WO2019120064A1 - 一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法 - Google Patents

一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法 Download PDF

Info

Publication number
WO2019120064A1
WO2019120064A1 PCT/CN2018/118616 CN2018118616W WO2019120064A1 WO 2019120064 A1 WO2019120064 A1 WO 2019120064A1 CN 2018118616 W CN2018118616 W CN 2018118616W WO 2019120064 A1 WO2019120064 A1 WO 2019120064A1
Authority
WO
WIPO (PCT)
Prior art keywords
isophorone
reaction
hydrogenation reduction
reactor
preparing
Prior art date
Application number
PCT/CN2018/118616
Other languages
English (en)
French (fr)
Inventor
陈志荣
毛建拥
胡柏剡
李观兵
李浩然
王钰
杨应阔
刘清
唐吉瑜
陈卫勇
Original Assignee
浙江新和成股份有限公司
浙江大学
山东新和成氨基酸有限公司
山东新和成精化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江新和成股份有限公司, 浙江大学, 山东新和成氨基酸有限公司, 山东新和成精化科技有限公司 filed Critical 浙江新和成股份有限公司
Priority to JP2020547276A priority Critical patent/JP6906710B2/ja
Priority to US16/954,774 priority patent/US11180440B2/en
Priority to EP18890918.8A priority patent/EP3677566B1/en
Publication of WO2019120064A1 publication Critical patent/WO2019120064A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/52Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of imines or imino-ethers

