MCが生成された真のタイミングを示す。このように系統誤差ε及びジッタδがいずれも0(ゼロ)であると仮定した場合には、機械座標MCと、撮像部CAMの露光タイミングTEmとをそのまま紐づけすることができる。
 しかしながら、実際には加工システム1の系統誤差ε及びジッタδはいずれも0(ゼロ)ではない。
 ここで、図2に示すように、本実施形態における一例として、時刻t1がジッタδ1を含まない場合のトリガパルス取得タイミングT1oであり、時刻t1がジッタδ1を含む場合のトリガパルス取得タイミングT1である。すなわち、時刻t1と時刻t1との時間差がジッタδ1である。
 具体的には、機械座標MC1の生成タイミングと、トリガパルス取得タイミングT1oとの間には、(時刻t1-時刻t1)の遅れ誤差が生じる。この遅れ誤差(時刻t1-時刻t1)には、系統誤差ε1が含まれ、ジッタδ1が含まれない。また、座標C1の生成タイミングと、トリガパルス取得タイミングT1との間には、(時刻t1-時刻t1)の遅れ誤差が生じる。この遅れ誤差(時刻t1-時刻t1)には、系統誤差ε1とジッタδ1とが含まれる。
 上述したように、生成された座標C1に対応するトリガパルス信号TPSは、トリガパルス出力タイミングT1c(時刻t1)においてトリガパルス出力部112から出力される。この一例では、トリガパルス取得部220は、トリガパルス出力タイミングT1c(時刻t1)において出力されたトリガパルス信号TPSを、トリガパルス取得タイミングT1(時刻t1)において取得する。この場合、トリガパルス出力タイミングT1cと、トリガパルス取得タイミングT1との間には、(時刻t1-時刻t1)の遅れ誤差が生じる。つまりこの場合、座標C1が生成されたタイミングと、トリガパルス取得タイミングT1との間には、(時刻t1-時刻t1)の遅れ誤差が生じる。
 このため、機械座標生成部111において機械座標MCが生成された真のタイミングと、トリガパルス取得部220がトリガパルス信号TPSを取得したタイミングとの間には時間差が生じる。したがって、トリガパルス取得部220がトリガパルス信号TPSを取得したタイミングに基づいて画像データIMと測定プローブPBの位置座標との紐づけを行うと、点群情報の位置精度に系統誤差ε及びジッタδに由来する誤差が含まれてしまう。例えば、図2に示すように、機械座標生成部111において座標Cnが生成された真のタイミングであるトリガパルス出力タイミングTncと、トリガパルス取得部220がトリガパルス信号TPSを取得したタイミングであるトリガパルス取得タイミングTnとの間には、系統誤差εn及びジッタδn分の時間差が生じる。仮に、座標Cnがトリガパルス取得タイミングTnにおいて生成されたものとして画像データIMと測定プローブPBの位置座標との紐づけを行った場合には、画像データIMに紐づけられた測定プローブPBの位置座標が、真の位置座標に対して、系統誤差εn及びジッタδnの時間差の分ずれた位置を示すことになる。つまりこの場合、画像データIMに紐づけられた測定プローブPBの位置座標が真の位置座標からずれているため、この画像データIMに基づいて算出される加工対象物の形状データの精度が低下してしまう。
 本実施形態の機械座標推定部250は、上述の系統誤差ε及びジッタδに由来する誤差の影響を次のようにして低減する。
 [機械座標推定部250による推定機械座標EMCの算出]
 以下、図4を参照して、上述した図3に示すステップS280における動作の詳細について説明する。
 図4は、本実施形態の機械座標推定部250による推定機械座標EMCの算出手順の一例を示す図である。
 (ステップS2810)機械座標推定部250は、取得間隔算出部270が算出した平均ジッタδAVEと、記憶部(不図示)に記憶されている系統誤差εとを取得する。
 [系統誤差εの取得]
 ここで、図5を参照して系統誤差εの取得手順について説明する。
 図5は、本実施形態における系統誤差εの取得手順の一例を示す図である。系統誤差εは、既知の形状の物体を測定プローブPBで観測した際の位置座標の差から求めることができる。一例として、半球体BLを測定プローブPBによって走査する場合について説明する。具体的には、同図に示すxyz直交座標系においてxy平面に半球体BLが載置されており、測定プローブPBがx軸方向に走査されて半球体BLのz軸方向の高さを測定する場合を一例にして説明する。
 この半球体BLを測定プローブPBによって走査した場合、測定プローブPBの観測位置の半球体BLの真の座標と、観測された半球体BLの座標との間には、座標生成の遅延時間に応じた座標差ξが生じる。ここで、測定プローブPBの走査方向をx軸の正方向にした測定と、走査方向をx軸の負方向にした測定との2回の測定を行う。具体的には、測定プローブPBを座標x1から座標x2を経由して座標x3に移動させる第1回目の測定と、測定プローブPBを座標x3から座標x2を経由して座標x1に移動させる第2回目の測定とを行う。これら2回の測定結果に基づいて、半球体BLの球芯の真の座標(図の座標x2における座標z2)を算出すると、走査方向がx軸の正方向である場合には座標(z2+ξ)が、走査方向がx軸の負方向である場合には座標(z2-ξ)がそれぞれ得られる。ここで、座標差ξとは、半球体BLの球芯の真の座標に対する測定誤差である。この座標差ξの値は、座標(z2+ξ)と座標(z2-ξ)との差(すなわち、2ξ)を半分にすることで求められる。ここで、x軸の正方向に走査する場合の測定プローブPBの移動速度(+v)と、x軸の負方向に走査する場合の測定プローブPBの移動速度(-v)との絶対値が互いに等しい(すなわち、移動の速さvが移動方向によらず等しい)とすれば、その速さvと座標差ξとに基づいて、遅延時間、すなわち系統誤差εを求めることができる。
