WO2019124483A1 - 神経系疾患治療剤 - Google Patents

神経系疾患治療剤 Download PDF

Info

Publication number
WO2019124483A1
WO2019124483A1 PCT/JP2018/046945 JP2018046945W WO2019124483A1 WO 2019124483 A1 WO2019124483 A1 WO 2019124483A1 JP 2018046945 W JP2018046945 W JP 2018046945W WO 2019124483 A1 WO2019124483 A1 WO 2019124483A1
Authority
WO
WIPO (PCT)
Prior art keywords
nervous system
agent
system disease
treating
methylcobalamin
Prior art date
Application number
PCT/JP2018/046945
Other languages
English (en)
French (fr)
Inventor
田中 啓之
吉川 秀樹
望月 秀樹
剛 村瀬
佐々木 勉
孝輔 馬場
徹 岩橋
内木 充
Original Assignee
国立大学法人大阪大学
日本臓器製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SG11202005822PA priority Critical patent/SG11202005822PA/en
Priority to RU2020123957A priority patent/RU2020123957A/ru
Priority to AU2018390261A priority patent/AU2018390261B2/en
Priority to JP2019554940A priority patent/JP6650650B2/ja
Priority to KR1020207020640A priority patent/KR102684069B1/ko
Priority to CN201880082317.0A priority patent/CN111511373A/zh
Priority to CA3086220A priority patent/CA3086220A1/en
Priority to EP18892293.4A priority patent/EP3730144A4/en
Application filed by 国立大学法人大阪大学, 日本臓器製薬株式会社 filed Critical 国立大学法人大阪大学
Publication of WO2019124483A1 publication Critical patent/WO2019124483A1/ja
Priority to IL275479A priority patent/IL275479A/en
Priority to US16/907,913 priority patent/US11369626B2/en
Priority to ZA2020/04433A priority patent/ZA202004433B/en
Priority to US17/748,553 priority patent/US11679122B2/en
Priority to US18/143,370 priority patent/US12029751B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7135Compounds containing heavy metals
    • A61K31/714Cobalamins, e.g. cyanocobalamin, i.e. vitamin B12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a therapeutic agent for nervous system diseases and the like.
  • Neurological diseases are diseases that occur in the brain, spinal cord, peripheral nerves and muscles. Among these, diseases that occur in the brain and spinal cord are called central nervous system diseases. Typical examples of central nervous system diseases that occur in the brain include cerebral infarction and dementia. In addition, spinal cord injuries and the like are representative of central nervous system diseases that occur in the spinal cord.
  • Cerebral infarction accounts for about 60% of cerebrovascular disorder which is the fourth cause of death for one year in 2014, and it is highly likely to need nursing care after illness, and it is a disease that has a large impact on society in terms of medical expenses as well. is there.
  • the area of cerebral infarction is the peripheral core (penumbra, penumbra) where blood flow can be obtained by the ischemic core (also referred to as core, simply referred to as core) and collateral circulation when the blood flow is completely blocked.
  • ischemic core also referred to as core, simply referred to as core
  • collateral circulation when the blood flow is completely blocked.
  • nerve cells in the Core part rapidly die (primary damage), it is difficult to rescue this part, but the penumbra part may survive because it is a part that escapes cell death. It will be the liver of acute treatment of cerebral infarction whether you rescue.
  • Histological changes in cerebral infarction lesions include (1) apoptosis of nerve cells, (2) induction of inflammation, and (3) disruption of blood-brain barrier (BBB).
  • BBB blood-brain barrier
  • Edaravone trade name: Radicut
  • t-PA Thrombolytic therapy
  • Peripheral nerves have regenerative ability after injury, but recovery of nerve function is not sufficient.
  • Wharer's degeneration results in the removal of axons and myelin sheaths.
  • the regenerating axons extend in the distal direction in the Bungner's band formed by undifferentiated Schwann cells, and target muscle renervation occurs.
  • a myelin sheath is formed by Schwann cells that surround the regenerating axons.
  • the extension rate of the regenerative nerve is very slow, and when the distance to the target muscle is long, muscle atrophy occurs and sufficient functional recovery can not be expected.
  • macrophages play an important role. It is well known that macrophages have an inflammatory function, but they also have a phenotype with anti-inflammatory activity, and they are called M1 and M2, respectively, and they are continuous between the phenotypes. It is considered that there is a sex (a shift between M1 and M2 occurs). In general, it is said that neural regeneration is promoted by increasing the anti-inflammatory phenotype of M2 macrophages.
  • vitamin B 12 is effective for treating vitamin B 12 deficiency, and that vitamin B 12 deficiency may cause neurological changes such as peripheral neuritis and spinal cord changes (Patent Document 1).
  • activins show anti-inflammatory action by M2 macrophage induction (patent document 2), and that an immunosuppressant containing adipose tissue-derived mesenchymal stem cells shows M2 macrophage induction action (patent document 3) ing.
  • vitamin B 12 promotes M2 macrophage / microglia induction and suppresses M1 macrophage / microglia induction, as well as ameliorating neurological diseases such as cerebral infarction.
  • An object of the present invention is to provide a therapeutic agent for nervous system diseases.
  • the present invention is at least selected from the group consisting of an apoptosis suppressive action, a necrosis suppressive action, an axonal extension promoting action, an M2 macrophage / microglia induction promoting action, an M1 macrophage / microglia induction inhibiting action, and a nerve regeneration promoting action.
  • An object of the present invention is to provide a therapeutic agent for nervous system diseases having one type.
  • vitamin B 12 has a therapeutic effect on nervous system diseases. Furthermore, it was also found that vitamin B 12 has an apoptosis suppressive action, a necrosis suppressive action, an axonal extension promoting action, an M2 macrophage / microglia induction promotion action, an M1 macrophage / microglia induction suppression action, a nerve regeneration promotion action and the like. As a result of further studies based on these findings, the present invention has been completed.
  • the present invention includes the following aspects: Item 1. Containing vitamin B 12, neurological diseases therapeutics.
  • Item 1A A method of treating nervous system disease comprising administering vitamin B 12 to a patient in need of nervous system disease treatment.
  • Vitamin B 12 for use in the treatment of nervous system disorders.
  • Vitamin B 12- containing composition for use in the treatment of nervous system disorders.
  • Item 1C Use of vitamin B 12 for the manufacture of a therapeutic agent for nervous system diseases.
  • Item 2 The agent for treating a nervous system disease according to item 1, which is a M2 macrophage / microglia induction promoter.
  • Item 3 The agent for treating a nervous system disease according to item 1, which is a M1 macrophage / microglia induction inhibitor.
  • Item 4 The agent for treating a nervous system disease according to any one of Items 1 to 3, which is a nerve regeneration promoter.
  • Item 5 The agent for treating a nervous system disease according to any one of Items 1 to 4, wherein the nervous system disease is a central nervous system disease.
  • Item 6 The agent for treating a nervous system disease according to item 5, wherein the central nervous system disease is a cerebrovascular disease.
  • Item 7 The agent for treating a nervous system disease according to item 6, wherein the cerebrovascular disease is at least one selected from the group consisting of cerebral infarction, cerebral hemorrhage, cerebral thrombosis, cerebral arteriosclerosis and dementia.
  • Item 8 The agent for treating a nervous system disease according to any one of Items 1 to 4, wherein the nervous system disease is a nerve injury.
  • Item 9 The agent for treating a nervous system disease according to item 8, wherein the nerve injury is central nerve injury.
  • Item 10 The agent for treating a nervous system disease according to item 9, wherein the central nerve injury is a spinal cord injury.
  • Item 11 The nervous system according to any one of items 1 to 10, wherein the vitamin B 12 is at least one selected from the group consisting of methylcobalamin, cyanocobalamin, hydroxocobalamin, sulfitocobalamin, adenosyl cobalamin, and salts thereof. Disease treatment agent.
  • Item 12. The agent for treating a nervous system disease according to any one of Items 1 to 11, wherein the vitamin B 12 is methylcobalamin.
  • Item 13 The agent for treating a nervous system disease according to any one of Items 1 to 12, which is used by being administered continuously.
  • Item 14 The agent for treating a nervous system disease according to item 13, which is a preparation for intravenous drip infusion.
  • Item 15. The agent for treating a nervous system disease according to any one of Items 1 to 14, which is used to start administration after 12 to 24 hours after onset.
  • Item 16 The agent for treating a nervous system disease according to any one of Items 1 to 14, which is used to start administration within 12 hours immediately after onset.
  • FIG. 16 shows the results of the LDH assay of Example 2.
  • the vertical axis shows the ratio of LDH activity, which is an index of necrosis, to high control.
  • the horizontal axis shows the type of drug added and its presence (10 ⁇ M) and no (-). * Indicates that the p value was less than 0.05 as a result of statistical analysis by Student T test. 16 shows the results of the neurite outgrowth assay of Example 3.
  • the vertical axis shows the average value of 30 or more nerve axons.
  • the horizontal axis shows the concentration of the added drug (CTR is not added). * Indicates that the p value was less than 0.05 as a result of statistical analysis by Dunnet's test for CTR, and ** indicates that the p value of the same result was less than 0.01.
  • the TTC staining result of Example 4 is shown.
  • the vertical axis shows the infarct volume.
  • the horizontal axis indicates the type of drug added and its presence (MeCbl) or no (Control). ** indicates that p value was less than 0.01 as a result of statistical analysis by Student T test. 7 shows the results of Western blot of Example 5.
  • the vertical axis shows the ratio of the amount of M1 marker (left: IL-1 ⁇ protein, right: iNOS protein) to the amount of GAPDH protein.
  • the horizontal axis shows the type of drug added and its presence (+ or concentration) or no (-). * Indicates that the p value was less than 0.05 as a result of statistical analysis by Dunnet's test, and ** indicates that the p value of the same result was less than 0.01. 7 shows the results of Western blot of Example 5.
  • the vertical axis shows the ratio of the amount of M2 marker (left: Arginase I (Arg1) protein, right: CD206 protein) to the amount of GAPDH protein.
  • the horizontal axis shows the type of drug added and its presence (+ or concentration) or no (-).
  • the vertical axis shows the ratio of the amount of phosphorylated AKT protein to the amount of AKT protein.
  • the horizontal axis shows the type of drug added and its presence (+ or concentration) or no (-). * Indicates that p value is less than 0.05 as a result of statistical analysis by Tukey-Kramer method, ** indicates that p value of the same result is less than 0.01, *** indicates the same result It shows that p value was less than 0.001. The result of the western blot of Example 6 is shown.
  • the vertical axis shows the ratio of phosphorylated 4EBP1 protein amount to 4EBP1 protein amount.
  • the horizontal axis shows the type of drug added and its presence (+ or concentration) or no (-).
  • FIG. 7 Results of immunohistological evaluation of Example 7 are shown.
  • the figures in each row show the results from the left, proximal 2.5 mm, injury, distal 2.5 mm, distal 5.0 mm, distal 7.5 mm.
  • the vertical axis shows the number of macrophages in the upper graph
  • the middle graph shows the number of M1 macrophages
  • the lower graph shows the proportion of M1 macrophages.
  • the horizontal axis shows the number of days elapsed after sciatic nerve injury.
  • CTR indicates an untreated group
  • MeCbl indicates a methylcobalamin-administered group
  • Sham indicates an uninjured group subjected to sciatic nerve expansion only.
  • the horizontal axis shows the number of days elapsed after sciatic nerve injury.
  • CTR indicates an untreated group
  • MeCbl indicates a methylcobalamin-administered group
  • Sham indicates an uninjured group subjected to sciatic nerve expansion only.
  • * Indicates that p value was less than 0.05 as a result of statistical analysis (CTR vs MeCbl) by Tukey-Kramer method
  • # indicates a result of statistical analysis (CTR vs MeCbl) by Student T test method
  • p value Indicates that it was less than 0.05.
  • the vertical axis shows the number of axons in the upper figure, the number in the middle shows the number of myelinated axons, and the lower figure shows the myelination rate.
  • the horizontal axis indicates the position where the nerve cross section was made (from the left side, proximal 2.5 mm, injury, distal 2.5 mm, distal 5.0 mm, distal 7.5 mm).
  • CTR indicates an untreated group
  • MeCbl indicates a methylcobalamin-administered group
  • Sham indicates an uninjured group subjected to sciatic nerve expansion only.
  • * Indicates that the p value was less than 0.05 as a result of statistical analysis (CTR v.s. MeCbl) by Tukey-Kramer method.
  • the BBB score measurement result of Example 9 is shown.
  • the vertical axis represents the BBB score.
  • the horizontal axis indicates the number of days elapsed after surgery (0 is before surgery) for creating a spinal cord injury model.
  • CTR indicates an untreated group
  • MeCbl indicates a methylcobalamin-administered group
  • Sham indicates an uninjured group subjected to sciatic nerve expansion only. * Indicates that the p value was less than 0.05 as a result of statistical analysis (CTR vs MeCbl) by the Steel-Dwass test method.
  • 7 shows the results of the thermal alerting test of Example 9.
  • the vertical axis shows the time until infrared heat stimulation is given to the right plantar and the heat draws the hind limb.
  • the horizontal axis indicates the number of days elapsed after surgery (0 is before surgery) for creating a spinal cord injury model.
  • CTR indicates an untreated group
  • MeCbl indicates a methylcobalamin-administered group
  • Sham indicates an uninjured group subjected to sciatic nerve expansion only. * Indicates that the p value was less than 0.05 as a result of statistical analysis (CTR vs MeCbl) by the Steel-Dwass test method.
  • CTR vs MeCbl The result of the western blot of M1 marker (IL-1 beta protein and iNOS protein) of Example 10 is shown.
  • the vertical axis shows the ratio of the amount of M1 marker (IL-1 ⁇ protein or iNOS protein) to the amount of GAPDH protein.
  • the horizontal axis shows the type of drug added and its presence (+ or concentration) or no (-). * Indicates that the p value was less than 0.05 as a result of statistical analysis by Dunnet's test, and ** indicates that the p value of the same result was less than 0.01.
  • the result of the western blot of M2 marker (Arg1 protein and CD206 protein) of Example 10 is shown.
  • the vertical axis, the horizontal axis, and the respective symbols are the same as in FIG. 7 shows the results of immunofluorescent staining at 7 days after surgery in Example 11. Each graph represents the change by site.
  • the horizontal axis of each figure shows the direction and distance from the injury.
  • the vertical axis shows the number of macrophages in the upper graph
  • the middle graph shows the number of M1 or M2 macrophages
  • the lower graph shows the proportion of M1 or M2 macrophages.
  • CTR indicates untreated group
  • MeCbl indicates methylcobalamin administered group. * Indicates that the p value was less than 0.05 as a result of statistical analysis (CTR v s. MeCbl) by Mann Whitney U test, and ** indicates that the p value was less than 0.01.
  • 14 shows the results of immunofluorescent staining at 14 days after surgery in Example 11. Others are similar to FIG. It shows the results of immunofluorescence staining at 28 days after surgery of Example 11. Others are similar to FIG.
  • the results of immunofluorescent staining for M1 macrophages of Example 11 are shown.
  • Each graph represents a change due to the number of days after surgery.
  • the figures in each row show the results from the left side, 2 mm head side, 1 mm head side, 1 mm tail side, 2 mm tail side, with respect to direction and distance from the injury.
  • the vertical axis shows the number of macrophages in the upper graph
  • the middle graph shows the number of M1 macrophages
  • the lower graph shows the proportion of M1 macrophages.
  • the horizontal axis shows the number of days elapsed after surgery for creating a spinal cord injury model.
  • CTR indicates untreated group
  • MeCbl indicates methylcobalamin administered group.
  • the vertical axis shows the M1 / M2 ratio.
  • the horizontal axis shows the number of days elapsed after surgery for creating a spinal cord injury model.
  • CTR indicates untreated group
  • MeCbl indicates methylcobalamin administered group.
  • * Indicates that the p value was less than 0.05 as a result of statistical analysis (CTR v s. MeCbl) by Mann Whitney U test, and ** indicates that the p value was less than 0.01.
  • 17 shows the results of immunofluorescent staining for the M1 / M2 ratio of Example 11.
  • Each graph represents the change by site. From the left side, the results after 7 days, 14 days and 28 days after surgery of spinal cord injury model creation are shown.
  • the vertical axis shows the M1 / M2 ratio.
  • the horizontal axis shows the number of days elapsed after surgery for creating a spinal cord injury model.
  • the horizontal axis shows the direction and distance from the injury.
  • CTR indicates untreated group