Definitions

  • the invention relates to the field of fine chemicals, in particular to a method for preparing isophorone diamine by hydrogenation reduction of isophorone nitrile imine.
  • IPDA Isophorone diamine
  • IPDI diisocyanate-isophorone diisocyanate
  • IPDA generally reacts with ammonia by 3-cyano-3,5,5-trimethylcyclohexanone (commonly known as isophorone nitrile, IPN for short) to form 3-cyano-3,5,5-trimethylcyclo Hexyl imine (commonly known as isophorone nitrile imine, IPNI for short), IPNI is subsequently obtained by reduction reaction with hydrogen.
  • IPN isophorone nitrile
  • IPNI is subsequently obtained by reduction reaction with hydrogen.
  • low temperature is favorable for the formation of high cis-isomer IPDA.
  • the imidization reaction of IPN generally uses methanol as a solvent to form IPNI under the action of a catalyst. IPN imidization to IPNI technology is mature, but the reported IPNI reduction reaction has problems such as high reaction pressure, complicated operation, and difficulty in separation of by-products.
  • IPNI reduction reaction can be divided into three categories according to the reaction mode: batch tank reaction, continuous trickle bed reaction and continuous bubbling bed reaction.
  • IPDA is prepared by a batch reactor reaction. The process is to put IPN, ammonia and hydrogen into the reaction vessel and heat the reaction at 120 ° C and 15 MPa for 2 hours to obtain an IPDA yield of 81.4%. Inconsistent. Although the pressure of this method is lower than other patents, the yield of IPDA is low and there are many by-products.
  • Chinese patent CN101768084A adopts the reduction reaction of IPN, ammonia and formic acid aqueous solution at 150 ° C in the batch reactor to prepare IPDA.
  • the method is simple and simple, no other catalyst needs to be added, but the selectivity is low, and the obtained reaction liquid is in the reaction liquid.
  • the gas phase content of IPDA is only between 45 and 75%, and no product is inversely proportional.
  • Chinese patent CN101386579A is prepared by reacting IPN, ammonia, alcohol or ether solvent, hydrogenation catalyst and cocatalyst in a batch autoclave or fixed bed at 50-120 ° C and 5-15 MPa hydrogen pressure to obtain IPDA.
  • the liquid phase content of IPDA in the reaction liquid is up to 96.5%, and the ratio of cis-trans isomer of the product is between 73/27 and 82/18, but the reaction process requires the addition of a cocatalyst organic base or inorganic base.
  • the Chinese patent CN1561260A employs a continuous trickle bed reactor.
  • the hydrogenation reaction is carried out in three stages, wherein the first stage reaction temperature is 90 ° C, the third stage reaction temperature is 130 ° C, and the reaction process is carried out at a pressure of 250 bar.
  • the IPDA product obtained by this method has a cis-trans ratio of 75.8/24.2 and a yield of 92.5%.
  • Chinese patent CN101260047A describes an IPDA preparation method using two reactors of imidization and hydrogenation reduction, wherein the hydrogenation reduction reaction uses a trickle bed reactor, the imidization reaction temperature is 50 ° C, and the hydrogenation reduction reactor At 100 ° C, the pressure is controlled at 252 bar.
  • the highest product content obtained in the examples was 98.7%, but the reverse ratio of the product was not mentioned.
  • Chinese patent CN101568516A discloses a method for producing IPDA, which comprises preparing IPDA by reducing the IPN imidized IPNI with hydrogen and ammonia in a trickle bed reactor equipped with a hydrogenation reduction catalyst. The process is characterized in that after partial IPNI reaction, the basicity of the reaction mixture is increased during the reaction by contacting the reaction mixture with a non-ammonia basic compound or with a basic catalyst.
  • the final reaction solution obtained by this method had an IPDA selectivity of 93.4% and a product cis-trans isomer ratio of 85/15.
  • the method described in Chinese patent CN102924291A is to carry out hydrogenation reduction synthesis of IPDA in a multistage trickle bed reactor.
  • the reduction process introduces a basic compound before the start of the second-stage reaction, and introduces an acidic compound before the third-stage and final-stage reaction for promoting the progress of the hydrogenation reaction.
  • the content of IPDA reached 97.6 to 99%, and the product was not mentioned in the inverse order. Due to the introduction of two additives during the reaction, the reaction operation is complicated, and the wastewater and waste salt treatment problems are also brought about, which increases the post-treatment cost.
  • the Chinese patent CN102976956A adopts the reaction solution obtained by subjecting the raw material IPN to imidization, firstly performing adsorption, extraction or distillation to remove water, and then performing hydrogenation reduction reaction in the trickle bed.
  • the hydrogenation reduction reaction was carried out at 20 to 200 ° C and 10 to 30 MPa, and the yield of the product IPDA in the examples was 97.84 to 98.5%, and the product was not mentioned.
  • the method increases the dehydration step of the intermediate, complicates the operation process, and regardless of which of the above three operations, material loss or energy consumption is inevitably generated, which in turn increases production costs.
  • Chinese patent CN103429563A also uses a trickle bed reactor.
  • the hydrogenation reduction reaction is carried out at 25-300 ° C and 0.1-20 MPa.
  • the cross-sectional load in the reactor is 5-50 kg/m 2 /s. and thus increase the flow cross-section of the load, so that the ratio of intermediate IPAN reduced from 24% at 4.2kg / m 2 / s to at 15.8kg / m 2 / s to 7%, while the corresponding increase in the proportion of IPDA.
  • Chinese patent CN104230721A uses a multi-stage trickle bed reactor to carry out hydrogenation reduction reaction to prepare IPDA.
  • the process is to firstly carry out the first hydrogenation reaction with the obtained imidization reaction liquid together with the recycled materials to obtain the first hydrogenation reaction raw material.
  • the second stage hydrogenation reaction is carried out under the action of heating the decomposable alkaline auxiliary agent, and then the alkaline auxiliary agent is decomposed by heating, and a part of the decomposition reaction material is returned as a circulating material to the first stage hydrogenation reaction as an auxiliary agent.
  • the remaining part is subjected to the third stage reaction.
  • the reaction temperature was 40 to 150 ° C
  • the pressure was 16 MPa
  • the product content in the finally obtained reaction liquid was 98%, and the product was not mentioned in the inverse ratio.
  • the method introduces an auxiliary agent in the reaction process, and requires the material to be circulated, thereby complicating the reaction operation.
  • the hydrogenation reduction reaction of Chinese patent CN104370750A adopts a trickle bed reactor.
  • the method requires adding a basic regulator to the IPN imidization reaction solution, the reaction temperature is controlled at 20 to 80 ° C, and the pressure is preferably 15 to 20 MPa.
  • the highest IPDA content was 98.75%, and the product was not mentioned in the reverse order. Since the addition of the alkaline regulator in the reaction increases the post-treatment operation of the reaction liquid and brings waste water and waste salts.
  • Chinese patent CN104119233A uses two-stage hydrogenation, and the reactor is a bubbling bed or a trickle bed. After the hydrogenation in a hydrogenation reactor, the method is first deaminated, then the solvent is added, and then the second hydrogenation reaction is carried out, the hydrogenation temperature is 100-130 ° C, and the pressure is within 10 MPa.
  • the examples show that the product IPDA content can be obtained from 95.07 to 96.03%, and the product is not mentioned in the inverse order.
  • this method can be carried out at a lower pressure, it is necessary to increase the deamination device and the additional solvent in the two-stage hydrogenation process, which complicates the operation process and increases the energy consumption.
  • the reactor used in Chinese patent CN103228614A is a trickle bed method of trickle bed or bottom feed.
  • HCN or cyanide salt is added to increase the cyanide ion concentration to 200ppmw ⁇ 5000ppmw.
  • the hydrogen reaction was carried out at 20 to 150 ° C and 0.3 to 50 MPa, and the product obtained in the examples had an IPDA content of 94.62 to 95.69%, and no product was inversely proportional.
  • the method reduces the content of the by-product bicyclic amine and its intermediate hydrazine, the added cyanide solution also brings about the problem of cyanide-containing wastewater, which increases the post-treatment cost.
  • the bubbling bed reactor used in the above documents has a back mixing problem, which is disadvantageous for improving the conversion rate, and the single-stage bubbling bed reactor also has a hot spot problem.
  • the object of the present invention is to provide a method for preparing isophorone diamine by hydrogenation reduction of isophorone nitrile imine according to the deficiencies of the prior art, solving the problem of back mixing, and further improving the conversion rate and the product cis-reverse ratio. .
  • the multi-stage bubble column reactor in the invention is composed of a multi-stage reactor in series.
  • the raw material isophorone nitrile imine is continuously added from the top, hydrogen is continuously fed from the bottom, and the reaction temperature of each section is changed through the section.
  • the heat exchange medium in the hot coil is controlled as needed, and the product (reaction liquid containing isophorone diamine) is taken from the outlet of the bottom of the reactor.
  • the starting material isophorone nitrile imine in the present invention can be obtained by a production method in the prior art, for example, imidization of isophorone nitrile.
