WO2019127818A1 - 一种素玻璃、强化玻璃及制备方法 - Google Patents

一种素玻璃、强化玻璃及制备方法 Download PDF

Info

Publication number
WO2019127818A1
WO2019127818A1 PCT/CN2018/074636 CN2018074636W WO2019127818A1 WO 2019127818 A1 WO2019127818 A1 WO 2019127818A1 CN 2018074636 W CN2018074636 W CN 2018074636W WO 2019127818 A1 WO2019127818 A1 WO 2019127818A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
oxide
ions
mol
plain
Prior art date
Application number
PCT/CN2018/074636
Other languages
English (en)
French (fr)
Inventor
胡伟
谈宝权
陈芳华
Original Assignee
深圳市东丽华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市东丽华科技有限公司 filed Critical 深圳市东丽华科技有限公司
Priority to US16/959,139 priority Critical patent/US20200339471A1/en
Publication of WO2019127818A1 publication Critical patent/WO2019127818A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/005Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to introduce in the glass such metals or metallic ions as Ag, Cu
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0092Compositions for glass with special properties for glass with improved high visible transmittance, e.g. extra-clear glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the invention relates to the technical field of glass production, in particular to a plain glass, a tempered glass and a preparation method.
  • Chemically tempered glass is currently used in mobile phones, media players and other terminals due to its high transparency, high strength and wear resistance.
  • the high strength of chemically strengthened glass is achieved by ion exchange.
  • the principle is that the smaller ions in the glass can be replaced with larger ions in the salt bath at high temperatures, and the larger ions are densely packed on the glass surface after replacement. Strong compressive stress, which in turn shows higher strength.
  • the salt bath will cause larger ions to be diluted as the smaller ions are exchanged.
  • the shallow surface of the glass is large.
  • the ion concentration is too concentrated, and the enriched large ions result in the inability to exchange the glass sufficiently to obtain a deep ion exchange layer; and forcing the exchange for a long time will cause the internal tensile stress of the glass to be excessive, resulting in a decrease in glass safety.
  • the structure is such that the concentration of larger ions is higher only at a position close to the surface of the glass, and the concentration of larger ions inside the glass is drastically decreased. This inevitably results in uneven distribution of the strength of the compressive stress layer of the finally formed tempered glass.
  • the stress distribution or the concentration of exchanged ions in the single layer of compressive stress layer formed on the glass surface are along The inward direction of the glass surface decreases sharply, resulting in that the compressive stress layer does not change much in the depth direction, so that the strength of the entire glass cannot be improved.
  • the applicant rationally designs the content ratio between the components in the tempered glass to make synergistic effects between the components, and cooperate with each other to make the tempered glass It has the advantages of high refractive index, high light transmittance at 550 nm wavelength and good chemical strengthening effect, so it also promotes the research and application of chemically strengthened glass.
  • the present invention also discloses a tempered glass prepared from the bismuth glass and a method of preparing the tempered glass.
  • the technical problem to be solved by the present invention is to provide a plain glass having a high refractive index, a high light transmittance at a wavelength of 550 nm, and a good chemical strengthening effect, in view of the above disadvantages of the prior art.
  • the present invention also provides a tempered glass having a composite compressive stress layer and having high overall strength, which is prepared from the above-mentioned plain glass, and a method for preparing the above tempered glass.
  • the present invention provides a plain glass having a thickness ranging from 0.4 mm to 2.0 mm, and a transmittance of light at a wavelength of 550 nanometers (nm) to the plain glass ranges from 86% to 92.2%.
  • the refractive index of the plain glass ranges from 1.48 to 1.54, and the alkali metal oxide content in the plain glass ranges from 8 mol% to 22 mol%, wherein the oxide content of Na is 2.65 mol% to 18 mol%, and the oxide of Al is The content is from 6.5 mol% to 15.5 mol%.
  • the mol content of the oxide of Li in the plain glass is not more than 18 mol%, the mol content of the oxide of B, the mol content of the oxide of P, and the mol content of the oxide of Si.
  • the sum of the ranges is 61% to 73%, wherein the oxide content of Si is 58.00% - 70.85%.
  • the mol content of the oxide of Si in the plain glass is 62.00% to 70.85%.
  • the mol content of the oxide of Li in the bismuth glass is not more than 12 mol%.
  • the oxide mol content of Li in the plain glass is larger than the oxide mol content of Na.
  • the ratio of the mol content of the oxide of Al in the plain glass to the sum of the mol content of the oxide of Na and the mol content of the oxide of Li is in the range of 0.3 to 1.88.
  • the sum of the mol content of the oxide of Al and the mol content of the oxide of Mg in the plain glass is the sum of the mol content of the oxide of Na and the mol content of the oxide of Li.
  • the ratio ranges from 0.6 to 2.88.
  • the sum of the mol content of the oxide of Al, the mol content of the oxide of Mg, the mol content of the oxide of B, and the mol content of the oxide of P in the plain glass and Na The ratio of the molar content of the oxide to the molar content of the oxide of Li is in the range of 0.6 to 3.0.
  • the mol content of the oxide of Al in the plain glass ranges from 3.5 to 11.38.
  • the plain glass is amorphous and does not contain a nucleating agent.
  • the bismuth glass contains micro-nano crystals and a nucleating agent, and the nucleating agent is taken from oxides of Ti, Zr, Cr, Li, Zn, Mg, Al, and P. At least one of the micro-nano crystals is formed by heat treatment at a temperature above the softening point of the plain glass after the glass is formed and before the ion exchange.
  • the plain glass is formed by an overflow down-draw method, a narrow slit down method, a horizontal float method, a calendering method, or a cast molding method.
  • the depth of the ion exchange layer increases with the ion exchange time during the ion exchange process, and the depth of the compressive stress layer formed by the ion exchange has a limit.
  • the maximum value which increases as the thickness of the plain glass increases, and the maximum value ranges from 50 to 300 micrometers ( ⁇ m).
  • the present invention provides a tempered glass which can withstand a breaking energy greater than 18.67 joules per square meter (J/m2) when subjected to external force impact crushing; the tempered glass can withstand a certain load.
  • the free fall fracture energy is greater than 2.94 joules per kilogram (J/kg);
  • the tempered glass is formed by single or multiple chemical strengthening of the above-mentioned plain glass, and the surface of the strengthened glass has a composite compressive stress layer;
  • the composite compressive stress layer includes a first ion that enters into the strengthened glass by single or multiple ion exchange, and the first ion is selected from the group consisting of Na ions, K ions, Ru ions, and Cs ions, and the first
  • the concentration of an ion decreases from the surface of the strengthened glass to the inside of the strengthened glass, and the concentration of the first ion is about a distance extending from the surface of the strengthened glass to the inside of the strengthened glass.
  • the first fitting curve has at least one inflection point, and an absolute value of a slope of a curve of a left side of all the inflection points on the first fitting curve is greater than an absolute value of a slope of a curve of the right side;
  • the compressive stress of the composite compressive stress layer has a nonlinear decreasing tendency from the surface of the strengthened glass to the interior of the strengthened glass; and the composite compressive stress layer has a surface extending from the surface of the strengthened glass to the inside of the strengthened glass a compressive stress curve having a second fitted curve obtained by fitting with Orihara Pmc software having at least one inflection point, the absolute value of the slope of the curve on the left side of all inflection points on the second fitting curve being greater than The absolute value of the slope of the curve on the right;
  • the maximum compressive stress in the composite compressive stress layer is between 600 and 1100 megapascals (Mpa), and the depth of the composite compressive stress layer is between 60 and 300 micrometers ( ⁇ m);
  • the tempered glass further has a tensile stress layer, the tensile stress in the tensile stress layer is 40 MPa (Mpa) to 116.55 MPa (Mpa), and the tensile stress per unit volume stored in the tempered glass is 20000 to 291,375 meganewtons per cubic meter (MN/m3);
  • the tempered glass has a thickness of between 0.4 mm (mm) and 2.0 mm (mm);
  • the ratio of the absolute value of the difference between the size of the plain glass and the tempered glass in the same dimension is from 0.05% to 0.15% of the ratio of the size of the plain glass in the corresponding dimension.
  • the second fitting curve has a definite integral of less than or equal to 55 kilonewtons per meter (KN/m) in the interval in which the composite compressive stress layer is located.
  • the composite compressive stress layer further comprises a second ion that enters into the tempered glass by single or multiple ion exchange, and the concentration of the second ion is from the tempered glass The surface of the tempered glass rises nonlinearly and then decreases nonlinearly.
  • the second ion is selected from the group consisting of a Na ion, a K ion, a Ru ion, and a Cs ion, wherein the same second ion exists in the elemental glass, and the second ion enters the
  • the maximum depth in the tempered glass is greater than the depth of the composite compressive stress layer.
  • the first ions and the second ions are K ions and Na ions, respectively.
  • the first ions and the second ions enter the tempered glass from the same salt bath upon a single chemical strengthening.
  • the first ion and the second ion are both K ions
  • the plain glass contains an oxide of Na and an oxide of Al.
  • the plain glass contains both an oxide of Na, an oxide of Li, and an oxide of Al.
  • the tempered glass formed by the ion exchange of the plain glass under different conditions has different tensile stress layers, and the absolute value of the total amount of tensile stress that can be accommodated in the tempered glass is less than or equal to 42.08. Kilonewtons per meter (KN/m) and increase as the thickness of the glass increases.
  • the present invention also provides a preparation method for preparing the above tempered glass, comprising the following steps:
  • the above-described plain glass is placed in a salt bath containing at least one of Na ions, K ions, Ru ions, and Cs ions to perform multiple ion exchanges.
  • the semi-finished glass obtained after the previous ion exchange was heat-treated after the completion of the first ion exchange and before the last ion exchange.
  • the present invention provides another preparation method for preparing the above tempered glass, comprising the following steps:
  • the above-described plain glass is placed in a salt bath containing at least two of Na ions, K ions, Ru ions, and Cs ions, and only one ion exchange is performed.
  • the implementation of the bismuth glass provided by the invention has the following beneficial effects: for the technical problem that the mechanical properties of the existing tempered glass need to be improved, by rationally designing the content ratio between the components in the tempered glass, Synergistic interaction between the components and mutual cooperation, so that the obtained glass has a high refractive index, a high light transmittance of 550 nm wavelength and good chemical strengthening effect, so it also promotes chemical strengthening. Research and application of glass.
  • Figure 1 is a schematic view showing a test method of breaking energy that can be withstood by tempered glass when impacted by an external force;
  • FIG. 2 is a schematic view showing a test method for free fall fracture energy that the tempered glass can withstand under a certain load
  • Example 3 is a first fitting curve of the tempered glass obtained in Example 1-1;
  • Example 4 is a third fitting curve of the tempered glass obtained in Example 1-1;
  • Figure 5 is a second fitting curve of the tempered glass obtained in Example 1-1;
  • Figure 6 is a first fitting curve of the tempered glass obtained in Example 1-7;
  • Figure 7 is a third fitting curve of the tempered glass obtained in Example 1-7;
  • Figure 8 is a second fitting curve of the tempered glass obtained in Example 1-7;
  • Figure 9 is a first fitting curve of the tempered glass obtained in Example 2-2;
  • Figure 10 is a second fitting curve of the tempered glass obtained in Example 2-2;
  • Figure 11 is a first fitting curve of the tempered glass obtained in Example 3-5;
  • Figure 12 is a third fitting curve of the tempered glass obtained in Example 3-5;
  • Figure 13 is a second fitting curve of the tempered glass obtained in Example 3-5;
  • Figure 14 is a second fitting curve of the tempered glass obtained in Example 3-7.
  • Fig. 15 is a graph showing the relationship between the thickness of the plain glass and the tensile stress minimum CTmin and the tensile stress maximum CTmax of the strengthened glass.
  • the invention provides a preparation method of a reinforced layer glass, comprising the following steps:
