WO2019129155A1 - 矩阵式轨道系统、关联回路式生产线及其生产方法 - Google Patents

矩阵式轨道系统、关联回路式生产线及其生产方法 Download PDF

Info

Publication number
WO2019129155A1
WO2019129155A1 PCT/CN2018/124435 CN2018124435W WO2019129155A1 WO 2019129155 A1 WO2019129155 A1 WO 2019129155A1 CN 2018124435 W CN2018124435 W CN 2018124435W WO 2019129155 A1 WO2019129155 A1 WO 2019129155A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
traveling
rail
rails
track
Prior art date
Application number
PCT/CN2018/124435
Other languages
English (en)
French (fr)
Inventor
张德丰
张作春
李永强
李保奎
Original Assignee
北京动仿航泰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京动仿航泰科技有限公司 filed Critical 北京动仿航泰科技有限公司
Priority to EP18897722.7A priority Critical patent/EP3733561A4/en
Publication of WO2019129155A1 publication Critical patent/WO2019129155A1/zh
Priority to US16/914,742 priority patent/US11618483B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G37/00Combinations of mechanical conveyors of the same kind, or of different kinds, of interest apart from their application in particular machines or use in particular manufacturing processes
    • B65G37/02Flow-sheets for conveyor combinations in warehouses, magazines or workshops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • B23P21/004Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control the units passing two or more work-stations whilst being composed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B1/00General arrangement of stations, platforms, or sidings; Railway networks; Rail vehicle marshalling systems
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B26/00Tracks or track components not covered by any one of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present disclosure relates to a matrix track system, an associated loop type production line based on a matrix track system, and a production method, and belongs to the technical field of product production lines.
  • the commonly used production line generally has the processing equipment (or assembly equipment) fixedly distributed on both sides of the linear conveying pipeline to be processed (or to be assembled), and the workpiece to be processed (or to be assembled) travels on the pipeline.
  • the processing equipment or assembly equipment
  • the pipeline is suspended, and the processing equipment performs a processing operation on the workpiece to be processed (or to be assembled) on the assembly line.
  • the specified machining (or assembly) task is completed, the workpiece to be machined (or to be assembled) continues to travel with the pipeline.
  • the processing equipment (or assembly equipment) waits for the next workpiece to be processed (or to be assembled) to be in place.
  • the purpose of the present disclosure is to provide a matrix track system, an associated loop type production line based on a matrix track system, and a production method based on a matrix track system.
  • general performance and flexibility are good, and can be The demand changes the composition of the associated loop production line at any time, and is not affected by the fault.
  • the workpiece can be processed or assembled after passing through the associated loop production line, and multiple operations are performed simultaneously, and the work efficiency is extremely high.
  • a matrix track system comprising a plurality of track nodes and guide rails arranged in a matrix structure
  • the guide rail comprises a fixed guide rail, a direct connection guide rail and a turn guide rail
  • the track node is equipped with a switch device
  • two track nodes adjacent in the row direction are connected by a plurality of parallel fixed rails
  • the switch device comprises a plurality of direct links, a plurality of turning guides and a plurality of rail switches for switching between the direct rails and the turning rails
  • the mechanism wherein: a plurality of fixed rails, a plurality of straight rails and a plurality of turning rails are connected end to end to form a closed loop.
  • the rail on which the circuit is located is mounted with at least one running device that can circulate along the guide rail, wherein: the walking device is used for placing a workpiece, or the traveling device is used for placing a tool, or the traveling device is used for For placing the function executing device, or for placing the degree of freedom moving device on the traveling device, and placing the function executing device on the degree of freedom moving device; when a plurality of walking devices are arranged on one of the circuits, all the walking devices are arranged in a queue Circulating on the loop;
  • the functional actuator is traveled with the travel device or fixedly mounted beside the rail in which the loop is located.
  • the turnout device in the turning position passes the rail switching mechanism to connect the turning guide rail to the adjacent two mutually perpendicular fixed rails corresponding thereto ;
  • the ballast device in the straight traveling position is connected to the direct connecting rail on the same straight line by the rail switching mechanism The fixed rail.
  • An associated loop production line comprising the matrix track system, the matrix track system comprising at least two of the loops, each of the loops being associated with at least one of the remaining ones of the loops And with associated road segments, each of the loops is provided with a loading station and/or a blanking station, wherein: for two loops with associated road segments, the travel devices running on the two loops travel on the associated road segments The directions are the same, the traveling speed is the same, and the traveling devices on the two circuits travel in parallel or one after the other at a set distance, so as to belong to the two traveling devices that are on the associated circuit and travel on the associated road segments.
  • the operation object performs the corresponding operation.
  • the two loops with associated links are nested associative loops or outer transitive associative loops.
  • each of the operating objects is circulated on the respective traveling circuit by the loading device position;
  • the operation objects carried by the walking device traveling on the Q-level circuit respectively complete the operation in the process of traveling on the associated road segment with the operation object carried by the traveling device traveling on each associated (Q-1)-level circuit, Obtaining a (Q-1) grade semi-finished product, or the operation object carried by the walking device traveling on the Q-level loop is a (Q-1) grade semi-finished product directly fed through the loading station;
  • N is a positive integer greater than 1, and the loop is divided into 1 to N loops;
  • the operating object is a workpiece, a tool, a function actuator or a degree of freedom motion device.
  • the related loop production line of the present disclosure is realized based on a matrix track system, and a plurality of associated loop type production lines can be designed on a set of matrix track systems, and each associated loop type production line can be operated at the same time, respectively, for each product to be obtained. Processing, assembly and other operations, the general performance and flexibility of the matrix track system of the present disclosure is good, and different processing or assembly line solutions adapted to the workpiece can be designed according to the processing or assembly requirements of the workpiece, and the production efficiency is greatly improved.
  • the related loop type production line of the present disclosure can perform a plurality of operations at the same time, such as the installation of the workpiece 1 and the inspection operation of the workpiece 2, etc., instead of the working mode of the fixed operation of the conventional linear pipeline, a plurality of operations can be performed. Synchronous execution greatly improves work efficiency and greatly shortens the production cycle.
  • the matrix track system of the present disclosure can be re-planned according to actual needs.
  • the associated loop production line for workpiece machining or assembly requirements, the machining or assembly of the workpiece can be continued without stopping the machine, without being affected by the failure, greatly improving production efficiency.
  • the workpiece to be processed or to be assembled, the function executing device, the tool, the degree of freedom moving device, etc. can be automatically transferred to the production line for related operations without manual handling, and the hardware structure of the entire production line No manual adjustment is required, and the adjustment work can be completely realized by software control.
  • the associated loop production line of the present disclosure may have various forms of associated loops, such as nested associative loops, external transfer associated loops, etc., the workpieces may be processed or assembled step by step, including the combination of tools and workpieces, tools and functions.
  • the combination of the execution device, the combination of the function execution device and the degree of freedom motion device, the processing or assembly of the workpiece by the function execution device, etc., and the operation or assembly method of the function execution device and the degree of freedom motion device is equivalent to the robot required for temporary assembly. Go to the corresponding job.
  • the present disclosure is applicable to various types of production lines such as assembly production lines, processing and manufacturing production lines.
  • 1 is a schematic view showing the composition of a matrix track system of the present disclosure.
  • FIG. 2 is a circuit explanatory diagram in a matrix track system of the present disclosure.
  • FIG 3 is an explanatory view of a guide rail in the matrix track system of the present disclosure.
  • FIG. 4 is a schematic diagram of an embodiment of a guide rail and a function executing device in the matrix track system of the present disclosure.
  • Figure 5 is a schematic illustration of another embodiment of a rail and function executing device in a matrix track system of the present disclosure.
  • Figure 6 is a block diagram showing the composition of the associated loop production line of the present disclosure.
  • Figure 7 is an operational illustration of a preferred embodiment of the associated loop production line of the present disclosure.
  • the matrix track system of the present disclosure includes a plurality of track nodes 10 and guide rails 20 arranged in a matrix structure, that is, all the track nodes 10 are arranged in a number of rows ⁇ columns, and the entire track system is Rectangular, the guide rail 20 includes a fixed guide rail 21, a direct-connecting guide rail 22, and a turning guide rail 23.