  • MeCbl indicates methylcobalamin administered group.
  • * Indicates that the p value was less than 0.05 as a result of statistical analysis (CTR v s. MeCbl) by Mann Whitney U test, and ** indicates that the p value was less than 0.01.
  • 16 shows the results of the Rota-rod test of Example 12.
  • the horizontal axis shows the number of days elapsed after stroke, and the vertical axis shows the relative time to fall from the rotor rod.
  • CTR indicates untreated group
  • MeCbl indicates methylcobalamin administered group.
  • ** indicates that the p value was less than 0.01 as a result of statistical analysis (CTR vs MeCbl) by Mann Whitney U test.
  • microphage / microglia means “macrophage and / or microglia” and is a term including both “macrophage and microglia” and “macrophage or microglia”.
  • the present invention in one aspect thereof, comprises a vitamin B 12, neurological diseases agents, apoptosis inhibitor, necrosis inhibitor, axon extension promoter, M2 macrophages / microglia induction promoter, M1 macrophage / microglia-induced suppression
  • the present invention relates to an agent, a nerve regeneration promoter and the like (also referred to herein as "the agent of the present invention”). These will be described below.
  • the active ingredient vitamin B 12 is cobalamin, its derivatives, and salts thereof.
  • vitamin B 12 include cobalamin, those in which cobalt ion of cobalamin is substituted, and derivatives thereof. More specific examples include methylcobalamin, cyanocobalamin, hydroxocobalamin, sulfitocobalamin, adenosyl cobalamin, salts thereof and the like. Among these, methylcobalamin, cyanocobalamin, hydroxocobalamin and salts thereof are preferable, and methylcobalamin and salts thereof are more preferable.
  • the salts of cobalamin and its derivatives are not particularly limited as long as they are pharmaceutically acceptable salts, and any of acidic salts and basic salts can be adopted.
  • the acid salt include mineral acid salts such as hydrochloride, hydrobromide, sulfate, nitrate, and phosphate; acetate, propionate, tartrate, fumarate, maleate, apple Organic acid salts such as acid salts, citrates, methanesulfonates, para-toluenesulfonates, amino acids salts such as aspartates and glutamates, and the like.
  • the basic salt include alkali metal salts such as sodium salt and potassium salt; and alkaline earth metal salts such as calcium salt and magnesium salt.
  • Vitamin B 12 may be in the form of a solvate.
  • the solvent is not particularly limited as long as it is pharmaceutically acceptable, and examples thereof include water, ethanol, glycerol, acetic acid and the like.
  • Vitamin B 12 may be the singly or may be a combination of two or more thereof.
  • Vitamin B 12 has a therapeutic effect on nervous system diseases. Therefore, vitamin B 12 can be used as an active ingredient of a therapeutic agent for nervous system diseases.
  • Vitamin B 12 has an apoptosis suppressing action, a necrosis suppressing action, an axonal extension promoting action, an M2 macrophage / microglia induction promoting action, an M1 macrophage / microglia induction inhibiting action, a nerve regeneration promoting action, and the like. Therefore, vitamin B 12 is an apoptosis inhibitor, necrosis inhibitor, axonal outgrowth promoter, M2 macrophage / microglia induction promoter, M1 macrophage / microglia induction inhibitor, M1: M2 ratio (M1 to M2 macrophages / microglia It can be used as an active ingredient of a ratio of (microglia ratio) inhibitor, nerve regeneration promoter and the like.
  • vitamin B 12 is a preferred embodiment of a therapeutic agent for nervous system diseases, that is, apoptosis suppressive action, necrosis suppressive action, axonal extension promoting action, M2 macrophage / microglia induction promotion action, M1 macrophage / microglia induction suppression action, and nerve It can be used as an active ingredient of a therapeutic agent for nervous system diseases based on at least one selected from the group consisting of regeneration promoting effects.
  • the nervous system diseases are not particularly limited, and include central nervous system diseases and peripheral nervous system diseases.
  • central nervous system diseases include cerebrovascular diseases, nerve damage and the like.
  • Cerebrovascular diseases include cerebral infarction, cerebral hemorrhage, cerebral thrombosis, cerebral arteriosclerosis, dementia and the like.
  • the nerve injury may be either peripheral nerve injury or central nerve injury.
  • Central nerve injury also includes spinal cord injury.
  • the cause of nerve damage is not particularly limited, and nerve damage due to various causes such as trauma, compression by cast, electric shock, disc herniation, radiation exposure, etc. is applicable.
  • the degree of nerve damage to which the present invention is applied is not particularly limited, and in the case where axons are preserved but demyelination occurs, if Waller degeneration is involved, or nerves are anatomically ruptured, etc. Both are applicable.
  • nerve damage includes various symptoms associated with it, such as motor impairment (such as motor paralysis and weakness in upper and lower limbs), sensory impairment (such as analgesia, numbness, pain, etc.) in the damaged nerve area.
  • autonomic nervous disorders perspiration abnormalities, changes in skin tone, etc. and the like.
  • the nervous system disease is preferably selected from the group consisting of apoptosis suppressive action, necrosis suppressive action, axonal extension promoting action, M2 macrophage / microglia induction promoting action, M1 macrophage / microglia induction inhibiting action, and nerve regeneration promotion action It is a neurological disease that can be treated based on at least one type.
  • the agent of the present invention is not particularly limited as long as it contains vitamin B 12 (sometimes referred to herein simply as “active ingredient”), and may further contain other ingredients as necessary. .
  • the other components are not particularly limited as long as they are pharmaceutically acceptable components.
  • Other components include additives having a pharmacological action as well as additives.
  • the additive for example, base, carrier, solvent, dispersant, emulsifier, buffer, stabilizer, excipient, binder, disintegrant, lubricant, thickener, humectant, coloring agent, flavor, Chelating agents and the like can be mentioned.
  • Vitamin B 12 alone has a therapeutic effect on nervous system diseases, an apoptosis suppressive action, an necrosis suppressive action, an axonal extension promoting action, an M2 macrophage / microglia induction promotion action, an M1 macrophage / microglia induction suppression action (here, M1 macrophage It can not be denied that it is a shift effect from microglia to M2 macrophages / microglia. Therefore, the agent of the present invention can exert its desired effect without including other components having these effects and / or actions, but may contain other components having pharmacological actions. Good.
  • the use mode of the agent of the present invention is not particularly limited, and an appropriate use mode can be adopted according to the type.
  • the agent of the present invention can be used, for example, in vitro (for example, added to the culture medium for the culture) or in vivo (for example, administered to an animal), depending on its use. You can also.
  • the application object of the agent of the present invention is not particularly limited, examples of mammals include humans, monkeys, mice, rats, dogs, cats, rabbits, pigs, horses, cattle, sheep, goats, deer and the like. Moreover, as a cell, an animal cell etc. are mentioned.
  • the type of cells is also not particularly limited. For example, blood cells, hematopoietic stem cells / progenitor cells, gametes (sperm, egg), fibroblasts, epithelial cells, vascular endothelial cells, neurons, hepatocytes, hepatocytes, keratinocytes, myocytes And epidermal cells, endocrine cells, ES cells, iPS cells, tissue stem cells, cancer cells and the like.
  • the agent of the present invention may be in any dosage form, such as tablets (including orally disintegrating tablets, chewable tablets, effervescent tablets, troches, jelly drops, etc.), pills, granules, fine granules, powders, Oral formulations such as hard capsules, soft capsules, dry syrups, solutions (including drinks, suspensions and syrups) and jellies, and preparations for injection (eg, drip injections (eg, for intravenous drip infusion) Formulations, etc.)
  • Intravenous injection intramuscular injection, subcutaneous injection, intradermal injection), external preparation (eg, ointment, poultice, lotion), suppository inhalant, eye, eye ointment, point Parenteral preparations such as nasal drops, eardrops, and liposomes can be taken.
  • the administration route of the agent of the present invention is not particularly limited as long as the desired effect can be obtained, and oral administration, enteral administration such as tube feeding, enteral administration, intravenous administration, transarterial administration, intramuscular administration, etc.
  • enteral administration such as tube feeding, enteral administration, intravenous administration, transarterial administration, intramuscular administration, etc.
  • Intracardiac administration subcutaneous administration, intradermal administration, parenteral administration such as intraperitoneal administration and the like can be mentioned.
  • the content of the active ingredient in the agent of the present invention depends on the mode of use, application subject, state of application subject, etc., and is not limited, for example, 0.0001 to 100% by weight, preferably 0.001 to 50 wt. It can be%.
  • the dose for administering the agent of the present invention to an animal is not particularly limited as long as it is an effective amount to exert a medicinal effect, and generally 0.1 to 1 day per day as an active ingredient weight. 1000 mg / kg body weight, preferably 0.5 to 500 mg / kg body weight per day, and for parenteral administration 0.01 to 100 mg / kg body weight per day, preferably 0.05 to 50 mg / kg body weight .
  • the above dose can be appropriately increased or decreased depending on the age, condition and symptoms.
  • the agent of the present invention is preferably administered continuously from the viewpoint of exerting the M2 macrophage / microglia induction promoting action, the M1 macrophage / microglia induction inhibiting action, the nerve regeneration promotion action and the like more effectively.
  • the concentration of the active ingredient acting on the cells in the administration subject for example, cells of diseased part of nervous system disease, preferably macrophages / microglia
  • M2 macrophage / microglia induction promoting action M1 macrophage / microglia induction inhibiting action
  • nerve regeneration nerve regeneration It is possible to maintain the concentration suitable for exerting the promoting action (for example, 5 nM to 100 ⁇ M, preferably 10 nM to 50 ⁇ M, more preferably 20 nM to 10 ⁇ M, more preferably 50 nM to 5 ⁇ M, still more preferably 100 nM to 1 ⁇ M)
  • the agent of this invention is based also on the application object, it is preferable that it is a drip
  • the administration timing of the agent of the present invention is not particularly limited.
  • the agent of the present invention is used to start administration, for example, 12 to 24 hours after onset.
  • the onset is a point at which the symptom of the disease or the direct factor causing it can be confirmed, and in the case of ischemic cerebrovascular disease such as cerebral infarction, for example, the onset point of the ischemic site.
  • the agent of the present invention can act on a repair mechanism that can act at a relatively late timing from ischemic site development (M2 macrophage / microglia induction promoting action, M1 macrophage / microglia induction inhibiting action, nerve regeneration promotion action), When applied to ischemic cerebrovascular disease such as cerebral infarction, it is possible to exert a therapeutic effect even when administered at the above timing (12 to 24 hours after onset).
  • the agent of the present invention is used to start administration in the acute phase (eg, immediately after onset to within 12 hours of onset) of nervous system diseases such as nerve injury (preferably spinal cord injury).
  • nervous system diseases such as nerve injury (preferably spinal cord injury).
  • the onset is the point at which the symptom of the disease or the direct factor causing it can be confirmed, for example, in the case of nerve injury such as spinal cord injury, the point at which nerve injury occurs.
  • Example 1 Apoptosis inhibitory action of cerebral cortex neurons The apoptosis inhibitory action of cerebral cortex neurons was examined by TUNEL assay using methylcobalamin. Specifically, it is as follows.
  • Example 1-1 Preparation of Cerebral Cortical Nerves> Cerebral cortical nerves were collected and cultured according to a standard method.
  • the cerebral cortex is dissected from the fetus of Sprague Dawley (SD) rats (day 18 of gestation) and recovered in ice cold Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% penicillin / streptomycin did.
  • the pia and blood vessels were removed, transferred to DMEM (without FBS, containing 1% penicillin / streptomycin) and shredded to 1 mm with scissors.
  • Papain final concentration 2 mg / ml was added to the cell mixture and reacted at 37 ° C.
  • Example 1-2 TUNEL assay> 20 mM glutamate, 10 ⁇ M methylcobalamin (MeCbl) was added to a PLL-coated 8-well chamber slide cultured cerebral cortex nerve (Example 1-1), and after 18 hours, the percentage of apoptotic cells was evaluated with Promega deadend fluorometric TUNEL system did. It was fixed at 4 ° C. for 25 minutes with 4% paraformaldehyde (PFA). After permeabilization with 0.2% Triton X-100 for 5 minutes, incubation buffer was added and the mixture was placed for 60 minutes in the dark at 37 ° C. for labeling. Nuclei were labeled with DAPI. The total number of cells and the number of TUNEL positive cells were counted.
  • PFA paraformaldehyde
  • Example 1-3 Result> The results are shown in FIG. Further, the numerical values in FIG. 1 are shown in Table 1. In the TUNEL assay, the percentage of apoptotic cells was similar to that of the control when methylcobalamin alone was added. The addition of glutamate alone resulted in a significant increase in the proportion of apoptotic cells, but the combination of glutamate and methylcobalamin significantly reduced the proportion of apoptotic cells to the control level.
  • Example 2 Necrosis inhibitory action of cerebral cortex neurons The necrosis inhibitory action of cerebral cortex neurons was examined by LDH assay using methylcobalamin. Specifically, it is as follows.
  • Example 2-1 LDH assay> 10 ⁇ M methylcobalamin was added 30 minutes before oxygen-glucose deprivation (OGD) loading to cerebral cortex neurons (Example 1-1) cultured in PLL coated 6 well chamber slide. N-methyl-D aspartate (NMDA) was added to the standard high control. The medium was changed to earle's balanced salt solution (EBSS), and an OGD load was performed for 3 hours in an environment with an oxygen concentration of 1%. After 24 hours, the medium was returned to an oxygen concentration environment and the supernatant was collected, and LDH activity was measured using a cytotoxicity detection kit plus (SIGMA). The LDH activity of the control group and methylcobalamin-added group was calculated as a percentage (%) of the high control LDH activity.
  • OGD oxygen-glucose deprivation
  • Example 2-2 Result> The results are shown in FIG. The numerical values in FIG. 2 are shown in Table 2.
  • the ratio of the LDH activity, which is an index of necrosis, to the high control was significantly reduced in the methylcobalamin addition group compared to the control group.
  • Example 3 Axon Extension Promoting Action of Cerebral Cortical Neurons The axonal extension promoting action of cerebral cortical neurons was examined in a neurite extension assay using methylcobalamin. Specifically, it is as follows.
  • Example 3-1 Neurite Outgrowth Assay> Various drugs were added 24 hours after the cortical nerve (Example 1-1) was seeded. The concentration of added drug was methylcobalamin (1 nM, 10 nM, 100 nM, 1 ⁇ M, 10 ⁇ M, 100 ⁇ M). 72 hours after cell seeding, immunofluorescent staining was carried out with anti-TuJ1 antibody, and axon length (neuron length) was measured. However, only cells not in contact with other nerves were measured, at least 30 or more nerve axons were measured in each evaluation, and the average value was calculated and used as the measurement value.
  • Example 3-2 Result> The results are shown in FIG. Further, the numerical values in FIG. 3 are shown in Table 3. In the neurite outgrowth assay, axonal extension tends to be promoted in a concentration dependent manner at a peak concentration of 10 ⁇ M, and at 1 ⁇ M and 10 ⁇ M, there is a significant difference in axonal outgrowth compared with the control group without any drug I recognized the promotion.
  • Example 4 Reduction of cerebral infarction volume The reduction of cerebral infarction volume was examined by TTC (2,3,5-Triphenyltetrazolium chloride) staining using methylcobalamin. Specifically, it is as follows.
  • Example 4-1 Preparation of temporary middle cerebral artery occlusion (tMCAO) model, and drug administration> 8-9 week old male C57BL / 6J mice (around 24 g) were used.
  • a probe for laser doppler blood flow measurement was attached on the right skull to enable monitoring of middle cerebral artery blood flow.
  • the right cervix was unfolded, the external carotid artery was ligated, an incision was made in the common carotid artery, a nylon thread was inserted, and the tip was advanced while looking at the blood flow monitor.
  • the tip was advanced to the middle cerebral artery bifurcation, and it was confirmed that the blood flow decreased, and after standing by at a rectum temperature of 37 ° C.