 機械座標推定部250は、上述のようにして予め求められている系統誤差εに基づいて、トリガパルス出力タイミングTncを算出する。
 本実施形態の形状算出装置200は、上述のようにして求められた系統誤差εを不図示の記憶部に記憶している。なお、本実施形態の一例においては、図2に示す系統誤差ε1~系統誤差εnが一定値であり、その値が上述の手順によって求められた系統誤差εにいずれも一致しているものとして説明する。
 なお、この一例では、系統誤差εが予め求められているものとして説明するがこれに限られない。例えば、機械座標推定部250(又は他の機能部)が系統誤差εを算出する機能を有していてもよい。一例として、加工機100や形状算出装置200号機毎、又は測定される時刻毎に、系統誤差εが互いに異なる値になる場合がある。この場合には、加工対象物OBJの形状測定の前に、いわゆるボールバーを上述の半球体BLとしてステージに載置して、上述した手順によって機械座標推定部250(又は他の機能部)が系統誤差εを算出する。
 (ステップS2820)図4に戻り、機械座標推定部250は、画像データIM毎に、露光タイミングTEmに対応するトリガパルス取得タイミングTnを取得する。具体的には、機械座標推定部250は、タイミング情報付加部240が記憶させたトリガパルス取得タイミングTnと、画像データIMと、露光タイミングTEmとを記憶部(不図示)から取得する。
 (ステップS2830)機械座標推定部250は、ステップS2820において取得したトリガパルス取得タイミングTnと、平均ジッタδAVEとに基づいて、推定トリガパルス取得タイミングATnを算出する。
 ここで、推定トリガパルス取得タイミングATnについて図6を参照して説明する。
 図6は、本実施形態の推定トリガパルス取得タイミングATnの一例を示す図である。ステップS2820において取得されたトリガパルス取得タイミングTnには、系統誤差εとジッタδとが、座標Cnが生成されたタイミング(すなわち、トリガパルス出力タイミングTnc)からのタイミングの誤差として含まれる(図6(A)及び図6(B))。この誤差のうちジッタδは、上述したように、トリガパルス信号TPSが出力される度にその大きさが変化しうる。本実施形態の取得間隔算出部270は、このジッタδの平均値を平均ジッタδAVEとして算出する。同図に示すように、平均ジッタδAVEは、例えば(時刻tn-時刻tn2a)である。機械座標推定部250は、この平均ジッタδAVEをトリガパルス取得タイミングTn(時刻tn)から差し引くことにより、推定トリガパルス取得タイミングATn(時刻tn2a)を算出する(図6(C))。機械座標推定部250は、推定トリガパルス取得タイミングATnと同様にして、推定トリガパルス取得タイミングAT2~推定トリガパルス取得タイミングATn+1を算出する。
 なお、推定トリガパルス取得タイミングAT1については、機械座標推定部250は、ジッタδが0(ゼロ)であると仮定して算出する。すなわち、機械座標推定部250は、トリガパルス取得タイミングT1を推定トリガパルス取得タイミングAT1として算出する。
 (ステップS2840)機械座標推定部250は、推定トリガパルス取得タイミングATnから系統誤差εを差し引いて、推定トリガパルス取得タイミングATnを算出する。
 座標Cn-1の生成タイミングと、座標Cnの生成タイミングとの間において測定プローブPBの移動速度が既知(例えば、一定速度)であるとすれば、内挿によりこれらのタイミング間の測定プローブPBの位置座標を求めることができる。
 ここで、図6(D)に示すように、露光タイミングTEmが、座標Cn-1の生成タイミングと、座標Cnの生成タイミングとの間にある場合について説明する。座標Cn-1の生成タイミングから露光タイミングTEmの中央までの時間を時間Fmとし、露光タイミングTEmの中央から座標Cnの生成タイミングまでの時間を時間Bmとする。この場合、露光タイミングTEmの中央の座標Cmcentは、式(1)のように示される。
Figure JPOXMLDOC01-appb-M000001
 (ステップS2850)図4に戻り、機械座標推定部250は、上述した式(1)によって座標Cn-1と座標Cnとを内挿することにより、座標Cmcentを推定機械座標EMCとして算出する。
 (ステップS2860)機械座標推定部250は、算出した推定機械座標EMCと、画像データIMとを紐づける。
 (ステップS2870)機械座標推定部250は、すべてのトリガパルス信号TPSに対応する画像データIMについて紐づけが終了したか否かを判定する。機械座標推定部250は、すべてのトリガパルス信号TPSに対応する画像データIMについて紐づけが終了していないと判定した場合(ステップS2870;NO)には、処理をステップS2820に戻す。機械座標推定部250は、すべてのトリガパルス信号TPSに対応する画像データIMについて紐づけが終了したと判定した場合(ステップS2870;YES)には、推定機械座標EMCの算出処理を終了する。