  • the isophorone nitrile imine is subjected to hydrogenation reduction in the first stage reactor until the intermediate product before the final product, which is referred to as a reaction liquid in the present invention, and the reaction liquid includes isophorone nitrile imine and different
  • the multi-stage bubble column reactor comprises a 6 to 12 stage reactor.
  • each of the reactors in the multi-stage bubble column reactor is separated by a sieve plate.
  • the hydrogen can be redistributed multiple times, the gas-liquid contact area of the reaction liquid and the hydrogen gas is effectively increased, and the phenomenon of bubble aggregation which is easy to occur in the single-stage reactor is prevented, thereby accelerating the main reaction speed. , reducing the formation of by-products.
  • the channels on the sieve plate can only pass hydrogen gas, the reaction liquid cannot pass, and the reaction liquid passes through the downcomer and the downcomer ring to enter the next reactor.
  • the downcomer and the downcomer Through the setting of the downcomer and the downcomer, it can not only solve the back mixing problem of the single-stage bubbling bed, but also control the flow range of the reaction liquid, improve the utilization rate of the catalyst, and improve the conversion rate and selectivity of the reaction.
  • the supported basic cobalt-based catalysts are respectively disposed in each of the reactors, and are fixed by a sieve plate, a press plate, and a fixed plate; the channels of the press plates and the fixed plates enable hydrogen gas and the reaction liquid to pass therethrough.
  • the supported basic cobalt-based catalyst comprises a carrier, an active component and an alkaline component;
  • the carrier comprises one or more of alumina, titania, zirconia, magnesia;
  • the component is Co;
  • the basic component comprises an oxide of Mg, Ca, Na or K. Due to the use of a supported alkaline cobalt catalyst, it is no longer necessary to add other alkaline auxiliaries during the reaction, so no additional waste brine is produced and environmental pollution is reduced.
  • the active component has a mass fraction of 30-50%; and the basic component has a mass fraction of 0.1-5%.
  • the isophorone nitrite is added as a reaction raw material at a mass fraction of 97% or more.
  • the molar ratio of hydrogen to isophorone nitrite at the hydrogenation reduction reaction is 5-100:1; and the space-time treatment amount of the multi-stage bubble column reactor is 0.05-0.3 mol/ (L*h).
  • the reaction temperature in the multi-stage bubble column reactor is 60-160 ° C, the temperature in the adjacent reactor is the same or increases; the reaction pressure in the multi-stage bubble column reactor is 3-10 MPa. . Further preferably, the temperature difference in the adjacent reactors is 0-10 ° C, and the temperature from the top of the tower to the bottom of the tower is increasing.
  • the heat exchange coil can control the reaction temperature of each section according to the reaction requirements, and is favorable for the temperature distribution required for forming a high IPDA cis and isomer ratio.
  • the beneficial effects of the present invention are as follows: the multi-stage bubble column reactor hydrogenation reduction synthesis IPDA process adopted by the invention has high conversion ratio, selectivity, high proportion of cis and trans isomers, and is easy to be enlarged. Advantages, with high industrial application value.
  • Figure 1 is a schematic illustration of a multi-stage bubble column reactor used in Example 1;
  • 1, sieve plate; 2, catalyst; 3, downcomer; 4, downcomer ring; 5, heat exchange coil; 6, isolation ring; 7, pressure plate; 8, fixed plate; A1 ⁇ A8 respectively represent different The reactor of the section.
  • FIG. 1 there is an 8-stage continuous bubble column reactor.
  • the column body is composed of reactors of sections A1 to A8, and the section is separated from the section reactor by a sieve plate 1.
  • the pores of the sieve plate 1 can only pass hydrogen gas.
  • the reaction solution and the catalyst failed to pass.
  • Each of the reactors in the stages A1 to A8 is filled with a catalyst 2, and the catalyst 2 is fixed by a sieve plate 1, a press plate 7, and a fixed plate 8, and the channels of the press plate 7 and the fixed plate 8 can only pass hydrogen gas and a reaction liquid.
  • the reactors of the A1 to A8 sections are further provided with a heat exchange coil 5 on the outer wall side, and the heat exchange medium in the heat exchange coil 5 is used for sectional heating.
  • an isolating ring 6 is also installed between the sieve plate 1 and the fixed plate 8.
  • a downcomer 3 and a downcomer 4 are also installed between the section and the section for controlling the flow range of the reaction liquid.
  • each catalyst has a volume of 1 L, and is loaded with a supported basic cobalt catalyst having a cobalt content of 40%, a sodium oxide content of 2%, and a support of alumina, and then the content is 98.6% (solvent free) of the reactant IPNI solution was fed from the top of the bubble column through a metering pump at 0.4 mol/h while continuously introducing hydrogen gas from the bottom at 4 mol/h.
  • the catalyst space-time treatment amount corresponding to this operating condition was 0.05 mol/(L*h), and the hydrogen to IPNI molar ratio was 10.
  • Hot oil of different temperatures is introduced into the A1 ⁇ A8 heat exchange coils, and the temperature of the reactor is controlled from 60°C, 60°C, 70°C, 70°C, 80°C, 90°C, 100°C, 110 from top to bottom. °C, the pressure is controlled at 3 MPa, and the reaction product is taken out from the bottom.
  • the 8-stage bubble column reactor of Fig. 1 was used, and a supported basic cobalt catalyst having a cobalt content of 50%, a magnesium oxide content of 5% and a carrier of titanium dioxide was loaded, and then the content was 97.2%.
  • the reactant IPNI solution of the solvent) was fed from the top of the bubble column through a metering pump at 2.4 mol/h while hydrogen gas was continuously supplied from the bottom at 240 mol/h.
  • the catalyst space-time treatment amount corresponding to this operating condition was 0.3 mol/(L*h), and the hydrogen to IPNI molar ratio was 100.
  • Hot oil of different temperature is introduced into the A1 ⁇ A8 heat exchange coils, and the temperature of the reactor is controlled from 80°C, 80°C, 90°C, 90°C, 100°C, 120°C, 140°C, 160 from top to bottom. °C, the pressure is controlled at 10 MPa, and the reaction product is taken out from the bottom.
  • IPDA IP-azabicyclo[3.2.1]octane
  • TAO -6-azabicyclo[3.2.1]octane
  • IPAA 3-aminomethyl-3,5,5-trimethylcyclohexanol
  • the selectivity of IPDA is 98.3%
  • the ratio of cis-trans isomer is 79/21.
  • the 8-stage bubble column reactor of Fig. 1 was used to load a supported basic cobalt catalyst having a cobalt content of 30%, a potassium oxide content of 0.1%, and a support of magnesium oxide, and then the content was 98.2% (The reactant IPNI solution except for the solvent was fed from the top of the bubble column through a metering pump at 1.2 mol/h while hydrogen gas was continuously supplied from the bottom at 24 mol/h.
  • the catalyst space-time treatment amount corresponding to this operating condition was 0.15 mol/(L*h), and the hydrogen to IPNI molar ratio was 20.
  • Hot oil of different temperatures is introduced into the A1 ⁇ A8 heat exchange coils, and the temperature of the reactor is controlled from 70°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, 130 from top to bottom. °C, the pressure is controlled at 6 MPa, and the reaction product is taken out from the bottom.
  • IPDA -6-azabicyclo[3.2.1]octane
  • TAO -6-azabicyclo[3.2.1]octane
  • IPAA 3-aminomethyl-3,5,5-trimethylcyclohexanol
  • the selectivity of IPDA is 98.4%
  • the ratio of cis-trans isomer is 81/19.
  • the 8-stage bubble column reactor as shown in Fig. 1 was used, and the number of stages was changed to 6 stages, and a supported basic cobalt catalyst having a cobalt content of 30%, a potassium oxide content of 0.1%, and a support of magnesium oxide was loaded, and then A reactant IPNI solution having a content of 98.2% (excluding the solvent) was introduced from the top of the bubble column by a metering pump at 0.9 mol/h while continuously supplying hydrogen gas at 27 mol/h from the bottom.
  • the catalyst space-time treatment amount corresponding to this operating condition was 0.15 mol/(L*h), and the hydrogen to IPNI molar ratio was 30.
  • Heat oil of different temperatures is introduced into the A1 ⁇ A6 heat exchange coils, and the temperature of the reactor is controlled from 80°C, 90°C, 100°C, 110°C, 120°C, 130°C from top to bottom, and the pressure is controlled at 6MPa.
  • the reaction product is taken from the bottom.
  • IPDA -6-azabicyclo[3.2.1]octane
  • TAO -6-azabicyclo[3.2.1]octane
  • 1,3,3-trimethyl-6-azabicyclo[3.2.1]octylene-7-ylamine
  • IPAA 3-aminomethyl-3,5,5-trimethylcyclohexanol
  • the selectivity of IPDA is 98.1%
  • the ratio of cis-trans isomer is 80/20.
  • the 8-stage bubble column reactor as shown in Fig. 1 was used, and the number of stages was changed to 12 stages, and a supported basic cobalt catalyst having a cobalt content of 40%, a calcium oxide content of 2%, and a support of zirconium dioxide was loaded. Then, a reactant IPNI solution having a content of 98.2% (solvent removal) was introduced from the top of the bubble column by a metering pump at 2.4 mol/h while hydrogen gas was continuously supplied from the bottom at 120 mol/h. The catalyst space-time treatment amount corresponding to this operating condition was 0.2 mol/(L*h), and the hydrogen to IPNI molar ratio was 50.
  • Hot oil of different temperatures is introduced into the A1 ⁇ A12 heat exchange coils, and the temperature of the reactor is controlled from 70°C, 70°C, 80°C, 80°C, 90°C, 90°C, 100°C, 100, respectively.
  • °C, 110 ° C, 110 ° C, 120 ° C, 120 ° C, the pressure is controlled at 8 MPa, and the reaction product is taken out from the bottom.
  • IPDA -6-azabicyclo[3.2.1]octane
  • TAO -6-azabicyclo[3.2.1]octane
  • IPAA 3-aminomethyl-3,5,5-trimethylcyclohexanol
  • the selectivity of IPDA is 98.7%
  • the ratio of cis-trans isomer is 82/18.