  • methylcobalamin was placed in the back subcutaneous of an osmotic minipump and administered after the model was completed at a dose of 1 mg / kg / day.
  • raw food was administered in the same manner. Postoperatively, the rectum temperature was maintained at 37 ° C. until anesthesia awakened.
  • Example 4-3 Result> The results are shown in FIG. Further, the numerical values in FIG. 4 are shown in Table 4. Two days after tMCAO surgery on mice, cerebral infarction volume was evaluated by TTC staining. A significant reduction in infarct volume of about half was observed in the methylcobalamin-administered group compared to the control group.
  • Example 5 M2 macrophage induction promoting action and M1 macrophage induction suppressing action Using methylcobalamin, M2 macrophage induction promoting action and M1 macrophage induction suppressing action were examined by Western blotting and immunohistological evaluation method. Specifically, it is as follows.
  • Example 5-1 Preparation of macrophage cell line>
  • the mouse-derived macrophage cell line J774A.1 (JCRB9108) was purchased from JCRB cell bank (culture resources laboratory) in Osaka Prefecture. The culture was carried out in DMEM containing 10% FBS and 1% penicillin / streptomycin.
  • Example 5-2 Western blot method> J774A.1 cells (Example 5-1) were seeded in a dish of 6 cm in diameter, and 4 days later, proteins were collected using cell lysis buffer in which protease inhibitor cocktail was dissolved. After measuring the protein concentration by BCA assay, 50 ⁇ g of each sample was electrophoresed by SDS-PAGE and transferred to polyvinylidene difluoride membrane. After blocking for 1 hour with Blocking buffer, it was reacted with primary antibody at 4 ° C. over night. The secondary antibody was allowed to react for 1 hour at room temperature and detected with the ECL Western Blotting Detection System.
  • Lipopolysaccharide (LPS) 100 ng / ml
  • methylcobalamin were added 24 hours prior to protein collection when detecting the M1 markers iNOS and IL-1 ⁇ .
  • IL-4 20 ng / ml
  • methylcobalamin were added 72 hours before protein collection.
  • Primary antibodies are anti-IL-1 ⁇ rabbit polyclonal antibody (Santa Cruz), anti-iNOS rabbit monoclonal antibody (Abcam), anti-Arg1 rabbit polyclonal antibody (Santa Cruz), anti-CD206 rabbit monoclonal antibody (Abcam), and secondary antibody is anti-rabbit IgG horseradish peroxidase linked whole antibody from donkey (GE Healthcare Life Sciences) was used.
  • Example 5-3 Immunohistochemical evaluation method> J774A.1 cells (Example 5-1) were seeded in a dish of 6 cm in diameter, and fixed 4 days later with 4% PFA for 20 minutes. It was blocked for 30 minutes and the primary antibody was reacted at 4 ° C. over night. The secondary antibody was reacted at room temperature for 1 hour, and the nucleus was labeled with DAPI.
  • iNOS which is M1 marker
  • LPS 100 ng / ml
  • methylcobalamin were added 24 hours before cell fixation.
  • IL-4 20 ng / ml
  • methylcobalamin were added 72 hours before cell fixation.
  • Primary antibody is anti-iNOS rabbit monoclonal antibody (Abcam), anti-Arg1 rabbit polyclonal antibody (Santa Cruz), secondary antibody is Alexa 488 labeled goat anti rabbit IgG antibody (Lifetechnologies) or Alexa 568 labeled goat anti rabbit IgG antibody (Lifetechnologies) used.
  • the numerical values in FIG. 5 are shown in Table 5 and the numerical values in FIG. 6 are shown in Table 6.
  • M1 marker significant decrease in the amount of protein was observed at 100 nM and iNOS at 100 nM to 10 ⁇ M, compared to the addition of LPS alone.
  • M2 marker significant increase in the amount of protein was observed at 100 nM and 1 ⁇ M compared to the addition of IL-4 alone.
  • the results of the immunohistological evaluation method are shown in FIG.
  • the numerical values in FIG. 7 are shown in Table 7.
  • the rate of iNOS positive cells was significantly reduced in the iNOS which is the M1 marker.
  • the percentage of Arg1 positive cells was significantly increased by adding 10 nM to 1 ⁇ M of methylcobalamin as compared with the addition of IL-4 alone.
  • Example 6 Analysis of Mechanism of Macrophage Induction Action
  • the mechanism of macrophage induction action (Example 5) by methyl cobalamin was analyzed. Specifically, activation of Akt, 4EBP1 and S6K in the Akt-mTOR pathway (one of the main signaling pathways that induce the M2 gene) 30 minutes after addition of IL-4, methylcobalamin (100 nM and 1 mM) It was evaluated by Western blot. In the pathway, upstream signals cause phosphorylation of Akt and further downstream phosphorylation of 4EBP1 and phosphorylation of S6K via mTORC1. Phosphorylation of S6K causes a negative feedback action upstream of the signal.
  • FIG. 8-1 The results are shown in Fig. 8-1, Fig. 8-2, and Fig. 8-3.
  • the numerical values in FIG. 8-1, FIG. 8-2, and FIG. 8-3 are shown in Table 8.
  • Activation of both Akt and downstream 4EBP1 and S6K was observed by addition of IL-4.
  • the combined activation of IL-4 and methylcobalamin 100 nM enhanced their activation more than the addition of IL-4 alone, but when methyl cobalamin was 1 mM, the activity of 4EBP1 and S6K was reversed, and the activity of upstream Akt was It has fallen.
  • the mTOR inhibitor RAD 001 was further added to this, the activity of upstream Akt was rescued, and the suppression of downstream 4EBP1 and S6K activity was observed. From the above, it was suggested that the mechanism by which the upstream Akt activity toward M2 gene induction is suppressed by the negative feedback mechanism from the downstream when high concentration methylcobalamin is added.
  • Example 7 Analysis of macrophage dynamics after sciatic nerve injury The influence of methylcobalamin on macrophage dynamics after sciatic nerve injury was analyzed by immunohistological evaluation method. Specifically, macrophages were evaluated by fluorescent immunostaining in the proximal 2.5 mm, injured area, distal 2.5 mm, 5.0 mm, and 7.5 mm nerve transversal sections at 1, 3, 7 and 14 days after sciatic nerve injury. did.
  • proximal means the side from the injury on the axon to the cell body side
  • distal means the side from the injury on the axon to the end of the axon
  • the respective distances indicate the distances from the injury. The same applies to 8).
  • Macrophages were labeled with CD68, iNOS as the M1 marker, and CD206 as the M2 marker.
  • M1 macrophage ratio (%) number of M1 marker positive macrophages (number / mm 2 ) / number of macrophages (number / number 2 ) ⁇ 100. More specifically, it is as follows.
  • Example 7-1 Surgical treatment (sciatic nerve crush injury rat)> Six-week-old male Wistar rats (approximately 200 g) were used. The left sciatic nerve was deployed and crush injury was made with forceps proximal to the sciatic nerve. The pressing time was 10 seconds, the number of pressings was 3 times, and the interval between pressing operations was 10 seconds. The fascia and skin were sutured with 3-0 nylon. The uninjured, untreated, and methylcobalamin-treated groups that underwent only sciatic nerve deployment were compared. For continuous administration of methylcobalamin, an osmotic minipump was placed subcutaneously at the back and administered at a dose of 1 mg / kg / day. Raw food was administered in the same way in the untreated group.
  • Example 7-2 Morphological and histologic analysis> One, three, seven and fourteen days after surgery, the rat was sedated with an anesthetic and the left sciatic nerve was collected and frozen and embedded in 4% PFA for 7 days and 20% sucrose for 24 hours. .
  • the embedded tissue was sliced at a thickness of 5 ⁇ m in the direction of the nerve minor axis and placed on a glass slide. As slice sites, it was performed at five points of 2.5 mm proximal to the injury, 2.5 cm distal, 5.0 mm distal, 5.0 mm distal, and 7.5 mm distal. Dry for 1 hour and fix in 95% methanol for 30 minutes. After blocking, the primary antibody was reacted at 4 ° C. over night. The secondary antibody was reacted at room temperature for 1 hour, and the nucleus was labeled with DAPI.
  • Primary antibodies are anti-CD68 mouse monoclonal antibody (Abcam), anti-iNOS rabbit monoclonal antibody (Abcam), anti-CD206 rabbit monoclonal antibody (Abcam), anti-neurofilament 200 (NF200) rabbit polyclonal antibody (SIGMA) and anti-myelin Basic Protein (MBP) Mouse monoclonal antibody (CALBIOCHEM), secondary antibody labeled Alexa 488 labeled goat anti-mouse IgG antibody (Lifetechnologies), Alexa 488 labeled goat anti-rabbit IgG antibody (Lifetechnologies), Alexa 568 labeled goat anti-mouse IgG antibody (Lifetechnologies) and Alexa 568 labeled Goat anti-rabbit IgG antibody (Lifetechnologies) was used.
  • Example 7-3 Result> The results are shown in FIGS.
  • the numerical values in FIG. 9 are shown in Table 9-1, Table 9-2, and Table 9-3, and the numerical values in FIG. 10 are shown in Table 10-1, Table 10-2, and Table 10-3.
  • the methylcobalamin-administered group showed a significant decrease in the number of accumulated macrophages at 3, 7 and 14 days after surgery in the injured area as compared with the untreated group. At the distal end, the number of macrophages increased to delay the injury, but a significant difference was observed 14 days after the operation.
  • the number of M1 macrophages was significantly reduced in the methylcobalamin administration group on all evaluation days. Distal was significantly different 7 and 14 days after surgery. The same tendency was seen in the M1 macrophage ratio.
  • the number of M2 macrophages significantly increased in methylcobalamin-administered groups on days 1, 7 and 14 after surgery, 7 days after surgery at 5 mm distal and 7 and 14 days after surgery at 7.5 mm distal There was a significant difference. The same tendency was seen for the M2 macrophage ratio.
  • Example 8 Analysis of nerve regeneration kinetics after sciatic nerve injury The influence of methylcobalamin on nerve regeneration kinetics after sciatic nerve injury was analyzed by immunohistological evaluation method. Specifically, transverse sections of the injured sciatic nerve two weeks after sciatic nerve injury were evaluated. The evaluation sites were 2.5 mm proximal, 2.5 mm distal, 5.0 mm distal, and 7.5 mm distal similar to macrophage evaluation. Regenerating axons were labeled with NF200 and myelin was labeled with MBP.
  • the myelination rate (%) myelinated axon number (pieces / mm 2 ) / axon number (pieces / mm 2 ) ⁇ 100 was calculated. More specifically, it carried out by the method similar to Example 7.
  • FIG. 11 The results are shown in FIG.
  • the numerical values in FIG. 11 are shown in Table 11-1, Table 11-2, and Table 11-3.
  • the number of axons and myelinated axons were significantly improved in the methylcobalamin-administered group, the number of axons was 5.0 mm and 7.5 mm distally, and the number of myelinated axons was 2.5 mm distally, At 5.0 mm and 7.5 mm, significant differences were seen in the myelination rates at the distal 5.0 mm and 7.5 mm. From this result and the result of Example 7, it is suggested that methyl cobalamin promotes nerve regeneration by reducing M1 macrophages in an actual nerve regeneration process, increasing M2 macrophages and acting as an anti-inflammatory property. It was done.
  • Example 9 Therapeutic Effect of Spinal Cord Injury Using methylcobalamin, the therapeutic action of spinal cord injury was examined by a BBB (Basso-Beattie-Bresnahan) score and a thermal algorithm test. Specifically, it is as follows.
  • BBB Basso-Beattie-Bresnahan
  • Example 9-1 Preparation of rat spinal cord injury model (Lateral Hemisection model) and drug administration> Six-week-old female Wistar rats were used. Rats were purchased from Japan Charles River (Yokohama City, Japan). Anesthesia was administered by intraperitoneal injection with dilution of the three mixed anesthetics 1:10 with saline. The anesthetic dose per administration was midazolam 0.2 mg / kg, medetomidine 0.015 mg / kg, butorphanol 0.25 mg / kg. He was placed in a prone position on the operating table and developed a back midline. The T10 lamina was resected to expose the back of the spinal cord, and the left spinal cord was cut in half with a Spitz scalpel.
  • methylcobalamin administered group untreated group
  • Sham group Immediately after the operation, an osmotic minipump filled with methylcobalamin (1 mg / kg / day) and saline was placed in the left back subcutaneously immediately after the operation. The Sham group only resected the Th10 lamina.
  • Example 9-2 Measurement of BBB score> The rats were individually placed in cages and allowed to freely walk and observed for 5 minutes. According to the standard method, scoring was performed between 0 (no exercise) and 21 (normal exercise) in the function of the left leg. The evaluation was performed on postoperative days 1, 7, 14, 21, and 28 days after the operation.
  • Example 9-3 Thermal alerting test> The rats were individually placed in their own cages, infrared thermal stimulation was given to the right plantar, and the time to heat the hindlimb was measured. The stimulation time was up to 15 seconds to avoid damage to the skin. The evaluation was performed on postoperative days 7, 14, 21 and 28 before surgery.
  • Example 10 M2 microglia induction promoting action and M1 microglia induction suppressing action Using methyl cobalamin, M2 microglia induction promoting action and M1 microglia induction suppressing action were examined by Western blotting. Specifically, it is as follows.
  • Example 10-1 Western blot method> Methyl cobalamin adjusted to various concentrations (1 nM to 1 mM) by adding LPS (100 ng / ml) and IL-4 (20 ng / ml) as an anti-inflammatory cytokine to a microglial cell line (6-3 cells) Were added, and the protein was recovered 1 day and 3 days after each addition. After electrophoresis, transcription to a membrane was performed, and after blocking, primary antibodies to M1 marker (iNOS, IL-1 ⁇ ) and M2 marker (Arg1, CD206) were reacted at 4 ° C. over night. The secondary antibody was reacted at room temperature for 1 hour, and band detection was performed with a detector.
  • LPS 100 ng / ml
  • IL-4 20 ng / ml
  • M1 marker iNOS, IL-1 ⁇
  • M2 marker Arg1, CD206
  • the primary antibody was an anti-iNOS antibody, an anti-IL-1 ⁇ antibody, an anti-Arg1 antibody, an anti-CD206 antibody (Mannose Receptor), and the secondary antibody was Anti-Rabbit IgG, HRP-Linked Whole Ab Sheep.
  • the numerical values in FIG. 14 are shown in Table 14 and the numerical values in FIG. 15 are shown in Table 15.
  • M1 marker IL-1 ⁇ decreased by 1 ⁇ M and iNOS by 10 ⁇ M or more of methylcobalamin significantly decreased the amount of protein compared to addition of LPS alone.
  • M2 marker Arg1 showed a significant increase in protein mass when methyl cobalamin was added at 1 nM to 10 ⁇ M, compared to the addition of IL-4 alone.
  • CD206 a significant increase was observed with the addition of 10 nM to 100 nM methylcobalamin.
  • Example 11 M2 macrophage induction promoting action and M1 macrophage induction suppressing action Using methyl cobalamin, M2 macrophage induction promoting action and M1 macrophage induction suppressing action were examined. Specifically, it is as follows.
  • Example 11-1 Immunofluorescent staining> About the rat spinal cord injury model of Example 9-1, sedate rats after 7, 14 and 28 days after surgery with an anesthetic agent, fix by perfusion with 4% PFA, and collect the spinal cord including the injured part. After freezing for 24 hours with 20% sucrose, the cells were frozen and embedded. The embedded tissue was sliced at a thickness of 5 ⁇ m in the direction of the nerve minor axis and placed on a glass slide. Dry for 1 hour and fix in 100% methanol for 30 minutes. After blocking, the primary antibody was reacted at 4 ° C. over night. The secondary antibody was reacted at room temperature for 1 hour, and the nucleus was labeled with DAPI.
  • the primary antibody used was anti-CD68 antibody, anti-iNOS antibody, anti-Arg1 antibody, and the secondary antibody used Alexa 488 labeled goat anti rabbit IgG antibody and Alexa 568 labeled goat anti mouse IgG antibody.
  • FIGS. 16 to 18 show changes in the number of macrophages per unit area, the number of M1 (inflammatory type) macrophages, the number of M1 macrophages, the number of M2 (anti-inflammatory type) macrophages, and the change with the site for the ratio of M2 macrophages.
  • 20 represents changes due to the number of days elapsed after these operations.
  • FIG. 21 shows the change with the number of elapsed days after surgery for the M1 / M2 ratio
  • FIG. 22 shows the change with this site.
  • the numerical values in FIGS. 16 to 18 are sequentially shown in Tables 16 to 18, and the numerical values in FIG.
  • the number of accumulated macrophages per unit area tends to be smaller than in the untreated group, and in the phenotype, the number of M1 macrophages is decreased and the number of M2 macrophages is increased. Some differences were significant.
  • Example 12 About the functional recovery promotion effect of methyl cobalamin in a photocoagulation cerebral infarction model ⁇ Example 12-1.
  • Target and method> A male C57BL / 6J mouse (about 24 g) of 8-10 weeks old was used, and after administration of Rose Bengal, a photocoagulation cerebral infarction model was produced by irradiating laser light.
  • the skull of the mouse is drilled and drilled using a drill centered on the skull 2 mm outside the Oizumimon gate, and 5 minutes after administration of the photosensitive dye Rose Bengal, the laser light is directed to the right motor area center Irradiate and create a cerebral infarction in the right motor area.
  • cerebral infarction 2 days, 4 days, 7 days, 9 days, 11 days and 14 days after operation, the Rota-rod test (accelerating velocity) was performed. The time taken for the mouse to fall from the rota rod was measured, and the ratio was calculated with Max 300 seconds as the baseline.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Dermatology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicinal Preparation (AREA)