 以上説明したように、本実施形態の加工システム1は、機械座標推定部250を備えている。この機械座標推定部250は、トリガパルス取得部220がトリガパルス信号TPSを取得したタイミングに基づいて、機械座標MCが生成されたタイミングを推定する。
 上述したように、トリガパルス取得部220が取得したトリガパルス信号TPSの取得タイミングには、真の機械座標MCの生成タイミングに対する系統誤差εとジッタδとが含まれている。ここで、機械座標MCが生成されたタイミングを推定することなく、トリガパルス信号TPSの取得タイミングをそのまま機械座標MCが生成されたタイミングであるとして点群情報を生成してしまうと、系統誤差εとジッタδとに起因する位置精度の低下が生じてしまう。
 一方、本実施形態の加工システム1は、推定機械座標EMCに基づいて点群情報を生成する。この推定機械座標EMCは、トリガパルス信号TPSの取得タイミングに基づいて推定された測定プローブPBの機械座標である。したがって、トリガパルス信号TPSの取得タイミングを、そのまま機械座標MCが生成されたタイミングであるとして点群情報を生成する場合に比べて、点群情報の位置精度を向上させることができる。換言すれば、本実施形態の加工システム1によれば、点群情報の位置精度の低下を抑止することができる。
 また、本実施形態の加工システム1は、推定機械座標EMCを平均ジッタδAVEに基づいて生成する。この平均ジッタδAVEは、形状算出装置200によって観測可能なトリガパルス信号TPSの取得タイミングに基づいて算出される。つまり、加工システム1は、機械座標生成部111が機械座標MCを生成する所定の周期Tgenを、形状算出装置200が推定する。したがって、本実施形態の加工システム1によれば、機械座標MCの生成周期である周期Tgenを予め形状算出装置200が把握していなくても推定機械座標EMCを生成することができる。また、本実施形態の加工システム1によれば、機械座標MCの生成周期である周期Tgenが変化した場合であっても、形状算出装置200は、その変化に追従して平均ジッタδAVEを変化させて推定機械座標EMCを生成することができる。
 また、本実施形態の加工システム1によれば、形状算出装置200は、トリガパルス信号TPSの取得タイミングを順次記憶しておき、そのタイミングの間隔の統計値(例えば、平均値)を求めればよく、複雑な演算を必要としない。つまり、本実施形態の加工システム1によれば、簡易な構成により推定機械座標EMCを生成することができる。
 また、本実施形態の加工システム1は、系統誤差εに基づいて推定機械座標EMCを生成する。系統誤差εに基づくことにより、加工システム1は、系統誤差εの影響を低減することができるため、点群情報の位置精度の低下を抑止することができる。
 また、上述したように、本実施形態の加工システム1において、機械座標MCは、第1の周期(例えば、4[msec])によって生成され、トリガパルス信号TPSは、第1の周期よりも長い第2の周期(例えば、40[msec])によって出力されてもよい。ここで、トリガパルス出力部112によるトリガパルス信号TPSの出力周期が短い場合には、加工機制御部110の演算負荷が高くなる場合がある。加工機制御部110の演算負荷が高くなると、トリガパルス信号TPSの生成タイミングの精度が低下し、ジッタδがより大きくなる場合がある。本実施形態の加工システム1は、機械座標MCの生成周期に比べてトリガパルス信号TPSの出力周期を長くすることにより、加工機制御部110の演算負荷を低減する。したがって、本実施形態の加工システム1は、トリガパルス信号TPSの生成タイミングの精度の低下を抑制して、ジッタδをより低減することができる。
 [変形例]
 上述した第1の実施形態においては、撮像部CAMの露光中央のタイミング(露光タイミングTEm)に基づいて機械座標を推定する場合について説明したが、これに限られない。機械座標推定部250は、撮像部CAMの露光タイミングの前縁や及び露光タイミングの後縁に基づいて機械座標を推定してもよい。
 この場合、機械座標推定部250は、取得したトリガパルス取得タイミングT1、…、トリガパルス取得タイミングTnに基づいて、トリガ間隔の平均値である平均トリガ前縁周期Taf及び平均トリガ後縁周期Tabをそれぞれ算出する。
 これらトリガパルス信号TPSの前縁の立上り時間及び後縁の立下り時間に差があった場合であっても、平均トリガ前縁周期Tafと、平均トリガ後縁周期Tabとは等しくなる。そこで、平均トリガ周期Taaveを平均トリガ前縁周期Taf及び平均トリガ後縁周期Tabの代わりに用いて演算を行うことができる。
 ここで、座標Cn-1の生成タイミングから露光タイミングの前縁までの時間を時間Fmfとし、露光タイミングの前縁から座標Cnの生成タイミングまでの時間を時間Bmfとする。この場合、露光タイミングの前縁のタイミングCmfは、式(2)のように示される。
Figure JPOXMLDOC01-appb-M000002