Abstract

本发明涉及一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,加氢还原在装有负载型碱性钴类催化剂的多段式鼓泡塔反应器中连续进行,异佛尔酮腈亚胺与氢气在每段反应器中依次逆流接触进行加氢还原反应,即得异佛尔酮二胺。该制备方法解决了返混问题,并进一步提高转化率以及产品顺反比。

Description

一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法 技术领域
本发明涉及精细化工领域,具体涉及一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法。
背景技术
异佛尔酮二胺(Isophoronediamine,简称IPDA),学名3-氨甲基-3,5,5-三甲基环己胺,分子式C 10H 22N 2,分子量:170.3。IPDA是一种无色至淡黄色透明、略有氨味的液体,有顺式和反式两种异构体,商业上使用的IPDA的顺式/反式异构体比例约为75/25。IPDA可用于环氧树脂涂料的固化剂、交联剂,还可制备相应的二异氰酸酯-异佛尔酮二异氰酸酯(简称IPDI),用于生产聚氨酯,在聚氨酯生产中作为交联剂、耦合剂、羟基稳定剂及特殊单体。
IPDA一般由3-氰基-3,5,5-三甲基环己酮(俗称异佛尔酮腈,简称IPN)与氨反应形成3-氰基-3,5,5-三甲基环己基亚胺(俗称异佛尔酮腈亚胺,简称IPNI),IPNI随后与氢气进行还原反应制得,在还原反应初期,低温有利于高顺反比异构体IPDA的形成。其中IPN的亚胺化反应一般以甲醇为溶剂,在催化剂作用下生成IPNI。IPN亚胺化生成IPNI技术成熟,但目前报道的IPNI还原反应存在反应压力高、操作复杂、副产物难以分离等问题。
关于IPNI还原反应的文献报道按反应方式的不同可分为三类:间歇釜式反应、连续滴流床反应和连续鼓泡床反应。
其中使用间歇釜式反应的文献报道如下:
美国专利US3352913中采用间歇釜式反应制备IPDA,其过程是将IPN、氨、氢气投入反应釜内,在120℃、15MPa下加热反应2小时,可以得到81.4%的IPDA收率,未提及产品顺反比。该法虽然压力相对其他专利有所降低,但是IPDA收率低,副产物多。
中国专利CN101768084A采用的是在间歇釜中使IPN、氨、甲酸水溶液在150℃下进行还原反应制备IPDA,该法虽然方法简便,不需要加入其他催化剂,但选择性低,所得到的反应液中,IPDA的气相含量仅在45~75%之间,未提及产品顺反比。
中国专利CN101386579A是在间歇高压釜或固定床中将IPN、氨、醇类或醚类溶剂、加氢催化剂和助催化剂在50~120℃、5~15MPa氢气压力条件下反应制得IPDA,最终得到的反应液中IPDA气相含量最高为96.5%,产物顺反异构体比率在73/27~82/18之间,但反应过程需要加入助催化剂有机碱或无机碱。
以上文献报道均采用间歇釜操作,其共同问题是每批生产都需要装料、升温、卸料、清洗等辅助操作过程,因此,生产效率低,质量难以控制。
有关使用连续滴流床反应的文献报道如下:
中国专利CN1561260A中采用的是连续滴流床反应器,氢化反应分成三阶段进行,其中第一阶段反应温度为90℃,第三阶段反应温度为130℃,反应过程在250巴的压力下进行。此方法得到的IPDA产品其顺反比率为75.8/24.2,收率为92.5%。
中国专利CN101260047A中介绍了一种IPDA制备方法,采用亚胺化和加氢还原两个反应器,其中加氢还原反应使用滴流床反应器,亚胺化反应温度50℃,加氢还原反应器为100℃,压力控制在252bar。实施例中得到的最高产品含量为98.7%,但未提及产品的顺反比。
中国专利CN101568516A公开了一种IPDA的制造方法,是将IPN亚胺化后的IPNI与氢气和氨在装有加氢还原催化剂的滴流床反应器中进行还原反应制备IPDA。该方法的特征在于当部分IPNI反应之后,在反应期间通过使反应混合物与非氨的碱性化合物或与碱性催化剂接触来提高反应混合物的碱性。该方法最终得到的反应液中IPDA选择性为93.4%,产物顺反异构体比率在85/15。
中国专利CN102924291A介绍的方法是在多级滴流床反应器中进行加氢还原合成IPDA。还原过程中除了加入相应的加氢催化剂外,其在第二级反应开始前引入碱性化合物,在第三级也是最后一级反应前引入酸性化合物,用于促进氢化反应的进行。实施例中IPDA的含量达到97.6~99%,未提及产品顺反比。由于在反应过程中引入两种助剂,使得反应操作复杂化,同时也带来了废水和废盐处理问题,增加了后处理成本。
中国专利CN102976956A采用的是将原料IPN经过亚胺化后所得的反应液先进行吸附、萃取或蒸馏除水,再在滴流床内进行加氢还原反应。加氢还原反应是在20~200℃、10~30MPa条件下进行的,其实施例中产品IPDA的收 率为97.84~98.5%,未提及产品顺反比。该法增加了中间体脱水步骤,使得操作过程复杂化,且不管是上述三种操作的哪种方式,必然会产生物料损失或能耗增加等,转而增加生产成本。
中国专利CN103429563A也采用滴流床反应器,加氢还原反应是在25~300℃、0.1~20MPa下进行的,反应器中的横截面负载为5~50kg/m 2/s,通过提高再循环流并因此提高横截面载荷,从而将中间体IPAN的比例由在4.2kg/m 2/s下的24%降低至在15.8kg/m 2/s下的7%,同时IPDA比例相应升高。实施例中没有提及最终反应液中IPDA的含量和产品顺反比。
中国专利CN104230721A采用多段滴流床反应器进行加氢还原反应制备IPDA,其过程是先将所得到的亚胺化反应液与在循环物料一起进行第一段加氢反应得到第一加氢反应原料,然后在加热可分解的碱性助剂的作用下进行第二段加氢反应,然后加热将碱性助剂分解,分解反应物料的一部分作为循环物料返回第一段加氢反应中作为助剂,剩余的部分进行第三段反应。实施例中反应温度为40~150℃,压力为16MPa,最后得到的反应液中产品含量为98%,未提及产品顺反比。该法在反应过程中引入的助剂,且需要物料进行循环,从而使得反应操作复杂化。