  • a salt containing at least two of Na ions, K ions, Ru ions, and Cs ions One time and only one ion exchange treatment is performed in the bath, and the tempered glass in which the composite compressive stress layer is formed on the surface is prepared in one step.
  • the thickness of the plain glass ranges from 0.4 mm to 2.0 mm
  • the transmittance of light of 550 nm wavelength to the plain glass ranges from 86% to 92.2%
  • the refractive index of the plain glass ranges from 1.48. ⁇ 1.54
  • the alkali metal oxide mol content in the plain glass is 8 mol% to 22 mol%, wherein the oxide mol content of Na is 2.65 mol% to 18 mol%, and the mol content of Al oxide is 6.5 mol% to 15.5 mol. %.
  • the oxide mol content of Li in the plain glass is not more than 18 mol%, preferably, not more than 12 mol%, and preferably, the oxide mol content of Li is larger than the oxide mol content of Na.
  • the sum of the mol content of the oxide of B, the mol content of the oxide of P, and the mol content of the oxide of Si in the plain glass ranges from 61% to 73%, wherein the mol content of the oxide of Si is 58.00%- 70.85%, preferably, the mol content of the oxide of Si in the plain glass is 62.00% - 70.85%.
  • the metal component of the non-silicon and non-network-forming body in the plain glass can enter the network of the plain glass to become a glass network product, which is related to the ratio of the metal ion and the alkali metal oxide mol content, when the ratio is different
  • the metal component may exist in different forms, for example, in the form of an extra-network oxide, a network intermediate, or the like, and the average number and ratio of non-bridged oxygen in the plain glass are also different.
  • the network structure of the prime glass is different, the metal composition plays a different role, and the performance of the glass is also very different.
  • the ratio of the mol content of the oxide of Al in the plain glass to the sum of the mol content of the oxide of Na and the mol content of the oxide of Li is in the range of 0.3 to 1.88.
  • the ratio of the sum of the mol content of the oxide of Al and the mol content of the oxide of Mg in the plain glass to the sum of the mol content of the oxide of Na and the mol content of the oxide of Li is in the range of 0.6 to 2.88.
  • the ratio of the sum of the mol contents of the oxide ranges from 0.6 to 3.0.
  • the sum of the mol content of the oxide of Al, the mol content of the oxide of Mg, the mol content of the oxide of B, the mol content of the oxide of P, and the mol content of the oxide of Si in the plain glass and Na The ratio of the sum of the mol content of the oxide to the mol content of the oxide of Li is in the range of 3.5 to 11.38.
  • the plain glass is amorphous and does not contain a nucleating agent.
  • the plain glass is formed by an overflow down-draw method, a narrow slit down method, a horizontal float method, a calendering method, or a cast molding method.
  • the ion exchange layer depth increases with the ion exchange time during the ion exchange process, and the depth of the compressive stress layer formed by ion exchange of the plain glass has a limit maximum value, and the limit maximum value
  • the thickness of the plain glass increases and the maximum value ranges from 50 to 300 ⁇ m.
  • the sum of the compressive stress sums in the different compressive stress layers formed by the ion glass after ion exchange under different conditions is less than or equal to 42.08 KN/m, and increases as the thickness of the plain glass increases;
  • the sum of the tensile stresses in the different tensile stress layers formed by the ion exchange of the glass under different conditions is less than or equal to 42.08 KN/m, and increases as the thickness of the plain glass increases.
  • the obtained tempered glass can withstand a fracture energy greater than 18.67 J/m 2 when subjected to external force impact fracture, and the free fall fracture energy that can withstand under a certain load is greater than 2.94 J/kg.
  • the obtained tempered glass has a first compressive stress layer comprising a plurality of chemically strengthened first ions entering the tempered glass, the first ions being selected from the group consisting of Na ions, K ions, Ru ions, and Cs ions,
  • the concentration of the first ions tends to decrease nonlinearly from the surface of the strengthened glass to the inside of the strengthened glass, the concentration of the first ions being about the distance from the surface of the strengthened glass to the inside of the strengthened glass
  • the first fitted curve has at least one inflection point, the absolute value of the slope of the curve on the left side of all the inflection points on the first fitting curve is greater than the absolute value of the slope of the curve on the right side, the concentration of the first ion The range is 0 to 18 mol%;
  • the compressive stress of the composite compressive stress layer has a non-linear decreasing tendency from the surface of the strengthened glass to the interior of the strengthened glass and the composite compressive stress layer has a structure extending from the surface of the strengthened glass to the inside of the strengthened glass a compressive stress curve having a second fitted curve obtained by fitting with Orihara Pmc software having at least one inflection point, and an absolute value of a slope of a curve on a left side of all inflection points on the second fitting curve is greater than a right The absolute value of the slope of the side curve;
  • the maximum compressive stress in the composite compressive stress layer is between 600 and 1100 MPa, and the depth of the composite compressive stress layer is between 60 and 300 ⁇ m;
  • the second integral curve has a definite integral of less than or equal to 55 kilonewtons per meter (KN/m) in the interval in which the composite compressive stress layer is located.
  • the tempered glass further has a tensile stress layer, the minimum and maximum tensile stresses in the tensile stress layer are 40 MPa and 116.55 MPa, respectively, and the tensile stress per unit volume stored in the tempered glass is 20,000 to 291375 MN/ m 3 .
  • the tempered glass has a thickness of between 0.4 mm and 2.0 mm.
  • the ratio of the absolute value of the difference between the dimensions of the tempered glass and the plain glass in the same dimension is between 0.05% and 0.15% of the dimension of the plain glass in the corresponding dimension.
  • the composite compressive stress layer further includes a second ion that enters the tempered glass through a single chemical strengthening, the second ion being selected from the group consisting of Na ions, K ions, Ru ions, and Cs ions, and the second ions Different from the first ion.
  • the concentration of the second ions increases nonlinearly from the surface of the tempered glass to the inside of the tempered glass and then decreases nonlinearly.
  • the concentration of the second ion ranges from 0 to 18 mol%.
  • the bismuth glass used in the preparation method may also contain micro-nano crystals and a nucleating agent, and the nucleating agent is taken from Ti, Zr, Cr, Li, Zn, Mg, Al, P. At least one of the oxides.
  • is the transmittance of light of 550 nm wavelength to the plain glass
  • is the mole percent of the alkali metal oxide in the plain glass
  • is a ratio of the mol content of the oxide of Al in the plain glass to the sum of the mol content of the oxide of Na and the mol content of the oxide of Li;
  • is a ratio of the sum of the mol content of the oxide of Al in the glass of the element and the mol content of the oxide of Mg to the sum of the mol content of the oxide of Na and the mol content of the oxide of Li;
  • is the sum of the mol content of the oxide of Al in the glass of the element, the mol content of the oxide of Mg, the mol content of the oxide of B, and the mol content of the oxide of P, and the mol content of the oxide of Na and The ratio of the sum of the mol contents of the oxide of Li;
  • is the sum of the mol content of the oxide of Al in the glass, the mol content of the oxide of Mg, the mol content of the oxide of B, the mol content of the oxide of P, and the mol content of the oxide of Si.
  • is the maximum value of the depth of the compressive stress layer formed by ion exchange of the plain glass.
  • is the fracture energy that the tempered glass can withstand when it is crushed by external force impact
  • is the free fall fracture energy that the obtained tempered glass can withstand under a certain load
  • is the tempered glass and the tempered glass The ratio of the absolute value of the difference in size on the same dimension to the size of the plain glass in the corresponding dimension.
  • the length ⁇ width of the plain glass used in all the embodiments mentioned above is: 140 ⁇ 60 mm;
  • the test method for the fracture energy that the tempered glass can withstand when subjected to external impact crushing is as follows: 32g stainless steel ball free fall to the center of the glass surface, free fall impact from 15cm, rise height 5cm without cracking until the glass breaks, when the glass breaks.
  • the ratio of the impact energy to the area of the glass is the breaking energy that the glass can withstand when it is broken by an external force (see Figure 1).
  • the test method for the free fall fracture energy that the tempered glass can withstand under a certain load is as follows: the glass weight is combined and the glass and the weight are wrapped in a metal casing to ensure a total weight of 150g, and the free fall falls from a certain height to The smooth marble surface starts from free fall and falls from 20cm height. When it is not broken, it rises 10cm until it breaks. The fracture height is recorded to obtain the corresponding free fall fall potential energy. The ratio between the potential energy and the total weight of the glass is free fall fracture. Energy (see Figure 2).
  • the method for measuring the concentration of the first ion and the second ion in the tempered glass is measured by a scanning electron microscope (SEM) and an energy dispersive spectrometer (EDS).
  • SEM scanning electron microscope
  • EDS energy dispersive spectrometer
  • the method of measuring the compressive stress value is measured by using an Orihara Surface Stress Meter (FSM ⁇ 6000LE).
  • FSM ⁇ 6000LE Orihara Surface Stress Meter
  • the method for detecting tensile stress values using an Orihara Surface Stress Meter (FSM ⁇ 6000LE) and an Orihara Scattered Light Photoelastic Stress Meter (SLP ⁇ 1000) to obtain the surface and interior of the glass. After compressing the stress distribution data, the Orihara Pmc software was used to obtain the compressive stress, the maximum tensile stress, the average tensile stress and the tensile stress distribution.
  • FSM ⁇ 6000LE Orihara Surface Stress Meter
  • SLP ⁇ 1000 Orihara Scattered Light Photoelastic Stress Meter
  • Example 1-1 Take Example 1-1 as an example for further analysis:
  • Example 1-1 The mol content of K ions at respective thicknesses extending from the surface to the inside of the tempered glass obtained in Example 1-1 was measured, and the K ion in the bismuth glass used in Example 1-1 was subtracted by normalizing the data.
  • the intrinsic concentration results in the ion concentration of the K ion that has been ion exchanged into the strengthened glass, and then the first fitted curve of the concentration of the K ion with respect to the distance from the surface of the strengthened glass to the inside of the strengthened glass is obtained. (See Figure 3).
  • the concentration of K ions has a nonlinear decreasing tendency from the surface of the strengthened glass to the inside of the strengthened glass
  • the first fitting curve has a plurality of inflection points
  • the curve of the left side of the inflection point The absolute value of the slope is greater than the absolute value of the slope of the curve on the right side, and the concentration of the K ion ranges from 0 to 4.58 mol%.
  • Example 1-1 we also examined the compressive stress values at respective thicknesses of the tempered glass obtained in Example 1-1 from the surface to the inside, whereby the compressive stress curve inside the tempered glass obtained in Example 1-1 was obtained.
  • the compressive stress curve was fitted with Orihara Pmc software to obtain a second fitted curve (see Figure 5).
  • the compressive stress in the tempered glass obtained in Example 1-1 tends to decrease nonlinearly from the surface of the tempered glass to the inside of the tempered glass.
  • the composite compressive stress layer has a compressive stress curve extending from the surface of the strengthened glass to the inside of the strengthened glass, and the second fitted curve obtained by fitting the compressive stress curve by Orihara Pmc software has an inflection point.
  • the absolute value of the slope of the curve on the left side of all the inflection points on the second fitting curve is greater than the absolute value of the slope of the curve on the right side.
  • the second fitting curve shown in FIG. 5 is within the interval in which the composite compressive stress layer is located (ie, the interval [0, The definite integral of 130]) is less than or equal to 55 kN per metre (kN/m).
  • the concentration of K ions has a nonlinear decreasing tendency from the surface of the strengthened glass to the inside of the strengthened glass
  • the first fitting curve has a plurality of inflection points
  • the curve of the left side of the inflection point The absolute value of the slope is greater than the absolute value of the slope of the curve on the right side, and the concentration of the K ion ranges from 0 to 4.75 mol%.
  • the absolute value of the slope of the curve on the left side of all the inflection points on the second fitting curve is greater than the absolute value of the slope of the curve on the right side.
  • the second fitting curve shown in FIG. 8 is within the interval in which the composite compressive stress layer is located (ie, the interval [0, The definite integral of 110]) is less than or equal to 55 kilonewtons per meter (kN/m).