 また、座標Cn-1の生成タイミングから露光タイミングの後縁までの時間を時間Fmbとし、露光タイミングの後縁から座標Cnの生成タイミングまでの時間を時間Bmbとする。この場合、露光タイミングの後縁のタイミングCmbは、式(3)のように示される。
Figure JPOXMLDOC01-appb-M000003
 ここで、座標Cn-1の生成タイミングと、座標Cnの生成タイミングとの間において測定プローブPBの移動速度が既知(例えば、一定速度)であるとすれば、タイミングCmcentは、式(4)によって求めることができる。
Figure JPOXMLDOC01-appb-M000004
 機械座標推定部250は、座標Cn-1と座標Cnとの内挿により、式(4)によって求められた座標Cmcentを、推定機械座標EMCとして算出する。
 なお、座標Cn-1の生成タイミングと、座標Cnの生成タイミングとの間において測定プローブPBの移動速度が加速している場合には、式(5)に示すような加重平均演算を行うこともできる。
Figure JPOXMLDOC01-appb-M000005
 以上説明したように、本実施形態の機械座標推定部250は、第1の実施形態において説明した露光タイミングの中央の時刻に基づく場合に限らず、露光タイミングの前縁の時刻や露光タイミングの後縁の時刻に基づいて推定機械座標EMCを算出することができる。
 なお、上述した各実施形態及びその変形例においては、トリガパルス出力部112がトリガパルス信号TPSを出力するタイミングと、トリガパルス取得部220がトリガパルス信号TPSを取得するタイミングとの間にジッタδnを含む場合について述べたが、この場合に限られず、機械座標生成部111が機械座標MCを生成してからトリガパルス取得部220がトリガパルス信号TPSを取得するまでの間のどの期間にジッタが発生したとしても上述の形状測定方法を使用することができる。一例として、機械座標生成部111が機械座標MCを生成するタイミングと、トリガパルス出力部112がトリガパルス信号TPSを出力するタイミングまでの間にジッタが発生したとしても、上述の形状測定方法により、点群情報生成部260は、機械座標推定部250で推定された機械座標(すなわち、推定機械座標EMC)と画像データIMに基づいて加工対象部OBJの形状を高精度に算出することができる。
 なお、上述した各実施形態及びその変形例においては、測定プローブPBは工具主軸MSに取り外し可能に構成されており、工具主軸MSに測定プローブPBを取りつけた状態(つまり、工具主軸MSからバイトやフライスなどの加工工具は取り外した状態)で加工対象物OBJの形状を測定したが、この構成に限られない。例えば、工具主軸MSにはバイトやフライスなどの加工工具が取り付けられ、工具主軸MSの近傍に測定プローブPBを設置させるようにしてもよい。一例として、工具主軸MSにおいて、加工工具を取り付ける部分とは別の部分に測定プローブPBを取り付けるような構成にしてもよい。この場合、工具主軸MSに加工工具を取り付けた状態で加工対象物OBJを加工しつつ、測定プローブPBにて加工対象物OBJの形状を測定することができる。
 なお、上述した各実施形態及びその変形例においては、光投影部PRJから加工対象物OBJに投影する光の強度分布はライン状に限らず、既存の所定の強度分布でもよい。また、光投影部PRJと撮像部CAMのそれぞれの構成については上述の構成に限らず、他の既存の構成を適用することもできる。また、測定プローブPBは、三角測量法を利用した位相シフト法やステレオ法などの他の既存のプローブを適用することもできるし、レンズ焦点法などの三角測量法以外の既存の形状測定方法のプローブを適用することもできる。また、例えば、ステレオ法やレンズ焦点法などを採用する場合は、光投影部PRJは無くてもよく、加工対象物OBJの像を撮像する撮像部CAMがあればよい。この場合、プローブ制御部120は、撮像部CAMの撮像動作を制御すればよい。
 なお、上述した実施形態における加工システム1の各処理を実行するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、当該記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、上述した種々の処理を行ってもよい。
 なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウエアを含むものであってもよい。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 1…加工システム、100…加工機、110…加工機制御部、111…機械座標生成部、112…トリガパルス出力部、120…プローブ制御部、200…形状算出装置、210…機械座標取得部、220…トリガパルス取得部、230…画像情報取得部、240…タイミング情報付加部、250…機械座標推定部、260…点群情報生成部、270…取得間隔算出部、PB…測定プローブ、OBJ…加工対象物

Claims (9)

  1.  加工対象物の形状を算出するための測定情報を出力する測定部を含む工作機械と、