  • Each track node 10 is mounted with a switch device, two adjacent track nodes 10 in the row direction, and two adjacent tracks in the column direction.
  • the nodes 10 are connected by a plurality of parallel fixed rails 21, and the switch device comprises a plurality of straight rails 22, a plurality of turning rails 23 and a plurality of rail switching mechanisms for switching between the straight rails 22 and the turning rails 23.
  • the switch device is installed at the intersection of the row and the row, and the fixed rail 21 is coplanar with the rail mounting surface of the straight rail 22 and the turning rail 23 on the ballast device, wherein: a plurality of fixed rails 21, a plurality of straight rails 22 and a plurality of turning rails 23
  • the two ends are connected to form a closed loop, that is, the fixed rails 21 between the adjacent two track nodes 10, by means of the ballast device on the corresponding track node 10, the fixed rail 21 and the straight rail 22 or the turning rail
  • the connection between 23 forms a closed circuit 70, and the track switching mechanism on the ballast device is responsible for switching between the direct link 22 and the turning track 23.
  • the track nodes 10 at the four corners of the track system may or may not be equipped with ballast devices, wherein if the ballast devices are installed, the track nodes 10 at the four corners are engaged with the external pipeline.
  • the guide rail 20 on which the circuit 70 is located is mounted with at least one traveling device 40 which can circulate along the guide rail 20, wherein the traveling device 40 is used for placing a workpiece to be processed or to be assembled. Or the traveling device 40 is used for placing a tool, or the running device 40 is used for placing the function executing device 50, or the traveling device 40 is for placing the degree of freedom moving device 60, and the degree of freedom moving device 60 is placed for performing the function. Device 50. In practical applications, any item suitable for the production line process can be placed on the traveling device 40, and is not limited to the above. When a plurality of traveling devices 40 are disposed on one circuit 70, all of the traveling devices 40 circulate in a loop on the circuit 70.
  • the functional actuator 50 can be traveled with the travel device 40 or fixedly mounted adjacent the corresponding position of the rail 20 where the circuit 70 is located.
  • the ballast device of the track node 10 connects the upper turning guide 23 to the adjacent two adjacent ones through the rail switching mechanism.
  • Vertical fixed rails 21 When the traveling device 40 travels on the guide rail 20 to the track node 10 that needs to go straight, the ballast device of the track node 10 passes the rail switching mechanism to connect the upper straight guide rail 22 to the adjacent two adjacent lines on the same line. Fixed rails 21.
  • the switch device should determine that no running device 40 is operating on the switch device when performing the switching rail operation.
  • the operator positions the corresponding rails connected to the switch according to the required circuit requirements.
  • the circuit 70 After the circuit 70 is set, it is usually not necessary to adjust the corresponding rails connected to the switch device. However, when the track node 10 or a certain road segment of a certain circuit fails, or the product needs to be replaced, or the assembly process is adjusted, or one or several traveling devices are allowed to flow out of the circuit, the circuit 70 needs to be reset through the switch device. . At this time, the switching operation between the direct link rail 22 and the turning rail 23 can be performed by the rail switching mechanism to realize the adjustment of the loop.
  • the traveling device 40 includes a transport platform 41.
  • the bottom of the transport platform 41 is mounted with a guiding mechanism 42 for holding the transport platform 41 on the guide rail 20 and a driving drive mechanism for driving the transport platform 41 to move on the guide rail 20. .
  • the guide mechanism 42 of the traveling device 40 mounted on the guide rail 20 is a guide roller, and the guide roller is attached to both sides of the guide rail 20 to play a guiding role. Both sides of the guide rail 20 are provided with gear teeth which are respectively meshed with the two side gears of the travel drive mechanism of the traveling device 40, so that the transport platform 41 can stably operate on the guide rail 20. Only the function executing device 50 is placed on the transport platform 41 shown in FIG.
  • the figure shows a single-sided gear guide rail.
  • the guide mechanism 42 of the traveling device 40 mounted on the guide rail 20 is also a guide roller, and the guide roller is attached to both sides of the guide rail 20, thereby The role of guidance.
  • the guide rail 20 is provided with gear teeth on one side, and is engaged with the corresponding side gear of the travel drive mechanism of the traveling device 40, so that the transport platform 41 can be stably operated on the guide rail 20.
  • a degree of freedom moving device 60 is placed on the transport platform 41 shown in FIG. 5, and the function executing device 50 is placed on the degree of freedom moving device 60.
  • the difference between the guide rail 20 shown in Fig. 4 and Fig. 5 is the single-sided design of the guide rail teeth. If a double-sided tooth guide is used, the travel device 40 can turn in more directions, so that the circuit 70 can have more planning options.
  • a loading station 31 and/or a blanking station 32 may be provided beside the guide rail 20 where the circuit 70 is located, wherein the loading station 31 and the unloading station 32 are fixed stations beside the loop 70 or The external assembly line; the loading station 31 and the unloading station 32 can be independent stations or the same station (ie, loading and unloading station 30).
  • the upper and lower material stations 31 and 32 can be equipped with upper and lower loading robots for grabbing materials and the like.
  • the traveling device 40 may be a smart car with power, self-driven walking, or the like.
  • the walking control mode between the traveling device 40 and the guide rail 20 may be electric power, magnetic force, or the like, and is not limited.
  • the workpiece can be a part or a part or the like.
  • the tool can be a processing tool, an assembly tool, a testing tool, a measuring tool, or a sanding tool.
  • the function execution device 50 may be a process function execution device, an assembly function execution device, a detection function execution device, a measurement function execution device, or a sanding function execution device.
  • the degree of freedom motion device 60 can be a drive device that can move in multiple directions, such as a common 6-axis articulated robotic arm, a Delta parallel robot, or a Scara robot.
  • the traveling device 40, the workpiece, the tool, and the function executing device 50 may be other forms, and are not limited to the above.
  • Figure 1 shows a set of 10 rows x 10 columns, a total of 100 track nodes 10 of the track system.
  • a row of numbers at the top of the track system indicates the column number, and a column of numbers on the left indicates the row number.
  • the track node 10 is represented by Pi,j, where i represents the row in which the track node 10 is located and j represents the column in which the track node 10 is located.
  • P2, 3 represents the track node 10 of the second row and the third column.
  • the travel device 40 disposed on the circuit 70 and the direction of travel of the travel device 40 on the circuit 70 are shown.
  • Each of the traveling devices 40 is marked with a corresponding reference numeral, such as the traveling devices A11-1 to A11-5 as indicated in FIG.
  • Loop 70 is indicated by a thick solid line and is drawn with the corresponding reference number, such as loop A11 as indicated in FIG.
  • At least one of the traveling devices 40 can continuously circulate on the loop 70.
  • the loop 70 is composed of track nodes P1, 1, P1, 2, P1, 3, P1, 4, P1, 5, P2, 5, P2, 4, P2, 3, P2, 2, P2, 1 A closed circuit formed.
  • the ballast devices on the track nodes P2, 5 provide a straight-through direct track 22 for the loop A12, and the ballast devices on the track nodes P2, 5 provide the turn guides for the loop A11 and the loop A1. twenty three.
  • the result of the rail engagement made by the switch device determines the shape of the circuit 70.
  • the present disclosure also proposes an associated loop production line comprising the above described matrix track system, the matrix track system comprising at least two loops 70, each loop 70 and at least one of the remaining loops 70 70 is associated with an associated road segment, and the length of the associated road segment can be reasonably designed according to the time required for the operation (or the time required to complete the operation), and each circuit 70 is provided with a loading station 31 and/or a blanking station 32. , wherein: for the two circuits 70 having associated sections, the traveling devices 40 running on the two circuits 70 have the same traveling direction and the same traveling speed on the associated road sections, that is, the traveling devices 40 on the two circuits 70.
  • the traveling devices 40 on the two circuits 70 travel in parallel or one after the other at a set distance to allow two walks belonging to the associated circuit 70 and traveling on the associated road segments.
  • the operation object on the device 40 performs a corresponding operation.
  • the two loops 70 having associated sections means that the two loops have adjacent sides, and there are a plurality of fixed rails 21 parallel between the two rail nodes 10, so that the two loops 70 can make the running devices on the respective loops 70 40 simultaneously travels on their respective adjacent sides.
  • the traveling devices 40 on the two circuits 70 are simultaneously traveling on the associated road segments, the two traveling devices 40 may not be connected or preferably connected to each other. Since the two traveling devices 40 are connected to each other on the associated road section to improve work safety, it should be noted that when the two traveling devices 40 are to be separated, the two need to be disconnected in time.
  • the two loops 70 with associated sections may be nested associative loops or outbound associated loops.