Abstract

神経系疾患の治療において有用な薬剤を提供することを課題とする。本発明に係るビタミンB12を有効成分とする薬剤は、M2マクロファージ/ミクログリア誘導促進作用、M1マクロファージ/ミクログリア誘導抑制作用、神経再生促進作用等を有し、神経系疾患、特に脳梗塞、認知症、脊髄損傷等の中枢神経系疾患の治療剤として非常に有用性が高いものである。

Description

神経系疾患治療剤
 本発明は、神経系疾患治療剤等に関する。
 神経系疾患とは脳、脊髄、末梢神経、筋肉に起きる疾患である。このうち、脳、脊髄に起きる疾患は中枢神経系疾患と呼ばれる。脳に起きる中枢神経系疾患の代表的なものとして、脳梗塞、認知症等がある。また、脊髄に起きる中枢神経系疾患の代表的なものとして、脊髄損傷等がある。
 脳梗塞は平成26年1年間の死因第4位である脳血管障害の約6割を占め、罹患後に介護が必要になる可能性が高く、医療費の面でも社会に及ぼす影響の大きい疾患である。脳梗塞の範囲は、血流が完全に遮断された虚血中心部(ischemic core、単にcore、核ともいう)と側副血行路により血流が得られる周辺部ペナンブラ(penumbra、半影帯)に分けられる。Core部の神経細胞は速やかに死滅するため(1次損傷)、この部分のレスキューは困難であるが、penumbra部は細胞死を免れている部分であるため生き残る可能性があり、この部分をいかにレスキューするかが脳梗塞の急性期治療の肝となる。脳梗塞病変部の組織学的な変化としては、(1)神経細胞のアポトーシス、(2)炎症の惹起、(3)血液脳関門(BBB)の崩壊などが起こっている。わが国で現在使用されている脳梗塞治療薬としては、ウロキナーゼや抗凝固・抗血小板剤の他、血液を希釈するもの、浮腫を軽減するものなどがある。フリーラジカルを除去する薬剤としてエダラボン(商品名ラジカット)が2001年にわが国において承認されたが、欧米等ではまだ承認されていない。2005年からは血栓溶解療法(t-PA)が承認されたが、使用が発症から4.5時間以内に限定されている。このように2005年以降は、脳梗塞の新しい治療薬が出てきていない状況である。
 脊髄損傷は本邦で年間5000人程度が新規受傷すると報告されており、疼痛や痺れ、運動機能障害などによりQOLを大きく低下させる原因となる。脊髄損傷の病態としては、受傷時の直達外力による神経細胞や血管組織のダメージ(一次損傷)に引き続き、血液脊髄関門の破綻に伴った一連の反応(二次損傷)が起こる事で損傷範囲が拡大する。一次損傷は避けようの無いものであり、二次損傷をいかに軽減するかが急性期~亜急性期脊髄損傷治療において重要となる。しかし現在臨床で急性期脊髄損傷に対し安全に使用できる有効な治療薬は存在せず、従来使用されてきたメチルプレドニゾロン大量療法も、その副作用の重篤さからアメリカの急性期脊髄損傷治療ガイドラインでは『ルーティーンで使用すべきではない』と明記され、脊髄損傷に対しては有効な新規治療薬が切望されている状況である。
 末梢神経は損傷後の再生能を有しているが、神経機能の回復は十分とはいえない。神経が損傷すると、ワーラー変性により軸索と髄鞘は貪食除去される。次いで、再生過程において、未分化なシュワン細胞で形成されるビュングナー帯(Bungner’s band)内を再生軸索が遠位方向へ伸長し、目標となる筋肉の再神経化が起こる。最終的には、再生軸索の周囲を取り巻いたシュワン細胞による髄鞘が形成される。しかし、再生神経の伸長速度は非常に遅く、目標となる筋肉までの距離が長い場合には筋萎縮が生じて十分な機能回復が望めなくなる。ところで、前述した再生過程の各段階においては、マクロファージが重要な役割を担っていることが近年明らかになり注目されている。マクロファージの炎症を起こす働きはよく知られているが、これとは逆に抗炎症性の働きを持つ表現型も持っており、それぞれM1型、M2型と呼ばれ、その表現型間には連続性がある(M1-M2間のシフトが起きる)と考えられている。そして、一般的に、抗炎症性の表現型であるM2マクロファージを増加させた方が神経再生は促進されると言われている。
 一方、中枢神経においては末梢神経と比べて再生能力が乏しいことが知られている。中枢神経損傷後には、軸索周囲に髄鞘を形成する細胞であるオリゴデンドロサイトに軸索伸展阻害物質が発現し、またマクロファージ/ミクログリア、アストロサイトなどがグリア瘢痕を形成し軸索伸展に抑制的に働くことが知られている。そのため、中枢神経損傷後においてもマクロファージ/ミクログリアの炎症作用を抑制することが重要であり、末梢神経と同様に抗炎症性の表現型であるM2マクロファージ/ミクログリアを増加させた方が神経再生は促進されると言われている。
 ビタミンB12はビタミンB12欠乏症の治療に有効であり、ビタミンB12欠乏症では末梢神経炎、脊髄変化といった神経学的変化も起こりうることが知られている(特許文献1)。
 また、脳虚血患者は健常者と比較して血中のホモシステイン濃度が高くなっており、血中のホモシステイン濃度と脳虚血の関連が示唆されている。そして、葉酸、ビタミンB6、B12投与で血中ホモシステイン濃度が減少することが明らかになっており、ホモシステイン濃度低下が脳虚血のリスクを低下させる可能性が示唆されている(非特許文献1)。
 さらに、アクチビン類がM2マクロファージ誘導によって抗炎症作用を示すこと(特許文献2)、脂肪組織由来間葉系幹細胞を含有する免疫抑制剤がM2マクロファージ誘導作用を示すこと(特許文献3)が知られている。
 しかしながら、ビタミンB12によってM2マクロファージ/ミクログリア誘導が促進され、M1マクロファージ/ミクログリア誘導が抑制されること、並びに脳梗塞等の神経疾患を改善することは開示されていない。
特表第2016-513694号公報 国際公開第2011/149036号公報 国際公開第2011/043136号公報
Current Medicinal Chemistry, 2007, Vol. 14, No. 3, p249-263
 本発明は、神経系疾患治療剤を提供することを課題とする。好ましくは、本発明は、アポトーシス抑制作用、ネクローシス抑制作用、軸索伸展促進作用、M2マクロファージ/ミクログリア誘導促進作用、M1マクロファージ/ミクログリア誘導抑制作用、及び神経再生促進作用からなる群より選択される少なくとも1種を有する神経系疾患治療剤を提供することを課題とする。
 本発明者は、上記課題に鑑みて鋭意研究を進めた結果、ビタミンB12が神経系疾患治療効果を有することを見出した。さらに、ビタミンB12がアポトーシス抑制作用、ネクローシス抑制作用、軸索伸展促進作用、M2マクロファージ/ミクログリア誘導促進作用、M1マクロファージ/ミクログリア誘導抑制作用、神経再生促進作用等を有することをも見出した。これらの知見に基づいてさらに研究を進めた結果、本発明が完成した。
 即ち、本発明は、下記の態様を包含する:
 項1. ビタミンB12を含有する、神経系疾患治療剤。
 項1A. 神経系疾患治療を必要とする患者にビタミンB12を投与することを含む、神経系疾患の治療方法。
 項1B1. 神経系疾患の治療における使用のための、ビタミンB12
 項1B2. 神経系疾患の治療における使用のための、ビタミンB12含有組成物。
 項1C. 神経系疾患治療剤の製造のための、ビタミンB12の使用。
 項2. M2マクロファージ/ミクログリア誘導促進剤である、項1に記載の神経系疾患治療剤。
 項3. M1マクロファージ/ミクログリア誘導抑制剤である、項1に記載の神経系疾患治療剤。
 項4. 神経再生促進剤である、項1~3のいずれかに記載の神経系疾患治療剤。
 項5. 前記神経系疾患が、中枢神経系疾患である、項1~4のいずれかに記載の神経系疾患治療剤。
 項6. 前記中枢神経系疾患が、脳血管疾患である、項5に記載の神経系疾患治療剤。
 項7. 前記脳血管疾患が、脳梗塞、脳出血、脳血栓症、脳動脈硬化症及び認知症からなる群より選択される少なくとも1種である、項6に記載の神経系疾患治療剤。
 項8. 前記神経系疾患が神経損傷である、項1~4のいずれかに記載の神経系疾患治療剤。
 項9. 前記神経損傷が中枢神経損傷である、項8に記載の神経系疾患治療剤。
 項10. 前記中枢神経損傷が脊髄損傷である、項9に記載の神経系疾患治療剤。
 項11. 前記ビタミンB12がメチルコバラミン、シアノコバラミン、ヒドロキソコバラミン、スルフィトコバラミン、アデノシルコバラミン、及びそれらの塩からなる群より選択される少なくとも1種である、項1~10のいずれかに記載の神経系疾患治療剤。
 項12. 前記ビタミンB12がメチルコバラミンである、項1~11のいずれかに記載の神経系疾患治療剤。
 項13. 持続的に投与して用いられる、項1~12のいずれかに記載の神経系疾患治療剤。
 項14. 点滴静注用製剤である、項13に記載の神経系疾患治療剤。
 項15. 発症から12~24時間経過以降に投与を開始するように用いられる、項1~14のいずれかに記載の神経系疾患治療剤。
 項16. 発症直後から12時間以内に投与を開始するように用いられる、項1~14のいずれかに記載の神経系疾患治療剤。
実施例1のTUNELアッセイの結果を示す。縦軸は、アポトーシス細胞割合を示す。横軸は、添加した薬剤の種類及びその有(+)無(-)を示す。**は、Tukey-Kramer法による統計解析の結果、p値が0.01未満であったことを示す。 実施例2のLDHアッセイの結果を示す。縦軸は、ネクローシスの指標となるLDH活性の高コントロールに対しての割合を示す。横軸は、添加した薬剤の種類及びその有(10μM)無(-)を示す。*は、Student T検定法による統計解析の結果、p値が0.05未満であったことを示す。 実施例3の神経突起伸展アッセイの結果を示す。縦軸は、30個以上の神経軸索の平均値を示す。横軸は、添加した薬剤の濃度(CTRは未添加)を示す。*は、CTRに対するDunnet検定法による統計解析の結果、p値が0.05未満であったことを示し、**は同結果のp値が0.01未満であったことを示す。 実施例4のTTC染色結果を示す。縦軸は、梗塞体積を示す。横軸は、添加した薬剤の種類及びその有(MeCbl)無(Control)を示す。**は、Student T検定法による統計解析の結果、p値が0.01未満であったことを示す。 実施例5のウエスタンブロットの結果を示す。縦軸は、GAPDHタンパク質量に対するM1マーカー(左図:IL-1βタンパク質、右図:iNOSタンパク質)量の比を示す。横軸は、添加した薬剤の種類及びその有(+又は濃度)無(-)を示す。*は、Dunnet検定法による統計解析の結果、p値が0.05未満であったことを示し、**は同結果のp値が0.01未満であったことを示す。 実施例5のウエスタンブロットの結果を示す。縦軸は、GAPDHタンパク質量に対するM2マーカー(左図:Arginase I(Arg1)タンパク質、右図:CD206タンパク質)量の比を示す。横軸は、添加した薬剤の種類及びその有(+又は濃度)無(-)を示す。*は、Dunnet検定法による統計解析の結果、p値が0.05未満であったことを示し、**は同結果のp値が0.01未満であったことを示す。 実施例5の免疫組織学的評価の結果を示す。縦軸は、左図:M1マクロファージの割合(iNOS陽性細胞の割合)、右図:M2マクロファージの割合(Arg1陽性細胞の割合)を示す。横軸は、添加した薬剤の種類及びその有(+又は濃度)無(-)を示す。**は、Dunnet検定法による統計解析の結果、p値が0.01未満であったことを示す。 実施例6のウエスタンブロットの結果を示す。縦軸は、AKTタンパク質量に対するリン酸化AKTタンパク質量の比を示す。横軸は、添加した薬剤の種類及びその有(+又は濃度)無(-)を示す。*は、Tukey-Kramer法による統計解析の結果、p値が0.05未満であったことを示し、**は同結果のp値が0.01未満であったことを示し、***は同結果のp値が0.001未満であったことを示す。 実施例6のウエスタンブロットの結果を示す。縦軸は、4EBP1タンパク質量に対するリン酸化4EBP1タンパク質量の比を示す。横軸は、添加した薬剤の種類及びその有(+又は濃度)無(-)を示す。*は、Tukey-Kramer法による統計解析の結果、p値が0.05未満であったことを示し、**は同結果のp値が0.01未満であったことを示し、***は同結果のp値が0.001未満であったことを示す。 実施例6のウエスタンブロットの結果を示す。縦軸は、S6Kタンパク質量に対するリン酸化S6Kタンパク質量の比を示す。横軸は、添加した薬剤の種類及びその有(+又は濃度)無(-)を示す。*は、Tukey-Kramer法による統計解析の結果、p値が0.05未満であったことを示し、**は同結果のp値が0.01未満であったことを示し、***は同結果のp値が0.001未満であったことを示す。 実施例7の免疫組織学的評価の結果を示す。各列の図は、左側から、近位2.5mm、損傷部、遠位2.5mm、遠位5.0mm、遠位7.5mmの結果を示す。縦軸は、上段の図は、マクロファージ数を示し、中段の図はM1マクロファージ数を示し、下段の図はM1マクロファージ割合を示す。横軸は、坐骨神経損傷後の経過日数を示す。CTRは未治療群を示し、MeCblはメチルコバラミン投与群を示し、Shamは坐骨神経展開のみを行った非損傷群を示す。*は、Tukey-Kramer法による統計解析(CTR v.s. MeCbl)の結果、p値が0.05未満であったことを示し、#は、Student T検定法による統計解析(CTR v.s. MeCbl)の結果、p値が0.05未満であったことを示す。 実施例7の免疫組織学的評価の結果を示す。各列の図は、左側から、近位2.5mm、損傷部、遠位2.5mm、遠位5.0mm、遠位7.5mmの結果を示す。縦軸は、上段の図は、マクロファージ数を示し、中段の図はM2マクロファージ数を示し、下段の図はM2マクロファージ割合を示す。横軸は、坐骨神経損傷後の経過日数を示す。CTRは未治療群を示し、MeCblはメチルコバラミン投与群を示し、Shamは坐骨神経展開のみを行った非損傷群を示す。