     前記加工対象物の測定時における前記測定部の位置に関する位置情報を生成し、生成した前記位置情報と、当該位置情報が生成された時期を示す生成時期信号とを出力する制御部と、
     出力された前記位置情報と前記生成時期信号とを取得する取得部と、
     前記取得部が取得した複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出する取得間隔算出部と、
     前記取得間隔算出部が算出する前記統計値に基づいて、前記位置情報が生成された時期を推定する推定部と、
     前記測定情報と前記位置情報と前記推定部が推定した時期とに基づいて、前記加工対象物の形状を算出する形状算出部と
     を備える加工システム。
  2.  前記推定部は、前記位置情報が生成された時期と前記取得部が前記生成時期信号を取得した時期との時間差に含まれる系統誤差に基づいて、前記位置情報が生成された時期を推定する
     請求項1に記載の加工システム。
  3.  前記制御部は、前記位置情報を生成する第1の周期よりも長い第2の周期によって前記生成時期信号を出力し、
     前記取得間隔算出部は、前記第2の周期によって出力される前記生成時期信号の取得間隔を示す値を前記統計値として算出し、
     前記推定部は、前記統計値に基づいて前記第1の周期を推定することにより、前記位置情報が生成された時期を推定する
     請求項1又は請求項2に記載の加工システム。
  4.  工作機械に取り付け可能であって、前記工作機械の加工対象物の形状を算出するための測定情報を生成する測定部と、
     前記加工対象物の測定時における前記測定部の位置に関する情報として、前記工作機械が生成する位置情報と、当該位置情報が生成された時期を示す生成時期信号とを取得する取得部と、
     前記取得部が取得した複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出する取得間隔算出部と、
     前記取得間隔算出部が算出する前記統計値に基づいて、前記位置情報が生成された時期を推定する推定部と、
     前記測定情報と前記位置情報と前記推定部が推定した時期とに基づいて、前記加工対象物の形状を算出する形状算出部と
     を備える形状算出システム。
  5.  工作機械に取り付け可能な形状測定プローブであって、
     前記工作機械の加工対象物を撮像することにより前記加工対象物の測定情報を生成する測定部と、
     前記加工対象物の測定時における前記形状測定プローブの位置に関する情報として、前記工作機械が生成する位置情報が生成された時期を示す生成時期信号とを取得する取得部と、
     前記取得部が取得した複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出する取得間隔算出部と、
     前記取得間隔算出部が算出する前記統計値に基づいて、前記位置情報が生成された時期を推定する推定部と、
     前記測定情報と前記位置情報と前記推定部が推定した時期に関する情報と前記測定情報とを出力する出力部と、
     を備える形状測定プローブ。
  6.  工作機械に取り付け可能な測定部が生成する前記工作機械の加工対象物の形状を算出するための測定情報を取得する測定情報取得部と、
     前記加工対象物の測定時における前記測定部の位置に関する情報として、前記工作機械が生成する位置情報を取得する位置情報取得部と、
     前記工作機械から前記位置情報が生成された時期を示す生成時期信号を取得する信号取得部と、
     前記取得部が取得した複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出する取得間隔算出部と、
     前記取得間隔算出部が算出する前記統計値に基づいて、前記位置情報が生成された時期を推定する推定部と、
     前記測定情報と前記位置情報と前記推定部が推定した時期とに基づいて、前記加工対象物の形状を算出する形状算出部と
     を備える形状算出装置。
  7.  工作機械に取り付け可能な測定部が出力する前記工作機械の加工対象物の形状を算出するための測定情報を取得することと、
     前記加工対象物の測定時における前記測定部の位置に関する情報として前記工作機械が生成する位置情報を取得することと、
     前記位置情報が生成された時期を示す信号として前記工作機械が生成する生成時期信号を取得することと、
     取得された複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出することと、
     算出された前記統計値に基づいて、前記位置情報が生成された時期を推定することと、
     取得された前記測定情報と、取得された前記位置情報と、推定された前記時期とに基づいて、前記加工対象物の形状を算出することと
     を有する形状測定方法。
  8.  コンピュータに、
     工作機械に取り付け可能な測定部が出力する前記工作機械の加工対象物の形状を算出するための測定情報を前記測定部から取得することと、
     前記加工対象物の測定時における前記測定部の位置に関する情報として前記工作機械が生成する位置情報を取得することと、