  • a nested associative loop means that one loop 70 is located inside the other loop 70 and there are adjacent edges between the two loops 70.
  • the outer transfer associated loop means that one loop 70 is external to the other loop 70 and there are adjacent edges between the two loops 70.
  • the loop A11 and the loop A1 are external transfer type associated loops, and the sections of the track nodes P2, 1 to P2, 5 are associated sections.
  • the circuit A11 On the associated link, the circuit A11 has the same traveling direction as the traveling device 40 running on the circuit A1, and the traveling speed is the same. 6, the traveling device A11-2 on the circuit A11 and the traveling device A1-2 on the circuit A1 are in parallel traveling state, the traveling device A11-1 on the circuit A11 and the traveling device A1-1 on the circuit A1. It is also in parallel running state.
  • the function executing device 50 on the traveling device A11-2 can perform a functional operation on the workpiece on the traveling device A1-2, and the function executing device 50 on the degree of freedom moving device 60 on the traveling device A11-1 can walk The workpiece on the device A1-1 performs a functional operation.
  • the loop B11 and the loop B1 are nested associative loops, and the sections of the track nodes P6, 1 to P6, 7 are associated sections, and on the associated sections, the loops B11 and the traveling device 40 running on the loop B1 are shown.
  • the traveling directions are the same and the traveling speed is the same.
  • the function executing device 50 on the traveling device 40 on the two circuits can perform a certain functional operation on the associated road segment.
  • the set road segment on the circuit 70 may be a charging road segment, or the circuit 70 is connected to an external charging road segment, and a charging pile is installed on the external charging road segment.
  • the traveling device 40 can complete the non-stop charging by wireless charging during the passage of the charging section.
  • the traveling device 40 can carry the function executing device 50 and the degree of freedom moving device 60 to the charging road section, and perform parking charging through the charging post, and the charging mode can be wired or wireless charging.
  • the present disclosure also proposes a production method comprising the steps of:
  • each operation object is placed on the traveling device 40 circulating on the corresponding circuit 70 through the loading station 31;
  • the operation objects carried by the traveling device 40 traveling on the Q-level circuit are respectively operated in the process of traveling on the associated road section with the operation object carried by the traveling device 40 traveling on each associated (Q-1)-stage circuit, and are obtained ( Q-1) grade semi-finished product, or the operation object carried by the traveling device 40 traveling on the Q-level circuit is a semi-finished product of (Q-1) grade directly fed through the loading station 31;
  • the operational object is a workpiece, a tool, a function performing device 50 or a degree of freedom moving device 60.
  • the workpiece may be a part or a component, etc.
  • the tool may be a processing tool, an assembly tool, a detecting tool, a measuring tool, or a grinding tool, etc.
  • the function executing device 50 may be a processing function executing device, an assembly function executing device, and a detecting function execution.
  • the device, the measuring function executing device or the sanding function executing device, etc., the degree of freedom moving device 60 may be a driving device that can move in multiple directions.
  • the production method of the present disclosure is applicable to various types of production lines such as an assembly line, a processing and manufacturing line.
  • each of the operation objects is placed on the traveling device 40 that circulates on the respective circuits 70 through the loading station 31.
  • the operation object carried by the traveling device 40 traveling on the 2-stage circuit respectively completes the operation on the associated road section with the operation object carried by the traveling device 40 traveling on the associated 1-stage circuit, and obtains the 1st-stage semi-finished product, or the 2nd-level circuit travels.
  • the operation object carried by the traveling device 40 is a first-stage semi-finished product directly fed through the loading station 31.
  • the operation object carried by the traveling device 40 traveling on the 3-stage circuit respectively completes the operation of the first-stage semi-finished product carried by the traveling device 40 traveling on the associated 2-stage circuit in the associated road section, and obtains the second-stage semi-finished product, or the 3-stage circuit.
  • the operation object carried by the traveling traveling device 40 is a two-stage semi-finished product directly fed through the loading station 31. This is repeated until the finished product (N-1 grade semi-finished product) is obtained from the N-stage circuit and output, and the production operation
  • Figure 7 shows a set of 10 rows x 10 columns, a total of 100 track nodes 10 of the track system.
  • both A and B products are simultaneously assembled online on this track system.
  • loops A1, A11, A12, and A13 are designed for product A
  • loop A1 is a 2-stage loop
  • loops A11, A12, and A13 are 1-stage loops.
  • the loop A1 and the loop A11 have associated links between the track nodes P2, 1 to P2, 3.
  • the loop A1 and the loop A12 have associated links between the track nodes P2, 3 to P2, 5, and the loop A1 and the loop A13 are at the track nodes.
  • P4, 1 to P4, 5 have associated links.
  • the assembly process for Product A is:
  • the part 1 is placed from the loading station 31 of the circuit A1 by the loading robot and placed on the traveling device 40 traveling on the circuit A1.
  • the parts 2, 3, and 4 are transported from the loading station 31 of the circuits A11, A12, and A13 to the traveling device 40 that travels on the respective circuits.
  • On the associated section of the loop A1 and the loop A11 the operation of mounting the part 2 to the part 1 is completed.
  • the operation of mounting the part 3 to the part 1 is completed on the associated section of the loop A12 and the loop A1.
  • the operation of mounting the part 4 to the part 1 is completed.
  • loops B1, B11, B12, B13, B14, B15, B131, B1311, B1312, and B151 are designed for product B.
  • Circuit B1 is a 4-level loop
  • loops B11, B12, B13, B14, and B15 are level 3 In the loop
  • loops B131 and B151 are 2-stage loops
  • B1311 and B1312 are 1-stage loops.
  • the loop B1311 and the loop B131 have an associated link between the track nodes P1, 9 to P4, 9.
  • the loop B1312 and the loop B131 have associated links between the track nodes P1, 7 to P4, 7, and the loop B131 and the loop B13 are at the track node.
  • P4,7 to P4,9 have associated sections
  • loop B151 and loop B15 have associated sections between track nodes P9,8 to P9,10
  • loop B11 and loop B1 are at track nodes P6,1 to P6,7
  • Circuit B12 and circuit B1 have associated road sections between track nodes P6,1 to P6,7.
  • Circuit B13 and circuit B1 have associated road sections between track nodes P6,7 to P8,7, and circuit B14 and
  • the loop B1 has an associated link between the track nodes P9, 1 to P9, 7, and the loop B15 and the loop B1 have associated links between the track nodes P9, 1 to P9, 7.
  • Product B is assembled step by step by passing between the above circuits.
  • the assembly process of Product B is:
  • the tool is placed from the loading station 31 of the circuit B 1311 on the traveling device 40 traveling on the circuit B 1311. On the associated section of the loop B1311 and the loop B131, the operation of placing the tool on the traveling device 40 traveling on the loop B131 is completed.
  • the component 1 is placed from the loading station 31 of the circuit B 1312 on the traveling device 40 traveling on the circuit B 1312. On the associated section of the loop B1312 and the loop B131, the operation of the tool holding member 1 is completed.
  • the part 3 is placed from the loading station 31 of the circuit B13 on the traveling device 40 traveling on the circuit B13. On the associated section of the loop B131 and the loop B13, the operation of mounting the component 1 to the part 3 is completed, and the semi-finished product 1 is obtained.
  • the component 2 is placed from the loading station 31 of the circuit B 151 on the traveling device 40 traveling on the circuit B151.
  • the part 4 is placed from the loading station 31 of the circuit B15 on the traveling device 40 traveling on the circuit B15.
  • the operation of mounting the component 2 onto the part 4 is completed, and the semi-finished product 2 is obtained.
  • the part 1 is placed from the loading station 31 of the circuit B11 on the traveling device 40 traveling on the circuit B11.
  • the part 2 is placed from the loading station 31 of the circuit B12 on the traveling device 40 traveling on the circuit B12.
  • the basic tooling is placed from the loading station 31 of the circuit B1 on the traveling device 40 traveling on the circuit B1.
  • the detection device circulates along circuit B14 on the travel device 40 of circuit B14.
  • the detecting device completes the product B obtained by completely assembling the loop B1 (basic tooling + part 1 + part 2+)
  • the inspection operation of the finished product 1+ semi-finished product 2) is performed, so that the finished product detected is externally outputted by the unloading station 32 of the circuit B1.
  • the circuit configuration of the switch device and the position of the associated road segment can be adjusted through the track switching mechanism of the switch device.
  • the assembly process of the same product can be realized through various associated loop production lines, which are flexible in design, and fully demonstrate the excellent flexibility of the rail system while greatly improving production efficiency.
  • the related loop production line of the present disclosure is realized based on a matrix track system.
  • the general performance and flexibility are good, and the composition of the associated loop production line can be changed at any time according to the demand, and is not affected by the failure.
  • the workpiece passes through the associated loop production line
  • the machining or assembly work can be completed, and multiple operations are performed simultaneously, which is extremely efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Automatic Assembly (AREA)