  • the invention also provides a preparation method of another reinforcing layer glass, comprising the following steps:
  • Step A providing a plain glass, preheating the plain glass in an environment lower than the annealing temperature of the glass, and then performing the first ion exchange treatment on the preheated magnesia glass in the salt bath, the first ion The exchange treatment time is t 1 , and a strengthening layer L 1 is formed on the surface of the plain glass.
  • Step B, and L is formed with a reinforcing layer of glass element 1 subjected to heat treatment at a temperature T h of the environment
  • the range of T h is the step A or step C ions are exchanged at a temperature not lower than the glass annealing point prime ⁇ 10 °C
  • heat The time is t h
  • the length of t h is set such that the reinforcing layer L 1 extends toward the inside of the glass by at least 3 ⁇ m, and the distribution of the ion concentration exchanged in the strengthening layer L 1 is diluted, and the newly generated ion exchange is combined with this step.
  • Integrated into a strengthening layer L 2 Integrated into a strengthening layer L 2 .
  • Step C cooling the plain glass with the strengthening layer L 2 to the salt bath temperature or directly into the same salt bath or different salt bath described in the step A for the second ion exchange treatment, or cleaning the plain glass
  • the second ion exchange treatment is carried out in a different salt bath as described in the step A
  • the second ion exchange treatment time is t 2
  • the temperature of the second ion exchange treatment is T 2
  • the surface of the plain glass of the strengthening layer L 2 forms a strengthening layer L 3 by ion exchange, and at the same time, the strengthening layer L 2 inside the plain glass ion exchanges ions with the inside and the periphery of the plain glass and continues along the concentration difference
  • the direction of the reinforcing layer L 3 extends toward the inside and the periphery of the glass, and the stretching speed of the reinforcing layer L 3 is greater than the stretching speed of the reinforcing layer L 2 .
  • steps B through C are repeated until a composite strengthening layer that satisfies the magnitude and depth requirements of compressive stress is formed on the glass.
  • the cleaning can be carried out before step B; before step C, the glass can be preheated.
  • the plain glass used in the above preparation method 2 has the same properties as the plain glass used in the first production method, and will not be described herein.
  • the tempered glass obtainable by the production method 2 has the same properties as the tempered glass obtained by the production method 1, and will not be described herein.
  • is the transmittance of light of 550 nm wavelength to the plain glass
  • is the mole percent of the alkali metal oxide in the plain glass
  • is a ratio of the mol content of the oxide of Al in the plain glass to the sum of the mol content of the oxide of Na and the mol content of the oxide of Li;
  • is a ratio of the sum of the mol content of the oxide of Al in the glass of the element and the mol content of the oxide of Mg to the sum of the mol content of the oxide of Na and the mol content of the oxide of Li;
  • is the sum of the mol content of the oxide of Al in the glass of the element, the mol content of the oxide of Mg, the mol content of the oxide of B, and the mol content of the oxide of P, and the mol content of the oxide of Na and The ratio of the sum of the mol contents of the oxide of Li;
  • is the sum of the mol content of the oxide of Al in the glass, the mol content of the oxide of Mg, the mol content of the oxide of B, the mol content of the oxide of P, and the mol content of the oxide of Si.
  • is the maximum depth of the compressive stress layer formed by ion exchange of the plain glass.
  • is the fracture energy that the tempered glass can withstand when it is crushed by external force impact
  • is the free fall fracture energy that the obtained tempered glass can withstand under a certain load
  • is the tempered glass and the tempered glass The ratio of the absolute value of the difference in size on the same dimension to the size of the plain glass in the corresponding dimension.
  • Example 2-2 Take Example 2-2 as an example for further analysis:
  • Example 2-2 The mol content of K ions at respective thicknesses extending from the surface to the inside of the tempered glass obtained in Example 2-2 was measured, and the data was normalized, and the K ion in the bismuth glass used in Example 2-2 was subtracted.
  • the intrinsic concentration results in the ion concentration of the K ion that has been ion exchanged into the strengthened glass, and then the first fitted curve of the concentration of the K ion with respect to the distance from the surface of the strengthened glass to the inside of the strengthened glass is obtained. (See Figure 9).
  • the concentration of K ions has a nonlinear decreasing tendency from the surface of the strengthened glass to the inside of the strengthened glass
  • the first fitting curve has a plurality of inflection points
  • the curve of the left side of the inflection point The absolute value of the slope is larger than the absolute value of the slope of the curve on the right side, and the concentration of the K ion ranges from 0 to 5.03 mol%.
  • Example 2-2 we also examined the compressive stress values at various thicknesses of the tempered glass obtained in Example 2-2 from the surface to the inside, whereby the compressive stress curve inside the tempered glass obtained in Example 2-2 was obtained.
  • the compressive stress curve was fitted with Orihara Pmc software to obtain a second fitted curve (see Figure 10).
  • the compressive stress in the tempered glass obtained in Example 2-2 tends to decrease nonlinearly from the surface of the tempered glass to the inside of the tempered glass.
  • the composite compressive stress layer has a compressive stress curve extending from the surface of the strengthened glass to the inside of the strengthened glass, and the second fitted curve obtained by fitting the compressive stress curve by Orihara Pmc software has an inflection point.
  • the absolute value of the slope of the curve on the left side of all the inflection points on the second fitting curve is greater than the absolute value of the slope of the curve on the right side.
  • the second fitting curve shown in FIG. 5 is within the interval in which the composite compressive stress layer is located (ie, the interval [0, The definite integral of 90]) is less than or equal to 55 kN per metre (kN/m).
  • the invention also provides a method for preparing a reinforced layer glass, comprising the following steps:
  • the preheated bismuth glass is subjected to a first ion exchange treatment in a salt bath containing at least two of Na ions, K ions, Ru ions, and Cs ions;
  • the plain glass is finally prepared as a tempered glass having a composite compressive stress layer on its surface.
  • the plain glass used in the above preparation method 3 has the same properties as the plain glass used in the first preparation method, and will not be described herein.
  • the tempered glass obtainable by the preparation method 3 has the same properties as the tempered glass obtained by the production method 1, and will not be described herein.
  • is the transmittance of light of 550 nm wavelength to the plain glass
  • is the mole percent of the alkali metal oxide in the plain glass
  • is a ratio of the mol content of the oxide of Al in the plain glass to the sum of the mol content of the oxide of Na and the mol content of the oxide of Li;
  • is a ratio of the sum of the mol content of the oxide of Al in the glass of the element and the mol content of the oxide of Mg to the sum of the mol content of the oxide of Na and the mol content of the oxide of Li;
  • is the sum of the mol content of the oxide of Al in the glass of the element, the mol content of the oxide of Mg, the mol content of the oxide of B, and the mol content of the oxide of P, and the mol content of the oxide of Na and The ratio of the sum of the mol contents of the oxide of Li;
  • is the sum of the mol content of the oxide of Al in the glass, the mol content of the oxide of Mg, the mol content of the oxide of B, the mol content of the oxide of P, and the mol content of the oxide of Si.
  • is the maximum depth of the compressive stress layer formed by ion exchange of the plain glass.
  • is the fracture energy that the tempered glass can withstand when it is crushed by external force impact
  • is the free fall fracture energy that the obtained tempered glass can withstand under a certain load
  • is the tempered glass and the tempered glass The ratio of the absolute value of the difference in size on the same dimension to the size of the plain glass in the corresponding dimension.
  • Example 3-5 Take Example 3-5 as an example for further analysis:
  • the mol content of K ions at respective thicknesses extending from the surface to the inside of the tempered glass obtained in Example 3-5 was examined, and the data was normalized by subtraction, and the K in the tempered glass used in Example 3-5 was subtracted.
  • the intrinsic concentration of ions gives the ion concentration of K ions that have been ion exchanged into the tempered glass, and then the first quasi-concentration of the concentration of K ions with respect to the distance from the surface of the strengthened glass to the interior of the strengthened glass Curve (see Figure 11).
  • the concentration of K ions has a nonlinear decreasing tendency from the surface of the strengthened glass to the inside of the strengthened glass
  • the first fitting curve has a plurality of inflection points
  • the curve of the left side of the inflection point The absolute value of the slope is larger than the absolute value of the slope of the curve on the right side, and the concentration of the K ion ranges from 0 to 3.87 mol%.
  • the absolute value of the slope of the curve on the left side of all the inflection points on the second fitting curve is greater than the absolute value of the slope of the curve on the right side.
  • the second fitting curve shown in FIG. 13 is within the interval in which the composite compressive stress layer is located (ie, the interval [0, The definite integral of 300]) is less than or equal to 55 kN per metre (kN/m).
  • Example 3-5 differed from Examples 3-5 in that the first ion exchange salt bath was changed to 100% NaNO 3 , and the process conditions were set. 420 degrees Celsius, 270 minutes; the second ion exchange salt bath was changed to 100% KNO 3 , and the process conditions were set at 390 degrees Celsius for 120 minutes.
  • the tempered glass obtained in Example 3-7 was found to have a compressive stress depth of 300 ⁇ m and a maximum compressive stress value of 800 MPa, and the thicknesses of the tempered glass obtained in Examples 3-7 from the surface to the inside were also examined.
  • the compressive stress values were obtained, from which the compressive stress curves inside the strengthened glass obtained in Examples 3-7 were obtained, and the compressive stress curves were fitted with Orihara Pmc software to obtain a second fitted curve (see Fig. 14).
  • the compressive stress in the tempered glass obtained in Example 3-7 tends to decrease nonlinearly from the surface of the tempered glass to the inside of the tempered glass.
  • the composite compressive stress layer has a compressive stress curve extending from the surface of the strengthened glass to the inside of the strengthened glass, and the second fitted curve obtained by fitting the compressive stress curve by Orihara Pmc software has an inflection point.
  • the second fitting curve shown in FIG. 14 is within the interval in which the composite compressive stress layer is located (ie, the interval [0, The definite integral of 300]) is equal to 55 kN per metre (kN/m).
  • the applicant also ion-exchanged a series of different thickness of the plain glass and obtained corresponding tempered glass.
  • the ion exchange method used is the above-mentioned tempered glass preparation method 1, wherein the thickness of the plain glass and the obtained
  • the relevant data for the corresponding tempered glass is shown in the following table:
  • the thickness of the plain glass and the minimum value of the tensile stress CTmin are the minimum values of the average tensile stress control
  • the maximum tensile stress CTmax is the maximum value of the average tensile stress control, which can be measured by the corresponding instrument.
  • the thickness of the plain glass is different, it is necessary to define an average value of the maximum and minimum tensile stress.
  • the tensile stress minimum CTmin and the tensile stress maximum CTmax of the plain glass measured in the above table, the relationship between the thickness of the plain glass and the tensile stress minimum CTmin of the plain glass can be obtained. And the relationship between the thickness of the plain glass and the tensile stress maximum CTmax of the plain glass (see FIG. 15).
  • the compressive stress layer depth DOL in the formula is measured by using an Orihara Scattered Light Photoelastic Stress Meter (SLP-1000);
  • the sum of the tensile stresses in the different tensile stress layers formed by the ion glass after ion exchange under different conditions is less than or equal to 42.08 KN/m, and the thickness of the plain glass increases. Increase.
  • the sum of the compressive stress and the tensile stress formed by the plain glass after ion exchange is equal, so the sum of the compressive stress in the different compressive stress layers formed by the ionized glass after ion exchange under different conditions is different.
  • the difference is also less than or equal to 42.08 KN/m, and increases as the thickness of the plain glass increases.
  • the tensile stress per unit volume stored in the strengthened glass obtained by chemically strengthening the plain glass is 20,000 to 291375 MN/m 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