     前記位置情報が生成された時期を示す信号として前記工作機械が生成する生成時期信号を取得することと、
     取得された複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出することと、
     算出された前記統計値に基づいて、前記位置情報が生成された時期を推定することと、
     取得された前記測定情報と、取得された前記位置情報と、推定された前記時期とに基づいて、前記加工対象物の形状を算出することと
     を実行させるためのプログラム。
  9.  工作機械に取り付け可能な測定部で加工対象物の形状を算出するための測定情報を生成することと、
     前記加工対象物の測定時における前記測定部の位置に関する位置情報を生成することと、
     前記位置情報が生成された時期を示す生成時期信号を取得することと、
     取得された複数の前記生成時期信号についての取得時期の間隔を示す統計値を算出することと、
     取得された前記測定情報と、取得された前記位置情報と、推定された前記時期とに基づいて、前記加工対象物の形状を算出することと
     を有する加工対象物の生産方法。
PCT/JP2017/046371 2017-12-25 2017-12-25 加工システム、測定プローブ、形状測定装置、及びプログラム WO2019130381A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/046371 WO2019130381A1 (ja) 2017-12-25 2017-12-25 加工システム、測定プローブ、形状測定装置、及びプログラム
EP17936150.6A EP3733345B1 (en) 2017-12-25 2017-12-25 Processing system, measurement probe, shape measuring device, and program
CN201780098150.2A CN111629862B (zh) 2017-12-25 2017-12-25 加工系统、形状测定探针、形状算出装置及存储介质
JP2019561398A JP7314056B2 (ja) 2017-12-25 2017-12-25 加工システム、測定プローブ、形状測定装置、及びプログラム
US16/957,176 US11766757B2 (en) 2017-12-25 2017-12-25 Processing system, measuring probe, shape measuring device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046371 WO2019130381A1 (ja) 2017-12-25 2017-12-25 加工システム、測定プローブ、形状測定装置、及びプログラム

Publications (1)

Publication Number Publication Date
WO2019130381A1 true WO2019130381A1 (ja) 2019-07-04

Family

ID=67063340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046371 WO2019130381A1 (ja) 2017-12-25 2017-12-25 加工システム、測定プローブ、形状測定装置、及びプログラム

Country Status (5)

Country Link
US (1) US11766757B2 (ja)
EP (1) EP3733345B1 (ja)
JP (1) JP7314056B2 (ja)
CN (1) CN111629862B (ja)
WO (1) WO2019130381A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11167382B2 (en) * 2017-09-18 2021-11-09 Agathon AG, Maschinenfabrik Method and machine equipment for manufacturing of a cutting tool
US11740608B2 (en) * 2020-12-24 2023-08-29 Glowforge, Inc Computer numerically controlled fabrication using projected information

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178226A (ja) * 2005-12-27 2007-07-12 Hitachi Ltd 時刻制御装置および時刻制御方法ならびに時刻制御方式
JP2008157646A (ja) * 2006-12-21 2008-07-10 Soatec Inc 光学式測定装置及び加工システム
JP2010194660A (ja) * 2009-02-24 2010-09-09 Mori Seiki Co Ltd 工作機械における工作物測定装置およびその方法