Abstract

本公开提供了一种矩阵式轨道系统、关联回路式生产线及其生产方法。轨道系统包括若干轨道节点。导轨包括固定导轨、直连导轨、转弯导轨。各轨道节点上安装有道岔装置。行、列方向上相邻的两个轨道节点之间通过平行的若干固定导轨相连。道岔装置包括直连导轨、转弯导轨及导轨切换机构。若干固定导轨、若干直连导轨和若干转弯导轨两两首尾相连形成一个封闭的回路。关联回路式生产线基于矩阵式轨道系统实现,一方面,通用性能和柔性好,可以根据需求随时更改关联回路式生产线的构成,不受故障影响,另一方面,工件经过关联回路式生产线后便可完成加工或装配作业,多项操作同步执行,工作效率极高。

Description

矩阵式轨道系统、关联回路式生产线及其生产方法
交叉引用
本公开要求于2017年12月27日提交的申请号为201711453235.6、名称为“矩阵式轨道系统、关联回路式生产线及其生产方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及一种矩阵式轨道系统、基于矩阵式轨道系统的关联回路式生产线及生产方法,属于产品生产线技术领域。
背景技术
现在常用的生产线一般是将加工设备(或装配设备)依次固定分布于待加工(或待装配)工件的直线型输送流水线两侧,待加工(或待装配)工件在流水线上行进。例如当待加工(或待装配)工件行进至加工设备(或装配设备)的工位时,流水线暂停,加工设备对流水线上的待加工(或待装配)工件进行加工操作。当完成指定的加工(或装配)任务后,待加工(或待装配)工件继续随流水线行进。加工设备(或装配设备)等待下一个待加工(或待装配)工件就位。
从实际生产中可以看出,已有的生产线普遍存在以下缺陷:
如果需要调整加工(或装配)工艺,或者需要改变生产线所加工(或装配)的产品,则需要对生产线中的机器人动作进行调整,甚至可能需要重新设计整条生产线。也就是说,已有生产线的通用性能不好,柔性差,只能针对固定的一个或若干个工件进行加工(或装配),无法适应工件加工(或装配)方案的改变,更不用说基于同一套生产线对不同产品进行加工(或装配)了。另外,在生产线运行过程中,如果某一个节点的设备出现故障,或者是流水线上的某一段出现故障,则需要整条生产线停止生产,只有维修恢复故障设备或故障路段,整条生产线才能重新启动生产,这势必大大影响了产品的生产效率,费时费力。
在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开的目的在于提供一种矩阵式轨道系统、基于矩阵式轨道系统的关联回路式生产线及生产方法,该关联回路式生产线基于矩阵式轨道系统实现,一方面,通用性能和柔性好,可以根据需求随时更改关联回路式生产线的构成,不受故障影响,另一方面,工件经过关联回路式生产线后便可完成加工或装配作业,多项操作同步执行,工作效率极高。
为了实现上述目的,本公开采用了以下技术方案:
一种矩阵式轨道系统,它包括排列成矩阵结构的若干轨道节点、导轨,导轨包括固定导轨、直连导轨、转弯导轨,各轨道节点上安装有道岔装置,行方向上相邻的两个轨道节点之间、列方向上相邻的两个轨道节点之间通过平行的若干固定导轨相连,道岔装置包括若干直连导轨、若干转弯导轨以及在直连导轨与转弯导轨之间进行切换的若干导轨切换机构,其中:若干固定导轨、若干直连导轨和若干转弯导轨两两首尾相连形成一个封闭的回路。
所述回路所在的所述导轨上安装有至少一个可沿所述导轨循环行进的行走装置,其中:行走装置上用于置放工件,或者行走装置上用于置放工具,或者行走装置上用于置放功能执行装置,或者行走装置上用于置放自由度运动装置,自由度运动装置上置放功能执行装置;当一个所述回路上设置多个行走装置时,所有行走装置排成队列地在所述回路上循环行走;
功能执行装置随行走装置行进或固定安装在所述回路所在的所述导轨旁。
当所述行走装置在所述导轨上需要转弯时,转弯位置的所述道岔装置通过所述导轨切换机构使其上所述转弯导轨连接与其相对应的相邻两个相互垂直的所述固定导轨;
当所述行走装置在所述导轨上需要直行时,直行位置的所述道岔装置通过所述导轨切换机构使其上所述直连导轨连接与其相对应的相邻两个处于同一条直线上的所述固定导轨。
一种关联回路式生产线,它包括所述的矩阵式轨道系统,所述矩阵式轨道系统包括至少两个所述回路,每个所述回路与其余所述回路中的至少一个所述回路相关联而具有关联路段,每个所述回路设置有上料工位和/或下料工位,其中:对于具有关联路段的两个回路,此两个回路上运行的行走装置在关联路段上的行进方向相同、行进速度相同,此两个回路上的行走装置之间并行行进或一前一后相距设定距离地行进,以使分属于关联回路上且行进在关联路段上的两个行走装置上的操作对象执行相应操作。
所述具有关联路段的两个回路为嵌套式关联回路或外传递式关联回路。
一种基于所述的关联回路式生产线实现的生产方法,包括如下步骤:
1)各操作对象通过所述上料工位置于相应各所述回路上循环行进的所述行走装置上;
2)Q级回路上行进的所述行走装置携带的操作对象分别与相关联的各(Q-1)级回路上行进的所述行走装置携带的操作对象在关联路段行进的过程中完成操作,得到(Q-1)级半成品,或者,Q级回路上行进的所述行走装置携带的操作对象为通过所述上料工位直接送入的(Q-1)级半成品;
3)Q增加1,重复执行2),直至Q增加至N+1时进入4);
4)N级回路得到的(N-1)级半成品作为成品输出,完成生产作业;
其中:
Q从2开始,N为大于1的正整数,所述回路分为1至N级回路;
操作对象为工件、工具、功能执行装置或自由度运动装置。
本公开的有益效果为:
1、本公开关联回路式生产线基于矩阵式轨道系统实现,一套矩阵式轨道系统上可以设计出多个关联回路式生产线,各关联回路式生产线可各自同时运行,对各自上欲得到的产品进行加工、装配等作业,因此本公开矩阵式轨道系统的通用性能和柔性好,可以根据工件加工或装配需求设计出适应工件的不同加工或装配生产线方案,生产效率得到大大提高。
2、本公开关联回路式生产线可同时执行多项操作,如对工件1安装零件的同时,对工件2进行检测操作等等,替代了传统直线型流水线的固定操作的工作模式,多项操作可同步执行,大大提高了工作效率,极大缩短了生产周期。
3、当本公开矩阵式轨道系统中的某一个或几个轨道节点出现故障,或者回路上的某个或某几个路段出现故障,本公开矩阵式轨道系统可根据实际需求重新规划设计出符合工件加工或装配需求的关联回路式生产线,工件的加工或装配可以在不停机的状态下继续进行,不会受到故障的影响,大大提高了生产效率。
4、在本公开关联回路式生产线中,待加工或待装配的工件、功能执行装置、工具、自由度运动装置等无需人工搬运,均可自动传送到生产线上进行相关作业,整个生产线的硬件结构无需人工调整,调整工作完全可以通过软件控制实现。
5、本公开关联回路式生产线可以具有多种形式的关联回路,如嵌套式关联回路,外传递式关联回路等,工件可以进行逐级加工或装配,包括工具与工件的组合,工具与功能执行装置的组合,功能执行装置与自由度运动装置的组合,功能执行装置对工件的加工或 装配等,这种功能执行装置、自由度运动装置参与的加工或装配方式相当于临时组装所需机器人去完成相应作业。
6、本公开适用于装配生产线、加工制造生产线等各种类型生产线。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1是本公开矩阵式轨道系统的组成示意图。
图2是本公开矩阵式轨道系统中的回路说明图。
图3是本公开矩阵式轨道系统中的导轨说明图。
图4是本公开矩阵式轨道系统中导轨和功能执行装置的一实施例示意图。
图5是本公开矩阵式轨道系统中导轨和功能执行装置的另一实施例示意图。
图6是本公开关联回路式生产线的组成说明图。
图7是本公开关联回路式生产线的一较佳实施例的运行说明图。
具体实施方式