中国专利CN104370750A的加氢还原反应采用滴流床反应器,该法需要在IPN亚胺化反应液中添加碱性调节剂,反应温度控制在20~80℃,压力优选为15~20MPa,实施例中得到最高IPDA含量为98.75%,未提及产品顺反比。由于反应中需要加入碱性调节剂,会增加反应液后处理操作且带来废水和废盐。
以上文献报道的加氢还原反应均采用滴流床反应器,而加氢还原反应是强放热反应,因此容易在反应前期产生热点,不利于得到高的产物顺反比异构体比例。
另外,还有几篇文献提到滴流床或鼓泡床均可以作为加氢还原的反应器:
中国专利CN102531916A、CN105198755A采用的是在固定床中以滴流方式或底部进料的鼓泡床方式进行反应,反应温度为20~150℃,反应压力为0.3~50MPa,并加入能解离出浓度在1000ppmw~3000ppmw氰根离子的氰化物溶液。该法虽然降低了副产物双环胺及其中间体脒的含量,但同时也造成了中间体IPAN含量的增加,实施例所得到的IPDA总产率为94.62~95.69%,未 提及产品顺反比。该法加入的氰化物溶液带来了含氰废水问题,增加了后处理成本。
中国专利CN104119233A采用两段加氢,反应器为鼓泡床或滴流床。该法在一段加氢反应器中加氢后,先进行脱氨,再补加溶剂,然后进行第二段加氢反应,氢化温度为100~130℃,压力在10MPa以内。实施例显示可以得到产品IPDA含量在95.07~96.03%,未提及产品顺反比。虽然此方法可以在较低压力下进行,但在两段加氢过程中需要增加脱氨装置和补加溶剂,使得操作过程复杂化,能耗增加。
中国专利CN103228614A采用的反应器是滴流床或底部进料的鼓泡床方式,在亚胺化反应液中需要添加HCN或氰化物盐来提高氰根离子浓度至200ppmw~5000ppmw,该方法中加氢反应是在20~150℃、0.3~50MPa下进行的,实施例中得到的产品IPDA含量为94.62~95.69%,未提及产品顺反比。虽然据专利所述,该法降低了副产物双环胺和其中间体脒的含量,但加入的氰化物溶液同时也带来了含氰废水问题,增加了后处理成本。
上述文献中所使用的鼓泡床反应器存在返混问题,不利于提高转化率,且单段鼓泡床反应器同样存在热点问题。
发明内容
本发明的目的在于针对现有技术的不足,提供一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,解决了返混问题,并进一步提高转化率以及产品顺反比。
本发明所提供的技术方案为:
一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,加氢还原在装有负载型碱性钴类催化剂的多段式鼓泡塔反应器中连续进行,异佛尔酮腈亚胺与氢气在每段反应器中依次逆流接触进行加氢还原反应,即得异佛尔酮二胺。
本发明中的多段式鼓泡塔反应器由多段反应器串联组成,加氢还原时原料异佛尔酮腈亚胺从顶部连续加入,氢气由底部连续通入,各段反应温度通过段内换热盘管中的换热介质按需要进行控制,产物(含异佛尔酮二胺的反应液)从反应器底部出口得到。
本发明中的原料异佛尔酮腈亚胺可以采用现有技术中的制备方法得到,例如异佛尔酮腈亚胺化得到。异佛尔酮腈亚胺经过第一段反应器加氢还原后一直到最终的产物之前的中间物,本发明中将其称为反应液,反应液中包括异佛尔酮腈亚胺、异佛尔酮二胺和微量的副产物,并且随着经过的反应器段数增加,反应液中的异佛尔酮二胺含量逐渐增加,最终得到高含量的产物。
作为优选,所述多段式鼓泡塔反应器包括6~12段反应器。
作为优选,所述多段式鼓泡塔反应器中每段反应器之间采用筛板分隔。通过筛板上的孔道设置,可以对氢气实现多次重新分布,有效地增大反应液与氢气的气液接触面积,防止单段反应器中容易出现的气泡聚并现象,从而加快主反应速度,减少副产物的生成。
作为优选,所述筛板上的孔道仅能让氢气通过,反应液无法通过,反应液通过降液管和降液环进入下一段反应器。通过降液管和降液环的设置,不仅能够解决单段鼓泡床存在的返混问题,还能控制反应液的流动范围,提升催化剂的利用率,提高反应的转化率和选择性。
作为优选,所述负载型碱性钴类催化剂分别设置在每段反应器中,采用筛板、压板和固定板固定;所述压板和固定板的孔道能够使得氢气和反应液通过。
作为优选,所述负载型碱性钴类催化剂包括载体、活性组分和碱性组分;所述载体包括氧化铝、二氧化钛、二氧化锆、氧化镁中的一种或几种;所述活性组分为Co;所述碱性组分包括Mg、Ca、Na或K的氧化物。由于采用了负载型碱性钴类催化剂,反应过程中不再需要加入其他碱性助剂,因此,不会产生额外的废盐水,减少了环境污染。
作为优选,所述活性组分的质量分数为30-50%;所述碱性组分的质量分数为0.1-5%。
作为优选,所述异佛尔酮腈亚胺作为反应原料加入时质量分数为97%以上。
作为优选,所述加氢还原反应时氢气与异佛尔酮腈亚胺的摩尔比为5-100∶1;所述多段式鼓泡塔反应器的催化剂空时处理量为0.05-0.3mol/(L*h)。
作为优选,所述多段式鼓泡塔反应器中反应温度为60-160℃,相邻段反应器内的温度相同或者增大;所述多段式鼓泡塔反应器中反应压力为 3~10MPa。进一步优选,相邻段反应器内的温度差为0-10℃,从塔顶到塔底温度成上升趋势。换热盘管能够按反应需要控制各段的反应温度,有利于形成高IPDA顺反异构体比例所需的温度分布。
同现有技术相比,本发明的有益效果体现在:本发明采用的多段式鼓泡塔反应器加氢还原合成IPDA工艺具有转化率、选择性、顺反异构体比例高,容易放大的优点,具有较高的工业化应用价值。
附图说明
图1为实施例1中所使用的多段式鼓泡塔反应器的示意图;
其中,1、筛板;2、催化剂;3、降液管;4、降液环;5、换热盘管;6、隔离环;7、压板;8、固定板;A1~A8分别代表不同段的反应器。
具体实施方式
以下结合说明书附图和具体实施方式对本发明进行详细说明。
实施例1
如图1所示为8段连续鼓泡塔反应器,塔体由A1~A8段的反应器组成,段与段反应器之间由筛板1分隔,筛板1的孔道仅能让氢气通过,反应液和催化剂均无法通过。A1~A8段的反应器中每段内都填充有催化剂2,催化剂2由筛板1、压板7和固定板8固定,压板7和固定板8的孔道仅能够使得氢气和反应液通过。