JP2012225701A (ja) 2011-04-18 2012-11-15 Mitsutoyo Corp 形状測定装置
JP2017173160A (ja) * 2016-03-24 2017-09-28 オムロン株式会社 光学計測装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481360A (en) * 1992-06-19 1996-01-02 Citizen Watch Co., Ltd. Optical device for measuring surface shape
IT1279590B1 (it) * 1995-05-11 1997-12-16 Marposs Spa Sistema e metodo di trasmissione di segnali via etere fra una testa di controllo e un ricevitore remoto
JP3538145B2 (ja) * 1998-09-02 2004-06-14 三菱電機株式会社 位置検出装置
JP2000155019A (ja) * 1998-11-18 2000-06-06 Ricoh Co Ltd 形状測定装置
DE10020842A1 (de) 2000-04-28 2001-10-31 Zeiss Carl Koordinatenmeßgerät oder Werkzeugmaschine
JP2002071343A (ja) * 2000-08-31 2002-03-08 Ricoh Co Ltd 三次元形状測定装置及びその校正方法
JP4262690B2 (ja) * 2005-03-16 2009-05-13 株式会社日立ハイテクノロジーズ 形状測定装置および形状測定方法
DE602006009202D1 (de) * 2005-11-08 2009-10-29 Mitutoyo Corp Formmessgerät
GB0703423D0 (en) * 2007-02-22 2007-04-04 Renishaw Plc Calibration method and apparatus
JP4841691B2 (ja) * 2008-09-30 2011-12-21 パナソニック株式会社 表面形状計測装置及び方法
JP4866890B2 (ja) * 2008-10-08 2012-02-01 本田技研工業株式会社 ワーク形状推定装置
JP5276488B2 (ja) * 2009-03-20 2013-08-28 株式会社森精機製作所 工作機械における工作物測定装置およびその方法
CN201711817U (zh) * 2009-02-24 2011-01-19 株式会社森精机制作所 机床中的工件测定装置
CN102472617B (zh) * 2009-11-10 2014-07-02 三菱重工业株式会社 工件测量装置、防止碰撞装置和机床
JP5473665B2 (ja) * 2010-02-17 2014-04-16 Dmg森精機株式会社 工作機械における工作物測定装置およびその方法
JP2012150057A (ja) * 2011-01-20 2012-08-09 Mitsubishi Heavy Ind Ltd 物品の形状検査装置
EP2533022A1 (de) 2011-06-10 2012-12-12 Hexagon Technology Center GmbH Hochpräzise synchronisierte Messwerterfassung
TW201331547A (zh) * 2011-11-01 2013-08-01 尼康股份有限公司 形狀測定裝置、構造物製造系統、形狀測定方法、構造物製造方法、程式及記錄媒體
EP2985565A4 (en) * 2013-03-27 2016-11-16 Nikon Corp MOLDING DEVICE, STRUCTURE MANUFACTURING SYSTEM, SHAPING METHOD, STRUCTURE MANUFACTURING METHOD AND SHAPING MEASUREMENT PROGRAM
JP6128691B2 (ja) * 2014-07-10 2017-05-17 富士フイルム株式会社 医用画像計測装置および方法並びにプログラム
JP6795993B2 (ja) * 2016-02-18 2020-12-02 株式会社ミツトヨ 形状測定システム、形状測定装置及び形状測定方法
JP2019049462A (ja) * 2017-09-08 2019-03-28 株式会社ミツトヨ 形状測定装置の制御方法
JP7371443B2 (ja) * 2019-10-28 2023-10-31 株式会社デンソーウェーブ 三次元計測装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178226A (ja) * 2005-12-27 2007-07-12 Hitachi Ltd 時刻制御装置および時刻制御方法ならびに時刻制御方式
JP2008157646A (ja) * 2006-12-21 2008-07-10 Soatec Inc 光学式測定装置及び加工システム