*は、Tukey-Kramer法による統計解析(CTR v.s. MeCbl)の結果、p値が0.05未満であったことを示し、#は、Student T検定法による統計解析(CTR v.s. MeCbl)の結果、p値が0.05未満であったことを示す。 実施例8の免疫組織学的評価の結果を示す。縦軸は、上段の図は、軸索数を示し、中段の図は髄鞘化軸索数を示し、下段の図は髄鞘化率を示す。横軸は、神経横断切片を作製した位置(左側から、近位2.5mm、損傷部、遠位2.5mm、遠位5.0mm、遠位7.5mm)を示す。CTRは未治療群を示し、MeCblはメチルコバラミン投与群を示し、Shamは坐骨神経展開のみを行った非損傷群を示す。*は、Tukey-Kramer法による統計解析(CTR v.s. MeCbl)の結果、p値が0.05未満であったことを示す。 実施例9のBBBスコア測定結果を示す。縦軸は、BBBスコアを示す。横軸は、脊髄損傷モデル作製の手術後の経過日数(0は手術前)を示す。CTRは未治療群を示し、MeCblはメチルコバラミン投与群を示し、Shamは坐骨神経展開のみを行った非損傷群を示す。*は、Steel-Dwass test法による統計解析(CTR v.s. MeCbl)の結果、p値が0.05未満であったことを示す。 実施例9のThermal algesimetry testの結果を示す。縦軸は、右足底に赤外線熱刺激を与え、熱さで後肢を引くまでの時間を示す。横軸は、脊髄損傷モデル作製の手術後の経過日数(0は手術前)を示す。CTRは未治療群を示し、MeCblはメチルコバラミン投与群を示し、Shamは坐骨神経展開のみを行った非損傷群を示す。*は、Steel-Dwass test法による統計解析(CTR v.s. MeCbl)の結果、p値が0.05未満であったことを示す。 実施例10のM1マーカー(IL-1βタンパク質及びiNOSタンパク質)のウエスタンブロットの結果を示す。縦軸は、GAPDHタンパク質量に対するM1マーカー(IL-1βタンパク質又はiNOSタンパク質)量の比を示す。横軸は、添加した薬剤の種類及びその有(+又は濃度)無(-)を示す。*は、Dunnet検定法による統計解析の結果、p値が0.05未満であったことを示し、**は同結果のp値が0.01未満であったことを示す。 実施例10のM2マーカー(Arg1タンパク質及びCD206タンパク質)のウエスタンブロットの結果を示す。縦軸、横軸、各記号については、図14と同様である。 実施例11の術後7日の免疫蛍光染色の結果を示す。各グラフは、部位による変化を表す。各図の横軸は、損傷部からの方向及び距離を示す。縦軸は、上段の図はマクロファージ数を示し、中段の図はM1又はM2マクロファージ数を示し、下段の図はM1又はM2マクロファージ割合を示す。CTRは未治療群を示し、MeCblはメチルコバラミン投与群を示す。*は、Mann Whitney U testによる統計解析(CTR v.s. MeCbl)の結果、p値が0.05未満であったことを示し、**はp値が0.01未満であったことを示す。 実施例11の術後14日の免疫蛍光染色の結果を示す。その他は、図16と同様である。 実施例11の術後28日の免疫蛍光染色の結果を示す。その他は、図16と同様である。 実施例11のM1マクロファージに関する免疫蛍光染色の結果を示す。各グラフは、術後の経過日数による変化を表す。各列の図は、左側から、損傷部からの方向及び距離について、頭側2mm、頭側1mm、尾側1mm、尾側2mmの結果を示す。縦軸は、上段の図はマクロファージ数を示し、中段の図はM1マクロファージ数を示し、下段の図はM1マクロファージ割合を示す。横軸は、脊髄損傷モデル作製の手術後の経過日数を示す。CTRは未治療群を示し、MeCblはメチルコバラミン投与群を示す。*は、Mann Whitney U testによる統計解析(CTR v.s. MeCbl)の結果、p値が0.05未満であったことを示し、**はp値が0.01未満であったことを示す。 実施例11のM2マクロファージに関する免疫蛍光染色の結果を示す。その他は、図19と同様である。 実施例11のM1/M2比に関する免疫蛍光染色の結果を示す。各グラフは、術後の経過日数による変化を表す。左側から、損傷部からの方向及び距離について、頭側2mm、頭側1mm、尾側1mm、尾側2mmの結果を示す。縦軸は、M1/M2比を示す。横軸は、脊髄損傷モデル作製の手術後の経過日数を示す。CTRは未治療群を示し、MeCblはメチルコバラミン投与群を示す。*は、Mann Whitney U testによる統計解析(CTR v.s. MeCbl)の結果、p値が0.05未満であったことを示し、**はp値が0.01未満であったことを示す。 実施例11のM1/M2比に関する免疫蛍光染色の結果を示す。各グラフは、部位による変化を表す。左側から、脊髄損傷モデル作製の手術後7日、14日、28日経過後の結果を示す。縦軸は、M1/M2比を示す。横軸は、脊髄損傷モデル作製の手術後の経過日数を示す。横軸は損傷部からの方向及び距離を示す。CTRは未治療群を示し、MeCblはメチルコバラミン投与群を示す。*は、Mann Whitney U testによる統計解析(CTR v.s. MeCbl)の結果、p値が0.05未満であったことを示し、**はp値が0.01未満であったことを示す。 実施例12のロタロッドテストの結果を示す。横軸は脳梗塞術後の経過日数を示し、縦軸はロタロッドから落ちるまでの時間の相対値を示す。CTRは未治療群を示し、MeCblはメチルコバラミン投与群を示す。**は、Mann Whitney U testによる統計解析(CTR v.s. MeCbl)の結果、p値が0.01未満であったことを示す。
 本願において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
 本願において、「マクロファージ/ミクログリア」は、「マクロファージ及び/又はミクログリア」を意味し、「マクロファージ及びミクログリア」の意、「マクロファージ又はミクログリア」の意の両方を含む用語である。
 本発明は、その一態様において、ビタミンB12を含有する、神経系疾患治療剤、アポトーシス抑制剤、ネクローシス抑制剤、軸索伸展促進剤、M2マクロファージ/ミクログリア誘導促進剤、M1マクロファージ/ミクログリア誘導抑制剤、神経再生促進剤等(本明細書において、「本発明の剤」と示すこともある。)に関する。以下、これらについて説明する。
 1.有効成分
 ビタミンB12には、コバラミン、その誘導体、及びそれらの塩が含まれる。ビタミンB12として、具体的には、コバラミン、コバラミンのコバルトイオンが置換されたもの、及びそれらの誘導体が挙げられる。より具体的な例としては、メチルコバラミン、シアノコバラミン、ヒドロキソコバラミン、スルフィトコバラミン、アデノシルコバラミン、それらの塩等が挙げられる。これらの中でも、メチルコバラミン、シアノコバラミン、ヒドロキソコバラミン、それらの塩が好ましく、メチルコバラミン、その塩がより好ましい。
 コバラミン及びその誘導体の塩は、薬学的に許容される塩である限り特に限定されず、酸性塩、塩基性塩のいずれも採用することができる。例えば酸性塩の例としては、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、リン酸塩等の無機酸塩; 酢酸塩、プロピオン酸塩、酒石酸塩、フマル酸塩、マレイン酸塩、リンゴ酸塩、クエン酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩等の有機酸塩; アスパラギン酸塩、グルタミン酸塩等のアミノ酸塩等が挙げられる。また、塩基性塩の例として、ナトリウム塩、カリウム塩等のアルカリ金属塩; カルシウム塩、マグネシウム塩等のアルカリ土類金属塩等が挙げられる。
 ビタミンB12は溶媒和物の形態であってもよい。溶媒は、薬学的に許容されるものであれば特に限定されず、例えば水、エタノール、グリセロール、酢酸等が挙げられる。
 ビタミンB12は1種単独であってもよいし、2種以上の組み合わせであってもよい。
 2.用途
 ビタミンB12は、神経系疾患治療効果を有する。このため、ビタミンB12は、神経系疾患治療剤の有効成分として利用することができる。
 ビタミンB12は、アポトーシス抑制作用、ネクローシス抑制作用、軸索伸展促進作用、M2マクロファージ/ミクログリア誘導促進作用、M1マクロファージ/ミクログリア誘導抑制作用、神経再生促進作用等を有する。このため、ビタミンB12は、アポトーシス抑制剤、ネクローシス抑制剤、軸索伸展促進剤、M2マクロファージ/ミクログリア誘導促進剤、M1マクロファージ/ミクログリア誘導抑制剤、M1:M2比(M2マクロファージ/ミクログリアに対するM1マクロファージ/ミクログリアの比)抑制剤、神経再生促進剤等の有効成分として利用することができる。
 さらに、ビタミンB12は、神経系疾患治療剤の好ましい1態様、すなわちアポトーシス抑制作用、ネクローシス抑制作用、軸索伸展促進作用、M2マクロファージ/ミクログリア誘導促進作用、M1マクロファージ/ミクログリア誘導抑制作用、及び神経再生促進作用からなる群より選択される少なくとも1種に基づいた神経系疾患治療剤の有効成分として利用することができる。
 神経系疾患としては、特に制限されず、中枢神経系疾患、末梢神経系疾患が含まれる。中枢神経系疾患としては、例えば脳血管疾患、神経損傷等が挙げられる。
 脳血管疾患としては、脳梗塞、脳出血、脳血栓症、脳動脈硬化症、認知症等が挙げられる。
 神経損傷は、末梢神経損傷、及び中枢神経損傷のいずれであってもよい。中枢神経損傷には脊髄損傷も含まれる。神経損傷の原因も特に限定されず、外傷、ギプスによる圧迫、電撃傷、椎間板ヘルニア、放射線暴露等の種々の原因による神経損傷が適用対象となる。また、適用対象となる神経損傷の程度も特に限定されず、軸索は温存されているが脱髄が起こっている場合、ワーラー変性を伴う場合、神経が解剖学的に断裂している場合等のいずれも、適用対象となる。また、神経損傷には、これに伴う各種症状、例えば、損傷を受けた神経支配領域での、運動障害(上下肢の運動麻痺・筋力低下等)、感覚障害(感覚鈍麻、しびれ、疼痛等)、自律神経障害(発汗異常、皮膚の色調変化 等)等も包含される。
 神経系疾患は、好ましくは、アポトーシス抑制作用、ネクローシス抑制作用、軸索伸展促進作用、M2マクロファージ/ミクログリア誘導促進作用、M1マクロファージ/ミクログリア誘導抑制作用、及び神経再生促進作用からなる群より選択される少なくとも1種に基づいて治療可能な神経系疾患である。
 本発明の剤は、ビタミンB12(本明細書において、単に「有効成分」ということがある。)を含有する限りにおいて特に制限されず、必要に応じてさらに他の成分を含んでいてもよい。他の成分としては、薬学的に許容される成分であれば特に限定されるものではない。他の成分としては、薬理作用を有する成分のほか、添加剤も含まれる。添加剤としては、例えば基剤、担体、溶剤、分散剤、乳化剤、緩衝剤、安定剤、賦形剤、結合剤、崩壊剤、滑沢剤、増粘剤、保湿剤、着色料、香料、キレート剤等が挙げられる。
 なお、ビタミンB12は、単独で、神経系疾患治療効果、アポトーシス抑制作用、ネクローシス抑制作用、軸索伸展促進作用、M2マクロファージ/ミクログリア誘導促進作用、M1マクロファージ/ミクログリア誘導抑制作用(なお、M1マクロファージ/ミクログリアからM2マクロファージ/ミクログリアへのシフト作用であることも否定されない。)、神経再生促進作用等を発揮し得る。そのため、本発明の剤は、これらの効果及び/又は作用を有する他の成分を含まなくとも、その所望の効果を発揮することができるが、薬理作用を有する他の成分が含有されていてもよい。
 本発明の剤の使用態様は、特に制限されず、その種類に応じて適切な使用態様を採ることができる。本発明の剤は、その用途に応じて、例えばin vitroで使用する(例えば、培養細胞の培地に添加する。)こともできるし、in vivoで使用する(例えば、動物に投与する。)こともできる。
 本発明の剤の適用対象は特に限定されないが、哺乳動物では、例えば、ヒト、サル、マウス、ラット、イヌ、ネコ、ウサギ、ブタ、ウマ、ウシ、ヒツジ、ヤギ、シカ等が挙げられる。また、細胞としては、動物細胞等が挙げられる。細胞の種類も特に制限されず、例えば血液細胞、造血幹細胞・前駆細胞、配偶子(精子、卵子)、線維芽細胞、上皮細胞、血管内皮細胞、神経細胞、肝細胞、ケラチン生成細胞、筋細胞、表皮細胞、内分泌細胞、ES細胞、iPS細胞、組織幹細胞、がん細胞等が挙げられる。
 本発明の剤は、任意の剤形、例えば錠剤(口腔内側崩壊錠、咀嚼可能錠、発泡錠、トローチ剤、ゼリー状ドロップ剤などを含む)、丸剤、顆粒剤、細粒剤、散剤、硬カプセル剤、軟カプセル剤、ドライシロップ剤、液剤(ドリンク剤、懸濁剤、シロップ剤を含む)、ゼリー剤などの経口製剤形態や、注射用製剤(例えば、点滴注射剤(例えば点滴静注用製剤等)、静脈注射剤、筋肉注射剤、皮下注射剤、皮内注射剤)、外用剤(例えば、軟膏剤、パップ剤、ローション剤)、坐剤吸入剤、眼剤、眼軟膏剤、点鼻剤、点耳剤、リポソーム剤等の非経口製剤形態を採ることができる。
 本発明の剤の投与経路としては、所望の効果が得られる限り特に制限されず、経口投与、経管栄養、注腸投与等の経腸投与、経静脈投与、経動脈投与、筋肉内投与、心臓内投与、皮下投与、皮内投与、腹腔内投与等の非経口投与等が挙げられる。
 本発明の剤中の有効成分の含有量は、使用態様、適用対象、適用対象の状態等に左右されるものであり、限定はされないが、例えば0.0001~100重量%、好ましくは0.001~50重量%とすることができる。
 本発明の剤を動物に投与する場合の投与量は、薬効を発現する有効量であれば特に限定されず、通常は、有効成分の重量として、一般に経口投与の場合には一日あたり0.1~1000 mg/kg体重、好ましくは一日あたり0.5~500 mg/kg体重であり、非経口投与の場合には一日あたり0.01~100 mg/kg体重、好ましくは0.05~50 mg/kg体重である。上記投与量は、年齢、病態、症状により適宜増減することもできる。
 本発明の剤は、M2マクロファージ/ミクログリア誘導促進作用、M1マクロファージ/ミクログリア誘導抑制作用、神経再生促進作用等をより効果的に発揮させるという観点から、持続的に投与して用いられることが好ましい。これにより、投与対象内の細胞(例えば、神経系疾患患部の細胞、好ましくはマクロファージ/ミクログリア)に作用する有効成分濃度を、M2マクロファージ/ミクログリア誘導促進作用、M1マクロファージ/ミクログリア誘導抑制作用、神経再生促進作用の発揮に適した濃度(例えば5nM~100μM、好ましくは10nM~50μM、より好ましくは20nM~10μM、さらに好ましくは50nM~5μM、よりさらに好ましくは100nM~1μM)に保つことができ、より効果的にこれらの作用を発揮させることができる。また、本発明の剤は、その適用対象にもよるが、点滴注射剤であることが好ましく、点滴静注用製剤であることがより好ましい。
 本発明の剤の投与タイミングは、特に制限されない。
 一例として、本発明の剤は、発症から例えば12~24時間経過以降に投与を開始するように用いられる。発症は、その疾患の症状又はそれを引き起こす直接要因が確認可能な時点であり、例えば脳梗塞等の虚血性脳血管疾患の場合であれば、虚血部位の発生時点である。本発明の剤は、虚血部位発生から比較的遅いタイミングで働き得る修復機構に作用することができるので(M2マクロファージ/ミクログリア誘導促進作用、M1マクロファージ/ミクログリア誘導抑制作用、神経再生促進作用)、脳梗塞等の虚血性脳血管疾患に適用する場合、上記タイミング(発症から12~24時間経過以降)で投与しても、治療効果を発揮することが可能である。
 別の一例として、本発明の剤は、神経損傷(好ましくは脊髄損傷)等の神経系疾患の急性期(例えば、発症直後~発症から12時間以内)に投与を開始するように用いられる。発症は、その疾患の症状又はそれを引き起こす直接要因が確認可能な時点であり、例えば脊髄損傷等の神経損傷の場合であれば、神経に損傷が発生した時点である。
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 実施例1.大脳皮質神経細胞のアポトーシス抑制作用
 メチルコバラミンを用いて、大脳皮質神経細胞のアポトーシス抑制作用をTUNELアッセイで調べた。具体的には以下のとおりである。
 <実施例1-1.大脳皮質神経の調製>
 大脳皮質神経は定法に従って採取培養した。Sprague Dawley(SD)ラット(妊娠18日目)の胎仔から大脳皮質を切離し、10%ウシ胎児血清(FBS)及び1%ペニシリン/ストレプトマイシンを含有し、氷冷したダルベッコ改変イーグル培地(DMEM)に回収した。軟膜及び血管を除去し、DMEM(FBS未添加、1%ペニシリン/ストレプトマイシン含有)へ移して剪刀で1 mm大に細断した。細胞混合液にパパイン(最終濃度2 mg/ml)を添加し、37℃で30分間反応させた。Dnase I(70 U/ml)を添加し30秒間反応させたのち、10% FBS及び1%ペニシリン/ストレプトマイシンを含有したDMEMを添加し反応を停止させた。細胞混合液を800rpmで遠心分離したのち、10% FBS及び1%ペニシリン/ストレプトマイシンを含有したDMEMで再懸濁し、Poly-L lysine(PLL)でコーティングしたdishに播種した。細胞播種4時間後に、培地をNeurobasal 培地(10% B27サプリメント、1%ペニシリン/ストレプトマイシン含有)に交換した。
 <実施例1-2.TUNELアッセイ>
 PLLコーティングした8 well chamber slideで培養した大脳皮質神経(実施例1-1)に20mMのグルタミン酸、10μMのメチルコバラミン(MeCbl)を添加し、18時間後にPromega deadend fluorometric TUNEL systemでアポトーシス細胞割合を評価した。4%パラホルムアルデヒド(PFA)で4℃25分間固定した。0.2% TritonX-100で5分間透過処理を行った後、incubation bufferを添加して37℃遮光下に60分間置き、標識を行った。核はDAPIで標識した。全細胞数、TUNEL陽性細胞数を計測した。
 <実施例1-3.結果>
 結果を図1に示す。また、図1の数値を表1に表す。TUNELアッセイにおいて、メチルコバラミン単独添加ではアポトーシス細胞割合(%)はコントロールと同様であった。グルタミン酸単独添加ではアポトーシス細胞割合の有意な増加が見られたが、グルタミン酸にメチルコバラミンを併用することにより、コントロールレベルまで有意にアポトーシス細胞割合が減少した。
Figure JPOXMLDOC01-appb-T000001
 実施例2.大脳皮質神経細胞のネクローシス抑制作用
 メチルコバラミンを用いて、大脳皮質神経細胞のネクローシス抑制作用をLDHアッセイで調べた。具体的には以下のとおりである。
 <実施例2-1.LDHアッセイ>
 PLLコーティングした6 well chamber slideで培養した大脳皮質神経(実施例1-1)に、酸素-グルコース欠乏(OGD)負荷を行う30分前に10μMのメチルコバラミンを添加した。基準となる高コントロールにはN-メチル-Dアスパラギン酸(NMDA)を添加した。培地をearle’s balanced salt solution(EBSS)に交換し、酸素濃度1%の環境下に3時間のOGD負荷を行った。通常の培地、酸素濃度環境下に戻し24時間後に上清を採取、cytotoxicity detection kit plus(SIGMA)を用いてLDH活性を測定した。コントロール群、メチルコバラミン添加群のLDH活性度は、高コントロールのLDH活性に対する割合(%)で算出した。
 <実施例2-2.結果>
 結果を図2に示す。また、図2の数値を表2に表す。OGD負荷によるLDHアッセイにおいて、ネクローシスの指標となるLDH活性の高コントロールに対しての割合が、メチルコバラミン添加群でコントロール群に比し有意な低下が見られた。
Figure JPOXMLDOC01-appb-T000002
 実施例3.大脳皮質神経細胞の軸索伸展促進作用
 メチルコバラミンを用いて、大脳皮質神経細胞の軸索伸展促進作用を神経突起伸展アッセイで調べた。具体的には以下のとおりである。
 <実施例3-1.神経突起伸展アッセイ>
 大脳皮質神経(実施例1-1)を播種して24時間後に各種薬剤を添加した。添加薬剤濃度はメチルコバラミン(1nM、10nM、100nM、1μM、10μM、100μM)とした。細胞播種72時間後に、抗TuJ1抗体で免疫蛍光染色し、軸索長(the longest neurite length per neuron)を計測した。ただし、別の神経と接していない細胞のみ計測し、各評価において少なくとも30個以上の神経軸索を測定し、その平均値を算出し計測値とした。
 <実施例3-2.結果>
 結果を図3に示す。また、図3の数値を表3に表す。神経突起伸展アッセイにおいて、10μM濃度をピークに濃度依存性に軸索伸展が促進される傾向を認め、1μM及び10μMにおいては薬剤未添加のコントロール群と比較し、有意差を持って軸索伸展の促進を認めた。
Figure JPOXMLDOC01-appb-T000003
 実施例4.脳梗塞体積の縮小作用
 メチルコバラミンを用いて、脳梗塞体積の縮小作用をTTC(2,3,5-Triphenyltetrazolium chloride)染色法で調べた。具体的には以下のとおりである。
 <実施例4-1.一時的中大脳動脈閉塞(tMCAO)モデルの作製、及び薬剤投与>
 8-9週齢の雄のC57BL/6Jマウス(24g前後)を使用した。右頭蓋骨上にレーザードプラ血流計用のプローブを装着し、中大脳動脈の血流をモニタリングできるようにした。右頚部を展開し、外頚動脈を結紮後、総頸動脈に切開を加えナイロン糸を挿入、血流モニタを見ながら先端を進めた。先端が中大脳動脈分岐部まで進み血流が低下したのを確認し、その状態で1時間、直腸温37℃で待機した後、ナイロン糸を抜去し総頚動脈を結紮した。メチルコバラミンは持続投与のため、浸透圧ミニポンプを背部皮下に留置し1mg/kg/dayの用量でモデル完成後に投与した。未治療群では同様の方法で生食を投与した。術後は麻酔から覚醒するまで直腸温37℃で維持した。
 <実施例4-2.TTC染色法>
 術後2日のマウス(実施例4-1)をサクリファイスし、大脳を摘出した。1mm毎に冠状断でスライスし、2% TTC溶液に30分漬けた。実体顕微鏡で撮影した後、それぞれのスライスの梗塞面積を算出、全大脳スライスの梗塞面積を加える事で梗塞体積を算出した。1つのスライスでの梗塞面積は、(健側半球面積-患側健常部面積)で計算した。
 <実施例4-3.結果>
 結果を図4に示す。また、図4の数値を表4に表す。マウスに対するtMCAO手術後2日に、TTC染色で脳梗塞体積を評価した。メチルコバラミン投与群ではコントロール群に比し、1/2程度の有意な梗塞体積の縮小が見られた。
Figure JPOXMLDOC01-appb-T000004
 実施例5.M2マクロファージ誘導促進作用及びM1マクロファージ誘導抑制作用
 メチルコバラミンを用いて、M2マクロファージ誘導促進作用及びM1マクロファージ誘導抑制作用を、ウエスタンブロット法及び免疫組織学的評価法により調べた。具体的には以下のとおりである。
 <実施例5-1.マクロファージ細胞株の準備>
 マウス由来マクロファージ細胞株J774A.1(JCRB9108)を、大阪府のJCRB細胞バンク(培養資源研究室)より購入した。培養は10% FBS 及び1%ペニシリン/ストレプトマイシンを含有したDMEMで行った。
 <実施例5-2.ウエスタンブロット法>
 J774A.1細胞(実施例5-1)を直径6cmのディッシュに播種し、4日後にprotease inhibitor cocktailを溶解したcell lysis bufferを用いてタンパク質を収集した。BCAアッセイでタンパク質濃度を測定した後、サンプル50μgずつをSDS-PAGEで電気泳動し、polyvinylidene difluoride membraneに転写した。Blocking bufferで1時間のblockingを行った後、一次抗体と4℃ over nightで反応させた。二次抗体は室温で1時間反応させ、ECLウェスタンブロッティング検出システムで検出した。M1マーカーであるiNOS及びIL-1βの検出時は、タンパク質収集の24時間前にリポ多糖(LPS)(100ng/ml)及びメチルコバラミンを添加した。M2マーカーであるArg1及びCD206の検出時は、タンパク質収集の72時間前にIL-4(20ng/ml)及びメチルコバラミンを添加した。
 一次抗体は抗IL-1βウサギポリクローナル抗体(Santa Cruz)、抗iNOSウサギモノクローナル抗体(Abcam)、抗Arg1ウサギポリクローナル抗体(Santa Cruz)、抗CD206ウサギモノクローナル抗体(Abcam)、二次抗体はanti-rabbit IgG horseradish peroxidase linked whole antibody from donkey(GE Healthcare Life Sciences)を使用した。
 <実施例5-3.免疫組織学的評価法>
 J774A.1細胞(実施例5-1)を直径6cmのディッシュに播種し、4日後に4% PFAで20分間固定した。30分間ブロッキングし、一次抗体は4℃ over nightで反応させた。二次抗体は室温で1時間反応させ、核をDAPIで標識した。M1マーカーであるiNOSの検出時は、細胞固定の24時間前にLPS(100ng/ml)及びメチルコバラミンを添加した。M2マーカーであるArg1の検出時は、細胞固定の72時間前にIL-4(20ng/ml)及びメチルコバラミンを添加した。
 一次抗体は抗iNOSウサギモノクローナル抗体(Abcam)、抗Arg1ウサギポリクローナル抗体(Santa Cruz)、二次抗体はAlexa 488標識ヤギ抗ウサギIgG抗体(Lifetechnologies)もしくはAlexa 568標識ヤギ抗ウサギIgG抗体(Lifetechnologies)を使用した。
 <実施例5-4.結果>
 ウエスタンブロット法の結果を図5及び6に示す。また、図5の数値を表5に、図6の数値を表6に表す。M1マーカーではLPS単独添加に比し、IL-1βは100nM、iNOSは100nMから10μMで有意なタンパク質量の減少が見られた。M2マーカーではIL-4単独添加に比し、Arg1は100nMと1μMで有意なタンパク質量の増加が見られた。CD206では100nMから1μMをピークとした傾向が見られた。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 免疫組織学的評価法の結果を図7に示す。また、図7の数値を表7に表す。M1マーカーであるiNOSではLPS単独添加に比し、メチルコバラミンを10nMから100μMを加えたもので、iNOS陽性細胞率が有意に減少した。またM2マーカーであるArg1では、IL-4単独添加に比し、メチルコバラミン10nMから1μMを加えたもので、Arg1陽性細胞率が有意に増加した。
 前述のウエスタンブロットと同様に、免疫蛍光染色においても100nM付近をピークにM2方向へのシフトが見られた。
Figure JPOXMLDOC01-appb-T000007
 実施例6.マクロファージ誘導作用のメカニズムの解析
 メチルコバラミンによるマクロファージ誘導作用(実施例5)のメカニズムを解析した。具体的には、IL-4、メチルコバラミン(100nM及び1mM)を添加後30分のAkt-mTOR経路(M2遺伝子を誘導する主なシグナル経路の一つ)におけるAkt、4EBP1及びS6Kの活性化をウエスタンブロットで評価した。該経路においては、上流からのシグナルによって、Aktのリン酸化が起こり、さらに下流でmTORC1を介して、4EBP1のリン酸化及びS6Kのリン酸化が起こる。S6Kのリン酸化はシグナル上流にネガティブフィードバック作用をもたらす。ウエスタンブロットは、タンパク質収集の30分前にIL-4(20ng/ml)、メチルコバラミン、RAD001(200nM)を添加し、検出する一次抗体を変える以外は、実施例5-2と同様にして行った。