一种素玻璃,所述素玻璃的厚度范围为0.4mm-2.0mm,550nm波长的光对该素玻璃的透过率范围为86%-92.2%,该素玻璃的折射系数范围是1.48-1.54,该素玻璃中碱金属氧化物含量为11mol%-22mol%,其中,Na的氧化物含量为5mol%-18mol%,Al的氧化物含量为7mol%-16mol%,还涉及由该素玻璃制备出的强化玻璃及其制备方法。

Description

一种素玻璃、强化玻璃及制备方法 技术领域
本发明涉及玻璃生产技术领域,具体涉及一种素玻璃、强化玻璃及制备方法。
背景技术
化学强化玻璃由于其高透明度、高强度和耐磨性,目前在移动电话、媒体播放器和其他终端上有着广泛的应用。化学强化玻璃的高强度是通过离子交换实现,原理为:玻璃中的较小离子能够在高温下与盐浴液中的较大离子进行置换,置换后较大离子在玻璃表面紧密堆积而产生较强的压缩应力,进而表现出较高的强度。
然而在离子交换过程中,盐浴液随着被交换出的较小离子的增多而导致较大离子被稀释,继续使用相同的盐浴液将会降低玻璃的压缩应力;此外玻璃浅表面得大离子浓度过于集中,富集的大离子导致无法对玻璃进行充分交换获得较深的离子交换层;而强制长时间进行交换将导致玻璃内部张应力过大,从而导致玻璃安全性下降。为解决此类技术问题,目前有种做法是通过两种不同盐浴液来实现离子交换:先将玻璃放在第一盐浴液中进行离子交换,在第一盐浴液中的较大离子被稀释到一定程度,将玻璃取出进行冷却、干燥,然后再次再投入第二盐浴液中进行离子交换,其中第二盐浴液中的较大离子的浓度要大于被稀释的第一盐浴液中的较大离子的浓度。这种盐浴处理形成的压缩应力层应力分布为:压缩应力层在深度方向上并没有太大改变,且压缩应力层是连续的单层结构;被交换的较大离子的浓度随玻璃深度变化的结构是:较大离子的浓度仅在靠近玻璃表面的位置较高,而玻璃内部的较大离子的浓度会急剧下降。这样势必造成最终形成的强化玻璃的压缩应力层强度分布不均。
总之,到目前为止,无论是物理钢化,还是化学强化,无论是一次强化,还是多次强化,在玻璃表面所形成的单层压缩应力层,其应力分布或被交换离 子的浓度都是沿着玻璃表面向内的方向急剧递减的,导致压缩应力层在深度方向上并没有太大改变,从而无法改善玻璃整体的强度。
本申请人针对现有的强化玻璃的力学性能有待提高的技术问题,通过合理设计素玻璃中各组分间的含量配比,使各组分间发挥协同作用,互相配合,使得到的素玻璃具有较高的折射系数、较高的550nm波长光透过率及化学强化效果好的优点,因此也较好的推动了化学强化玻璃的研究及应用。
另外,本发明还公开了由所述素玻璃制备出的强化玻璃以及所述强化玻璃的制备方法。
发明内容
本发明要解决的技术问题在于,针对现有技术存在的上述缺点,提供一种折射系数较高、550nm波长光透过率较高且化学强化效果好的素玻璃。本发明还提供了一种由上述素玻璃制备而成的具有复合压缩应力层且整体强度高的强化玻璃,以及上述强化玻璃的制备方法。
本发明解决其问题所采用的技术方案是:
一方面,本发明提供了一种素玻璃,所述素玻璃的厚度范围为0.4mm~2.0mm,550纳米(nm)波长的光对所述素玻璃的透过率范围为86%~92.2%,所述素玻璃的折射系数范围是1.48~1.54,所述素玻璃中碱金属氧化物含量为8mol%~22mol%,其中,Na的氧化物含量为2.65mol%~18mol%,Al的氧化物含量为6.5mol%~15.5mol%。
在本发明提供的素玻璃中,所述素玻璃中Li的氧化物的mol含量不高于18mol%,B的氧化物的mol含量、P的氧化物的mol含量和Si的氧化物的mol含量的总和范围是61%~73%,其中Si的氧化物的mol含量为58.00%-70.85%。
在本发明提供的素玻璃中,所述素玻璃中Si的氧化物的mol含量为62.00%-70.85%。
在本发明提供的素玻璃中,所述素玻璃中Li的氧化物的mol含量不高于12mol%。
在本发明提供的素玻璃中,所述素玻璃中Li的氧化物mol含量大于Na的氧化物mol含量。
在本发明提供的素玻璃中,所述素玻璃中的Al的氧化物的mol含量与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值范围为0.3-1.88。
在本发明提供的素玻璃中,所述素玻璃中的Al的氧化物的mol含量和Mg的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值范围为0.6~2.88。
在本发明提供的素玻璃中,所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量和P的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值范围为0.6~3.0。
在本发明提供的素玻璃中,所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量、P的氧化物的mol含量和Si的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值范围为3.5~11.38。
在本发明提供的素玻璃中,所述素玻璃是无定形的,不含有成核剂。
在本发明提供的素玻璃中,所述素玻璃含有微纳米晶体和成核剂,所述成核剂取自于Ti、Zr、Cr、Li、Zn、Mg、Al、P的氧化物中的至少一种,所述微纳米晶体是通过在玻璃成型之后和离子交换之前,在高于素玻璃软化点之上的温度条件下进行热处理来形成。
在本发明提供的素玻璃中,所述素玻璃采用溢流下拉法、窄缝下拉法、水平浮法、压延法或浇注成型法成型。
在本发明提供的素玻璃中,所述素玻璃在进行离子交换的过程中离子交换层深度随着离子交换时间延长而增大,所述素玻璃经离子交换形成的压缩应力层深度具有一极限最大值,所述极限最大值随着所述素玻璃的厚度增大而增大,所述极限值最大的范围为50~300微米(μm)。
相应的,本发明提供了一种强化玻璃,所述强化玻璃在受到外力冲击破碎时能承受的断裂能量大于18.67焦耳每平方米(J/m2);所述强化玻璃在一定负 载下能承受的自由落体断裂能量大于2.94焦耳每公斤(J/kg);所述强化玻璃由上述素玻璃经单次或多次化学强化形成,所述强化玻璃的表面具有复合压缩应力层;
所述复合压缩应力层中包含经单次或多次离子交换进入到所述强化玻璃内的第一离子,所述第一离子选自Na离子、K离子、Ru离子和Cs离子,所述第一离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性减小趋势,所述第一离子的浓度关于自所述强化玻璃的表面向所述强化玻璃内部延伸的距离的第一拟合曲线具有至少一个拐点,所述第一拟合曲线上所有的所述拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值;
所述复合压缩应力层的压缩应力自所述强化玻璃表面向所述强化玻璃的内部呈非线性减小趋势;且所述复合压缩应力层具有自所述强化玻璃表面延伸到所述强化玻璃内部的压缩应力曲线,所述压缩应力曲线采用Orihara Pmc软件拟合后得到的第二拟合曲线具有至少一个拐点,所述第二拟合曲线上所有拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值;
所述复合压缩应力层内的压缩应力最大值为600至1100兆帕(Mpa)之间,所述复合压缩应力层的深度为60至300微米(μm)之间;
所述强化玻璃内还具有张应力层,所述张应力层内的张应力最大值为40兆帕(Mpa)到116.55兆帕(Mpa),所述强化玻璃内单位体积存储的张应力大小为20000~291375兆牛顿每立方米(MN/m3);
所述强化玻璃的厚度为在0.4毫米(mm)至2.0毫米(mm)之间;
所述素玻璃与所述强化玻璃在同一维度上的尺寸的差值的绝对值与所述素玻璃的在相应维度上的尺寸的比值在0.05%至0.15%之间。
在本发明提供的强化玻璃中,所述第二拟合曲线在所述复合压缩应力层所在的区间内的定积分小于等于55千牛顿每米(KN/m)。
在本发明提供的强化玻璃中,所述复合压缩应力层中还包含经单次或多次离子交换进入到所述强化玻璃内的第二离子,所述第二离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性上升再非线性减小趋势。
在本发明提供的强化玻璃中,所述第二离子选自Na离子、K离子、Ru 离子和Cs离子,所述素玻璃中存在相同的所述第二离子,所述第二离子进入到所述强化玻璃内的最大深度大于所述复合压缩应力层的深度。
在本发明提供的强化玻璃中,所述第一离子和所述第二离子分别为K离子和Na离子。
在本发明提供的强化玻璃中,所述第一离子和所述第二离子是在单次化学强化时自同一盐浴进入到所述强化玻璃内的。
在本发明提供的强化玻璃中,所述第一离子和所述第二离子均为K离子,所述素玻璃含有Na的氧化物和Al的氧化物。
在本发明提供的强化玻璃中,所述素玻璃同时含有Na的氧化物、Li的氧化物和Al的氧化物。
在本发明提供的强化玻璃中,所述素玻璃在不同条件下经过离子交换之后形成的强化玻璃具有不同的张应力层,强化玻璃中可以容纳的张应力总量的极差绝对值小于等于42.08千牛顿每米(KN/m),且随着所述玻璃的厚度增加而增大。
另一方面,本发明还提供了一种制备上述强化玻璃的制备方法,包括如下步骤:
将上述素玻璃置入至少包含Na离子、K离子、Ru离子和Cs离子中的一种的盐浴中进行多次离子交换。
在本发明提供的制备方法中,还包括如下步骤:
在完成第一次离子交换之后且在进行最后一次离子交换之前对前一次离子交换后得到的半成品玻璃进行加热处理。
再有,本发明提供了另外一种制备上述强化玻璃的制备方法,包括如下步骤:
将上述素玻璃置入至少包含Na离子、K离子、Ru离子和Cs离子中的两种的盐浴中进行且仅进行一次离子交换。
与现有技术相比,实施本发明提供的素玻璃,具有如下有益效果:针对现有的强化玻璃的力学性能有待提高的技术问题,通过合理设计素玻璃中各组分间的含量配比,使各组分间发挥协同作用,互相配合,使得到的素玻璃具有较 高的折射系数、较高的550nm波长光透过率及化学强化效果好的优点,因此也较好的推动了化学强化玻璃的研究及应用。
附图说明
图1为强化玻璃在受到外力冲击破碎时能承受的断裂能量测试方法的示意图;
图2为强化玻璃在一定负载下能承受的自由落体断裂能量测试方法的示意图;
图3为实施例1-1中获得的强化玻璃的第一拟合曲线;
图4为实施例1-1中获得的强化玻璃的第三拟合曲线;
图5为实施例1-1中获得的强化玻璃的第二拟合曲线;
图6为实施例1-7中获得的强化玻璃的第一拟合曲线;
图7为实施例1-7中获得的强化玻璃的第三拟合曲线;
图8为实施例1-7中获得的强化玻璃的第二拟合曲线;
图9为实施例2-2中获得的强化玻璃的第一拟合曲线;
图10为实施例2-2中获得的强化玻璃的第二拟合曲线;
图11为实施例3-5中获得的强化玻璃的第一拟合曲线;
图12为实施例3-5中获得的强化玻璃的第三拟合曲线;
图13为实施例3-5中获得的强化玻璃的第二拟合曲线;
图14为实施例3-7中获得的强化玻璃的第二拟合曲线。
图15为素玻璃的厚度与强化后玻璃的张应力最小值CTmin和张应力最大值CTmax的曲线关系图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范 围。
强化玻璃制备方法一
本发明提供了一种强化层玻璃的制备方法,包括下述步骤:
提供素玻璃,将所述素玻璃在低于玻璃退火点温度的环境中预热,然后使预热过的素玻璃在至少包含Na离子、K离子、Ru离子和Cs离子中的两种的盐浴液中进行一次且仅进行一次离子交换处理,一步将在所述素玻璃制备成表面形成有复合压缩应力层的强化玻璃。
上述制备过程中,所述素玻璃的厚度范围为0.4mm~2.0mm,550nm波长的光对所述素玻璃的透过率范围为86%~92.2%,所述素玻璃的折射系数范围是1.48~1.54,所述素玻璃中碱金属氧化物mol含量为8mol%~22mol%,其中,Na的氧化物mol含量为2.65mol%~18mol%,Al的氧化物mol含量为6.5mol%~15.5mol%。
所述素玻璃中Li的氧化物mol含量不高于18mol%,优选的,不高于12mol%,优选的,Li的氧化物mol含量大于Na的氧化物mol含量。
所述素玻璃中B的氧化物的mol含量、P的氧化物的mol含量和Si的氧化物的mol含量的总和范围是61%~73%,其中Si的氧化物的mol含量为58.00%-70.85%,优选的,所述素玻璃中Si的氧化物的mol含量为62.00%-70.85%。
所述素玻璃中非硅的以及非网络生成体的金属成份是否可以进入所述素玻璃的网络成为玻璃网络生成体,与该金属离子和碱金属氧化物mol含量的比值有关,当比值不同的时候,该金属成份会以不同的形式,例如:以网络外氧化物、网络中间体等形式存在于所述素玻璃当中,所述素玻璃中的非桥氧平均数和比例也不同,所述素玻璃的网络结构不同,该金属成份起到的作用也不同,玻璃的性能也大相径庭。
所述素玻璃中的Al的氧化物的mol含量与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值范围为0.3~1.88。
所述素玻璃中的Al的氧化物的mol含量和Mg的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值范围为 0.6~2.88。
所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量和P的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值范围为0.6~3.0。
所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量、P的氧化物的mol含量和Si的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值范围为3.5~11.38。
所述素玻璃是无定形的,不含有成核剂。
所述素玻璃采用溢流下拉法、窄缝下拉法、水平浮法、压延法或浇注成型法成型。