JP2010194660A (ja) * 2009-02-24 2010-09-09 Mori Seiki Co Ltd 工作機械における工作物測定装置およびその方法
JP2012225701A (ja) 2011-04-18 2012-11-15 Mitsutoyo Corp 形状測定装置
JP2017173160A (ja) * 2016-03-24 2017-09-28 オムロン株式会社 光学計測装置

Also Published As

Publication number Publication date
EP3733345A4 (en) 2021-07-28
US20210069847A1 (en) 2021-03-11
JP7314056B2 (ja) 2023-07-25
CN111629862A (zh) 2020-09-04
EP3733345B1 (en) 2024-01-17
CN111629862B (zh) 2023-04-04
US11766757B2 (en) 2023-09-26
EP3733345A1 (en) 2020-11-04
JPWO2019130381A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
EP3270104B1 (en) Shape measuring apparatus and shape measuring method
US9488469B1 (en) System and method for high-accuracy measurement of object surface displacement using a laser displacement sensor
JP6559773B2 (ja) 自動位置合わせシステム及び干渉計を用いた眼科用器具のインライン検査
US10713810B2 (en) Information processing apparatus, method of controlling information processing apparatus, and storage medium
US10852122B2 (en) Method and arrangement for capturing an object using a movable sensor
US20200378746A1 (en) Coordinate Measuring Machine and Method for Controlling a Coordinate Measuring Machine
WO2019130381A1 (ja) 加工システム、測定プローブ、形状測定装置、及びプログラム
Wang et al. Modelling and calibration of the laser beam-scanning triangulation measurement system
JP2014145735A (ja) 形状測定装置、構造物製造システム、評価装置、形状測定方法、構造物製造方法、及び形状測定プログラム
WO2019130379A1 (ja) 加工システム、測定プローブ、形状測定装置、及びプログラム
US10627519B2 (en) Information processing device and information processing method
KR102196286B1 (ko) 3차원 형상 계측 시스템 및 계측 시간 설정 방법
EP4078221A1 (en) Time-of-flight imaging circuitry, time-of-flight imaging system, time-of-flight imaging method
JP2020153992A (ja) 白色干渉計による形状測定装置
JP2017026494A (ja) 白色干渉計による形状測定装置
JP2020126460A (ja) 機械制御装置
JP2020126461A (ja) 機械制御装置
JP2009063319A (ja) 距離計測装置及び距離計測方法
JP2009186216A (ja) 3次元形状測定装置
JP2009145231A (ja) 三次元形状計測装置および三次元形状計測方法
Li et al. Pose Adjustmet Method of Multiple Structured Light Sensors for Complex Profile Measurement
JP2013007722A (ja) 3次元計測装置およびその方法
CN116339232A (zh) 设备加工轨迹的规划方法、加工设备以及可读存储介质
García-Moreno et al. Uncertainty analysis of LIDAR and panoramic camera calibration
WO2016125369A1 (ja) 情報処理装置と情報処理方法とプログラムおよび撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017936150

Country of ref document: EP

Effective date: 20200727