A1~A8段的反应器靠外壁侧还安装有换热盘管5,通过换热盘管5中的换热介质用于分段加热。此外,筛板1与固定板8之间还安装有隔离环6。段与段之间还安装有降液管3和降液环4,用于控制反应液的流动范围。
在上述的连续鼓泡塔反应器中,每段催化剂容积为1L,装填好钴含量为40%、氧化钠含量为2%、载体为氧化铝的负载型碱性钴类催化剂,然后将含量为98.6%(除溶剂)的反应物IPNI溶液以0.4mol/h通过计量泵从鼓泡塔顶部加入,同时从底部以4mol/h连续通入氢气。此操作条件对应的催化剂空时处理量为0.05mol/(L*h),氢气与IPNI摩尔比为10。在A1~A8换热盘管中分别通入不同温度的热油,控制反应器温度从上至下分别为60℃、60℃、70℃、70℃、80℃、90℃、100℃、110℃,压力控制在3MPa,反应产物从底部采出。
系统稳定运行100小时后,对产物进行取样分析表明,反应出料中除含有氨和水以外,根据气相色谱分析,产物IPDA的含量为98.52%,主要副产物1,3,3-三甲基-6-氮杂双环[3.2.1]辛烷(TAO)的含量为0.53%,1,3,3-三甲基-6-氮杂双环[3.2.1]亚辛-7-基胺(脒)的含量为0.41%,3-氨甲基-3,5,5-三甲基环己醇(IPAA)的含量为0.26%,IPDA的选择性为98.5%,顺反异构体比例是83/17。
实施例2
采用如图1中的8段式鼓泡塔反应器,装填好钴含量为50%、氧化镁含量为5%、载体为二氧化钛的负载型碱性钴类催化剂,然后将含量为97.2%(除溶剂)的反应物IPNI溶液以2.4mol/h通过计量泵从鼓泡塔顶部加入,同时从底部以240mol/h连续通入氢气。此操作条件对应的催化剂空时处理量为0.3mol/(L*h),氢气与IPNI摩尔比为100。在A1~A8换热盘管中分别通入不同温度的热油,控制反应器温度从上至下分别为80℃、80℃、90℃、90℃、100℃、120℃、140℃、160℃,压力控制在10MPa,反应产物从底部采出。
系统稳定运行60小时后,对产物进行取样分析表明,反应出料中除含有氨和水以外,根据气相色谱分析,产物IPDA的含量为98.31%,主要副产物1,3,3-三甲基-6-氮杂双环[3.2.1]辛烷(TAO)的含量为0.62%,1,3,3-三甲基-6-氮杂双环[3.2.1]亚辛-7-基胺(脒)的含量为0.45%,3-氨甲基-3,5,5-三甲基环己醇(IPAA)的含量为0.28%,IPDA的选择性为98.3%,顺反异构体比例是79/21。
实施例3
采用如图1中的8段式鼓泡塔反应器,装填好钴含量为30%、氧化钾含量为0.1%、载体为氧化镁的负载型碱性钴类催化剂,然后将含量为98.2%(除溶剂)的反应物IPNI溶液以1.2mol/h通过计量泵从鼓泡塔顶部加入,同时从底部以24mol/h连续通入氢气。此操作条件对应的催化剂空时处理量为0.15mol/(L*h),氢气与IPNI摩尔比为20。在A1~A8换热盘管中分别通入不同温度的热油,控制反应器温度从上至下分别为70℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃,压力控制在6MPa,反应产物从底部采出。
系统稳定运行80小时后,对产物进行取样分析表明,反应出料中除含有氨和水以外,根据气相色谱分析,产物IPDA的含量为98.42%,主要副产物 1,3,3-三甲基-6-氮杂双环[3.2.1]辛烷(TAO)的含量为0.57%,1,3,3-三甲基-6-氮杂双环[3.2.1]亚辛-7-基胺(脒)的含量为0.40%,3-氨甲基-3,5,5-三甲基环己醇(IPAA)的含量为0.27%,IPDA的选择性为98.4%,顺反异构体比例是81/19。
实施例4
采用如图1中的8段式鼓泡塔反应器,段数改为6段,装填好钴含量为30%、氧化钾含量为0.1%、载体为氧化镁的负载型碱性钴类催化剂,然后将含量为98.2%(除溶剂)的反应物IPNI溶液以0.9mol/h通过计量泵从鼓泡塔顶部加入,同时从底部以27mol/h连续通入氢气。此操作条件对应的催化剂空时处理量为0.15mol/(L*h),氢气与IPNI摩尔比为30。在A1~A6换热盘管中分别通入不同温度的热油,控制反应器温度从上至下分别为80℃、90℃、100℃、110℃、120℃、130℃,压力控制在6MPa,反应产物从底部采出。
系统稳定运行70小时后,对产物进行取样分析表明,反应出料中除含有氨和水以外,根据气相色谱分析,产物IPDA的含量为98.13%,主要副产物1,3,3-三甲基-6-氮杂双环[3.2.1]辛烷(TAO)的含量为0.59%,1,3,3-三甲基-6-氮杂双环[3.2.1]亚辛-7-基胺(脒)的含量为0.46%,3-氨甲基-3,5,5-三甲基环己醇(IPAA)的含量为0.31%,IPDA的选择性为98.1%,顺反异构体比例是80/20。
实施例5
采用如图1中的8段式鼓泡塔反应器,段数改为12段,装填好钴含量为40%、氧化钙含量为2%、载体为二氧化锆的负载型碱性钴类催化剂,然后将含量为98.2%(除溶剂)的反应物IPNI溶液以2.4mol/h通过计量泵从鼓泡塔顶部加入,同时从底部以120mol/h连续通入氢气。此操作条件对应的催化剂空时处理量为0.2mol/(L*h),氢气与IPNI摩尔比为50。在A1~A12换热盘管中分别通入不同温度的热油,控制反应器温度从上至下分别为70℃、70℃、80℃、80℃、90℃、90℃、100℃、100℃、110℃、110℃、120℃、120℃,压力控制在8MPa,反应产物从底部采出。
系统稳定运行80小时后,对产物进行取样分析表明,反应出料中除含有氨和水以外,根据气相色谱分析,产物IPDA的含量为98.69%,主要副产物1,3,3-三甲基-6-氮杂双环[3.2.1]辛烷(TAO)的含量为0.49%,1,3,3-三甲基-6-氮 杂双环[3.2.1]亚辛-7-基胺(脒)的含量为0.36%,3-氨甲基-3,5,5-三甲基环己醇(IPAA)的含量为0.25%,IPDA的选择性为98.7%,顺反异构体比例是82/18。