如图1至图5,本公开矩阵式轨道系统包括排列成矩阵结构的若干轨道节点10、导轨20,也就是说,所有轨道节点10以若干行×若干列的形式排布,整个轨道系统呈矩形,导轨20包括固定导轨21、直连导轨22、转弯导轨23,各轨道节点10上安装有道岔装置,行方向上相邻的两个轨道节点10之间、列方向上相邻的两个轨道节点10之间通过平行的若干固定导轨21相连,道岔装置包括若干直连导轨22、若干转弯导轨23以及在直连导轨22与转弯导轨23之间进行切换的若干导轨切换机构。道岔装置安装在行列交叉点上,固定导轨21与道岔装置上的直连导轨22、转弯导轨23的导轨安装面共面,其中:若干固定导轨21、若干直连导轨22和若干转弯导轨23两两首尾相连形成一个封闭的回路,也就是说,若干相邻的两轨道节点10之间的固定导轨21,借由相应轨道节点10上的道岔装置对固定导轨21与直连导轨22或转弯导轨23之间实现的连接而形成一个封闭的回路70,道岔装置上的导轨切换机构负责直连导轨22与转弯导轨23之间的切换。
在本公开中,轨道系统中的四个角上的轨道节点10可安装或不安装道岔装置,其中:若安装道岔装置,则四个角上的轨道节点10与外部流水线衔接。
如图2、图4和图5,回路70所在的导轨20上安装有至少一个可沿导轨20循环行进 的行走装置40,其中:行走装置40上用于置放待加工或待装配的工件,或者行走装置40上用于置放工具,或者行走装置40上用于置放功能执行装置50,或者行走装置40上用于置放自由度运动装置60,自由度运动装置60上置放功能执行装置50。在实际应用时,行走装置40上可以置放任意适于生产线工艺的物品,并不局限于上述。当一个回路70上设置多个行走装置40时,所有行走装置40排成队列地在回路70上循环行走。
在实际实施中,功能执行装置50可随行走装置40行进或固定安装在回路70所在的导轨20相应位置旁。
在实际实施时,当行走装置40在导轨20上行进至需要转弯的轨道节点10时,此轨道节点10的道岔装置通过导轨切换机构使其上转弯导轨23连接与其相对应的相邻两个相互垂直的固定导轨21。当行走装置40在导轨20上行进至需要直行的轨道节点10时,此轨道节点10的道岔装置通过导轨切换机构使其上直连导轨22连接与其相对应的相邻两个处于同一条直线上的固定导轨21。
在实际实施中,道岔装置在进行切换导轨动作时,应确定没有任何行走装置40运行在道岔装置上。
在实际运行中,操作人员根据所需回路要求,令道岔装置上所连接好的相应导轨就位。回路70设置好后,通常情况下不需要调整道岔装置上已连接的相应导轨。但是,当某一回路的轨道节点10或某一路段出现故障时,或者需要更换产品,或者调整装配工艺,或者让某一个或几个行走装置流出回路时,则需要通过道岔装置重新设置回路70。此时,可以通过导轨切换机构来进行直连导轨22与转弯导轨23之间的切换动作,实现回路的调整。
如图4和图5,行走装置40包括运输平台41,运输平台41的底部安装有将运输平台41夹持在导轨20上的导向机构42以及驱动运输平台41在导轨20上运动的行走驱动机构。
如图4,图中示出了双边轮齿导轨的情形,导轨20上安装的行走装置40的导向机构42为导向滚轮,导向滚轮与导轨20两侧边贴合,从而起到导向的作用。导轨20的两侧都设有轮齿,分别与行走装置40的行走驱动机构的两边齿轮相齿合,以使运输平台41可以在导轨20上稳定地运行。在图4示出的运输平台41上仅置放有功能执行装置50。
如图5所示,图中示出了单边轮齿导轨的情形,导轨20上安装的行走装置40的导向机构42同样为导向滚轮,导向滚轮与导轨20两侧边贴合,从而起到导向的作用。导轨20单边设有轮齿,与行走装置40的行走驱动机构的相应一边齿轮相齿合,以使运输平台 41可以在导轨20上稳定地运行。在图5示出的运输平台41上置放有自由度运动装置60,自由度运动装置60上置放功能执行装置50。
图4与图5所示导轨20的区别在于导轨轮齿的单双边设计。若选用双边轮齿导轨,则行走装置40可以朝更多的方向转弯,从而回路70可以有更多的规划方案。
如图6,回路70所在的导轨20旁可设有上料工位31和/或下料工位32,其中:上料工位31和下料工位32为回路70旁的固定工位或外部流水线;上料工位31和下料工位32可为独立工位或同一工位(即上下料工位30)。上、下料工位31、32上可配置上、下料机器人,用来抓取物料等。
在本公开中,行走装置40可为带有动力、可自行驱动行走的智能小车等。行走装置40与导轨20之间的行走控制方式可为电力、磁力等,不受局限。工件可为零件或部件等。工具可为加工工具、装配工具、检测工具、测量工具或打磨工具等。功能执行装置50可为加工功能执行装置、装配功能执行装置、检测功能执行装置、测量功能执行装置或打磨功能执行装置等。自由度运动装置60可为可朝多方位运动的驱动设备,例如常见的6轴关节机械臂、Delta并行机器人或Scara机器人等。当然,行走装置40、工件、工具、功能执行装置50还可为其它形式,并不局限于上述。
图1所示为一套10行×10列,共100个轨道节点10的轨道系统。轨道系统顶部的一行数字表示列号,左侧的一列数字表示行号。轨道节点10用Pi,j表示,其中,i表示轨道节点10所在的行,j表示轨道节点10所在的列。比如,P2,3表示第2行、第3列的轨道节点10。
如图3,图中示出了回路70中的固定导轨21、直连导轨22、转弯导轨23。
如图2,图中示出了回路70上设置的行走装置40,以及行走装置40在回路70上的行进方向(用箭头示出)。每个行走装置40都有相应标号标出,如图2中标出的行走装置A11-1至A11-5。回路70用粗实线表示,同时用相应标号引出,如图2中标出的回路A11。至少一个行走装置40可以在回路70上连续循环行走。在图2中,回路70是由轨道节点P1,1、P1,2、P1,3、P1,4、P1,5、P2,5、P2,4、P2,3、P2,2、P2,1形成的一个封闭线路。
在图6所示的轨道系统中,轨道节点P2,5上的道岔装置为回路A12提供了直行的直连导轨22,轨道节点P2,5上的道岔装置为回路A11和回路A1提供了转弯导轨23。道岔装置做出的导轨衔接结果决定了回路70的构成形状。
参照图6来理解,本公开还提出了一种关联回路式生产线,它包括上述矩阵式轨道系统,矩阵式轨道系统包括至少两个回路70,每个回路70与其余回路70中的至少一个回 路70相关联而具有关联路段,关联路段的长短可根据作业所需时间(或说完成操作所需时间)来合理设计,每个回路70设置有上料工位31和/或下料工位32,其中:对于具有关联路段的两个回路70,此两个回路70上运行的行走装置40在关联路段上的行进方向相同、行进速度相同,也就是说,两个回路70上的行走装置40之间没有相对运动,此两个回路70上的行走装置40之间并行行进或一前一后相距设定距离地行进,以使分属于关联回路70上且行进在关联路段上的两个行走装置40上的操作对象执行相应操作。
在本公开中,两个回路70具有关联路段是指两个回路具有邻接边,两个轨道节点10之间具有平行的若干固定导轨21,从而两个回路70可以使各自回路70上的行走装置40同时在各自邻接边上行进。
另外,两个回路70上的行走装置40同时行进在关联路段上时,两个行走装置40之间可以不连接或者优选互相连接。因为在关联路段上,两个行走装置40互相连接的做法可以提高工作安全性,但应注意,当两个行走装置40要分开时,两者之间需要及时脱开连接。
在本公开中,具有关联路段的两个回路70可为嵌套式关联回路或外传递式关联回路。
嵌套式关联回路是指一个回路70位于另一个回路70内部且两回路70之间存在邻接边。外传递式关联回路是指一个回路70位于另一个回路70外部且两回路70之间存在邻接边。
如图6,回路A11与回路A1为外传递式关联回路,两者在轨道节点P2,1至P2,5这一段为关联路段。在关联路段上,回路A11与回路A1上运行的行走装置40的行进方向相同、行进速度相同。如图6,回路A11上的行走装置A11-2与回路A1上的行走装置A1-2之间为并行行进状态,回路A11上的行走装置A11-1与回路A1上的行走装置A1-1之间也为并行行进状态。这时例如,行走装置A11-2上的功能执行装置50可对行走装置A1-2上的工件进行功能操作,行走装置A11-1上的自由度运动装置60上的功能执行装置50可对行走装置A1-1上的工件进行功能操作。
如图7,回路B11与回路B1为嵌套式关联回路,两者在轨道节点P6,1至P6,7这一段为关联路段,在关联路段上,回路B11与回路B1上运行的行走装置40的行进方向相同、行进速度相同,例如,两回路上的行走装置40上的功能执行装置50在关联路段上可完成某种功能操作。
在实际设计中,回路70上的设定路段可为充电路段,或者回路70与外部充电路段相连接,外部充电路段上安装有充电桩。
在实际实施时,对于回路70上设有充电路段的情况,行走装置40、功能执行装置50、自由度运动装置60等都可在经过充电路段过程中通过无线充电方式完成不停车充电。另外,对于设有外部充电路段的情况,行走装置40可以运载着功能执行装置50、自由度运动装置60到充电路段上,通过充电桩进行停车充电,此充电方式可为有线或无线充电。
基于上述关联回路式生产线,本公开还提出了一种生产方法,它包括步骤:
1)各操作对象通过上料工位31置于相应各回路70上循环行进的行走装置40上;
2)Q级回路上行进的行走装置40携带的操作对象分别与相关联的各(Q-1)级回路上行进的行走装置40携带的操作对象在关联路段行进的过程中完成操作,得到(Q-1)级半成品,或者,Q级回路上行进的行走装置40携带的操作对象为通过上料工位31直接送入的(Q-1)级半成品;
3)Q增加1,重复执行2),直至Q增加至N+1时进入4);
4)N级回路得到的(N-1)级半成品作为成品输出,完成生产作业;
其中:
Q从2开始,Q=2,3,……,N,N为大于1的正整数,回路70分为1至N级回路,Q-1级回路隶属于Q级回路;
操作对象为工件、工具、功能执行装置50或自由度运动装置60。
进一步来说,工件可为零件或部件等,工具可为加工工具、装配工具、检测工具、测量工具或打磨工具等,功能执行装置50可为加工功能执行装置、装配功能执行装置、检测功能执行装置、测量功能执行装置或打磨功能执行装置等,自由度运动装置60可为可朝多方位运动的驱动设备。
本公开生产方法适用于装配生产线、加工制造生产线等各种类型生产线。
具体来说,各操作对象通过上料工位31置于相应各回路70上循环行进的行走装置40上。2级回路上行进的行走装置40携带的操作对象分别与相关联的各1级回路上行进的行走装置40携带的操作对象在关联路段完成操作,得到1级半成品,或者,2级回路上行进的行走装置40携带的操作对象为通过上料工位31直接送入的1级半成品。3级回路上行进的行走装置40携带的操作对象分别与相关联的各2级回路上行进的行走装置40携带的1级半成品在关联路段完成操作,得到2级半成品,或者,3级回路上行进的行走装置40携带的操作对象为通过上料工位31直接送入的2级半成品。如此重复执行,直至从N级回路上得到成品(N-1级半成品)并输出,完成生产作业。
下面以图7所示的本公开关联回路式生产线为例来说明本公开的工作过程和原理:
图7示出的是一套10行×10列,共100个轨道节点10的轨道系统。在这套轨道系统中,A和B两个产品同时在此轨道系统上进行在线装配。
对于产品A,其由零件1、零件2、零件3和零件4这4个零件组装而成,其中的零件1是装配基础零件。如图7,针对产品A设计了回路A1、A11、A12和A13,回路A1为2级回路,回路A11、A12和A13为1级回路。回路A1与回路A11在轨道节点P2,1至P2,3之间具有关联路段,回路A1与回路A12在轨道节点P2,3至P2,5之间具有关联路段,回路A1与回路A13在轨道节点P4,1至P4,5之间具有关联路段。
产品A的装配流程为:
零件1从回路A1的上料工位31通过上料机器人搬运放置于行进在回路A1上的行走装置40上。零件2、零件3、零件4分别从回路A11、A12、A13的上料工位31搬运放置于行进在各自回路上的行走装置40上。在回路A1与回路A11的关联路段上,完成将零件2安装到零件1上的操作。同样,在回路A12与回路A1的关联路段上,完成将零件3安装到零件1上的操作。以及在回路A13与回路A1的关联路段上,完成将零件4安装到零件1上的操作。当零件2、零件3、零件4全部安装到零件1上后,产品A的全部装配工作完成,回路A1的下料工位32对外输出成品。
对于产品B,其由基础工装、零件1、零件2、零件3、零件4、部件1、部件2组装而成。如图7,针对产品B设计了回路B1、B11、B12、B13、B14、B15、B131、B1311、B1312、B151,回路B1为4级回路,回路B11、B12、B13、B14、B15为3级回路,回路B131、B151为2级回路,B1311、B1312为1级回路。回路B1311与回路B131在轨道节点P1,9至P4,9之间具有关联路段,回路B1312与回路B131在轨道节点P1,7至P4,7之间具有关联路段,回路B131与回路B13在轨道节点P4,7至P4,9之间具有关联路段,回路B151与回路B15在轨道节点P9,8至P9,10之间具有关联路段,回路B11与回路B1在轨道节点P6,1至P6,7之间具有关联路段,回路B12与回路B1在轨道节点P6,1至P6,7之间具有关联路段,回路B13与回路B1在轨道节点P6,7至P8,7之间具有关联路段,回路B14与回路B1在轨道节点P9,1至P9,7之间具有关联路段,回路B15与回路B1在轨道节点P9,1至P9,7之间具有关联路段。产品B通过在上述各回路之间传递,逐级装配出。
产品B的装配流程为:
工具从回路B1311的上料工位31放置于行进在回路B1311上的行走装置40上。在回路B1311与回路B131的关联路段上,完成将工具放置于行进在回路B131上的行走装置40上的操作。
部件1从回路B1312的上料工位31放置于行进在回路B1312上的行走装置40上。在回路B1312与回路B131的关联路段上,完成令工具夹持部件1的操作。
零件3从回路B13的上料工位31放置于行进在回路B13上的行走装置40上。在回路B131与回路B13的关联路段上,完成将部件1安装到零件3上的操作,得到半成品1。
部件2从回路B151的上料工位31放置于行进在回路B151上的行走装置40上。零件4从回路B15的上料工位31放置于行进在回路B15上的行走装置40上。在回路B151与回路B15的关联路段上,完成将部件2安装到零件4上的操作,得到半成品2。
零件1从回路B11的上料工位31放置于行进在回路B11上的行走装置40上。零件2从回路B12的上料工位31放置于行进在回路B12上的行走装置40上。基础工装从回路B1的上料工位31放置于行进在回路B1上的行走装置40上。检测设备在回路B14的行走装置40上沿回路B14循环运行。
在回路B11与回路B1的关联路段上,完成将零件1安装到基础工装上的操作。同样,在回路B12与回路B1的关联路段上,完成将零件2安装到基础工装上的操作。在回路B13与回路B1的关联路段上,完成将半成品1安装到基础工装上的操作。在回路B15与回路B1的关联路段上,完成将半成品2安装到基础工装上的操作。
最后,在回路B14与回路B1的关联路段(轨道节点P9,1至P9,7之间)上,检测设备完成对回路B1上全部装配完得到的产品B(基础工装+零件1+零件2+办成品1+半成品2)的检测操作,从而检测完的成品由回路B1的下料工位32对外输出。
在实际实施中,若某一路段出现故障,需要调整关联回路的话,则可通过道岔装置的导轨切换机构来调整回路构成以及关联路段的位置。换句话说,同一产品的装配过程可通过配置的各种关联回路式生产线来实现,设计灵活,在大大提高生产效率的同时,充分显示了轨道系统的优良柔性性能。
本公开的优点是:
本公开关联回路式生产线基于矩阵式轨道系统实现,一方面,通用性能和柔性好,可以根据需求随时更改关联回路式生产线的构成,不受故障影响,另一方面,工件经过关联回路式生产线后便可完成加工或装配作业,多项操作同步执行,工作效率极高。
以上所述是本公开较佳实施例及其所运用的技术原理,对于本领域的技术人员来说,在不背离本公开的精神和范围的情况下,任何基于本公开技术方案基础上的等效变换、简单替换等显而易见的改变,均属于本公开保护范围之内。

Claims (10)

  1. 一种矩阵式轨道系统,其特征在于:它包括排列成矩阵结构的若干轨道节点、导轨,导轨包括固定导轨、直连导轨、转弯导轨,各轨道节点上安装有道岔装置,行方向上相邻的两个轨道节点之间、列方向上相邻的两个轨道节点之间通过平行的若干固定导轨相连,道岔装置包括若干直连导轨、若干转弯导轨以及在直连导轨与转弯导轨之间进行切换的若干导轨切换机构,其中:若干固定导轨、若干直连导轨和若干转弯导轨两两首尾相连形成一个封闭的回路。
  2. 如权利要求1所述的矩阵式轨道系统,其特征在于:
    所述轨道系统中的四个角上的所述轨道节点安装或不安装所述道岔装置,其中:若安装所述道岔装置,则四个角上的所述轨道节点与外部流水线衔接。
  3. 如权利要求1所述的矩阵式轨道系统,其特征在于:
    所述回路所在的所述导轨上安装有至少一个可沿所述导轨循环行进的行走装置,其中:行走装置上用于置放工件,或者行走装置上用于置放工具,或者行走装置上用于置放功能执行装置,或者行走装置上用于置放自由度运动装置,自由度运动装置上置放功能执行装置;当一个所述回路上设置多个行走装置时,所有行走装置排成队列地在所述回路上循环行走;
    功能执行装置随行走装置行进或固定安装在所述回路所在的所述导轨旁。
  4. 如权利要求3所述的矩阵式轨道系统,其特征在于:
    当所述行走装置在所述导轨上需要转弯时,转弯位置的所述道岔装置通过所述导轨切换机构使其上所述转弯导轨连接与其相对应的相邻两个相互垂直的所述固定导轨;
    当所述行走装置在所述导轨上需要直行时,直行位置的所述道岔装置通过所述导轨切换机构使其上所述直连导轨连接与其相对应的相邻两个处于同一条直线上的所述固定导轨。
  5. 如权利要求3所述的矩阵式轨道系统,其特征在于:
    所述行走装置包括运输平台,运输平台的底部安装有将运输平台夹持在所述导轨上的导向机构以及驱动运输平台在所述导轨上运动的行走驱动机构。
  6. 如权利要求1所述的矩阵式轨道系统,其特征在于:
    所述回路所在的所述导轨旁设有上料工位和/或下料工位,其中:上料工位和下料工位为所述回路旁的固定工位或外部流水线;上料工位和下料工位为独立工位或同一工位。
  7. 一种关联回路式生产线,其特征在于:它包括权利要求1至6中任一项所述的矩 阵式轨道系统,所述矩阵式轨道系统包括至少两个所述回路,每个所述回路与其余所述回路中的至少一个所述回路相关联而具有关联路段,每个所述回路设置有上料工位和/或下料工位,其中:对于具有关联路段的两个回路,此两个回路上运行的行走装置在关联路段上的行进方向相同、行进速度相同,此两个回路上的行走装置之间并行行进或一前一后相距设定距离地行进,以使分属于关联回路上且行进在关联路段上的两个行走装置上的操作对象执行相应操作。
  8. 如权利要求7所述的关联回路式生产线,其特征在于:
    所述具有关联路段的两个回路为嵌套式关联回路或外传递式关联回路。
  9. 如权利要求7所述的关联回路式生产线,其特征在于:
    所述回路上的设定路段为充电路段,或者所述回路与外部充电路段相连接,外部充电路段上安装有充电桩。
  10. 一种基于权利要求7至9中任一项所述的关联回路式生产线实现的生产方法,其特征在于,包括如下步骤:
    1)各操作对象通过所述上料工位置于相应各所述回路上循环行进的所述行走装置上;
    2)Q级回路上行进的所述行走装置携带的操作对象分别与相关联的各(Q-1)级回路上行进的所述行走装置携带的操作对象在关联路段行进的过程中完成操作,得到(Q-1)级半成品,或者,Q级回路上行进的所述行走装置携带的操作对象为通过所述上料工位直接送入的(Q-1)级半成品;
    3)Q增加1,重复执行2),直至Q增加至N+1时进入4);
    4)N级回路得到的(N-1)级半成品作为成品输出,完成生产作业;
    其中:
    Q从2开始,N为大于1的正整数,所述回路分为1至N级回路;
    操作对象为工件、工具、功能执行装置或自由度运动装置。
PCT/CN2018/124435 2017-12-27 2018-12-27 矩阵式轨道系统、关联回路式生产线及其生产方法 WO2019129155A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18897722.7A EP3733561A4 (en) 2017-12-27 2018-12-27 MATRIX-TYPE TRACK SYSTEM, ASSOCIATED LOOP-TYPE PRODUCTION CHAIN AND ASSOCIATED PRODUCTION PROCESS
US16/914,742 US11618483B2 (en) 2017-12-27 2020-06-29 Matrix track structure and system, production line with associated loops and production method using the production line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711453235.6A CN108326824B (zh) 2017-12-27 2017-12-27 矩阵式轨道系统、关联回路式生产线及其生产方法
CN201711453235.6 2017-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/914,742 Continuation US11618483B2 (en) 2017-12-27 2020-06-29 Matrix track structure and system, production line with associated loops and production method using the production line

Publications (1)

Publication Number Publication Date
WO2019129155A1 true WO2019129155A1 (zh) 2019-07-04

Family

ID=62924516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124435 WO2019129155A1 (zh) 2017-12-27 2018-12-27 矩阵式轨道系统、关联回路式生产线及其生产方法

Country Status (4)

Country Link
US (1) US11618483B2 (zh)
EP (1) EP3733561A4 (zh)
CN (1) CN108326824B (zh)
WO (1) WO2019129155A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108326824B (zh) * 2017-12-27 2024-01-02 北京动仿航泰科技有限公司 矩阵式轨道系统、关联回路式生产线及其生产方法
CN108890064A (zh) * 2018-09-05 2018-11-27 深圳市昌瑞泰科技有限公司 一种多工位全自动热压机
EP3848308A1 (de) * 2020-01-09 2021-07-14 Siemens Aktiengesellschaft System zum sortieren von sortierstücken in mit ihrer zieldestination logisch verknüpfte zielstellen in matrixanordnung
CN113023389B (zh) * 2021-05-26 2021-08-24 常州市范群干燥设备有限公司 自动上料系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013574A1 (en) * 1998-12-26 2000-06-28 Minebea Co., Ltd. Conveying system using linear motor
US20060054049A1 (en) * 2004-09-13 2006-03-16 Hyun Chul Cho Carrier moving system for a painting process
CN103693444A (zh) * 2013-12-23 2014-04-02 上海集成电路研发中心有限公司 自动搬送轨道结构及搬送系统
CN103708193A (zh) * 2013-12-25 2014-04-09 湖北三丰智能输送装备股份有限公司 电解铝厂专用智能轨道车输送系统
CN107042981A (zh) * 2017-04-05 2017-08-15 常州孟腾智能装备有限公司 一种高效率多车型切换智能仓储平台
CN206798508U (zh) * 2017-05-27 2017-12-26 潍坊路加精工有限公司 环形输送装置
CN108326824A (zh) * 2017-12-27 2018-07-27 北京动仿航泰科技有限公司 矩阵式轨道系统、关联回路式生产线及其生产方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1381317A (en) * 1919-03-13 1921-06-14 Matthew H Loughridge Automatic carrier
JP2694546B2 (ja) * 1988-11-10 1997-12-24 ヤマハ発動機株式会社 機械加工用コンベア装置
JPH0423727A (ja) * 1990-05-18 1992-01-28 Brother Ind Ltd 搬送装置
DE9406061U1 (de) * 1994-04-12 1995-08-10 Mts Modulare Transp Sys Gmbh Sortieranlage zum Sortieren von einzeln geförderten Gegenständen
US5857413A (en) * 1997-01-16 1999-01-12 Ward; Glen N. Method and apparatus for automated powered pallet
US6990721B2 (en) * 2003-03-21 2006-01-31 Brooks Automation, Inc. Growth model automated material handling system
DE102005034582B4 (de) * 2005-07-25 2007-11-08 Eisenmann Anlagenbau Gmbh & Co. Kg Fördersystem und Verfahren zum gleichzeitigen Transport von Werkstücken und Monteuren in einer Fertigungslinie
DE202008016678U1 (de) * 2008-12-17 2009-03-12 Rofa Rosenheimer Förderanlagen GmbH Weiche für eine Elektropalettenbahn
EP2354303A1 (de) * 2010-01-27 2011-08-10 Siemens Aktiengesellschaft Weichenelement für Hängebahnsystem
ES2742283T3 (es) * 2012-02-03 2020-02-13 Siemens Healthcare Diagnostics Inc Fuente de energía para un mecanismo de sistema de automatización
US9684006B2 (en) * 2013-03-08 2017-06-20 Siemens Healthcare Diagnostics Inc. Surface markings for an optically guided device
US9738450B2 (en) * 2013-04-01 2017-08-22 Hoj Engineering & Sales Co., Inc. Warehouse conveyor
CN203649202U (zh) * 2013-12-19 2014-06-18 济南铸造锻压机械研究所有限公司 数控辊式落料码垛装置
CN204606901U (zh) * 2015-04-22 2015-09-02 统一企业(中国)投资有限公司 锥形瓶环形缓冲输送装置
CN204917029U (zh) * 2015-09-07 2015-12-30 四川成焊宝玛焊接装备工程有限公司 一种滑车循环输送设备
CN106044097A (zh) * 2016-07-14 2016-10-26 东风汽车公司 汽车侧围循环往复输送装置
WO2018017759A1 (en) * 2016-07-21 2018-01-25 Siemens Healthcare Diagnostics Inc. Temperature controlled transport puck
CN107273236B (zh) * 2017-06-12 2020-07-07 上海电气泰雷兹交通自动化系统有限公司 一种基于轨道数字化建模的联锁表数据安全验证方法
CN107225671B (zh) * 2017-07-20 2021-04-13 山西高行液压股份有限公司 先张法生产无砟轨道板的柔性流水生产线
CN207757620U (zh) * 2017-12-27 2018-08-24 北京动仿航泰科技有限公司 矩阵式轨道系统及关联回路式生产线
WO2019183249A1 (en) * 2018-03-20 2019-09-26 Bastian Solutions, Llc Robotic shuttle system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013574A1 (en) * 1998-12-26 2000-06-28 Minebea Co., Ltd. Conveying system using linear motor
US20060054049A1 (en) * 2004-09-13 2006-03-16 Hyun Chul Cho Carrier moving system for a painting process
CN103693444A (zh) * 2013-12-23 2014-04-02 上海集成电路研发中心有限公司 自动搬送轨道结构及搬送系统
CN103708193A (zh) * 2013-12-25 2014-04-09 湖北三丰智能输送装备股份有限公司 电解铝厂专用智能轨道车输送系统
CN107042981A (zh) * 2017-04-05 2017-08-15 常州孟腾智能装备有限公司 一种高效率多车型切换智能仓储平台
CN206798508U (zh) * 2017-05-27 2017-12-26 潍坊路加精工有限公司 环形输送装置
CN108326824A (zh) * 2017-12-27 2018-07-27 北京动仿航泰科技有限公司 矩阵式轨道系统、关联回路式生产线及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3733561A4 *

Also Published As

Publication number Publication date
US20200398870A1 (en) 2020-12-24
CN108326824A (zh) 2018-07-27
US11618483B2 (en) 2023-04-04
EP3733561A1 (en) 2020-11-04
EP3733561A4 (en) 2021-10-06
CN108326824B (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
WO2019129155A1 (zh) 矩阵式轨道系统、关联回路式生产线及其生产方法
CN107405736B (zh) 制造装置、制造设备和方法
US8191481B2 (en) Friction drive material handling system including composite beam and method of operating same
CN103964171B (zh) 一种输送装置
RU2041786C1 (ru) Гибкая поточная линия для производства составных деталей
US8800745B2 (en) Modular manufacturing line including work tool having work tool spray nozzle and method of operation therefor
US8127687B2 (en) Material handling system including dual track assembly and method of operating same
CN105252179B (zh) 一种面向多类小总成的自动化柔性焊装生产线控制方法
CN111136413B (zh) 一种钢结构自动焊接生产方法
US20090277748A1 (en) Modular manufacturing line including a buffer and methods of operation therefor
US7861392B2 (en) Method of assembling a power transmission device
CN111069826A (zh) 一种钢结构自动焊接生产线
CN103149880A (zh) 加工装置
CN107656509A (zh) 多工件混合加工柔性制造系统
CN102773754B (zh) 自动上料装置及正倒立车
CN106140531A (zh) 轮毂喷粉工序转换三坐标平移机械手装置
CN211168780U (zh) 一种自动化装配流水线
CN105772996A (zh) 一种高压注汽机组的对流段框架预制工作站
JP2021535026A (ja) 無人搬送車または自律移動ロボット等の自律走行車
JPS643619B2 (zh)
CN211248933U (zh) 一种钢结构自动焊接生产线
CN207757620U (zh) 矩阵式轨道系统及关联回路式生产线
TW201408895A (zh) 導引裝置
CN220411873U (zh) 一种流水线托盘多方向转向传输装置
JPS5910367A (ja) 塗装ブ−ス装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018897722

Country of ref document: EP

Effective date: 20200727