 結果を図8-1、図8-2、及び図8-3に示す。また、図8-1、図8-2、及び図8-3の数値を表8に表す。IL-4添加によりAkt、下流の4EBP1、S6Kとも活性化を認めた。IL-4とメチルコバラミン100nMを併用すると、IL-4単独添加の場合よりそれぞれの活性化が増強したが、メチルコバラミンを1mMにすると、4EBP1とS6Kの活性化に反し、上流のAktの活性は低下した。これに更にmTORの抑制剤であるRAD001を添加すると、上流のAktの活性はレスキューされ、下流の4EBP1及びS6K活性の抑制が見られた。以上より、高濃度メチルコバラミン添加では下流からのネガティブフィードバック機構により、M2遺伝子誘導に向かう上流Akt活性が抑制される機構が示唆された。
Figure JPOXMLDOC01-appb-T000008
 実施例7.坐骨神経損傷後のマクロファージ動態の解析
 坐骨神経損傷後のマクロファージ動態にメチルコバラミンが与える影響を免疫組織学的評価法で解析した。具体的には、坐骨神経損傷後1、3、7、14日での近位2.5mm、損傷部、遠位2.5mm、5.0mm、7.5mmの神経横断切片で、蛍光免疫染色でマクロファージを評価した。なお、近位は軸索上の損傷部から細胞体側を意味し、遠位は軸索上の損傷部から軸索末端側を意味し、それぞれの距離は損傷部からの距離を示す(実施例8においても同様である)。マクロファージはCD68、M1マーカーとしてiNOS、M2マーカーとしてCD206で標識した。M1マクロファージ割合(%)=M1マーカー陽性マクロファージ数(個/mm2 )/マクロファージ数(個/mm2)×100で算出した。より具体的には以下のとおりである。
 <実施例7-1.外科的処置(坐骨神経圧挫損傷モデルラット)>
 6週齢の雄のWistarラット(200 g前後)を使用した。左坐骨神経を展開し、坐骨神経の近位側に鑷子で圧挫損傷を加えた。圧挫時間は10秒間、圧挫回数は3回とし、圧挫操作の間隔は10秒間とした。筋膜及び皮膚を3-0 nylonで縫合した。坐骨神経展開のみを行った非損傷群と未治療群、メチルコバラミン投与群を比較検討した。メチルコバラミンは持続投与のため、浸透圧ミニポンプを背部皮下に留置し1mg/kg/dayの用量で投与した。未治療群では同様の方法で生食を投与した。
 <実施例7-2.Morphological and histological analysis>
 術後1日、3日、7日、14日経過したラットを麻酔薬で鎮静をかけ、左坐骨神経を採取して4% PFAで7日間、20%スクロースで24時間固定後に凍結包埋した。包埋した組織を神経短軸方向に5μm厚でスライスしglass slideに置いた。スライス部位として損傷の近位2.5mm、損傷部位、遠位2.5mm、遠位5.0mm、遠位7.5mmの5箇所で行った。1時間乾燥させて、95%メタノールで30分間固定した。ブロッキング後に1次抗体を4℃ over nightで反応させた。二次抗体は室温で1時間反応させ、核をDAPIで標識した。
 一次抗体は抗CD68マウスモノクローナル抗体(Abcam)、抗iNOSウサギモノクローナル抗体(Abcam)、抗CD206ウサギモノクローナル抗体(Abcam)、抗neurofilament 200(NF200)ウサギポリクローナル抗体(SIGMA)及び抗myelin Basic Protein(MBP)マウスモノクローナル抗体(CALBIOCHEM)、二次抗体はAlexa 488標識ヤギ抗マウスIgG抗体(Lifetechnologies)、Alexa 488標識ヤギ抗ウサギIgG抗体(Lifetechnologies)、Alexa 568標識ヤギ抗マウスIgG抗体(Lifetechnologies)及びAlexa 568標識ヤギ抗ウサギIgG抗体(Lifetechnologies)を使用した。
 <実施例7-3.結果>
 結果を図9及び10に示す。また、図9の数値を表9-1、表9-2、及び表9-3に、図10の数値を表10-1、表10-2、及び表10-3に表す。メチルコバラミン投与群は未治療群と比較して、損傷部においては術後3、7、14日で集積マクロファージ数の有意な減少を認めた。遠位では損傷部に遅れるようにマクロファージ数が増加していったが、術後14日で有意差を認めた。
 M1マクロファージ数は全評価日でメチルコバラミン投与群で有意な減少を認めた。遠位は術後7、14日で有意差を認めた。M1マクロファージ割合も同様の傾向が見られた。
 M2マクロファージ数は損傷部においては、術後1、7、14日のメチルコバラミン投与群で有意な増加を認め、遠位5mmでは術後7日、遠位7.5mmでは術後7及び14日で有意差を認めた。M2マクロファージ割合も同様の傾向が見られた。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 実施例8.坐骨神経損傷後の神経再生動態の解析
 坐骨神経損傷後の神経再生動態にメチルコバラミンが与える影響を免疫組織学的評価法で解析した。具体的には、坐骨神経損傷2週後の損傷坐骨神経の横断切片を評価した。評価部位はマクロファージ評価と同様に、近位2.5mm、損傷部、遠位2.5mm、5.0mm、7.5mmとした。再生軸索はNF200で標識、髄鞘をMBPで標識した。再生軸索の髄鞘化率を計算するため、髄鞘化率(%)=髄鞘化軸索数(個/mm2)/軸索数(個/mm2)×100として算出した。より具体的には、実施例7と同様の方法で行った。
 結果を図11に示す。また、図11の数値を表11-1、表11-2、及び表11-3に表す。損傷部では軸索数及び髄鞘化軸索数においてメチルコバラミン投与群で有意な改善を認め、軸索数では遠位5.0mm及び7.5mmで、髄鞘化軸索数では遠位2.5mm、5.0mm及び7.5mmで、髄鞘化率では遠位5.0mm及び7.5mmで有意差が見られた。この結果と実施例7の結果より、メチルコバラミンが実際の神経再生過程においてM1マクロファージを減少させ、M2マクロファージを増加させて、抗炎症性に働くことによって、神経再生を促進していることが示唆された。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 実施例9.脊髄損傷の治療作用
 メチルコバラミンを用いて、脊髄損傷の治療作用をBBB(Basso-Beattie-Bresnahan)スコア、及びThermal algesimetry testにより調べた。具体的には以下のとおりである。
 <実施例9-1.ラット脊髄損傷モデル(Lateral Hemisection model)の作製、及び薬剤投与>
 6週齢、メスのWistarラットを使用した。ラットは日本チャールスリバー(横浜市、日本)から購入した。麻酔方法は3種混合麻酔薬を生理食塩水で1:10に希釈して腹腔内注射にて投与した。1回当たりの麻酔投与量はミダゾラム0.2mg/kg、メデトミジン0.015mg/kg、ブトルファノール0.25mg/kgとした。手術台に腹臥位に置き、背部正中を展開した。T10椎弓を切除し脊髄後面を露出させ、スピッツメスで左脊髄を半切した。皮膚を4-0ナイロン糸で縫合し手術を終了した。メチルコバラミン投与群、未治療群およびSham群の3群を比較した。メチルコバラミン投与群、未治療群は術直後に左背部皮下にそれぞれメチルコバラミン(1mg/kg/day)、生理食塩水を充填した浸透圧ミニポンプを留置した。Sham群はTh10椎弓の切除のみを行った。
 <実施例9-2.BBBスコアの測定>
 ラットを個別にケージ内に入れ自由に歩かせ、5分間観察した。定法に従って、左下肢の機能で0点(運動なし)から21点(通常の運動)の間でスコアリングを行った。評価は術前、術後1, 7, 14, 21, 28日に行った。
 <実施例9-3.Thermal algesimetry test>
 ラットを個別に専用のケージ内に入れ、右足底に赤外線熱刺激を与え、熱さで後肢を引くまでの時間を測定した。皮膚へのダメージを避けるため、刺激時間は最大15秒とした。評価は術前、術後7, 14, 21, 28日に行った。
 <実施例9-4.結果>
 BBBスコアを図12に示す。また、図12の数値を表12に表す。メチルコバラミン投与群において未治療群に比し、術後14, 21, 28日目に左下肢運動機能の有意な改善を認めた。
Figure JPOXMLDOC01-appb-T000018
 Thermal algesimetry testの結果を図13に示す。また、図13の数値を表13に表す。メチルコバラミン投与群で術後21, 28日目に右下肢知覚過敏の有意な改善を認めた。
Figure JPOXMLDOC01-appb-T000019
 実施例10.M2ミクログリア誘導促進作用及びM1ミクログリア誘導抑制作用
 メチルコバラミンを用いて、M2ミクログリア誘導促進作用及びM1ミクログリア誘導抑制作用を、ウエスタンブロット法により調べた。具体的には以下のとおりである。
 <実施例10-1.ウエスタンブロット法>
 ミクログリア細胞株(6-3細胞)に対し、LPS(100ng/ml)、抗炎症性サイトカインとしてIL-4(20ng/ml)を添加し、そこへ各種濃度(1nM~1mM)に調整したメチルコバラミンを加え、それぞれ添加後1日、3日でタンパク質を回収した。電気泳動、メンブレンへの転写を行い、ブロッキング後、それぞれM1マーカー(iNOS, IL-1β)、M2マーカー(Arg1, CD206)に対する1次抗体を4℃ over nightで反応させた。二次抗体は室温で1時間反応させ、検出器でバンド検出を行った。
 一次抗体は抗iNOS抗体、抗IL-1β抗体、抗Arg1抗体、抗CD206抗体(Mannose Receptor)、二次抗体はAnti-Rabbit IgG, HRP-Linked Whole Ab Sheepを使用した。
 <実施例10-2.結果>
 ウエスタンブロット法の結果を図14~15に示す。また、図14の数値を表14に、図15の数値を表15に表す。ミクログリアの炎症性(M1)マーカーではLPS単独添加に比し、IL-1βは1μM、iNOSは10nM以上のメチルコバラミン添加で有意な蛋白質量の減少が見られた。抗炎症性(M2)マーカーではIL-4単独添加に比し、Arg1は1nMから10μMのメチルコバラミン添加で有意な蛋白質量の増加が見られた。CD206では10nMから100nMのメチルコバラミン添加で有意な増加が見られた。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 実施例11.M2マクロファージ誘導促進作用及びM1マクロファージ誘導抑制作用
 メチルコバラミンを用いて、M2マクロファージ誘導促進作用及びM1マクロファージ誘導抑制作用を調べた。具体的には以下のとおりである。
 <実施例11-1.免疫蛍光染色>
 実施例9-1のラット脊髄損傷モデルについて、術後7、14、28日経過したラットを麻酔薬で鎮静をかけ、4% PFAで灌流固定の後、損傷部を含んだ脊髄を採取して、20%スクロースで24時間固定後に凍結包埋した。包埋した組織を神経短軸方向に5μm厚でスライスしglass slideに置いた。1時間乾燥させて、100%メタノールで30分間固定した。ブロッキング後に1次抗体を4℃ over nightで反応させた。二次抗体は室温で1時間反応させ、核をDAPIで標識した。
 損傷部より頭側2mm、頭側1mm、尾側1mm、尾側2mmにおける患側脊髄横断切片で、単位面積あたりのマクロファージ数、M1(炎症性タイプ)マクロファージ数、M1マクロファージ割合、M2(抗炎症性タイプ)マクロファージ数、M2マクロファージ割合、M1/M2比を計測した。
 一次抗体は抗CD68抗体、抗iNOS抗体、抗Arg1抗体、二次抗体はAlexa 488標識ヤギ抗ウサギIgG抗体とAlexa 568標識ヤギ抗マウスIgG抗体を使用した。
 <実施例11-2.結果>
 免疫蛍光染色の結果を図16~22に示す。図16~18は、単位面積あたりのマクロファージ数、M1(炎症性タイプ)マクロファージ数、M1マクロファージ割合、M2(抗炎症性タイプ)マクロファージ数、M2マクロファージ割合についての部位による変化を表し、図19~20はこれらの術後の経過日数による変化を表す。図21は、M1/M2比についての術後の経過日数による変化を表し、図22はこの部位による変化を表す。また、図16~18の数値を、順に、表16~18に表し、図22の数値を表19に表す。
 メチルコバラミン投与群では未治療群に比し、単位面積あたりの集積マクロファージ数が少ない傾向にあり、またそのphenotypeにおいてはM1マクロファージが減少し、M2マクロファージが増加している傾向にあった。一部では有意差を認めた。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 実施例12.光凝固脳梗塞モデルにおけるメチルコバラミンの機能回復促進効果について
 <実施例12-1.対象と方法>
 8-10週齢の雄のC57BL/6Jマウス(24g前後)を使用し、ローズベンガルを投与後、レーザー光を照射することによる光凝固脳梗塞モデルを作製した。このモデルにおいては、マウスの頭蓋骨を大泉門より外側2mmを中心として、頭蓋骨にドリルを用いて穴を開け開頭し、光感受性色素であるローズベンガルの投与5分後に右運動野中心にレーザー光を照射し、右側運動野に脳梗塞を作製する。このように脳梗塞を作製した直後より、浸透圧ポンプ(ALZET Osmotic pumps:2週間用)を埋め込み、メチルコバラミン投与群(N=3)と未治療群(N=4)に分けて、脳梗塞術後、2日後、4日後、7日後、9日後、11日後、14日後にロタロッドテスト(accelerating velocity:加速方式)を施行した。マウスが、ロタロッドから落ちるまでの時間を計測し、Max 300秒をbaselineとして、その比率を算出した。
 <実施例12-2.結果>
 結果を図23に示す。また、図23の数値を表20に表す。脳梗塞術後2,4,9日後において、メチルコバラミン投与群は未治療群に比して、有意にロタロッドテストによる脳機能改善を認めた。
Figure JPOXMLDOC01-appb-T000026

Claims (18)

  1. ビタミンB12を含有する、神経系疾患治療剤。
  2. M2マクロファージ/ミクログリア誘導促進剤である、請求項1に記載の神経系疾患治療剤。
  3. M1マクロファージ/ミクログリア誘導抑制剤である、請求項1に記載の神経系疾患治療剤。
  4. 神経再生促進剤である、請求項1~3のいずれかに記載の神経系疾患治療剤。
  5. 前記神経系疾患が、中枢神経系疾患である、請求項1~4のいずれかに記載の神経系疾患治療剤。
  6. 前記中枢神経系疾患が、脳血管疾患である、請求項5に記載の神経系疾患治療剤。
  7. 前記脳血管疾患が、脳梗塞、脳出血、脳血栓症、脳動脈硬化症及び認知症からなる群より選択される少なくとも1種である、請求項6に記載の神経系疾患治療剤。
  8. 前記神経系疾患が神経損傷である、請求項1~4のいずれかに記載の神経系疾患治療剤。
  9. 前記神経損傷が中枢神経損傷である、請求項8に記載の神経系疾患治療剤。
  10. 前記中枢神経損傷が脊髄損傷である、請求項9に記載の神経系疾患治療剤。
  11. 前記ビタミンB12がメチルコバラミン、シアノコバラミン、ヒドロキソコバラミン、スルフィトコバラミン、アデノシルコバラミン、及びそれらの塩からなる群より選択される少なくとも1種である、請求項1~10のいずれかに記載の神経系疾患治療剤。
  12. 前記ビタミンB12がメチルコバラミンである、請求項1~11のいずれかに記載の神経系疾患治療剤。
  13. 持続的に投与して用いられる、請求項1~12のいずれかに記載の神経系疾患治療剤。
  14. 点滴静注用製剤である、請求項13に記載の神経系疾患治療剤。
  15. 発症から12~24時間経過以降に投与を開始するように用いられる、請求項1~14のいずれかに記載の神経系疾患治療剤。
  16. 発症直後から12時間以内に投与を開始するように用いられる、請求項1~14のいずれかに記載の神経系疾患治療剤。
  17. 請求項1~16のいずれかに記載の神経系疾患治療剤の製造のための、ビタミンB12の使用。
  18. 神経系疾患の治療における使用のための、ビタミンB12含有組成物。
PCT/JP2018/046945 2017-12-21 2018-12-20 神経系疾患治療剤 WO2019124483A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CA3086220A CA3086220A1 (en) 2017-12-21 2018-12-20 Therapeutic agent for nervous system disease
AU2018390261A AU2018390261B2 (en) 2017-12-21 2018-12-20 Agent for treatment of nervous system disease
JP2019554940A JP6650650B2 (ja) 2017-12-21 2018-12-20 神経系疾患治療剤
KR1020207020640A KR102684069B1 (ko) 2017-12-21 2018-12-20 신경계 질환 치료제
CN201880082317.0A CN111511373A (zh) 2017-12-21 2018-12-20 神经系统疾病治疗剂
SG11202005822PA SG11202005822PA (en) 2017-12-21 2018-12-20 Therapeutic agent for nervous system disease
EP18892293.4A EP3730144A4 (en) 2017-12-21 2018-12-20 AGENTS FOR TREATMENT OF DISEASES OF THE NERVOUS SYSTEM
RU2020123957A RU2020123957A (ru) 2017-12-21 2018-12-20 Терапевтическое средство для лечения заболевания нервной системы
IL275479A IL275479A (en) 2017-12-21 2020-06-17 A therapeutic agent for nervous system disease
US16/907,913 US11369626B2 (en) 2017-12-21 2020-06-22 Therapeutic agent for nervous system disease
ZA2020/04433A ZA202004433B (en) 2017-12-21 2020-07-17 Therapeutic agent for nervous system disease
US17/748,553 US11679122B2 (en) 2017-12-21 2022-05-19 Therapeutic agent for nervous system disease
US18/143,370 US12029751B2 (en) 2017-12-21 2023-05-04 Therapeutic agent for nervous system disease

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-245133 2017-12-21
JP2017245133 2017-12-21
JP2018-156503 2018-08-23
JP2018156503 2018-08-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/907,913 Continuation US11369626B2 (en) 2017-12-21 2020-06-22 Therapeutic agent for nervous system disease

Publications (1)

Publication Number Publication Date
WO2019124483A1 true WO2019124483A1 (ja) 2019-06-27

Family

ID=66993523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046945 WO2019124483A1 (ja) 2017-12-21 2018-12-20 神経系疾患治療剤

Country Status (12)

Country Link
US (2) US11369626B2 (ja)
EP (1) EP3730144A4 (ja)
JP (3) JP6650650B2 (ja)
CN (1) CN111511373A (ja)
AU (1) AU2018390261B2 (ja)
CA (1) CA3086220A1 (ja)
IL (1) IL275479A (ja)
RU (1) RU2020123957A (ja)
SG (1) SG11202005822PA (ja)
TW (1) TWI798320B (ja)
WO (1) WO2019124483A1 (ja)
ZA (1) ZA202004433B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018390261B2 (en) * 2017-12-21 2023-03-16 Nippon Zoki Pharmaceutical Co., Ltd. Agent for treatment of nervous system disease
CN112826827A (zh) * 2021-01-24 2021-05-25 华中科技大学同济医学院附属协和医院 甲钴胺在毒物诱导的脊髓变性样疾病中的应用
WO2023004235A1 (en) * 2021-07-23 2023-01-26 University Of Florida Research Foundation, Incorporated Controlling pro-inflammatory macrophage phenotype through biofunctional hydrogel design

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261535A (zh) * 1999-01-18 2000-08-02 倪荣聪 蛋氨酸组合物在制备治疗心、脑血管疾病的药物中的应用
WO2011043136A1 (ja) 2009-10-08 2011-04-14 国立大学法人名古屋大学 脂肪組織由来間葉系幹細胞を含有する免疫抑制剤及びその用途
WO2011149036A1 (ja) 2010-05-27 2011-12-01 国立大学法人 東京大学 抗炎症薬
CN102631667A (zh) * 2012-04-19 2012-08-15 赵廷宝 促神经再生注射剂及其制备方法
JP2014511830A (ja) * 2011-03-14 2014-05-19 エヌ.ブイ.・ヌートリシア 神経外傷を治療するための方法
CN104688763A (zh) * 2015-03-11 2015-06-10 刘力 包括手性异构化合物的赖肌维药物组合物及其用途
JP2016513694A (ja) 2013-03-14 2016-05-16 ファーマシューティカル プロダクションズ, インコーポレイテッド ビタミンb12欠乏症を治療する方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3889844B2 (ja) * 1997-02-10 2007-03-07 龍兒 梶 筋萎縮性側索硬化症治療剤
US6121249A (en) * 1998-07-01 2000-09-19 Donald L. Weissman Treatment and prevention of cardiovascular diseases with help of aspirin, antioxidants, niacin, and certain B vitamins
US7226916B1 (en) 2000-05-08 2007-06-05 N.V. Nutricia Preparation for the prevention and/or treatment of vascular disorders
DE60212365T2 (de) * 2001-04-25 2007-05-31 Cobalz Ltd., Chester Medizinische zusammensetzungen zur behandlung oder vorbeugung eines funktionellen vitamin b12 mangels
AU2002322275A1 (en) * 2001-06-20 2003-01-08 Mayo Foundation For Medical Education And Research Adenosyl-cobalamin fortified compositions
US6951658B1 (en) * 2003-07-08 2005-10-04 Pearson Research & Development Limited Emu-based compositions for mental well-being and method of use
US20050032740A1 (en) * 2003-08-06 2005-02-10 Balaji Venkataraman Vitamin compositions for the treatment and prevention of vascular disease and dementia
DE102005001479A1 (de) * 2005-01-12 2006-07-20 Synavit Gmbh Mittel, enthaltend Folsäure, Vitamin B6 und Vitamin B12, und dessen Verwendung
US20070178141A1 (en) * 2005-09-07 2007-08-02 Bebaas, Inc. Vitamin B12 compositions
GB0723972D0 (en) * 2007-12-07 2008-01-23 Queen Mary & Westfield College Use of vitamin B12
US20120010264A1 (en) 2009-03-26 2012-01-12 Dainippon Sumitomo Pharma Co., Ltd. Novel medicament for treating cognitive impairment
JPWO2011118795A1 (ja) * 2010-03-26 2013-07-04 国立大学法人名古屋大学 損傷部治療用組成物
CN102772407B (zh) * 2012-08-01 2014-09-17 岳茂兴 一种促进神经损伤修复的药物组合物及其应用
US10130657B2 (en) * 2015-02-13 2018-11-20 John C. Hughes Formulation, apparatus, and methods for treatment of brain trauma
DK3427726T3 (da) 2016-03-07 2023-05-15 Univ Osaka Ark med vedvarende lægemiddelfrigvelse til behandling af nerveskade
CN107595874B (zh) * 2016-07-12 2020-10-30 石药集团恩必普药业有限公司 一种含有丁苯酞的药物组合物及其在制备治疗脑血管病药物中的应用
CN106107388A (zh) * 2016-07-31 2016-11-16 合肥远志医药科技开发有限公司 一种淡竹叶菊花植物饮料及其制作方法
AU2018390261B2 (en) * 2017-12-21 2023-03-16 Nippon Zoki Pharmaceutical Co., Ltd. Agent for treatment of nervous system disease

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261535A (zh) * 1999-01-18 2000-08-02 倪荣聪 蛋氨酸组合物在制备治疗心、脑血管疾病的药物中的应用
WO2011043136A1 (ja) 2009-10-08 2011-04-14 国立大学法人名古屋大学 脂肪組織由来間葉系幹細胞を含有する免疫抑制剤及びその用途
WO2011149036A1 (ja) 2010-05-27 2011-12-01 国立大学法人 東京大学 抗炎症薬
JP2014511830A (ja) * 2011-03-14 2014-05-19 エヌ.ブイ.・ヌートリシア 神経外傷を治療するための方法
CN102631667A (zh) * 2012-04-19 2012-08-15 赵廷宝 促神经再生注射剂及其制备方法
JP2016513694A (ja) 2013-03-14 2016-05-16 ファーマシューティカル プロダクションズ, インコーポレイテッド ビタミンb12欠乏症を治療する方法
CN104688763A (zh) * 2015-03-11 2015-06-10 刘力 包括手性异构化合物的赖肌维药物组合物及其用途

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Methycobal tablets", February 2014 (2014-02-01), JP, XP009522070, Retrieved from the Internet <URL:https://www.rad-ar.or.jp/siori/print.cgi?n=9808> *
CURRENT MEDICINAL CHEMISTRY, vol. 14, no. 3, 2007, pages 249 - 263
ICHIMARU, S.: "Attempt to treat dementia patients with cerebrovascular disease by megadose of methyl B12", THE JAPANESE JOURNAL OF CLINICAL AND EXPERIMENTAL MEDECINE, vol. 66, no. 1, pages 310 - 316 *
SUZUKI, KOJI ET. AL.: "Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model", vol. 53, 5 February 2017 (2017-02-05), pages 250 - 259, XP055691124, DOI: 10.1016/j.actbio.2017.02.004 *
WATANABE, T. ET. AL.: "Ultra-high dose methylcobalamin promotes nerve regeneration in experimental acrylamide neuropathy", JOURNAL OF THE NEUROLOGICAL SCIENCES, vol. 122, no. 2, April 1994 (1994-04-01), pages 140 - 143, XP024165209 *
YAMAZAKI, KAZUTO ET. AL.: "Methylcobalamin (methyl-B12) promotes regeneration of motor nerve terminals degenerating in anterior gracile muscle of gracile axonal dystrophy (GAD) mutant mouse", NEUROSCIENCE LETTERS, vol. 170, no. 1, 28 March 1994 (1994-03-28), pages 195 - 197, XP024374271 *

Also Published As

Publication number Publication date
JP6708869B2 (ja) 2020-06-10
US11679122B2 (en) 2023-06-20
CN111511373A (zh) 2020-08-07
TW201929871A (zh) 2019-08-01
US20220273692A1 (en) 2022-09-01
KR20200101948A (ko) 2020-08-28
IL275479A (en) 2020-08-31
ZA202004433B (en) 2022-01-26
JP6650650B2 (ja) 2020-02-19
US11369626B2 (en) 2022-06-28
SG11202005822PA (en) 2020-07-29
TWI798320B (zh) 2023-04-11
US20210008092A1 (en) 2021-01-14
EP3730144A4 (en) 2021-09-01
CA3086220A1 (en) 2019-06-27
AU2018390261B2 (en) 2023-03-16
JP2020117529A (ja) 2020-08-06
EP3730144A1 (en) 2020-10-28
AU2018390261A1 (en) 2020-08-06
JP2020075931A (ja) 2020-05-21
US20230302040A1 (en) 2023-09-28
JPWO2019124483A1 (ja) 2019-12-26
JP6763533B2 (ja) 2020-09-30
RU2020123957A (ru) 2022-01-26

Similar Documents

Publication Publication Date Title
US11679122B2 (en) Therapeutic agent for nervous system disease
US10925890B2 (en) Use of dextran sulfate
EP2442832A1 (en) Compositions and methods for treatment of multiple sclerosis
RU2396075C2 (ru) Применение n-(2-арилпропионил)сульфонамидов для лечения повреждения спинного мозга
WO2020201444A1 (en) Repurposing small molecules for senescence-related diseases and disorders
KR102684069B1 (ko) 신경계 질환 치료제
CN114010631B (zh) 含笑内酯及其衍生物在创伤性颅脑损伤治疗中的应用
US12029751B2 (en) Therapeutic agent for nervous system disease
CN113521071A (zh) 氯喹那多的新应用
CN108685896B (zh) 千层纸素a在制备治疗和/或预防慢性周围血管闭塞性疾病药物中的用途
Yan et al. Role of Autophagy in Rat Acute Spinal Cord Injury Induced by Rapamycin
CA3220317A1 (en) New therapeutic use of type 2 iodothyronine deiodinase (d2) inhibitors
WO2024035864A1 (en) Combination of quercetin and pathenolide as anti-inflammatory agents for use in the treatment of dermatitis
JP2001511136A (ja) Cm101/gbs毒素による神経損傷の修復の促進
US20160151311A1 (en) N,n&#39;-di-1 naphthylguanidine hcl (nagh) and n,n&#39;-di-p-nitrophenylguanidine hcl (nad) treatment for stroke at delayed timepoints
WO2001068070A2 (en) Use of spirolaxin for the treatment of diseases associated with abnormal angiogenesis
SE538144C2 (sv) Use of dextran sulfate for inducing angiogenesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554940

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3086220

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207020640

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018892293

Country of ref document: EP

Effective date: 20200721

ENP Entry into the national phase

Ref document number: 2018390261

Country of ref document: AU

Date of ref document: 20181220

Kind code of ref document: A