Claims (10)

  1. 一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,其特征在于,加氢还原在装有负载型碱性钴类催化剂的多段式鼓泡塔反应器中连续进行,异佛尔酮腈亚胺与氢气在每段反应器中依次逆流接触进行加氢还原反应,即得异佛尔酮二胺。
  2. 根据权利要求1所述的异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,其特征在于,所述多段式鼓泡塔反应器包括6~12段反应器。
  3. 根据权利要求1所述的异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,其特征在于,所述多段式鼓泡塔反应器中每段反应器之间采用筛板分隔。
  4. 根据权利要求3所述的异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,其特征在于,所述筛板上的孔道仅能让氢气通过,反应液无法通过,反应液通过降液管和降液环进入下一段反应器。
  5. 根据权利要求3所述的异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,其特征在于,所述负载型碱性钴类催化剂分别设置在每段反应器中,采用筛板、压板和固定板固定;所述压板和固定板的孔道能够使得氢气和反应液通过。
  6. 根据权利要求1所述的异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,其特征在于,所述负载型碱性钴类催化剂包括载体、活性组分和碱性组分;所述载体包括氧化铝、二氧化钛、二氧化锆、氧化镁中的一种或几种;所述活性组分为Co;所述碱性组分包括Mg、Ca、Na或K的氧化物。
  7. 根据权利要求6所述的异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,其特征在于,所述活性组分的质量分数为30-50%;所述碱性组分的质量分数为0.1-5%。
  8. 根据权利要求1所述的异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,其特征在于,所述异佛尔酮腈亚胺作为反应原料加入时质量分数为97%以上。
  9. 根据权利要求1所述的异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法,其特征在于,所述加氢还原反应时氢气与异佛尔酮腈亚胺的摩尔比为5-100∶1;所述多段式鼓泡塔反应器的催化剂空时处理量为0.05-0.3mol/(L*h)。
  10. 根据权利要求1所述的异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺 的方法,其特征在于,所述多段式鼓泡塔反应器中反应温度为60-160℃,相邻段反应器内的温度相同或者增大;所述多段式鼓泡塔反应器中反应压力为3-10MPa。
PCT/CN2018/118616 2017-12-22 2018-11-30 一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法 WO2019120064A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020547276A JP6906710B2 (ja) 2017-12-22 2018-11-30 イソホロンニトリルイミンの水素化還元によりイソホロンジアミンを製造する方法
US16/954,774 US11180440B2 (en) 2017-12-22 2018-11-30 Method for preparing isophorone diamine by means of hydrogenation reduction of isophorone nitrile imine
EP18890918.8A EP3677566B1 (en) 2017-12-22 2018-11-30 Method for preparing isophorone diamine by means of hydrogenation reduction of isophorone nitrile imine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711408135.1 2017-12-22
CN201711408135.1A CN108017547B (zh) 2017-12-22 2017-12-22 一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法

Publications (1)

Publication Number Publication Date
WO2019120064A1 true WO2019120064A1 (zh) 2019-06-27

Family

ID=62074590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118616 WO2019120064A1 (zh) 2017-12-22 2018-11-30 一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法

Country Status (5)

Country Link
US (1) US11180440B2 (zh)
EP (1) EP3677566B1 (zh)
JP (1) JP6906710B2 (zh)
CN (1) CN108017547B (zh)
WO (1) WO2019120064A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108017547B (zh) 2017-12-22 2019-07-02 浙江新和成股份有限公司 一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352913A (en) 1961-10-18 1967-11-14 Scholven Chemie Ag 3-aminomethyl-3, 5, 5-trialky-1-cyclohexylamine and cyclohexanol compounds
US5395972A (en) * 1993-02-08 1995-03-07 Sumitomo Chemical Company, Limited Process for producing amines
US5589596A (en) * 1993-04-27 1996-12-31 Sumitomo Chemical Company, Limited Process for producing amines
US5756845A (en) * 1995-03-03 1998-05-26 Basf Aktiengesellschaft Preparation of 3-aminomethyl-3,5,5-trimethylcyclohexylamine
CN1561260A (zh) 2001-08-31 2005-01-05 巴斯福股份公司 异佛尔酮二胺(ipda,3-氨甲基-3,5,5-三甲基环己胺)的制备方法
CN101260047A (zh) 2007-03-07 2008-09-10 赢创德固赛有限责任公司 用于制备3-氨甲基-3,5,5-三甲基-环己胺的方法
CN101386579A (zh) 2008-11-05 2009-03-18 烟台万华聚氨酯股份有限公司 一种3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN101568516A (zh) 2006-12-22 2009-10-28 巴斯夫欧洲公司 氢化3-氰基-3,5,5-三甲基环己基亚胺的连续方法
CN101768084A (zh) 2010-01-19 2010-07-07 烟台万华聚氨酯股份有限公司 一种3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN102531916A (zh) 2010-12-08 2012-07-04 赢创德固赛有限责任公司 用于制备3-氨甲基-3,5,5-三甲基环己胺的方法
CN102924291A (zh) 2011-08-08 2013-02-13 烟台万华聚氨酯股份有限公司 3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN102976956A (zh) 2013-01-07 2013-03-20 烟台万华聚氨酯股份有限公司 3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN103228614A (zh) 2010-12-08 2013-07-31 赢创德固赛有限公司 用于制备3-氨甲基-3,5,5-三甲基环己胺的方法
CN103265437A (zh) * 2013-05-02 2013-08-28 浙江大学 一种异佛尔酮二胺的制备方法
CN103429563A (zh) 2011-03-22 2013-12-04 巴斯夫欧洲公司 氢化腈类的方法
CN104119233A (zh) 2013-04-27 2014-10-29 万华化学集团股份有限公司 一种制备3-氨甲基-3,5,5-三甲基环己胺的方法
CN104230721A (zh) 2013-06-05 2014-12-24 万华化学集团股份有限公司 3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN104370750A (zh) 2014-10-14 2015-02-25 万华化学集团股份有限公司 一种3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN108017547A (zh) * 2017-12-22 2018-05-11 浙江新和成股份有限公司 一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4343891A1 (de) 1993-12-22 1995-06-29 Degussa Verfahren zur Beeinflussung des cis-/trans-Isomerenverhältnisses von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin bei dessen Herstellung aus 3-Cyano-3,5,5-trimethylcyclohexanon
DE19540191C1 (de) * 1995-10-30 1996-11-21 Degussa Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin, unter Verwendung eines Festbett-Hydrierkatalysators auf der Basis von Kobalt nach Raney
US20110313187A1 (en) * 2009-02-09 2011-12-22 Christof Wilhelm Wigbers Method for improving the catalytic activity of monolithic catalysts