所述素玻璃在进行离子交换的过程中离子交换层深度随着离子交换时间延长而增大,所述素玻璃经离子交换形成的压缩应力层深度具有一极限最大值,所述极限最大值随着所述素玻璃的厚度增大而增大,所述极限最大值的范围为50~300μm。
所述素玻璃在不同条件下经过离子交换之后形成的不同的压缩应力层中的压应力总和的极差小于等于42.08KN/m,且随着所述素玻璃的厚度增加而增大;所述素玻璃在不同条件下经过离子交换之后形成的不同的张应力层中的张应力总和的极差小于等于42.08KN/m,且随着所述素玻璃的厚度增加而增大。
通过上述制备方法,获得的强化玻璃在受到外力冲击破碎时能承受的断裂能量大于18.67J/m 2,在一定负载下能承受的自由落体断裂能量大于2.94J/kg。
获得的强化玻璃所述复合压缩应力层中包含经多次化学强化进入到所述强化玻璃内的第一离子,所述第一离子选自Na离子、K离子、Ru离子和Cs离子,所述第一离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性减小趋势,所述第一离子的浓度关于自所述强化玻璃的表面向所述强化玻璃内部延伸的距离的第一拟合曲线具有至少一个拐点,所述第一拟合曲线上所有的拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值,所述第一离子的浓度的范围是0~18mol%;
所述复合压缩应力层的压缩应力自所述强化玻璃表面向所述强化玻璃的内部呈非线性减小趋势且所述复合压缩应力层具有自所述强化玻璃表面延伸到所述强化玻璃内部的压缩应力曲线,所述压缩应力曲线采用Orihara Pmc软件拟合后得到的第二拟合曲线具有至少一个拐点,所述第二拟合曲线上所有拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值;
所述复合压缩应力层内的压缩应力最大值为600至1100Mpa之间,所述复合压缩应力层的深度为60至300μm之间;
所述第二拟合曲线在所述复合压缩应力层所在的区间内的定积分小于等于55千牛顿每米(KN/m)。
所述强化玻璃内还具有张应力层,所述张应力层内的张应力的最小值和最大值分别为40Mpa和116.55Mpa,所述强化玻璃内单位体积存储的张应力大小为20000~291375MN/m 3
所述强化玻璃的厚度为在0.4mm至2.0mm之间。
所述强化玻璃与所述素玻璃在同一维度上的尺寸的差值的绝对值与所述素玻璃的在相应维度上的尺寸的比值在0.05%至0.15%之间。
所述复合压缩应力层中还包含经单次化学强化进入到所述强化玻璃内的第二离子,所述第二离子选自Na离子、K离子、Ru离子和Cs离子,所述第二离子不同于所述第一离子。
所述第二离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性上升再非线性减小趋势。所述第二离子的浓度的范围是0~18mol%。
需要说明的是,所述制备方法中用到的素玻璃也可以含有微纳米晶体和成核剂,所述成核剂取自于Ti、Zr、Cr、Li、Zn、Mg、Al、P的氧化物中的至少一种。
下面列出具体实施例对本发明提供的制备方法一进行更详细的说明,但并不以任何方式限制发明的保护范围。
实施例1-1至实施例1-7中各实施例的条件参数如下表:
Figure PCTCN2018074636-appb-000001
Figure PCTCN2018074636-appb-000002
注:η为550nm波长的光对所述素玻璃的透过率;
θ为所述素玻璃中碱金属氧化物的摩尔百分数;
α为所述素玻璃中的Al的氧化物的mol含量与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值;
β为所述素玻璃中的Al的氧化物的mol含量和Mg的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值;
γ为所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量和P的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值;
χ为所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量、P的氧化物的mol含量和Si的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值。
τ为所述素玻璃通过离子交换形成的压缩应力层深度的最大值。
实施例1-1至实施例1-7中各实施例获得的强化玻璃的特性如下:
Figure PCTCN2018074636-appb-000003
Figure PCTCN2018074636-appb-000004
注:ψ为获得的强化玻璃在受到外力冲击破碎时能承受的断裂能量;τ为获得的强化玻璃在一定负载下能承受的自由落体断裂能量;δ为所述强化玻璃与所述素玻璃在同一维度上的尺寸的差值的绝对值与所述素玻璃的在相应维度上的尺寸的比值。
需要补充说明的是:
上文提到的所有实施例当中使用的所述素玻璃的长×宽统一为:140×60mm;
强化玻璃在受到外力冲击破碎时能承受的断裂能量测试方法为:采用32g不锈钢钢球自由落体到玻璃表面中心点,从15cm开始自由落体冲击,没有破裂则上升高度5cm直至玻璃破裂,玻璃破碎时所承受的冲击能量与玻璃的面积比值为玻璃受到外力冲击破碎时能承受的断裂能量(参见图1)。
强化玻璃在一定负载下能承受的自由落体断裂能量测试方法为:对玻璃配重并将玻璃和配重块包裹在金属外壳内,确保总重量为150g,从一定高度开始做自由落体落摔至光滑大理石表面,从20cm高度开始自由落体落摔,没有破裂则升高10cm直至破裂,记录破裂高度得出相应自由落体落摔势能,该势能与玻璃总配重重量之间的比值为自由落体断裂能量(参见图2)。
所述强化玻璃中第一离子和第二离子的浓度的测量方法:采用扫描电镜(SEM,scanning electron microscope)和能谱仪(EDS,Energy Dispersive Spectrometer)进行测量。
压应力值的测量方法:采用光导波表面应力仪(Orihara Surface Stress Meter,FSM~6000LE)进行测量。
压缩应力层深度的检测方法:采用散射光深层应力仪(Orihara Scattered Light Photoelastic Stress Meter,SLP~1000)进行测量。
张应力值的检测方法:采用光导波表面应力仪(Orihara Surface Stress Meter,FSM~6000LE)和散射光深层应力仪(Orihara Scattered Light Photoelastic Stress Meter,SLP~1000)分别进行测量获得玻璃表面和内部的压缩应力分布数据后,采用Orihara Pmc软件进行拟合获得压缩应力、最大张应力、平均张应力以及张应力分布。
以实施例1-1为例作进一步分析:
检测实施例1-1中获得的强化玻璃自表面向内部延伸的各厚度上的K离子的mol含量,通过归一法整理数据,减去实施例1-1中采用的素玻璃中K离子的固有浓度后得出经离子交换进入到强化玻璃中的K离子的离子浓度,然后得出K离子的浓度关于自所述强化玻璃的表面向所述强化玻璃内部延伸的距离的第一拟合曲线(参见图3)。由图可知,K离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性减小趋势,所述第一拟合曲线具有多个拐点,所述拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值,K离子的浓度的范围是0~4.58mol%。
类似的,我们可以制得Na离子的浓度关于自所述强化玻璃的表面向所述强化玻璃内部延伸的距离的第三拟合曲线(参见图4)。由图可知,Na离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性上升再非线性减小趋势,Na离子的浓度的范围是0~2.35mol%。
另外,我们还检测了实施例1-1中获得的强化玻璃自表面向内部延伸的各厚度上的压缩应力值,由此可得出实施例1-1中获得的强化玻璃内部的压缩应力曲线,将所述压缩应力曲线采用Orihara Pmc软件拟合后得到第二拟合曲线(参见图5)。由图可知,实施例1-1中获得的强化玻璃内的压缩应力自所述强化玻璃表面向所述强化玻璃的内部呈非线性减小趋势。且所述复合压缩应力层具有自所述强化玻璃表面延伸到所述强化玻璃内部的压缩应力曲线,所述压缩应力曲线采用Orihara Pmc软件拟合后得到的第二拟合曲线具有一个拐点,所述第二拟合曲线上所有拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值。参见图5,所述拐点的坐标值为(x,y)=(30,120)。
而且,根据如图5所示的曲线,通过如下给出的积分计算方法可得知图5 中示出的第二拟合曲线在所述复合压缩应力层所在的区间内(即区间[0,130])的定积分小于等于55千牛顿每米(kN/m)。
积分计算方法:
在压缩应力最大值、拐点和压缩应力深度最大值三个点之间做线形化拟合(如图5中虚线所示),以此来做第二拟合曲线在区间[0,130]内的定积分计算,将第二拟合曲线在区间[0,160]内的定积分记为M(1-1),已知,压缩应力最大值点坐标(0,700),压缩应力深度最大值点的坐标(130,0),所述拐点的坐标值为(x,y),那么,
M(1-1)=x×y+x×(700-y)×0.5+y×(130-x)×0.5,将x=30,y=120代入式中计算得出M(1-1)=18.3kN/m。
以实施例1-7为例作进一步分析:
检测实施例1-7中获得的强化玻璃自表面向内部延伸的各厚度上的K离子的mol含量,通过归一法整理数据,减去实施例1-7中采用的素玻璃中K离子的固有浓度后得出经离子交换进入到强化玻璃中的K离子的离子浓度,然后得出K离子的浓度关于自所述强化玻璃的表面向所述强化玻璃内部延伸的距离的第一拟合曲线(参见图6)。由图可知,K离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性减小趋势,所述第一拟合曲线具有多个拐点,所述拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值,K离子的浓度的范围是0~4.75mol%。
类似的,我们可以制得Na离子的浓度关于自所述强化玻璃的表面向所述强化玻璃内部延伸的距离的第三拟合曲线(参见图7)。由图可知,Na离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性上升再非线性减小趋势,Na离子的浓度的范围是0~1.9mol%。
另外,我们还检测了实施例1-7中获得的强化玻璃自表面向内部延伸的各厚度上的压缩应力值,由此可得出实施例1-7中获得的强化玻璃内部的压缩应力曲线,将所述压缩应力曲线采用Orihara Pmc软件拟合后得到第二拟合曲线(参见图8)。由图可知,实施例1-7中获得的强化玻璃内的压缩应力自所述强 化玻璃表面向所述强化玻璃的内部呈非线性减小趋势。且所述复合压缩应力层具有自所述强化玻璃表面延伸到所述强化玻璃内部的压缩应力曲线,所述压缩应力曲线采用Orihara Pmc软件拟合后得到的第二拟合曲线具有一个拐点,所述第二拟合曲线上所有拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值。参见图8,所述拐点的坐标值为(x,y)=(30,120)。
而且,根据如图8所示的曲线,通过如下给出的积分计算方法可得知图8中示出的第二拟合曲线在所述复合压缩应力层所在的区间内(即区间[0,110])的定积分小于等于55千牛顿每米(kN/m)。
积分计算方法:
在压缩应力最大值、拐点和压缩应力深度最大值三个点之间做线形化拟合(如图8中虚线所示),以此来做第二拟合曲线在区间[0,110]内的定积分计算,将第二拟合曲线在区间[0,110]内的定积分记为M(1-7),已知,压缩应力最大值点坐标(0,750),压缩应力深度最大值点的坐标(110,0),所述拐点的坐标值为(x,y),那么,
M(1-7)=x×y+x×(750-y)×0.5+y×(110-x)×0.5,将x=30,y=120代入式中计算得出M(1-7)=17.85kN/m。
强化玻璃制备方法二
本发明还提供了另一种强化层玻璃的制备方法,包括下述步骤:
步骤A,提供素玻璃,将所述素玻璃在低于玻璃退火点温度的环境中预热,然后使预热过的素玻璃在盐浴液中进行第一次离子交换处理,第一次离子交换处理时间为t 1,在素玻璃表面形成强化层L 1
步骤B,将形成有强化层L 1的素玻璃在T h的温度环境中进行热处理,T h的范围为不低于步骤A或步骤C的离子交换温度~素玻璃退火点下10℃,热处理时间为t h,t h长短的设定要使所述强化层L 1向玻璃内部延伸移动至少3μm,强化层L 1中被交换的离子浓度的分布被摊薄,结合此步骤新产生的离子交换综合为强化层L 2
步骤C,将具有强化层L 2的素玻璃冷却到盐浴温度后或直接再次放入步 骤A中所述的同一盐浴或不同盐浴中进行第二次离子交换处理,或将素玻璃清洗后、再次放入与步骤A中所述的不同盐浴中进行第二次离子交换处理,第二次离子交换处理时间为t 2,第二次离子交换处理的温度为T 2,所述具有强化层L 2的素玻璃表面通过离子交换的方式形成强化层L 3,同时,所述位于素玻璃内部的强化层L 2与素玻璃内部和周边的离子进行离子交换并继续沿着浓度差值的方向朝向素玻璃内部和周边延伸,所述强化层L 3的延伸速度大于与强化层L 2的延伸速度,充分进行离子交换反应后,所述强化层L 3和强化层L 2叠合在一起形成复合强化层。
可选地,重复步骤B~步骤C,直至在玻璃上形成满足压应力大小和深度要求的复合强化层。
可选地,在步骤B前可以实施清洗;步骤C前,可以对玻璃进行预热。
在上述的制备方法二中采用的素玻璃与制备方法一中采用的素玻璃具有相同的性质,这里不再赘述。通过制备方法二可获得的强化玻璃与通过制备方法一获得的强化玻璃的具有相同的性质,这里也不再赘述。
下面列出具体实施例对本发明提供的制备方法二进行更详细的说明,但并不以任何方式限制发明的保护范围。
实施各实施例的条件参数如下表:
Figure PCTCN2018074636-appb-000005
Figure PCTCN2018074636-appb-000006
Figure PCTCN2018074636-appb-000007
注:η为550nm波长的光对所述素玻璃的透过率;
θ为所述素玻璃中碱金属氧化物的摩尔百分数;
α为所述素玻璃中的Al的氧化物的mol含量与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值;
β为所述素玻璃中的Al的氧化物的mol含量和Mg的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值;
γ为所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量和P的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值;
χ为所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量、P的氧化物的mol含量和Si的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值。
τ为所述素玻璃通过离子交换形成的压缩应力层深度最大值。
各实施例获得的强化玻璃的特性如下:
Figure PCTCN2018074636-appb-000008
Figure PCTCN2018074636-appb-000009
注:ψ为获得的强化玻璃在受到外力冲击破碎时能承受的断裂能量;τ为获得的强化玻璃在一定负载下能承受的自由落体断裂能量;δ为所述强化玻璃与所述素玻璃在同一维度上的尺寸的差值的绝对值与所述素玻璃的在相应维度上的尺寸的比值。
以实施例2-2为例作进一步分析:
检测实施例2-2中获得的强化玻璃自表面向内部延伸的各厚度上的K离子的mol含量,通过归一法整理数据,减去实施例2-2中采用的素玻璃中K离子的固有浓度后得出经离子交换进入到强化玻璃中的K离子的离子浓度,然后得出K离子的浓度关于自所述强化玻璃的表面向所述强化玻璃内部延伸的距离的第一拟合曲线(参见图9)。由图可知,K离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性减小趋势,所述第一拟合曲线具有多个拐点,所述拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值,K离子的浓度的范围是0~5.03mol%。
另外,我们还检测了实施例2-2中获得的强化玻璃自表面向内部延伸的各厚度上的压缩应力值,由此可得出实施例2-2中获得的强化玻璃内部的压缩应力曲线,将所述压缩应力曲线采用Orihara Pmc软件拟合后得到第二拟合曲线(参见图10)。由图可知,实施例2-2中获得的强化玻璃内的压缩应力自所述强化玻璃表面向所述强化玻璃的内部呈非线性减小趋势。且所述复合压缩应力层具有自所述强化玻璃表面延伸到所述强化玻璃内部的压缩应力曲线,所述压缩应力曲线采用Orihara Pmc软件拟合后得到的第二拟合曲线具有一个拐点,所述第二拟合曲线上所有拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值。参见图10,所述拐点的坐标值为(x,y)=(30,100)。
而且,根据如图10所示的曲线,通过如下给出的积分计算方法可得知图5中示出的第二拟合曲线在所述复合压缩应力层所在的区间内(即区间[0,90])的定积分小于等于55千牛顿每米(kN/m)。
积分计算方法:
在压缩应力最大值、拐点和压缩应力深度最大值三个点之间做线形化拟合(如图10中虚线所示),以此来做第二拟合曲线在区间[0,90]内的定积分计算,将第二拟合曲线在区间[0,90]内的定积分记为M(2-2),已知,压缩应力最大值点坐标(0,780),压缩应力深度最大值点的坐标(90,0),所述拐点的坐标值为(x,y),那么,
M(1-7)=x×y+x×(780-y)×0.5+y×(90-x)×0.5,将x=30,y=100代入式中计算得出M(1-7)=16.2kN/m。
强化玻璃制备方法三
本发明还提供了有一种强化层玻璃的制备方法,包括下述步骤:
提供素玻璃;
将所述素玻璃在低于玻璃退火点温度的环境中预热;
将预热过的素玻璃在至少包含Na离子、K离子、Ru离子和Cs离子中的两种的盐浴中进行第一次离子交换处理;
将经过第一次离子交换处理后的所述素玻璃在至少包含Na离子、K离子、Ru离子和Cs离子中的一种的盐浴中进行第二次离子交换处理;
最终将所述素玻璃制备成表面具有复合压缩应力层的强化玻璃。
在上述的制备方法三中采用的素玻璃与制备方法一中采用的素玻璃具有相同的性质,这里不再赘述。通过制备方法三可获得的强化玻璃与通过制备方法一获得的强化玻璃的具有相同的性质,这里也不再赘述。
下面列出具体实施例对本发明提供的制备方法三进行更详细的说明,但并不以任何方式限制发明的保护范围。
实施各实施例的条件参数如下表:
Figure PCTCN2018074636-appb-000010
Figure PCTCN2018074636-appb-000011
Figure PCTCN2018074636-appb-000012
注:η为550nm波长的光对所述素玻璃的透过率;
θ为所述素玻璃中碱金属氧化物的摩尔百分数;
α为所述素玻璃中的Al的氧化物的mol含量与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值;
β为所述素玻璃中的Al的氧化物的mol含量和Mg的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值;
γ为所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量和P的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值;
χ为所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量、P的氧化物的mol含量和Si的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值。
τ为所述素玻璃通过离子交换形成的压缩应力层深度最大值。
各实施例获得的强化玻璃的特性如下:
Figure PCTCN2018074636-appb-000013
Figure PCTCN2018074636-appb-000014
注:ψ为获得的强化玻璃在受到外力冲击破碎时能承受的断裂能量;τ为获得的强化玻璃在一定负载下能承受的自由落体断裂能量;δ为所述强化玻璃与所述素玻璃在同一维度上的尺寸的差值的绝对值与所述素玻璃的在相应维度上的尺寸的比值。
以实施例3-5为例作进一步分析:
检测实施例例3-5中获得的强化玻璃自表面向内部延伸的各厚度上的K离子的mol含量,通过归一法整理数据,减去实施例例3-5中采用的素玻璃中K离子的固有浓度后得出经离子交换进入到强化玻璃中的K离子的离子浓度,然后得出K离子的浓度关于自所述强化玻璃的表面向所述强化玻璃内部延伸的距离的第一拟合曲线(参见图11)。由图可知,K离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性减小趋势,所述第一拟合曲线具有多个拐点,所述拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值,K离子的浓度的范围是0~3.87mol%。
类似的,我们可以制得Na离子的浓度关于自所述强化玻璃的表面向所述强化玻璃内部延伸的距离的第三拟合曲线(参见图12)。由图可知,Na离子 的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性上升再非线性减小趋势,Na离子的浓度的范围是0~3.37mol%。
另外,我们还检测了实施例3-5中获得的强化玻璃自表面向内部延伸的各厚度上的压缩应力值,由此可得出实施例3-5中获得的强化玻璃内部的压缩应力曲线,将所述压缩应力曲线采用Orihara Pmc软件拟合后得到第二拟合曲线(参见图13)。由图可知,实施例3-5中获得的强化玻璃内的压缩应力自所述强化玻璃表面向所述强化玻璃的内部呈非线性减小趋势。且所述复合压缩应力层具有自所述强化玻璃表面延伸到所述强化玻璃内部的压缩应力曲线,所述压缩应力曲线采用Orihara Pmc软件拟合后得到的第二拟合曲线具有一个拐点,所述第二拟合曲线上所有拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值。参见图13,所述拐点的坐标值为(x,y)=(12,150)。
而且,根据如图13所示的曲线,通过如下给出的积分计算方法可得知图13中示出的第二拟合曲线在所述复合压缩应力层所在的区间内(即区间[0,300])的定积分小于等于55千牛顿每米(kN/m)。
积分计算方法:
在压缩应力最大值、拐点和压缩应力深度最大值三个点之间做线形化拟合(如图13中虚线所示),以此来做第二拟合曲线在区间[0,300]内的定积分计算,将第二拟合曲线在区间[0,90]内的定积分记为M(3-5),已知,压缩应力最大值点坐标(0,1100),压缩应力深度最大值点的坐标(300,0),所述拐点的坐标值为(x,y),那么,
M(3-5)=x×y+x×(1100-y)×0.5+y×(300-x)×0.5,将x=12,y=150代入式中计算得出M(3-5)=29.1kN/m。
实施例3-7
申请人还对实施例3-5中采用的素玻璃进行了附加实验,其与实施例3-5的区别在于:将第一次离子交换的盐浴改为100%NaNO 3,工艺条件设定为420摄氏度,270分钟;将第二次离子交换盐浴改为100%KNO 3,工艺条件设定为390摄氏度,120分钟。
检测到实施例3-7中获得的强化玻璃的压缩应力深度为300μm,最大压应力值为800Mpa,另外还检测了实施例3-7中获得的强化玻璃自表面向内部延伸的各厚度上的压缩应力值,由此可得出实施例3-7中获得的强化玻璃内部的压缩应力曲线,将所述压缩应力曲线采用Orihara Pmc软件拟合后得到第二拟合曲线(参见图14)。由图可知,实施例3-7中获得的强化玻璃内的压缩应力自所述强化玻璃表面向所述强化玻璃的内部呈非线性减小趋势。且所述复合压缩应力层具有自所述强化玻璃表面延伸到所述强化玻璃内部的压缩应力曲线,所述压缩应力曲线采用Orihara Pmc软件拟合后得到的第二拟合曲线具有一个拐点,所述第二拟合曲线上所有拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值。参见图14,所述拐点的坐标值为(x,y)=(100,100)。
而且,根据如图14所示的曲线,通过如下给出的积分计算方法可得知图14中示出的第二拟合曲线在所述复合压缩应力层所在的区间内(即区间[0,300])的定积分等于55千牛顿每米(kN/m)。
积分计算方法:
在压缩应力最大值、拐点和压缩应力深度最大值三个点之间做线形化拟合(如图14中虚线所示),以此来做第二拟合曲线在区间[0,300]内的定积分计算,将第二拟合曲线在区间[0,300]内的定积分记为M(3-7),已知,压缩应力最大值点坐标(0,800),压缩应力深度最大值点的坐标(300,0),所述拐点的坐标值为(x,y),那么,
M(3-7)=x×y+x×(800-y)×0.5+y×(300-x)×0.5,将x=100,y=100代入式中计算得出M(3-7)=55kN/m。
关于素玻璃
申请人还对一系列厚度不同的所述素玻璃进行了离子交换并得到了相应的强化玻璃,采用的离子交换方法为上述的强化玻璃制备方法一,其中,所述素玻璃的厚度和得到的对应的强化玻璃的相关数据如下表所示:
Figure PCTCN2018074636-appb-000015
Figure PCTCN2018074636-appb-000016
上表中素玻璃厚度、张应力最小值CTmin为平均张应力控制的最小值、张应力最大值CTmax为平均张应力控制的最大值,都可以通过相应的仪器测得。需要解释的是,同样的所述素玻璃,采用不同的离子交换工艺可以产生不同的压应力分布,对应的张应力分布也不同,张应力分布与玻璃自身的安全性(自爆)息息相关,因此对于内部张应力要有控制,内应力具有分布,因此具有最大值和平均值,一般我们看平均值即可。因此综上,所述素玻璃厚度不同的时候,需要定义最大最小张应力平均值。根据上表中测得的不同厚度的所述 素玻璃的张应力最小值CTmin和张应力最大值CTmax,可以得出所述素玻璃的厚度与所述素玻璃的张应力最小值CTmin的曲线关系,以及所述素玻璃的厚度与所述素玻璃的张应力最大值CTmax的曲线关系(参见图15)。
另外,张应力总量级差的绝对值的计算公式为:
(张应力最大值CTmax-张应力最小值CTmin)×(素玻璃厚度-2×压应力层深度DOL),
式中的压应力层深度DOL是采用散射光深层应力仪(Orihara Scattered Light Photoelastic Stress Meter,SLP~1000)进行测量得到的;
单位体积存储张应力下限的计算公式为:
Figure PCTCN2018074636-appb-000017
单位体积存储张应力上限的计算公式为:
Figure PCTCN2018074636-appb-000018
由上可知,所述素玻璃在不同条件下经过离子交换之后形成的不同的张应力层中的张应力总和的极差小于等于42.08KN/m,,且随着所述素玻璃的厚度增加而增大。根据能量守恒原理,素玻璃在离子交换之后形成的压应力和张应力总和是相等的,因此所述素玻璃在不同条件下经过离子交换之后形成的不同的压应力层中的压应力总和的极差也是小于等于42.08KN/m,且随着所述素玻璃的厚度增加而增大。且由所述素玻璃经化学强化后获得的所述强化玻璃内单位体积存储的张应力大小为20000~291375MN/m 3
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。

Claims (24)

  1. 一种素玻璃,其特征在于,所述素玻璃的厚度范围为0.4mm~2.0mm,550纳米(nm)波长的光对所述素玻璃的透过率范围为86%~92.2%,所述素玻璃的折射系数范围是1.48~1.54,所述素玻璃中碱金属氧化物含量为8mol%~22mol%,其中,Na的氧化物含量为2.65mol%~18mol%,Al的氧化物含量为6.5mol%~15.5mol%;所述素玻璃在进行离子交换的过程中离子交换层深度随着离子交换时间延长而增大,所述素玻璃经离子交换形成的压缩应力层深度具有一极限最大值,所述极限最大值随着所述素玻璃的厚度增大而增大,所述极限值最大的范围为50~300微米(μm)。
  2. 根据权利要求1所述的素玻璃,其特征在于,所述素玻璃中Li的氧化物的mol含量不高于18mol%,B的氧化物的mol含量、P的氧化物的mol含量和Si的氧化物的mol含量的总和范围是61%~73%,其中Si的氧化物的mol含量为58.00%-70.85%。
  3. 根据权利要求2所述的素玻璃,其特征在于,所述素玻璃中Si的氧化物的mol含量为62.00%-70.85%。
  4. 根据权利要求3所述的素玻璃,其特征在于,所述素玻璃中Li的氧化物的mol含量不高于12mol%。
  5. 根据权利要求1所述的素玻璃,其特征在于,所述素玻璃中Li的氧化物mol含量大于Na的氧化物mol含量。
  6. 根据权利要求3所述的素玻璃,其特征在于,所述素玻璃中的Al的氧化物的mol含量与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值范围为0.3-1.88。
  7. 根据权利要求3所述的素玻璃,其特征在于,所述素玻璃中的Al的氧化物的mol含量和Mg的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值范围为0.6~2.88。
  8. 根据权利要求3所述的素玻璃,其特征在于,所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量和P的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量 的总和的比值范围为0.6~3.0。
  9. 根据权利要求3所述的素玻璃,其特征在于,所述素玻璃中的Al的氧化物的mol含量、Mg的氧化物的mol含量、B的氧化物的mol含量、P的氧化物的mol含量和Si的氧化物的mol含量的总和与Na的氧化物的mol含量和Li的氧化物的mol含量的总和的比值范围为3.5~11.38。
  10. 根据权利要求1所述的素玻璃,其特征在于,所述素玻璃是无定形的,不含有成核剂。
  11. 根据权利要求1所述的素玻璃,其特征在于,所述素玻璃含有微纳米晶体和成核剂,所述成核剂取自于Ti、Zr、Cr、Li、Zn、Mg、Al、P的氧化物中的至少一种,所述微纳米晶体是通过在玻璃成型之后和离子交换之前,在高于素玻璃软化点之上的温度条件下进行热处理来形成。
  12. 根据权利要求1所述的素玻璃,其特征在于,所述素玻璃采用溢流下拉法、窄缝下拉法、水平浮法、压延法或浇注成型法成型。
  13. 一种强化玻璃,所述强化玻璃在受到外力冲击破碎时能承受的断裂能量大于18.67焦耳每平方米(J/m 2);所述强化玻璃在一定负载下能承受的自由落体断裂能量大于2.94焦耳每公斤(J/kg);其特征在于,所述强化玻璃由权利要求1-12中任意一项所述的素玻璃经单次或多次化学强化形成,所述强化玻璃的表面具有复合压缩应力层;
    所述复合压缩应力层中包含经单次或多次离子交换进入到所述强化玻璃内的第一离子,所述第一离子选自Na离子、K离子、Ru离子和Cs离子,所述第一离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性减小趋势,所述第一离子的浓度关于自所述强化玻璃的表面向所述强化玻璃内部延伸的距离的第一拟合曲线具有至少一个拐点,所述第一拟合曲线上所有的所述拐点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值;
    所述复合压缩应力层的压缩应力自所述强化玻璃表面向所述强化玻璃的内部呈非线性减小趋势;且所述复合压缩应力层具有自所述强化玻璃表面延伸到所述强化玻璃内部的压缩应力曲线,所述压缩应力曲线采用Orihara Pmc软件拟合后得到的第二拟合曲线具有至少一个拐点,所述第二拟合曲线上所有拐 点的左侧的曲线的斜率的绝对值大于右侧的曲线的斜率的绝对值;
    所述复合压缩应力层内的压缩应力最大值为600至1100兆帕(Mpa)之间,所述复合压缩应力层的深度为60至300微米(μm)之间;
    所述强化玻璃内还具有张应力层,所述张应力层内的张应力最大值为40兆帕(Mpa)到116.55兆帕(Mpa),所述强化玻璃内单位体积存储的张应力大小为20000~291375兆牛顿每立方米(MN/m 3);
    所述强化玻璃的厚度为在0.4毫米(mm)至2.0毫米(mm)之间;
    所述素玻璃与所述强化玻璃在同一维度上的尺寸的差值的绝对值与所述素玻璃的在相应维度上的尺寸的比值在0.05%至0.15%之间。
  14. 根据权利要求13所述的强化玻璃,其特征在于,所述第二拟合曲线在所述复合压缩应力层所在的区间内的定积分小于等于55千牛顿每米(KN/m)。
  15. 根据权利要求13所述的强化玻璃,其特征在于,所述复合压缩应力层中还包含经单次或多次离子交换进入到所述强化玻璃内的第二离子,所述第二离子的浓度自所述强化玻璃的表面向所述强化玻璃的内部呈非线性上升再非线性减小趋势。
  16. 根据权利要求15所述的强化玻璃,其特征在于,所述第二离子选自Na离子、K离子、Ru离子和Cs离子,所述素玻璃中存在相同的所述第二离子,所述第二离子进入到所述强化玻璃内的最大深度大于所述复合压缩应力层的深度。
  17. 根据权利要求16所述的强化玻璃,其特征在于,所述第一离子和所述第二离子分别为K离子和Na离子。
  18. 根据权利要求16所述的强化玻璃,其特征在于,所述第一离子和所述第二离子是在单次化学强化时自同一盐浴进入到所述强化玻璃内的。
  19. 根据权利要求16所述的强化玻璃,其特征在于,所述第一离子和所述第二离子均为K离子,所述素玻璃含有Na的氧化物和Al的氧化物。
  20. 根据权利要求19所述的强化玻璃,其特征在于,所述素玻璃同时含有Na的氧化物、Li的氧化物和Al的氧化物。
  21. 根据权利要求13所述的强化玻璃,其特征在于,所述素玻璃在不同条件下经过离子交换之后形成的强化玻璃具有不同的张应力层,强化玻璃中可以容纳的张应力总量的极差绝对值小于等于42.08千牛顿每米(KN/m),且随着所述玻璃的厚度增加而增大。
  22. 一种如权利要求13-21中任意一项所述的强化玻璃的制备方法,其特征在于,包括如下步骤:
    将如权利要求1-13中任意一项所述的素玻璃置入至少包含Na离子、K离子、Ru离子和Cs离子中的一种的盐浴中进行多次离子交换。
  23. 根据权利要求22所述的制备方法,其特征在于,还包括如下步骤:
    在完成第一次离子交换之后且在进行最后一次离子交换之前对前一次离子交换后得到的半成品玻璃进行加热处理。
  24. 一种如权利要求13-21中任意一项所述的强化玻璃的制备方法,其特征在于,包括如下步骤:
    将如权利要求1-12中任意一项所述的素玻璃置入至少包含Na离子、K离子、Ru离子和Cs离子中的两种的盐浴中进行且仅进行一次离子交换。
PCT/CN2018/074636 2017-12-29 2018-01-31 一种素玻璃、强化玻璃及制备方法 WO2019127818A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/959,139 US20200339471A1 (en) 2017-12-29 2018-01-31 Mother glass, reinforced glass and preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711487372.1 2017-12-29
CN201711487372.1A CN108147657B (zh) 2017-12-29 2017-12-29 一种素玻璃、强化玻璃及制备方法

Publications (1)

Publication Number Publication Date
WO2019127818A1 true WO2019127818A1 (zh) 2019-07-04

Family

ID=62460057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074636 WO2019127818A1 (zh) 2017-12-29 2018-01-31 一种素玻璃、强化玻璃及制备方法

Country Status (3)

Country Link
US (1) US20200339471A1 (zh)
CN (1) CN108147657B (zh)
WO (1) WO2019127818A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021108138A1 (en) * 2019-11-27 2021-06-03 Corning Incorporated Glass-based articles with fracture resistant stress profiles
US11634354B2 (en) 2021-06-18 2023-04-25 Corning Incorporated Colored glass articles having improved mechanical durability
US11655181B1 (en) 2021-06-18 2023-05-23 Corning Incorporated Colored glass articles having improved mechanical durability
US11802072B2 (en) 2021-06-18 2023-10-31 Corning Incorporated Gold containing silicate glass

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872175A (zh) * 2018-08-31 2020-03-10 深圳市东丽华科技有限公司 一种微晶玻璃及利用其制成的具有复合压应力的玻璃基板
CN111099839B (zh) * 2018-10-25 2022-06-14 重庆鑫景特种玻璃有限公司 化学强化玻璃及其制备方法与应用
CN111099823B (zh) * 2018-10-25 2022-04-12 重庆鑫景特种玻璃有限公司 基于素玻璃化学强化后的玻璃及玻璃器件
CN111847872B (zh) * 2019-04-30 2022-06-14 重庆鑫景特种玻璃有限公司 一种可用于化学强化的低介电常数的玻璃、强化玻璃
CN110040982B (zh) * 2019-05-14 2021-08-27 重庆鑫景特种玻璃有限公司 具有复合应力优势的化学强化玻璃及其制备方法与应用
CN110128008B (zh) * 2019-05-16 2021-09-10 重庆鑫景特种玻璃有限公司 低曲率半径超薄强化玻璃及其制备方法、玻璃器件和素玻璃
CN110104965B (zh) * 2019-05-22 2021-09-14 重庆鑫景特种玻璃有限公司 具有酸碱耐久性化学强化玻璃及其制备方法
CN110240419B (zh) * 2019-06-06 2021-11-05 重庆鑫景特种玻璃有限公司 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用
CN112142342B (zh) * 2019-06-28 2022-04-29 华为技术有限公司 化学强化玻璃及其制备方法和终端
CN110577355A (zh) * 2019-09-09 2019-12-17 深圳精匠云创科技有限公司 一种纳米晶玻璃陶瓷的强化方法
CN110627378B (zh) * 2019-10-15 2022-03-22 Oppo广东移动通信有限公司 玻璃及其制备方法、壳体组件和电子设备
CN110746112B (zh) * 2019-10-24 2022-07-29 重庆鑫景特种玻璃有限公司 低钠素玻璃、化学强化玻璃及化学强化玻璃的制备方法
CN110845153B (zh) * 2019-12-03 2022-02-18 重庆鑫景特种玻璃有限公司 一种具有高压应力层深度的强化微晶玻璃及其制备方法
CN114075044B (zh) * 2020-08-18 2023-01-24 重庆鑫景特种玻璃有限公司 一种具有安全应力状态的强化玻璃及其加工方法
CN114075046B (zh) * 2020-08-18 2023-01-24 重庆鑫景特种玻璃有限公司 具有高压应力和高安全性的强化玻璃及其加工方法
CN112592056A (zh) * 2020-10-30 2021-04-02 重庆鑫景特种玻璃有限公司 具有低变化幅度的张应力区的安全强化玻璃及制法和应用
KR20230167354A (ko) * 2021-04-07 2023-12-08 에이지씨 가부시키가이샤 화학 강화 유리 및 그 제조 방법
CN113754289B (zh) * 2021-09-18 2023-06-06 重庆鑫景特种玻璃有限公司 一种低翘曲的强化微晶玻璃、及其制备方法和用途
CN114163143B (zh) * 2021-12-18 2022-10-25 武汉理工大学 一种卤化物纳米晶弥散玻璃及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140186632A1 (en) * 2012-05-31 2014-07-03 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance
US20150099124A1 (en) * 2013-10-09 2015-04-09 Corning Incorporated Crack-Resistant Glass-Ceramic Articles and Methods for Making the Same
JP2016044119A (ja) * 2014-08-19 2016-04-04 日本電気硝子株式会社 強化ガラス及びその製造方法
WO2017126607A1 (ja) * 2016-01-21 2017-07-27 旭硝子株式会社 化学強化ガラスおよび化学強化用ガラス
CN107074638A (zh) * 2014-10-31 2017-08-18 康宁股份有限公司 具有超深的压缩深度的强化玻璃

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3872047A1 (en) * 2012-10-12 2021-09-01 Corning Incorporated Articles having retained strength
US10118858B2 (en) * 2014-02-24 2018-11-06 Corning Incorporated Strengthened glass with deep depth of compression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140186632A1 (en) * 2012-05-31 2014-07-03 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance
US20150099124A1 (en) * 2013-10-09 2015-04-09 Corning Incorporated Crack-Resistant Glass-Ceramic Articles and Methods for Making the Same
JP2016044119A (ja) * 2014-08-19 2016-04-04 日本電気硝子株式会社 強化ガラス及びその製造方法
CN107074638A (zh) * 2014-10-31 2017-08-18 康宁股份有限公司 具有超深的压缩深度的强化玻璃
WO2017126607A1 (ja) * 2016-01-21 2017-07-27 旭硝子株式会社 化学強化ガラスおよび化学強化用ガラス

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021108138A1 (en) * 2019-11-27 2021-06-03 Corning Incorporated Glass-based articles with fracture resistant stress profiles
CN114728843A (zh) * 2019-11-27 2022-07-08 康宁股份有限公司 具有抗断裂性应力分布曲线的玻璃基制品
US11634354B2 (en) 2021-06-18 2023-04-25 Corning Incorporated Colored glass articles having improved mechanical durability
US11655181B1 (en) 2021-06-18 2023-05-23 Corning Incorporated Colored glass articles having improved mechanical durability
US11667562B2 (en) 2021-06-18 2023-06-06 Corning Incorporated Colored glass articles having improved mechanical durability
US11802072B2 (en) 2021-06-18 2023-10-31 Corning Incorporated Gold containing silicate glass
US11834370B2 (en) 2021-06-18 2023-12-05 Corning Incorporated Colored glass articles having improved mechanical durability

Also Published As

Publication number Publication date
CN108147657A (zh) 2018-06-12
CN108147657B (zh) 2020-11-03
US20200339471A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019127818A1 (zh) 一种素玻璃、强化玻璃及制备方法
WO2019127817A1 (zh) 一种强化玻璃及其制备方法
US8561429B2 (en) Glass with compressive surface for consumer applications
JP2011527661A5 (zh)
TWI689480B (zh) 含有硼及磷的可離子交換玻璃
TWI762746B (zh) 離子可交換的高抗損傷玻璃
TWI699341B (zh) 虛擬化(fictivated)玻璃及其製造方法
CN107108305B (zh) 利用离子交换和层压进行的玻璃强化
JP2022033904A (ja) 高強度の超薄ガラスおよびその製造方法
CN108698922A (zh) 薄的热强化和化学强化的玻璃基制品
TW201805259A (zh) 具有改良掉落性能之玻璃
CN107001111A (zh) 可化学回火的玻璃板
TWI692460B (zh) 具有低軟化點的快速可離子交換的無硼玻璃
JP2013536155A (ja) ガラスを強化する二段階法
DE102014013550A1 (de) Beschichtetes chemisch vorgespanntes flexibles dünnes Glas
CN107253825A (zh) 防护玻璃及防护玻璃的制造方法
TW201800352A (zh) 具有高表面壓縮應力之可離子交換玻璃
TW201536699A (zh) 強化玻璃的製造方法以及強化玻璃
JP2017519715A (ja) 化学的に強化されたアルカリアルミノシリケートガラス用のガラス組成物及びその製造方法
WO2015027896A1 (en) Glass composition for chemically strengthened alkali-aluminosilicate glass and method for the manufacture thereof
EP2985267A1 (en) Outdoor chemically strengthened glass plate
CN107250072A (zh) 玻璃和化学强化玻璃以及化学强化玻璃的制造方法
JP2013249222A (ja) 化学強化結晶化ガラス物品及びその製造方法
US10407339B2 (en) Ion exchangeable soft glasses for three-dimensional shapes
US20210380467A1 (en) Protective glass plate with the property of impact stress resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896941

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.11.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18896941

Country of ref document: EP

Kind code of ref document: A1