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352913A (en) 1961-10-18 1967-11-14 Scholven Chemie Ag 3-aminomethyl-3, 5, 5-trialky-1-cyclohexylamine and cyclohexanol compounds
US5395972A (en) * 1993-02-08 1995-03-07 Sumitomo Chemical Company, Limited Process for producing amines
US5589596A (en) * 1993-04-27 1996-12-31 Sumitomo Chemical Company, Limited Process for producing amines
US5756845A (en) * 1995-03-03 1998-05-26 Basf Aktiengesellschaft Preparation of 3-aminomethyl-3,5,5-trimethylcyclohexylamine
CN1561260A (zh) 2001-08-31 2005-01-05 巴斯福股份公司 异佛尔酮二胺(ipda,3-氨甲基-3,5,5-三甲基环己胺)的制备方法
CN101568516A (zh) 2006-12-22 2009-10-28 巴斯夫欧洲公司 氢化3-氰基-3,5,5-三甲基环己基亚胺的连续方法
CN101260047A (zh) 2007-03-07 2008-09-10 赢创德固赛有限责任公司 用于制备3-氨甲基-3,5,5-三甲基-环己胺的方法
CN101386579A (zh) 2008-11-05 2009-03-18 烟台万华聚氨酯股份有限公司 一种3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN101768084A (zh) 2010-01-19 2010-07-07 烟台万华聚氨酯股份有限公司 一种3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN102531916A (zh) 2010-12-08 2012-07-04 赢创德固赛有限责任公司 用于制备3-氨甲基-3,5,5-三甲基环己胺的方法
CN105198755A (zh) 2010-12-08 2015-12-30 赢创德固赛有限公司 用于制备3-氨甲基-3,5,5-三甲基环己胺的方法
CN103228614A (zh) 2010-12-08 2013-07-31 赢创德固赛有限公司 用于制备3-氨甲基-3,5,5-三甲基环己胺的方法
CN103429563A (zh) 2011-03-22 2013-12-04 巴斯夫欧洲公司 氢化腈类的方法
CN102924291A (zh) 2011-08-08 2013-02-13 烟台万华聚氨酯股份有限公司 3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN102976956A (zh) 2013-01-07 2013-03-20 烟台万华聚氨酯股份有限公司 3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN104119233A (zh) 2013-04-27 2014-10-29 万华化学集团股份有限公司 一种制备3-氨甲基-3,5,5-三甲基环己胺的方法
CN103265437A (zh) * 2013-05-02 2013-08-28 浙江大学 一种异佛尔酮二胺的制备方法
CN104230721A (zh) 2013-06-05 2014-12-24 万华化学集团股份有限公司 3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN104370750A (zh) 2014-10-14 2015-02-25 万华化学集团股份有限公司 一种3-氨甲基-3,5,5-三甲基环己胺的制备方法
CN108017547A (zh) * 2017-12-22 2018-05-11 浙江新和成股份有限公司 一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, YINGXIN ET AL.: "Synthesis of Isophorone Diamine and its Reaction Condition Optimization", JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES, vol. 29, no. 3, 15 June 2015 (2015-06-15), pages 616 - 620, XP055619764, ISSN: 1003-9015 *
See also references of EP3677566A4

Also Published As

Publication number Publication date
CN108017547B (zh) 2019-07-02
EP3677566A1 (en) 2020-07-08
US20210087133A1 (en) 2021-03-25
CN108017547A (zh) 2018-05-11
US11180440B2 (en) 2021-11-23
JP6906710B2 (ja) 2021-07-21
EP3677566B1 (en) 2023-06-07
JP2021504483A (ja) 2021-02-15
EP3677566A4 (en) 2020-10-14
EP3677566C0 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
CN111004148B (zh) 一种气相法制备6-氨基己腈的方法
JP6033231B2 (ja) 3−アミノメチル−3,5,5−トリメチルシクロヘキシルアミンの製造法
EP2743251B1 (en) 3-aminomethyl-3, 5, 5-trimethyl cyclohexylamine preparation method
WO2018121042A1 (zh) 一种高品质精己二胺的生产方法
EP3901133B1 (en) Method for preparing isophorone diisocyanate
CN109456200B (zh) 一种间苯二甲胺的制备方法
JP2010513396A (ja) 3−シアノ−3,5,5−トリメチル−シクロヘキシルイミンの連続的な水素化法
EP1630155B1 (en) Hydrogenation of methylenedianiline
CN102502707A (zh) 从含氢氰酸混合气中提纯氢氰酸的方法
CN113620813A (zh) 一种n,n-二甲基-1,3-丙二胺的制备方法
MXPA01001346A (es) Procedimiento mejorado para la obtencion de hexametilendiamina.
WO2019120064A1 (zh) 一种异佛尔酮腈亚胺加氢还原制备异佛尔酮二胺的方法
CN113105362B (zh) 一种气相法制备6-氨基己腈的装置及方法
CN109721469A (zh) 一种环戊酮的制备方法
CN114380698B (zh) 连续法二氨基甲苯选择性加氢合成甲基环己二胺的方法
CN112939765B (zh) 一种由环己烷联产己二酸和环己酮肟的方法
JPH11236359A (ja) シス/トランス異性体比が少なくとも70/30である3−アミノメチル−3,5,5−トリメチル−シクロヘキシルアミンを製造する方法
CN101993363B (zh) Co偶联制草酸酯的方法
CN114315593A (zh) 一种产品比例随意可调的乙胺生产方法
CN113105363A (zh) 一种从环己酮肟一步合成6-氨基己腈的方法
CN101993364A (zh) Co气相偶联生产草酸酯的方法
CN116082172B (zh) 一种异丙醇胺的生产方法
CN112125807B (zh) 一种使用环路反应器合成正辛胺的方法
JP2002128716A (ja) イソプロピルアルコールの製造方法
KR20090118321A (ko) 사이클로헥산온의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018890918

Country of ref document: EP

Effective date: 20200331

ENP Entry into the national phase

Ref document number: 2020547276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE