WO2019116729A1 - 溶解作業装置及び溶解作業方法 - Google Patents

溶解作業装置及び溶解作業方法 Download PDF

Info

Publication number
WO2019116729A1
WO2019116729A1 PCT/JP2018/039268 JP2018039268W WO2019116729A1 WO 2019116729 A1 WO2019116729 A1 WO 2019116729A1 JP 2018039268 W JP2018039268 W JP 2018039268W WO 2019116729 A1 WO2019116729 A1 WO 2019116729A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
tool
drive mechanism
rod
melting
Prior art date
Application number
PCT/JP2018/039268
Other languages
English (en)
French (fr)
Inventor
玉木 賢治
敬博 矢野
政行 石川
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to US16/764,978 priority Critical patent/US11473842B2/en
Priority to CN201880080534.6A priority patent/CN111480046B/zh
Publication of WO2019116729A1 publication Critical patent/WO2019116729A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1545Equipment for removing or retaining slag
    • F27D3/1554Equipment for removing or retaining slag for removing the slag from the surface of the melt
    • F27D3/1563Equipment for removing or retaining slag for removing the slag from the surface of the melt by the use of scrapers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D43/00Mechanical cleaning, e.g. skimming of molten metals
    • B22D43/005Removing slag from a molten metal surface
    • B22D43/007Removing slag from a molten metal surface by using scrapers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/20Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag

Definitions

  • the present invention relates to a dissolving operation apparatus and a dissolving operation method.
  • Patent Document 1 discloses an induction melting furnace used for melting metal.
  • temperature measurement of the molten metal, removal of slag which is an impurity separated from the metal by melting, auxiliary material for adjusting the component of the molten metal Various operations, such as sampling to obtain a sample for analysis of the metal that has been added and dissolved, are performed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-280450
  • the surroundings of the melting furnace are very hot.
  • a worker may insert the tip of a round bar into the melting furnace, adhere the slag to the round bar and pull it up, but the slag Workers are burdened because they are heavy.
  • the work performed by workers directly in the melting furnace is a hot work and heavy labor. Therefore, it is desirable to reduce the burden on workers.
  • the problem to be solved by the present invention is to provide a melting operation apparatus and a melting operation method that can easily carry out the operation of the melting furnace without the worker approaching the melting furnace.
  • the present invention is a melting operation apparatus that performs an operation on a molten metal formed by melting a material in a melting furnace, and includes a drive mechanism and a plurality of operation tools operated by the drive mechanism.
  • the driving mechanism is provided with a melting operation device capable of moving the working tool in any direction at any position on the melting furnace.
  • the present invention is a melting operation method for performing operation on a molten metal formed by melting a material in a melting furnace, wherein any of the plurality of operation tools is fixed to a drive mechanism, The working tool is lowered at an arbitrary position on the melting furnace by the driving mechanism, moved to an arbitrary position, and then the working tool is raised by the driving mechanism.
  • the present invention it is possible to provide a melting operation apparatus and a melting operation method capable of easily performing operations on the melting furnace without the worker approaching the melting furnace.
  • FIG. 1 to (e) are perspective views of a slag removing portion of the first to fifth slag removing tools, respectively. It is an explanatory view of slag removal using the 1st and 2nd slag removal tools. It is explanatory drawing of slag removal which used the said 3rd slag removal tool. It is explanatory drawing of slag removal which used the said 4th slag removal tool. It is explanatory drawing of the slag removal which used the said 5th slag removal tool. It is a side view of the auxiliary material input tool of the above-mentioned dissolution operation device. It is a flow chart explaining the dissolution operation method using the above-mentioned dissolution operation device.
  • the melting work apparatus in the present embodiment includes a drive mechanism and a plurality of work tools operated by the drive mechanism, and the drive mechanism can move the work tool in any direction at any place on the melting furnace. It is.
  • FIG. 1 is a schematic plan view of a melting facility 1 equipped with a melting operation apparatus according to the present embodiment.
  • FIG. 2 is a side view of the melting facility 1.
  • the melting equipment 1 is equipment that melts metal such as scrap, for example, to make it a molten metal, and in the present embodiment, it melts cast steel in particular.
  • the melting facility 1 is equipped with a melting furnace 2 for melting metal.
  • FIG. 3 is a longitudinal sectional view of the melting furnace 2.
  • the melting furnace 2 is provided with a cylindrical side wall 2e provided so that an axis CM extends in the vertical direction, and a bottom wall 2f provided so as to close an opening on the lower side of the side wall 2e.
  • the side wall 2e and the bottom wall 2f form an internal space 2g in which metal is introduced and dissolved.
  • the vicinity of the inner surface 2c forming the inner space 2g between the side wall 2e and the bottom wall 2f is particularly made of a highly heat-resistant material such as alumina-magnesia.
  • the melting furnace 2 is an induction furnace, and melts the metal by generating an induction current by supplying a current to a conductor (not shown) such as a coil provided on the outer periphery of the side wall 2e. .
  • a outlet 2a and an outlet 2b are provided at the upper end of the melting furnace 2.
  • the spout 2a is provided to protrude outward in the radial direction of the cylindrical shape.
  • the melted metal is taken out through the outlet 2a by, for example, tilting the melting furnace 2 in the direction of the outlet 2a in a state where a ladle (not shown) is provided below the outlet 2a.
  • the outlet 2b is provided to discharge slag, which is an impurity or the like separated from the metal by melting, from the melting furnace 2, as will be described later with reference to FIG.
  • an inclined portion 2d in which the surface of the inner surface 2c is inclined is formed in the side wall 2e of the melting furnace 2, in the vicinity of the outlet 2b.
  • the melting furnace 2 is tilted in the direction of the outlet 2a and the outlet 2b by a tilting device (not shown) provided on its own.
  • the melting facility 1 is provided with a slag waste box 3 for storing the slag removed from the melting furnace 2.
  • the melting equipment 1 includes a melting work apparatus 10 for performing work on a molten metal obtained by melting the material in the melting furnace 2.
  • the melting work apparatus 10 includes a drive mechanism 11, a control device 12, a work tool rack 13, a work tool 14, a probe rack 15, a secondary material weighing machine 16, a chute 17, and an ingot receptacle 18.
  • the dissolution work device 10 also includes a teach pendant 19 and an input device 20, which will be described later with reference to FIG. Using these, the melting work apparatus 10 measures the temperature of the molten metal, removes the slag which is an impurity separated from the metal by melting, inserts secondary materials for adjusting the component of the molten metal, and obtains a sample for analysis of the molten metal Perform various tasks such as sampling.
  • FIG. 4 is a side view of the drive mechanism 11 in the melting facility 10.
  • the drive mechanism 11 is a robot arm such as a six-axis robot.
  • the drive mechanism 11 includes a pedestal 11a, a base 11b, a long lower arm 11d and an upper arm 11f, and a wrist 11h.
  • the pedestal 11 a is fixed to the floor surface FL.
  • the base 11b is provided on the pedestal 11a so as to be rotatable in a horizontal plane with respect to the pedestal 11a.
  • One end of the lower arm portion 11d is connected to the base portion 11b by a first shaft portion 11c, and the lower arm portion 11d is provided rotatably about the first shaft portion 11c in the vertical direction with respect to the base portion 11b.
  • One end of an upper arm 11f is connected to the other end of the lower arm 11d by a second shaft 11e.
  • the upper arm portion 11 f is provided rotatably in the vertical direction with respect to the lower arm portion 11 d about the second shaft portion 11 e.
  • a wrist 11h is connected to the other end of the upper arm 11f by a wrist connector 11g.
  • the wrist connection portion 11g is structured such that the wrist portion 11h can be bent with respect to the upper arm portion 11f or can be rotated around an axis of the upper arm portion 11f.
  • FIG. 5 (a) is a front view of a wrist 11h of the drive mechanism 11 and a working tool rack 13 to be described later
  • FIG. 5 (b) is a side view.
  • a grip 11j is provided at the tip of the wrist 11h so as to be rotatable around the axis of the wrist 11h.
  • the gripping portion 11 j is provided with a total of two sets of gripping tip portions 11 l in which two are combined as one set.
  • each set of gripping tips 11l two gripping tips 11l are provided facing each other and capable of being separated from each other.
  • Each gripping tip 11l is shaped such that the tip side is bent in the direction of the opposing gripping tip 11l.
  • the inner ends 11m which are the tips of the bent portions of the grip tip 11l, are provided to face each other.
  • a notch 11n is formed at the inner end 11m.
  • the wrist portion 11 h of the drive mechanism 11 grips the long rod that constitutes the working tool 14.
  • the notch 11n is formed in such a shape that the surfaces of the notches 11n of the two opposing gripping tips 11l contact the outer periphery of the rod when the opposing gripping tips 11l approach each other, and the rod can be firmly gripped. There is.
  • the drive mechanism 11 is controlled by a controller 12 described below, and can move the working tool 14 at any place on the melting furnace 2 in any direction, including the up and down direction.
  • FIG. 6 is a block diagram of the melting operation apparatus 10.
  • the control device 12 is connected to the drive mechanism 11, the teach pendant 19, and the input device 20.
  • the control device 12 stores a program created by the teach pendant 19. That is, the operator actually operates the drive mechanism 11 through the teaching pendant 19 to perform teaching, for example, and the controller 12 learns and records the operation, whereby the operation of the drive mechanism 11 in the controller 12 is performed. Is accumulated.
  • the control device 12 drives and controls the drive mechanism 11 by, for example, reproducing the operation learned by teaching. As described above, the drive mechanism 11 is controlled by the control device 12, more specifically, by a program created by teaching and recorded in the control device 12.
  • the drive mechanism 11 may need to perform work requiring delicate motion. In addition, in some cases, the drive mechanism 11 needs to perform work that strongly depends on the result of the operator observing the condition in the melting furnace 2. For example, as described above, the drive mechanism 11 performs the removal of the slag floating on the surface of the molten metal. Slag appears at an unspecified place on the surface of the molten metal. In addition, the timing and amount at which slag appears varies depending on various factors such as the surrounding environment, the quality and purity of the input metal, and the like. For this reason, it is not easy to control the drive mechanism 11 and remove the slag sufficiently by only the program created only by teaching.
  • An input device 20 is provided to perform such an operation requiring delicate movement or an operation depending on the judgment of the operator without depending on teaching.
  • the drive mechanism 11 is remotely operated by the input to the input device 20. That is, the operator can remotely control the drive mechanism 11 directly via the control device 12.
  • control device 12 controls the drive mechanism 11 in the following description
  • the operator must control the drive mechanism 11 according to a program created by teaching stored in the control device 12 as well as the operator.
  • the case of remotely operating the drive mechanism 11 via the input device 20 and the control device 12 is also included.
  • temperature measurement of the molten metal, secondary material input, sampling, and detection of the height position of the surface of the molten metal to be described later are executed by a program created by teaching, and Although it is assumed that the removal is performed by remote control or a combination of program and remote control and switching as appropriate, it is needless to say that the present invention is not limited to this.
  • the control operation actually performed by the control device 12 at each of the above operations will be described corresponding to the respective portions when the respective portions constituting the dissolution operation device 10 are described.
  • the control device 12 is configured to be able to grasp the amount of rotation and the amount of movement of each movable portion of the drive mechanism 11. As a result, the control device 12 can accurately grasp the current posture of the drive mechanism 11, that is, the spatial position of the wrist 11h. For this reason, for example, the wrist portion 11 h always grips a predetermined position of the rod of the working tool 14, so that the spatial position of the portion provided on the tip of the working tool 14 for performing various tasks is It is possible to grasp.
  • control device 12 the teach pendant 19, and the input device 20 are provided apart from the drive mechanism 11.
  • the work tool rack 13 is provided in the vicinity of the drive mechanism 11.
  • the work tool rack 13 includes a leg 13a, a base 13b, and a work tool support 13c.
  • the base 13 b is a rectangular plate having a length corresponding to each rod of the working tool 14 described later, and the plate is positioned substantially parallel to the floor FL, and the floor 13 a is formed by the legs 13 a. It is fixed on FL.
  • a plurality of work tool support portions 13c are provided on the upper side of the base 13b so as to be separated from each other in the longitudinal direction of the base 13b.
  • the work tool support portion 13c is formed in a substantially rectangular shape, and is positioned to extend in the vertical direction, and the lower side is joined to the upper surface of the base 13b.
  • a notch 13d is provided on the upper side of the work tool support 13c.
  • the notch 13 d is formed to be larger than the outer diameter of the rod of the work tool 14 described later.
  • the rod straddles each working tool support 13c and is stored in the notch 13d formed in each working tool support 13c.
  • the control device 12 controls the drive mechanism 11 to grip and lift the work tool 14 placed on the work tool rack 13 by the gripping part 11j to execute the work, and the work tool rack 13 after the work is completed.
  • the work tool 14 is placed on the top again.
  • the probe rack 15 shown in FIG. 1 is a rack for storing a replacement probe of a thermometer used when measuring the temperature of the molten metal, which will be described later.
  • the secondary material measuring machine 16 automatically measures the secondary material at the time of secondary material input, which will be described later, and discharges a fixed amount of secondary material.
  • the chute 17 is a slide which automatically conveys the ingot produced by sampling under its own weight. As shown in FIG. 2, the chute 17 is supported by a support 17 c so that one end 17 a is located on the melting furnace 2 side and the other end 17 b is located on the control device 12 side. It is done. One end 17a on the melting furnace 2 side is positioned higher than the other end 17b. Below the other end 17 b of the chute 17, an ingot receiver 18 is provided below the other end 17 b of the chute 17, an ingot receiver 18 is provided.
  • the melting work apparatus 10 includes a plurality of work tools 14 operated by the drive mechanism 11.
  • the plurality of working tools 14 will be described sequentially, and the hot metal surface detection tool 30, the sampling tool 40, the temperature measurement tool 50, the first to fifth slag removal tools (slag removal tools) 60, 70, 80, 90, 100, And a secondary material input tool 110.
  • FIG. 7 is a side view of the surface detection tool 30.
  • the molten metal surface detection tool 30 includes a rod 31 and a molten metal surface detection unit 32 provided at the tip of the rod 31 to detect the height position of the molten metal surface.
  • the melting operation device 10 detects the height position of the surface of the molten metal by using the surface detection tool 30.
  • the temperature measurement of the molten metal, the removal of the slag, the secondary material input, the sampling and the like can be mentioned.
  • the tip of the working tool 14 gripped by the grip portion 11j of the drive mechanism 11 is buried in the molten metal deeper than the molten metal surface based on the height of the molten metal surface. It is done by.
  • the worker himself / herself performs these operations, the relative positional relationship between the tip of the working tool 14 and the surface of the molten metal can always be visually recognized, so the height position of the surface of the molten metal can There is no need to measure by
  • the drive mechanism 11 when the drive mechanism 11 is controlled not only by remote control by the input device 20 but by a program created by teaching, the drive mechanism 11 and the control device 12 themselves are the tip of the working tool 14 and the molten metal I can not recognize the relative positional relationship with the face. Therefore, in order to carry out the above operation, the height position of the surface is always kept constant, and then the height position is stored as a fixed value in the control unit 12 or always by some means. It is necessary to be able to detect the height position of the bath surface. Here, it is not easy to keep the height position of the surface of the molten metal at a constant position for the following reasons.
  • the control device 12 controls the drive mechanism 11 so as to detect the height position of the surface of the molten metal before performing various operations by the drive mechanism 11.
  • the surface level detection unit 32 of the surface level detection tool 30 includes a rod-shaped first electrode 33 and a second electrode 34.
  • the first electrode 33 and the second electrode 34 are manufactured on the basis of a round rod of ⁇ 6 mm formed of a general structural rolled steel material, but the invention is not limited thereto, and any conductive material is applicable. It is.
  • the molten metal level detection unit 32 also includes a first conducting wire 35 and a second conducting wire 36 connected to the end of each of the first electrode 33 and the second electrode 34 on the rod 31 side.
  • the not-shown end portions of the first conducting wire 35 and the second conducting wire 36 which are not connected to the first electrode 33 and the second electrode 34 are connected to, for example, a current sensor or the like. Thus, when a current flows between the first electrode 33 and the second electrode 34, the current can be detected.
  • the melting operation device 10 moves the surface detection tool 30 at any position on the melting furnace 2 in any direction including the vertical direction. More specifically, in a state where the rod 31 of the surface level detection tool 30 is positioned between the notches 11 n of the opposing gripping tips 11 l of the respective gripping portions 11 j of the drive mechanism 11, the control device 12 grasps the gripping tips 11 l The drive mechanism 11 is controlled so as to hold the rod 31 in proximity to each other. The control device 12 moves the surface level detection tool 30 with the tips of the first electrode 33 and the second electrode 34 protruding from the rod 31 downward, and positions it at an arbitrary position above the melting furnace 2, and then The drive mechanism 11 is controlled to lower the molten metal in the melting furnace 2.
  • the molten metal in the melting furnace 2 is a conductive metal
  • the first electrode 33 and the second electrode 34 descend and both the tips come in contact with the molten metal
  • the first conducting wire 35 and the second conducting wire A current flows through 36.
  • This current is detected by the above current sensor or the like.
  • the controller 12 determines the positions of the tips of the first electrode 33 and the second electrode 34 at the time when the current is detected based on the state of the drive mechanism 11 at this time, for example, the amount of rotation, movement, etc. of each movable portion.
  • the height position of the surface of the molten metal is detected and stored.
  • the first electrode 33 is provided to project from the rod 31 longer than the second electrode 34.
  • FIG. 8 is an explanatory view of the level detection tool 37 when the two electrodes 38 have the same length.
  • the slag S appears at an unspecified place on the surface of the molten metal L.
  • the two electrodes 38 may be in contact with the slag S simultaneously when the rods are moved downward. Since the slag S does not conduct current, no current flows between the electrodes 38 at this time.
  • the lower side is hot and soft because it faces the molten metal L, but the upper side is cooled by touching air and becomes hard. Therefore, even if the rod is moved further downward, the electrode 38 abuts on the surface of the hard slag S, and the force to move the electrode 38 downward and push the slag S is dispersed to the two electrodes 38. For this reason, as shown in FIG. 8, the tip of the electrode 38 may not be able to break the layer of the slag S. As a result, the layer of slag S may curve downward, and the tip of the electrode 38 may be positioned below the height position of the surface of the molten metal L.
  • the two electrodes 38 both break the slag S and immerse into the molten metal L, and the electrode 38 A current flows between them.
  • the tip of the electrode 38 since the tip of the electrode 38 has already moved below the height position of the surface of the molten metal L at this time, the detected height position of the surface of the molten metal L is It becomes the one below the original height position.
  • the control device is configured to immerse the working tool 14 held by the drive mechanism 11 in the molten metal of the melting furnace 2 at a depth greater than necessary. 12 may control.
  • FIG. 9 is an explanatory view of molten metal level detection using such a molten metal level detection tool 30.
  • the control device 12 controls the drive mechanism 11 so as to position the tips of the first electrode 33 and the second electrode 34 protruding from the rod 31 downward.
  • the control device 12 controls the drive mechanism 11 so as to lower the surface level detection tool 30 toward the molten metal L in the melting furnace 2.
  • the first electrode 33 whose tip is projected from the rod 31 for a longer time first abuts on the surface of the slag S.
  • the force to move the surface level detection tool 30 downward is concentrated on the tip of the first electrode 33, as shown in FIG. 9 (b), the first electrode The tip of 33 easily breaks the layer of slag S, and the surface B is exposed to the outside air.
  • the drive mechanism 11 is controlled so that the controller 12 further moves the surface level detection tool 30 downward, as shown in FIG. 9C, the tip of the second electrode 34 is exposed to the exposed surface B.
  • the controller 12 detects this current, calculates the positions of the tips of the first electrode 33 and the second electrode 34 at this time based on the state of the drive mechanism 11 at this time, etc.
  • the height position of the surface B is detected and stored.
  • the control device 12 After detecting the height position of the molten metal surface B of the molten metal L, the control device 12 controls the drive mechanism 11 to raise the molten metal level detection tool 30 and move it to the vicinity of the work tool rack 13. In the upper predetermined position, the rod 31 is positioned so as to be horizontal. Thereafter, the control device 12 performs control to unfold the grip tip 11 l and release the surface level detection tool 30, and returns the surface level detection tool 30 to the work tool rack 13.
  • the first electrode 33 which protrudes longer first contacts the slag S and breaks the layer of the slag S, and the second electrode 34 contacts the exposed molten metal surface B, the molten metal L caused by the slag S It is possible to suppress the detection error of the height position of.
  • the first electrode 33 protrudes more than, for example, 3 cm or more than the second electrode 34 so that the second electrode 34 does not reach the height position of the molten metal surface B before the first electrode 33 breaks the layer of the slag S Is desirable.
  • the distance between the first electrode 33 and the second electrode 34 is about 2 to 3 cm in order to bring the second electrode 34 into contact with the molten metal surface B exposed by the first electrode 33 breaking the layer of the slag S. It is desirable to do the following.
  • FIG. 10A is a side view of the sampling tool 40 of the melting operation apparatus 10.
  • the sampling tool 40 includes a rod 41 and a sample generation unit 42 provided at the tip of the rod 41 to generate a molten ingot.
  • the melting operation apparatus 10 uses the sampling tool 40 to generate an ingot, which is a sample for analysis of the melted metal.
  • the melting equipment 1 melts cast steel.
  • the cast steel has a high solidification temperature and may cool and solidify immediately before pouring into the mold, unless a series of operations from the melting furnace 2 to pick-up and pouring into the mold are performed quickly.
  • the drive mechanism 11 such as a robot arm in the present embodiment, because the drive mechanism 11 can not work as quickly as human. Therefore, in the present embodiment, the molten metal is not poured into the mold, and instead, it is cooled and solidified in a state scooped from the melting furnace 2 according to the characteristic that the cast steel is easily cooled.
  • FIG. 10 (b) is a perspective view of the sample generator 42.
  • the sample generation unit 42 is formed in a substantially cylindrical shape, has one bottom surface as an upper surface 42 d, and is joined to the rod 41 such that the rod 41 is orthogonal to the upper surface 42 d.
  • the sample generation unit 42 includes a recess 42 a on the upper surface 42 d.
  • the internal space 42e formed by the surface of the recess 42a is such that the cross-sectional area in a cross-sectional view taken along a plane parallel to the upper surface 42d gradually expands as it goes from the bottom surface 42c to the opening 42b.
  • the recess 42 a is formed so that the opening 42 b is tapered more than the bottom surface 42 c.
  • the sample generation unit 42 is formed of a material having high thermal conductivity, such as carbon.
  • FIG. 11 is an explanatory diagram of sampling using the sampling tool 40. As shown in FIG. It is desirable that sampling be performed after slag removal previously described is performed in order to suppress adhesion of slag to the sampling tool 40.
  • the melting operation apparatus 10 moves the sampling tool 40 at any position on the melting furnace 2 in any direction including the vertical direction. More specifically, the control device 12 brings the gripping tips 11l close to each other in a state where the rods 41 of the sampling tool 40 are positioned between the notches 11n of the opposing gripping tips 11l of the respective gripping portions 11j of the drive mechanism 11.
  • the drive mechanism 11 is controlled to grip the rod 41. As shown in FIG.
  • control device 12 moves the sampling tool 40 with the sample generation unit 42 downward, and positions it at an arbitrary position above the melting furnace 2, and then the sampling tool
  • the drive mechanism 11 is controlled to incline the cylinder 40 with respect to the vertical direction and to lower it toward the molten metal in the melting furnace 2.
  • the control device 12 drives so that at least the upper surface 42 d of the sample generation unit 42 is positioned lower than the height position of the molten metal surface B of the molten metal L previously measured by the molten metal surface detection tool 30.
  • the control device 12 controls the drive mechanism 11 to raise the sampling tool 40 and scoop the molten metal L into the recess 42a.
  • the control device 12 controls the drive mechanism 11 to raise the sampling tool 40 while keeping the rod 41 inclined with respect to the vertical direction.
  • the amount of the molten metal L in the concave portion 42a becomes, for example, about 80 to 90% of the concave portion 42a, and the molten metal L hardly remains on the upper surface 42d.
  • the angle of the sampling tool 40 is made vertical so that the surface of the molten metal L in the recess 42a becomes substantially parallel to the upper surface 42d.
  • the sample generation unit 42 is formed of a material having a high thermal conductivity, and in the present embodiment, the molten metal L is a cast steel having a high solidification temperature, the scooped molten metal L is immediately cooled. Coagulate. Since the solidified metal shrinks, a slight space is generated between the surface of the recess 42a and the solidified metal, and the metal is separated from the surface of the recess 42a due to the effect of the falling slope of the tapered recess 42a. Do. In this state, the control device 12 controls the drive mechanism 11 so that the sampling tool 40 moves to the vicinity of the chute 17 shown in FIGS. 1 and 2.
  • the control device 12 reverses the sampling tool 40 in the vertical direction so that the upper surface 42 d of the sample generation unit 42 is positioned so as to face downward right above one end 17 a of the chute 17 on the melting furnace 2 side.
  • the drive mechanism 11 is controlled.
  • the metal falls onto one end 17 a of the chute 17.
  • the dropped metal slides on the chute 17 in the direction of the controller 12 and drops from the other end 17 b into the ingot receiver 18.
  • the dropped metal is used as an ingot 120 shown in FIG. 11 (c).
  • the controller 12 controls the drive mechanism 11 to move the sampling tool 40 to the vicinity of the work tool rack 13, and the rod 41 is in a predetermined position on the work tool rack 13. Position so as to be horizontal. Thereafter, the gripping tip 11 1 is spread to control to release the sampling tool 40, and the sampling tool 40 is returned to the work tool rack 13.
  • FIG. 12 is a side view of the temperature measurement tool 50 of the melting operation apparatus 10.
  • the temperature measurement tool 50 includes a thermometer main body 51, a probe 52, and a connection member 53 connecting the thermometer main body 51 and the probe 52.
  • the melting operation apparatus 10 measures the temperature of the molten metal L using the temperature measurement tool 50.
  • the connection member 53 is formed to be bent, but may be formed in a straight line without having a bend.
  • the melting operation device 10 moves the temperature measurement tool 50 at any position on the melting furnace 2 in any direction including the vertical direction. More specifically, the control device 12 holds the thermometer main body 51 or the connection member 53 of the temperature measurement tool 50 in a state of being positioned between the notches 11 n of the opposing gripping tips 11 l of the respective gripping portions 11 j of the drive mechanism 11
  • the driving mechanism 11 is controlled so as to hold the temperature measurement tool 50 with the tips 11 l close to each other.
  • the controller 12 moves the temperature measurement tool 50 with the probe 52 downward, moves the temperature measurement tool 50 to an arbitrary position above the melting furnace 2, and then lowers the molten metal in the melting furnace 2,
  • the drive mechanism 11 is controlled.
  • control device 12 lowers the drive mechanism 11 so that at least the tip side of the probe 52 is positioned lower than the height position of the melt surface B of the molten metal L previously measured by the melt surface detection tool 30. Control. By standing still in this state for a predetermined time, the temperature of the molten metal L is measured.
  • the control device 12 controls the drive mechanism 11 to raise the temperature measurement tool 50 and move it in the direction of the worker away from the melting furnace 2.
  • the worker confirms the measurement result of the molten metal temperature displayed on the thermometer main body 51.
  • the control device 12 controls the drive mechanism 11 to hook the corner 52a of the probe 52 to, for example, the corner of the work tool rack 13 and abut the temperature measurement tool 50 on the opposite side to the probe 52, That is, it pulls in the direction of the thermometer main body 51.
  • the probe 52 whose movement is limited by being hooked is detached from the connection member 53, and the not-shown tip of the connection member 53 is exposed.
  • the control device 12 moves the temperature measurement tool 50 to the probe rack 15 shown in FIG. 1, moves the tip of the connection member 53 in the direction of the new probe installed in the probe rack 15, and
  • the drive mechanism 11 is controlled to mount the new probe 52 on the
  • the controller 12 controls the drive mechanism 11 to move the temperature measurement tool 50 near the work tool rack 13 and position it at a predetermined position on the work tool rack 13. Thereafter, the control device 12 controls the spread of the gripping tip 11 l to release the temperature measurement tool 50, and returns the temperature measurement tool 50 to the work tool rack 13.
  • the first to fifth slag removal tools 60, 70, 80, 90, 100 are side views of the first to fifth slag removal tools 60, 70, 80, 90, 100 of the melting work apparatus 10, respectively. It is.
  • the first to fifth slag removal tools 60, 70, 80, 90, 100 are slag removal portions provided at the tips of rods 61, 71, 81, 91, 101 and rods 61, 71, 81, 91, 101. 62, 72, 82, 92, 102 are provided.
  • the melting work apparatus 10 uses the first to fifth slag removal tools 60, 70, 80, 90, 100 to remove the slag floating on the surface B of the molten metal.
  • FIGS. 14A and 14B are perspective views of the slag removing portions 62 and 72 of the first and second slag removing tools 60 and 70, respectively.
  • the slag removing portions 62 and 72 both have a disk shape, and rods 61 and 71 are joined to the approximate center of the disk so as to be orthogonal to the slag removing portions 62 and 72.
  • a plurality of holes 72a are opened in the slag removing portion 72 of the second slag removing tool 70.
  • FIG. 15 is an explanatory view of slag removal using the first and second slag removal tools 60 and 70.
  • the melting operation apparatus 10 moves the first and second slag removal tools 60, 70 at any position on the melting furnace 2 in any direction including the vertical direction. More specifically, the controller 12 positions the rods 61, 71 of the first and second slag removing tools 60, 70 between the notches 11n of the opposing gripping tips 11l of the gripping portions 11j of the drive mechanism 11.
  • the driving mechanism 11 is controlled so as to hold the rods 61 and 71 by bringing the gripping tips 11 l close to each other in the state.
  • the controller 12 moves the first and second slag removing tools 60, 70 downward with the slag removing portions 62, 72 facing downward, as shown in FIG.
  • the driving mechanism 11 is controlled so as to be positioned at an arbitrary position and then lowered toward the molten metal in the melting furnace 2.
  • the controller 12 lowers at least the entire slag removing portions 62 and 72 so as to be positioned below the level of the surface B of the molten metal L previously measured by the surface detecting tool 30.
  • the drive mechanism 11 is controlled.
  • the controller 12 controls the drive mechanism 11 so as to raise the first and second slag removal tools 60, 70.
  • the slag S floating on the surface B of the molten metal L is scooped up by the upper surfaces of the slag removing portions 62, 72.
  • the control device 12 moves the first and second slag removing tools 60, 70 to the vicinity of the slag waste box 3 shown in FIG.
  • the drive mechanism 11 is controlled to discard the slag S to the slag disposal box 3.
  • the controller 12 repeatedly executes this series of slag removal operations for different horizontal positions on the melting furnace 2.
  • the control device 12 controls the drive mechanism 11 to move the first and second slag removal tools 60, 70 to the vicinity of the work tool rack 13 to a predetermined position on the work tool rack 13 , Position the rods 61, 71 to be horizontal. Thereafter, the controller 12 controls the spread of the gripping tip 11 l to release the first and second slag removal tools 60, 70, and returns the first and second slag removal tools 60, 70 to the work tool rack 13. Do.
  • FIG. 14 (c) is a perspective view of the slag removing portion 82 of the third slag removing tool 80.
  • the slag removing portion 82 has a predetermined length in the axial direction CR of the rod 81, and includes a slag adhering portion 82a around the axis. More specifically, the slag removing portion 82 has a cylindrical shape extending in the axial direction CR of the rod 81 over a predetermined length.
  • the cylindrical side surface 82a and the bottom surface 82b opposite to the rod 81 function as slag adhering portions 82a and 82b for adhering slag.
  • FIG. 16 is an explanatory view of slag removal using the third slag removal tool 80.
  • the melting operation apparatus 10 moves the third slag removal tool 80 at any position on the melting furnace 2 in any direction including the vertical direction. More specifically, the control device 12 positions the rod 81 of the third slag removing tool 80 between the notches 11 n of the opposing gripping tips 11 l of the gripping portions 11 j of the drive mechanism 11 so as to position the gripping tip 11 l.
  • the drive mechanism 11 is controlled so as to hold the rod 81 close to each other.
  • the controller 12 moves the third slag removing tool 80 horizontally with the slag removing portion 82 directed downward, as shown in FIG. 16 (a), to an arbitrary place above the melting furnace 2.
  • the drive mechanism 11 is controlled so as to lower it toward the molten metal in the melting furnace 2.
  • the control device 12 is driven so that at least the bottom surface 82b side of the slag removing unit 82 is positioned lower than the height position of the melt surface B of the molten metal L previously measured by the melt surface detection tool 30.
  • the controller 12 controls the drive mechanism 11 so as to raise the third slag removal tool 80.
  • the slag S floating on the surface B of the molten metal L adheres to the side surface 82 a and the bottom surface 82 b of the slag removing portion 82 and is discharged from the melting furnace 2.
  • the control device 12 moves the third slag removing tool 80 to the vicinity of the slag waste box 3 shown in FIG.
  • the drive mechanism 11 is controlled to be discarded.
  • the controller 12 repeatedly executes this series of slag removal operations for different horizontal positions on the melting furnace 2.
  • the control device 12 controls the drive mechanism 11 to move the third slag removing tool 80 to the vicinity of the work tool rack 13 and the rod 81 is horizontal at a predetermined position on the work tool rack 13 Position to become Thereafter, the control device 12 controls the spread of the gripping tip 11 l to release the third slag removal tool 80, and returns the third slag removal tool 80 to the work tool rack 13.
  • FIG. 14 (d) is a perspective view of the slag removing portion 92 of the fourth slag removing tool 90.
  • the slag removing portion 92 has a predetermined length in the axial direction CR of the rod 91, and includes a slag adhering portion 92a around the axis. More specifically, the slag removing portion 92 is formed by providing a plurality of disks 92 a spaced apart from each other over a predetermined length in the axial direction CR of the rod 91. As will be described later, the plurality of disks 92a function as a slag adhering portion 92a that adheres slag. Although four discs 92a are shown in FIG. 14 (d), the number of discs 92a may be appropriately selected, for example, from the range of 2 or more and 20 or less.
  • a drive unit 94 is provided at the end opposite to the end where the slag removal unit 92 of the rod 91 is provided, as shown in FIG. 13 (d). There is.
  • the drive unit 94 is capable of rotating the rod 91 about an axis.
  • the two gripped parts 95 are provided in the drive part 94 at a distance substantially equal to the distance between the two grip parts 11 j of the drive mechanism 11.
  • the gripped portion 95 is formed, for example, so as to join the tip ends of both bent ends of a steel rod bent at both ends to the driving portion 94. As a result, the two grips 11j of the drive mechanism 11 grip the gripped parts 95, whereby the drive part 94 can be fixed to the drive mechanism 11.
  • FIG. 17 is an explanatory view of slag removal using the fourth slag removal tool 90.
  • the melting operation apparatus 10 moves the fourth slag removal tool 90 at any position on the melting furnace 2 in any direction including the vertical direction. More specifically, the control device 12 sets the gripped portion 95 provided in the drive portion 94 of the fourth slag removal tool 90 between the notches 11 n of the opposed gripping tips 11 l of the gripping portions 11 j of the drive mechanism 11.
  • the drive mechanism 11 is controlled such that the grip tips 11l are brought close to each other in the state of being positioned at the position shown in FIG.
  • the control device 12 moves the fourth slag removing tool 90 with the slag removing portion 92 downward, to an arbitrary position on the melting furnace 2.
  • control device 12 is a drive mechanism so that at least the tip side of the slag removing unit 92 is lowered below the height position of the molten metal surface B of the molten metal L measured in advance by the molten metal surface detection tool 30.
  • FIG. 17B shows that the slag removing portion 92 is rotating in the direction D, in the present embodiment, clockwise in accordance with the rotation of the rod 91.
  • the drive mechanism 11 is controlled by the control device 12 to maintain the height position of the slag removing unit 92 and to rotate in the same rotation direction D as the rotation direction D of the rod 91.
  • the fourth slag removal tool 90 is made to revolve around the imaginary axis V extending in the vertical direction set at the approximate center of the melting furnace 2 in R.
  • the slag S floating on the hot water surface B of the molten metal L which is located in the vicinity of the trajectory of movement of the slag removing unit 92 due to the rotation of the slag removing unit 92 and the revolution of the fourth slag removing tool 90 It will be rolled up.
  • the control device 12 controls the drive mechanism 11 so as to raise the fourth slag removal tool 90.
  • the slag S wound up by the slag removing unit 92 is discharged from the melting furnace 2.
  • the control device 12 moves the fourth slag removal tool 90 to the vicinity of the slag waste box 3 shown in FIG.
  • the drive mechanism 11 is controlled to be discarded.
  • the controller 12 repeatedly executes this series of slag removal operations an appropriate number of times.
  • the control device 12 controls the drive mechanism 11 to move the fourth slag removal tool 90 to the vicinity of the work tool rack 13 and the rod 91 is horizontal at a predetermined position on the work tool rack 13 Position to become Thereafter, the control device 12 controls the fourth tip slug removal tool 90 to be released by widening the grasping tip portion 11 l and returns the fourth tip slug removal tool 90 to the work tool rack 13.
  • FIG. 14 (e) is a perspective view of the slag removing portion 102 of the fifth slag removing tool 100.
  • the slag removing portion 102 has a rectangular shape. The width direction of the rectangular shape is provided so as to coincide with the axial direction CR of the rod 101, and the rod 101 is joined to one long side 102b. The other long side 102 a is located on the opposite side to the rod 101.
  • FIG. 18 is an explanatory view of slag removal using the fifth slag removal tool 100.
  • the tilting device of the melting furnace 2 is operated to tilt the melting furnace 2 toward the outlet 2b as shown in FIG. 18 (a).
  • the molten metal surface B or the slag S on the inclined portion 2d of the tapping hole 2b since the melting furnace 2 is tilted, the height of the surface B is different from the height measured when the melting furnace 2 is not tilted as described with reference to FIG. May be For this reason, it is desirable to execute the detection of the height position of the surface B of the molten metal L as described above in a state where the melting furnace 2 is tilted.
  • the control device 12 brings the gripping tips 11l close to each other in a state where the rod 101 of the fifth slag removing tool 100 is positioned between the notches 11n of the opposing gripping tips 11l of the gripping portions 11j of the drive mechanism 11.
  • the drive mechanism 11 is controlled to grip the rod 101.
  • the control device 12 moves the fifth slag removal tool 100 with the slag removal unit 102 facing downward, and the tapping of the melting furnace 2 on the melting furnace 2 is performed.
  • the drive mechanism 11 is controlled so as to be positioned in the vicinity of the outlet 2a located on the opposite side to the outlet 2b, and then lowered toward the molten metal in the melting furnace 2.
  • the control device 12 controls the drive mechanism 11 to move the fifth slag removal tool 100 horizontally toward the outlet 2b of the melting furnace 2. Do.
  • the slag S floating on the surface B of the molten metal L is collected in the direction of the inclined portion 2 d.
  • the collected slag S is collected between the side surface of the slag removing portion 102 and the inclined portion 2d.
  • the controller 12 moves the fifth slag removal tool 100 upward and horizontally along the slope of the inclined portion 2 d to discharge the collected slag S from the outlet 2 b to the outside of the melting furnace 2.
  • the drive mechanism 11 is controlled.
  • the control device 12 controls the drive mechanism 11 to move the fifth slag removal tool 100 to the vicinity of the work tool rack 13 and the rod 101 is horizontal at a predetermined position on the work tool rack 13 Position to become Thereafter, the control device 12 controls the spread of the gripping tip 11 l to release the fifth slag removal tool 100, and returns the fifth slag removal tool 100 to the work tool rack 13.
  • FIG. 19 is a side view of the secondary material input tool 110 of the melting operation apparatus 10.
  • the secondary material input tool 110 is provided with a rod 111 and a secondary material placement unit 112 which is provided at the tip of the rod 111 and on which the secondary material can be placed.
  • the melting work apparatus 10 uses the auxiliary material input tool 110 to insert the auxiliary material for adjusting the component of the molten metal into the melting furnace 2.
  • the secondary material placement unit 112 is a plate material provided with a recess 112a, such as the tip of a scoop, for example.
  • the auxiliary material placement portion 112 is provided such that the recessing direction of the recess 112 a is orthogonal to the axial direction CR of the rod 111.
  • the control device 12 brings the gripping tips 11l close to each other in a state where the rods 111 of the secondary material loading tool 110 are positioned between the notches 11n of the gripping tips 11l opposed to each gripping portion 11j of the drive mechanism 11
  • the drive mechanism 11 is controlled to grip 111.
  • the control device 12 moves the auxiliary material placement unit 112 to the vicinity of the auxiliary material weighing machine 16 shown in FIG. 1 while maintaining the posture of the auxiliary material input tool 110 so that the rod 111 is substantially horizontal, and measures the auxiliary material
  • the drive mechanism 11 is controlled to place a fixed amount of auxiliary material automatically weighed and discharged by the machine 16 into the recess 112a.
  • control device 12 controls the drive mechanism 11 to move the auxiliary material placement unit 112 to position it above the melting furnace 2 and tilt the rod 111 to dissolve the auxiliary material in the recess 112a. Charge into the molten metal L of the furnace 2.
  • the control device 12 controls the drive mechanism 11 to move the secondary material insertion tool 110 to the vicinity of the work tool rack 13, and the rod 111 is made horizontal at a predetermined position on the work tool rack 13. Position to be After that, the control device 12 controls so as to unfold the gripping tip 11l and release the secondary material input tool 110, and returns the secondary material input tool 110 to the work tool rack 13.
  • the metal to be melted is transported from a scrap yard or the like and introduced into the melting furnace 2. Thereafter, the metal is melted by the melting furnace 2.
  • the melting operation includes the detection of the height position of the surface of the molten metal, the temperature measurement of the molten metal, the removal of slag, the introduction of auxiliary materials, and the sampling. Among these various operations, first, the detection of the height position of the surface of the molten metal is performed. Thereafter, sampling, removal of slag, secondary material input, and temperature measurement of the molten metal are carried out roughly in this order, in random order as necessary.
  • the melting furnace 2 is inclined in the direction of the outlet 2a by the tilting device and the hot water is discharged.
  • FIG. 20 is a flowchart illustrating the dissolution operation method.
  • the melting operation method according to the present embodiment is to perform an operation on a molten metal formed by melting a material in a melting furnace, and fix an arbitrary working tool among a plurality of working tools to a drive mechanism, The drive mechanism lowers the working tool at an arbitrary position on the melting furnace and moves it to any position, and then the drive mechanism raises the working tool.
  • step S1 In response to a worker's instruction or the like, when the molten metal work is started (step S1), first, detection of the height position of the surface of the molten metal is performed.
  • the control device 12 moves the wrist 11h of the drive mechanism 11 onto the work tool rack 13 and controls the drive mechanism 11 so as to grip the surface level detection tool 30 (step S30).
  • the control device 12 moves the surface level detection tool 30 with the tips of the first electrode 33 and the second electrode 34 protruding from the rod 31 downward, to an arbitrary position on the melting furnace 2
  • the drive mechanism 11 is controlled to be positioned (step S31).
  • the controller 12 controls the drive mechanism 11 to lower the surface level detection tool 30 toward the molten metal in the melting furnace 2.
  • the tip of the first electrode 33 easily breaks the layer of the slag S, and the surface B is exposed to the outside air Do.
  • the controller 12 When the drive mechanism 11 is controlled so that the controller 12 further moves the surface level detection tool 30 downward, the tip of the second electrode 34 contacts the exposed surface B, and the first electrode 33 and the second surface A current flows between the electrodes 34.
  • the controller 12 detects this current, calculates the positions of the tips of the first electrode 33 and the second electrode 34 at this time based on the state of the drive mechanism 11 at this time, etc.
  • the height position of the surface B is detected and stored (step S32).
  • the molten metal surface detection tool 30 is fixed to the drive mechanism 11, and the molten metal surface detection tool 30 is lowered by the drive mechanism 11 to detect the height position of the molten metal surface B. .
  • the control device 12 controls the drive mechanism 11 to raise the molten metal surface detection tool 30 (step S33).
  • the control device 12 controls the drive mechanism 11 to move the surface level detection tool 30 to the vicinity of the work tool rack 13 and positions the rod 31 at a predetermined position on the work tool rack 13 so as to be horizontal.
  • the control device 12 controls the spread of the gripping tip 11l to release the surface level detection tool 30, and returns the surface level detection tool 30 to the work tool rack 13 (step S34).
  • step S2 the operator or the control device 12 selects an operation to be performed next from the sampling, the removal of the slag, the secondary material input, and the temperature measurement of the molten metal (step S2).
  • the control device 12 determines whether the selected work is sampling (step S3). If the selected work is sampling (Yes in step S3), the process proceeds to step S40 described next. If it is not sampling (No in step S3), the process proceeds to step S4 described later.
  • the control device 12 moves the wrist portion 11h of the drive mechanism 11 onto the work tool rack 13 and controls the drive mechanism 11 to grip the sampling tool 40 (step S40). ).
  • the control device 12 moves the sampling tool 40 with the sample generation unit 42 downward, moves the sampling tool 40 to an arbitrary position on the melting furnace 2 (step S41), and inclines the sampling tool 40 with respect to the vertical direction.
  • the drive mechanism 11 is controlled to lower the molten metal in the melting furnace 2 (step S42).
  • the control device 12 controls the drive mechanism 11 so as to raise the sampling tool 40 and scoop the molten metal L into the recess 42 a.
  • the control device 12 controls the drive mechanism 11 to raise the sampling tool 40 while keeping the rod 41 inclined with respect to the vertical direction.
  • the angle of the sampling tool 40 is made vertical so that the surface of the molten metal L in the recess 42a becomes substantially parallel to the upper surface 42d (step S43).
  • the sample generation unit 42 is formed of a material having a high thermal conductivity, and in the present embodiment, since the molten metal L is a cast steel having a high solidification temperature, the scooped molten metal L is immediately cooled and solidified.
  • the controller 12 controls the drive mechanism 11 so that the sampling tool 40 moves to the vicinity of the chute 17. Thereafter, the control device 12 vertically inverts the sampling tool 40 so that the upper surface 42 d of the sample generation unit 42 is directed downward directly above one end 17 a of the chute 17 located on the melting furnace 2 side.
  • the drive mechanism 11 is controlled to position. Then, the metal falls onto one end 17a of the chute 17 (step S44).
  • the sampling tool 40 is fixed to the drive mechanism 11, and the sampling tool 40 is lowered by the drive mechanism 11 to scoop the molten metal. Thereafter, the process proceeds to step S7 described later.
  • step S4 determines whether the selected operation is slag removal. If the selected operation is slag removal (Yes in step S4), the process proceeds to step S11 described below. When it is not slag removal (No of step S4), it changes to step S5 demonstrated later.
  • FIG. 21 is a flowchart for explaining the slag removal method (step S11).
  • the slag removal method in the present embodiment is such that the slag removal tool is fixed to the drive mechanism, and the slag removal part is lowered by a predetermined depth to the molten metal by lowering the slag removal tool at any place on the melting furnace by the drive mechanism. Immerse and raise the slag removal tool by the drive mechanism.
  • step S12 When slag removal is started (step S12), the operator determines whether the slag removal operation is automatically performed by the control device 12, that is, the control device 12 automatically performs the drive mechanism 11 according to a program created by teaching. Whether to control or to remotely control the drive mechanism 11 via the input device 20 and the control device 12 is selected (step S13). As described above, in the following description, it is described that the control device 12 controls the drive mechanism 11 in any case.
  • step S13 the work until the end of the slag removal work is basically automatically performed, but when, for example, the slag S is located in a place where removal is difficult by automatic control, etc.
  • the operator may remotely control the drive mechanism 11 via the control device 12 temporarily.
  • step S14 the operator selects and holds a tool to be used for slag removal with the control device 12 (step S14). That is, which of the first to fifth slag removal tools (slag removal tools) 60, 70, 80, 90, 100 is to be used is selected, and based on this, the control device 12 is driven onto the work tool rack 13 The drive mechanism 11 is controlled to horizontally move the wrist portion 11 h of the mechanism 11 and grip the designated slag removal tools 60, 70, 80, 90, 100.
  • slag removal tools slag removal tools
  • step S15 the control device 12 determines whether the selected slag removal tool is the first and second slag removal tools 60, 70 (step S15). If the selected slag removal tool is the first and second slag removal tools 60 and 70 (Yes in step S15), the process proceeds to step S60 described next. If it is not the first and second slag removal tools 60 and 70 (No in step S15), the process proceeds to step S16 described later.
  • the control device 12 directs the slag removal parts 62 and 72 downward, and the first and second slag removal tools 60 and 70 are moved and positioned at an arbitrary position on the melting furnace 2 (step S60), and then the driving mechanism 11 is controlled to lower toward the molten metal in the melting furnace 2 (step S61). Thereafter, the controller 12 controls the drive mechanism 11 so as to raise the first and second slag removal tools 60, 70. At this time, the slag S floating on the surface B of the molten metal L is scooped up by the upper surfaces of the slag removing portions 62, 72 (step S62).
  • the control device 12 moves the first and second slag removal tools 60, 70 to the vicinity of the slag disposal box 3 with the slag S placed on the upper surface of the slag removal units 62, 72, and moves to the slag disposal box 3
  • the drive mechanism 11 is controlled to discard the slag S (step S63). Thereafter, the process proceeds to step S19 described later.
  • Step S16 If the selected slag removal tool is not the first and second slag removal tools 60, 70, the controller 12 determines whether the selected slag removal tool is the third slag removal tool 80. (Step S16). If the selected slag removal tool is the third slag removal tool 80 (Yes in step S16), the process transitions to step S80 described next. When it is not the 3rd slag removal tool 80 (No of step S16), it changes to step S17 demonstrated later.
  • the control device 12 moves the third slag removal tool 80 with the slag removal unit 82 directed downward to move the third slag removal tool 80 above the melting furnace 2.
  • the drive mechanism 11 is controlled so as to be positioned at an arbitrary position (step S80) and then lowered toward the molten metal in the melting furnace 2 (step S81). At this time, the slag S floating on the surface B of the molten metal L adheres to the side surface 82 a and the bottom surface 82 b of the slag removing portion 82. Thereafter, the controller 12 controls the drive mechanism 11 to raise the third slag removal tool 80 (step S82).
  • step S83 the control device 12 moves the third slag removal tool 80 to the vicinity of the slag waste box 3 so that the slag S is discarded to the slag waste box 3;
  • the drive mechanism 11 is controlled (step S83). Thereafter, the process proceeds to step S19 described later.
  • step S17 determines whether the selected slag removal tool is the fourth slag removal tool 90 (step S17). If the selected slag removal tool is the fourth slag removal tool 90 (Yes in step S17), the process transitions to step S90 described next. When it is not the 4th slag removal tool 90 (No of step S17), it changes to step S100 demonstrated later.
  • the controller 12 moves the fourth slag removal tool 90 with the slag removal unit 92 directed downward to move the fourth slag removal tool 90 above the melting furnace 2. (Step S90), and then the driving unit 94 is operated to rotate the slag removing unit 92 (step S91), and drive it to lower toward the molten metal in the melting furnace 2, The mechanism 11 is controlled (step S92). In this state, since the drive unit 94 is operated, the rod 91 is rotating. When the drive unit 94 rotates the rod 91, the control device 12 controls the drive mechanism 11 to maintain the height position of the slag removing unit 92, and in the same rotation direction R as the rotation direction D of the rod 91.
  • the fourth slag removal tool 90 is revolved around a virtual axis V extending in the vertical direction set substantially at the center of the melting furnace 2.
  • the slag S floating on the hot water surface B of the molten metal L which is located in the vicinity of the trajectory of movement of the slag removing unit 92 due to the rotation of the slag removing unit 92 and the revolution of the fourth slag removing tool 90 (Step S93).
  • control device 12 controls the drive mechanism 11 so as to raise the fourth slag removal tool 90 (step S94).
  • the control device 12 moves the fourth slag removal tool 90 to the vicinity of the slag waste box 3 so that the slag S is discarded to the slag waste box 3
  • the drive mechanism 11 is controlled (step S95). Thereafter, the process proceeds to step S19 described later.
  • the controller 12 determines that the selected slag removal tool is the fifth slag removal tool 100.
  • the tilting device of the melting furnace 2 is operated to tilt the melting furnace 2 in the direction of the outlet 2b, and the molten metal surface B or the slag S is placed on the inclined portion 2d of the outlet 2b. Position (step S100).
  • the height of the surface B is different from the height measured when the melting furnace 2 is not tilted as described with reference to FIG.
  • control device 12 moves the fifth slag removal tool 100 with the slag removal unit 102 downward, and is positioned on the opposite side of the melting furnace 2 to the outlet 2b of the melting furnace 2 by moving the fifth slag removal tool 100
  • the drive mechanism 11 is controlled so as to be positioned in the vicinity of the outlet 2a (step S101), and then lowered toward the molten metal in the melting furnace 2 (step S102).
  • control device 12 controls the drive mechanism 11 to move the fifth slag removal tool 100 horizontally toward the outlet 2b of the melting furnace 2.
  • the slag S floating on the surface B of the molten metal L is collected in the direction of the inclined portion 2d (step S103).
  • the collected slag S is collected between the side surface of the slag removing portion 102 and the inclined portion 2d.
  • the controller 12 moves the fifth slag removal tool 100 upward and horizontally along the slope of the inclined portion 2 d to discharge the collected slag S from the outlet 2 b to the outside of the melting furnace 2. Control the drive mechanism 11 (step S104). Thereafter, the tilting of the melting furnace 2 is returned to the original state (step S105), and the process proceeds to step S19 described below.
  • step S19 it is determined whether the slag removal operation is to be continued. It is possible that the slag S can not be sufficiently removed only by executing the series of slag removal processes starting from each of the above steps S60, S80, S90, and S100 once. For example, when it is determined that the slag S is not sufficiently removed (Yes in step S19), the process returns to step S14, and for example, a series of slag removal processes are again performed at different horizontal positions on the molten metal surface B. Run. At this time, the slag removal tool once used may be returned to the working tool rack 13 and a different tool may be used. If it is determined that it is not necessary to re-execute the series of slag removal processes (No in step S19), the slag removal process is ended (step S20), and the process proceeds to step S7 illustrated in FIG. Do.
  • step S5 determines whether the selected operation is sub-material input. If the selected operation is sub-material input (Yes in step S5), the process proceeds to step S110 described below. If it is not the secondary material input (No in step S5), the process proceeds to step S50 described later.
  • the control device 12 controls the drive mechanism 11 so as to move the wrist portion 11 h of the drive mechanism 11 onto the work tool rack 13 and grip the sub-material input tool 110 (Step S110).
  • the control device 12 moves the auxiliary material placement unit 112 to the vicinity of the auxiliary material weighing machine 16 shown in FIG. 1 while maintaining the attitude of the auxiliary material input tool 110 so that the rod 111 is substantially horizontal (step S111)
  • the drive mechanism 11 is controlled so as to place a predetermined amount of secondary material that has been automatically measured and discharged by the secondary material measuring machine 16 into the recess 112a (step S112).
  • control device 12 controls the drive mechanism 11 to move the secondary material placement unit 112 to position it above the melting furnace 2 (step S113), and tilts the rod 111 to place it in the recess 112a.
  • the secondary material is introduced into the molten metal L of the melting furnace 2 (step S114). Thereafter, the process proceeds to step S7 described later.
  • the controller 12 determines that the selected operation is temperature measurement of the molten metal.
  • the control device 12 moves the wrist 11h of the drive mechanism 11 onto the work tool rack 13 and controls the drive mechanism 11 to grip the temperature measurement tool 50 (step S50).
  • the controller 12 moves the temperature measurement tool 50 with the probe 52 directed downward and positions it at an arbitrary position on the melting furnace 2 (step S51), and then descends toward the molten metal in the melting furnace 2. Control to make it Thereby, the temperature of the molten metal L is measured (step S52). Thereafter, the controller 12 controls the drive mechanism 11 to raise the temperature measurement tool 50 and move it in the direction of the worker.
  • the control device 12 controls the drive mechanism 11 to replace the probe (step S54). Thereafter, the process proceeds to step S7 described below.
  • control device 12 controls the drive mechanism 11 to move the work tool 14 to the vicinity of the work tool rack 13, and At a predetermined position, the work tool 14 is positioned to be horizontal. Thereafter, the control device 12 performs control to unfold the gripping tip 11l and release the working tool 14, and returns the working tool 14 to the working tool rack 13 (step S7).
  • step S8 it is determined whether to continue the melting operation. If it is determined that the melting operation is to be continued (Yes in step S8), the process returns to step S2, and the series of processes starting from the selection of the operation is executed again. If it is determined that it is not necessary to continue the melting operation (No in step S8), the melting operation is ended (step S9).
  • the melting work device 10 is for working on the molten metal L produced by melting the material in the melting furnace 2 and comprises a drive mechanism 11 and a plurality of work tools 14 operated by the drive mechanism 11 , And the drive mechanism 11 can move the work tool 14 in any direction at any place on the melting furnace 2.
  • the melting operation is performed by the drive mechanism 11 capable of moving the work tool 14 in any direction at any place on the melting furnace 2, so that the corresponding work tool 14 is prepared.
  • workers basically do not have to approach the melting furnace 2.
  • the drive mechanism 11 is equipped with the some working tool 14, it can perform several types of pre-furnace work. For this reason, the operation
  • the plurality of working tools 14 are provided with slag removing tools 60, 70, 80, 90, 100 for removing the slag S floating on the molten metal surface B of the molten metal L, and the slag removing tools 60, 70, 80, 90, 100
  • the apparatus includes slag removing portions 62, 72, 82, 92, 102 provided at the tips of the rods 61, 71, 81, 91, 101.
  • the slag removing portions 62, 72, 82, 92, 102 are provided at the tips of the rods 61, 71, 81, 91, 101, which is more efficient than using round rods. It has a structure that can remove slag.
  • the ability to remove the slag efficiently means that the amount of the slag S that can be removed with a single input of the working tool 14 into the melting furnace 2 is large. That is, compared to a round bar, the amount of adhering slag increases. In addition to this, the provision of the slag removing portions 62, 72, 82, 92, 102 at the tip increases the weight to be supported. For this reason, it is not easy for a worker to remove slag S manually using the above slag removal tools 60, 70, 80, 90, 100. On the other hand, in the present embodiment, not the worker but the drive mechanism 11 holds the slag removal tools 60, 70, 80, 90, 100 and removes the slag S, so the slag S is efficiently removed.
  • slag removal tools 60, 70, 80, 90, 100 of various shapes can be used properly according to, for example, the generation position, generation amount, distribution, etc. of the slag S. Therefore, the slag S can be removed more efficiently.
  • the third slag removal tool 80 and the fourth slag removal tool 90 have a predetermined length in the axial direction CR of the rods 81 and 91, and are provided with slag attachment parts 82a, 82b and 92a around the axis. .
  • the slag removing portion 82 has a cylindrical shape.
  • the slag removing portion 92 is formed by providing a plurality of disks 92a in a mutually spaced direction in the axial direction CR of the rod 91.
  • the adhesion area of the slag S can be increased, it becomes easy to cool, and the amount of the slag S that can be removed by one operation of the working tool 14 into the melting furnace 2 can be increased. it can. This makes it possible to remove the slag S efficiently.
  • the fourth slag removal tool 90 includes a drive unit 94 capable of rotating the rod 91 about the axis, and the drive unit 94 can be fixed to the drive mechanism 11.
  • the drive mechanism 11 grips the fourth slag removal tool 90
  • the slag removing portion 92 provided in the fourth slag removing tool 90 can be rotated.
  • the slag S can be attached to be wound around the slag removing portion 92, the amount of the slag S that can be removed by one input into the melting furnace 2 can be further increased.
  • the drive mechanism 11 maintains the height position of the slag removal portion 92 while maintaining the height position of the rod 91.
  • the fourth slag removal tool 90 is revolved around the imaginary axis V extending in the vertical direction in the same rotational direction R as the rotational direction D. According to the configuration as described above, since the fourth slag removal tool 90 is revolved, it is possible to further increase the amount of the slag S that can be removed by the single insertion of the working tool 14 into the melting furnace 2.
  • the rotational direction R of this revolution is the same as the rotational direction D of the slag removing portion 92.
  • the slag S located forward in the advancing direction of the revolution is radially outward of the melting furnace 2 by the rotation of the slag removing portion 92, ie It can flow towards the inner surface 2c of the furnace 2 and adhere to the inner surface 2c.
  • the slag S located forward in the advancing direction of revolution flows not in the inner surface 2 c of the melting furnace 2 but inward in the radial direction of the melting furnace 2 be able to. For this reason, adhesion of slag S to inner surface 2c can be controlled.
  • the plurality of work tools 14 are provided with a melt surface detection tool 30 provided at the tip of the rod 31 and equipped with a melt surface detection unit 32 that detects the height position of the melt surface B of the molten metal L.
  • the drive mechanism 11 is controlled by a program created by teaching, for example In this case, it is necessary to grasp the relative positional relationship between the tip of the work tool 14 and the surface B of the molten metal. According to the configuration as described above, since the height position of the molten metal surface B of the molten metal L can be detected by the molten metal surface detection tool 30, the work by the drive mechanism 11 using the work tool 14 can be accurately performed.
  • the molten metal level detection unit 32 includes rod-shaped first and second electrodes 33 and 34, and the first electrode 33 is provided to protrude from the rod 31 longer than the second electrode 34. According to the above configuration, as described above, the detection error of the height position of the molten metal L can be suppressed.
  • the plurality of work tools 14 are provided with a sampling tool 40 provided with a sample generation unit 42 provided at the tip of the rod 40 to generate a dip ingot 120 for the molten metal L. According to the configuration as described above, the sampling operation by the dissolving operation device 10 becomes possible.
  • the sample generation unit 42 includes a recess 42 a, and the recess 42 a is formed so that the opening 42 b is tapered more than the bottom surface 42 c. According to the above configuration, it is possible to easily take out the metal solidified in the sample generation unit 42 from the recess 42 a of the sample generation unit 42.
  • sample generation unit 42 is formed of carbon. According to the configuration as described above, the molten metal skived in the recess 42 a of the sample generation unit 42 can be solidified quickly.
  • the control device 12 inclines the sampling tool 40 with respect to the vertical direction and lowers it toward the molten metal in the melting furnace 2.
  • the drive mechanism 11 is controlled so as to raise the sampling tool 40 while keeping the tilt angle with respect to the vertical direction.
  • the plurality of work tools 14 are provided with a secondary material input tool 110 provided with a secondary material placement unit 112 which is provided at the tip of the rod 111 and on which the secondary material can be placed.
  • the auxiliary material input operation can be performed by the melting operation device 10.
  • the plurality of work tools 14 also include a temperature measurement tool 50 that measures the temperature of the molten metal L. According to the configuration as described above, the temperature of the molten metal L can be measured by the melting operation device 10.
  • the melting furnace 2 melts the cast steel.
  • cast iron when removing slag, it is also possible to solidify and easily remove slag by dispersing silica or the like.
  • the temperature of the molten metal is 1550 ° C. or higher, which is higher than that of cast iron, and the silica is melted, so removal of slag is not easy.
  • a slag removal tool such as the third slag removal tool 80 and the fourth slag removal tool 90 described above that removes slag S by depositing. Therefore, the slag S can be efficiently removed even in the melting of the cast steel in which the removal of the slag S is not easy.
  • the drive mechanism 11 is a robot arm.
  • the robot arm is controlled by a program created by teaching. According to the above configuration, it is possible to automatically control the drive mechanism 11.
  • the dissolution work device 10 further includes an input device 20 provided separately from the drive mechanism 11, and the drive mechanism 11 is remotely operated by an input to the input device 20.
  • the drive mechanism 11 is remotely operated by an input to the input device 20.
  • the drive mechanism 11 includes two grips 11j, and the two grips 11j grip different portions of the work tool 14. According to the above configuration, the work tool 14 can be held stably.
  • FIG. 22 is a block diagram of the melting operation apparatus 10A in the first modification.
  • the melting operation device 10A of the first modification is different from the melting operation device 10 of the above embodiment in that the input device 20 is not provided.
  • the melting operation device 10A can be realized by such a configuration.
  • FIG. 23 is a block diagram of the melting operation apparatus 10B in the second modification.
  • the dissolution work apparatus 10 of the above embodiment is a work arm on the premise that the drive mechanism 11B is not a robot arm but an operation of a worker, along with this. It differs in that the pendant 19 is not provided.
  • FIG. 24 is a block diagram of the melting operation apparatus 10C in the fourth modification.
  • the melting operation apparatus 10C of the third modification is different from the melting operation apparatus 10 of the above embodiment in that an imaging device 22 is provided.
  • the imaging device 22 captures an image of the melting furnace 2, and the control device 12 determines the position, amount, distribution, etc. of the slag S on the hot water surface B of the melting furnace 2 based on the image captured by the imaging device 22. To analyze.
  • control device 12 determines the type of slag removal tool 60, 70, 80, 90, 100 to be used and the descent position on the melting furnace 2, and controls the drive mechanism (robot arm) 11. Remove the slag.
  • the analysis of the slag in the controller 12 may be performed by, for example, artificial intelligence.
  • the melting operation apparatus and the melting operation method of the present invention are not limited to the above-described embodiment and each modification described with reference to the drawings, and various other modifications are considered in the technical scope.
  • the melting furnace 2 melts cast steel, but it may melt other metals such as cast iron as long as the gist of the present invention is not deviated.
  • each electrode 33, 34 of the hot water surface detection tool 30 was connected to the power supply sensor etc. provided in the exterior of the drive mechanism 11, it is needless to say that it is not restricted to this.
  • a detection circuit may be formed by contact with the grip tip 11l, or a terminal is provided on the grip 11j. It may be connected to form a detection circuit.
  • the slag removing portion 92 of the fourth slag removing tool 90 is formed by providing a plurality of disks 92 a apart from each other over a predetermined length in the axial direction CR of the rod 81. It was not limited to this.
  • the slag removing portion 92A of the fourth slag removing tool 90A may have a plurality of circumferentially extending concave streaks 96 on the side surface of the cylindrical shape .
  • the slag removing portion 92B of the fourth slag removing tool 90B may be provided with a plurality of axially extending concave streaks 97.
  • the metal wire 98 or the metal plate 99 orbits around the axis of the rod 91. It may be formed by being provided in a screw shape so as to surround it. Thus, by forming the slag removing portions 92, 92A, 92B, 90C, and 90D so as to include the slag adhering portion having a large surface area, the adhering area of the slag S can be increased.
  • the 4th slag removal tool 90 was revolved, you may make it move to linear form in addition to or in place of this.
  • the drive mechanism 11 maintains the height position of the slag removal unit 92 within a predetermined range in the vertical direction that supplements the slag S. It may be made to move up and down.
  • the 4th slag removal tool 90 was equipped with the drive part 94, it is good also as a structure which provides a drive part also in other slag removal tools, and rotates a slag removal part. .
  • the slag removal part 102 of the 5th slag removal tool 100 was provided so that the width direction of rectangular shape might correspond with axial direction CR of the rod 101, it is not restricted to this.
  • the rod 101 may be joined so as to be orthogonal to the slag removal portion 102A.
  • the controller 12 positions the fifth slag removal tool 100A such that the slag removing portion 102A is positioned vertically to the surface B, that is, the rod 101 extends substantially horizontally.
  • the drive mechanism 11 is controlled to remove the slag.
  • the control device 12 holds the sampling tool 40 by the drive mechanism 11 so that the rod 41 tilts in the vertical direction, and drives the sampling tool 40 to ascend.
  • the mechanism 11 is controlled, it is not limited to this.
  • the control device 12 may be tilted above the melting furnace 2 for a certain period of time after it is lifted from the melting furnace 2 and held stationary while holding the rod 41 so as to extend in the vertical direction. Needless to say.
  • the driving mechanism 11 may vibrate the sampling tool 40 so that the ingot 120 may be more easily dropped from the sample generation unit 42.
  • the power on / off of the thermometer main body 51 of the temperature measurement tool 50 may be performed by a worker or may be switched by wireless or the like.
  • confirmation of the measurement result in the temperature measurement tool 50 is not limited to visual inspection by the operator, and for example, the temperature measurement tool 50 may be configured to wirelessly transmit the measurement result to the control device 12 Needless to say.
  • the tilting device of the melting furnace 2 may be interlocked with the control device 12 of the melting work device 10, and the control device 12 may be configured to control the tilting device to tilt the melting furnace 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manipulator (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

【課題】作業員が溶解炉へ近づかずに、溶解炉に対する作業を容易に実行可能な、溶解作業装置及び溶解作業方法を提供する。 【解決手段】溶解炉2内で材料を溶解してできた溶湯に対して作業を行う溶解作業装置10であって、駆動機構11と、該駆動機構11によって操作される、複数の作業ツール14と、を備え、前記駆動機構11は、前記溶解炉2上の任意の場所で前記作業ツール14を任意の方向に移動可能である、溶解作業装置10を提供する。

Description

溶解作業装置及び溶解作業方法
 本発明は、溶解作業装置及び溶解作業方法に関する。
 従来より、金属を溶解炉により溶解して溶湯とし、溶湯を型に流し込んで目的の形状に固める鋳造が広く行われている。
 特許文献1には、金属の溶解に用いられる誘導溶解炉が開示されている。
 特許文献1に開示されたような溶解炉を用いて金属を溶解する際には、溶湯の温度測定、溶解により金属から分離した不純物等であるスラグの除去、溶湯の成分調整のための副資材投入、溶解した金属の分析用試料を取得するサンプリング等の、様々な作業が行われる。
  [特許文献1]特開平7-280450号公報
 溶解炉の周囲は非常に高温である。また、例えばるつぼ型溶解炉についてのスラグの除去においては、作業員が丸棒の先端を溶解炉内に挿入し、丸棒にスラグを付着させて引き上げることにより行われることがあるが、スラグは重いため、作業員に負担がかかる。
 このように、溶解炉に作業員が直接接近して行う作業は暑熱作業であり、かつ重労働である。したがって、作業員の負担を低減することが望まれている。
 本発明が解決しようとする課題は、作業員が溶解炉へ近づかずに、溶解炉に対する作業を容易に実行可能な、溶解作業装置及び溶解作業方法を提供することである。
 本発明は、上記課題を解決するため、以下の手段を採用する。すなわち、本発明は、溶解炉内で材料を溶解してできた溶湯に対して作業を行う溶解作業装置であって、駆動機構と、該駆動機構によって操作される、複数の作業ツールと、を備え、前記駆動機構は、前記溶解炉上の任意の場所で前記作業ツールを任意の方向に移動可能である、溶解作業装置を提供する。
 また、本発明は、溶解炉内で材料を溶解してできた溶湯に対して作業を行う溶解作業方法であって、複数の作業ツールの中の任意の前記作業ツールを駆動機構に固定し、前記駆動機構により前記溶解炉上の任意の場所で前記作業ツールを下降させ、任意の場所に移動させてから、前記駆動機構により前記作業ツールを上昇させる、溶解作業方法を提供する。
 本発明によれば、作業員が溶解炉へ近づかずに、溶解炉に対する作業を容易に実行可能な、溶解作業装置及び溶解作業方法を提供することができる。
本発明の実施形態における溶解設備の模式的な平面図である。 上記溶解設備の側面図である。 上記溶解設備における溶解炉の縦断面図である。 上記溶解設備における駆動機構の側面図である。 上記駆動機構の手首部と作業ツールラックの、(a)は正面図、(b)は側面図である。 上記溶解設備における溶解作業装置のブロック図である。 上記溶解作業装置の湯面検出ツールの側面図である。 上記湯面検出ツールにおいて、2本の電極の長さが等しい場合の説明図である。 上記湯面検出ツールを用いた湯面検出の説明図である。 上記溶解作業装置のサンプリングツールの、(a)は側面図、(b)はサンプル生成部の斜視図である。 上記サンプリングツールを用いたサンプリングの説明図である。 上記溶解作業装置の温度測定ツールの側面図である。 (a)~(e)はそれぞれ、上記溶解作業装置の第1~第5スラグ除去ツールの側面図である。 (a)~(e)はそれぞれ、上記第1~第5スラグ除去ツールの、スラグ除去部の斜視図である。 上記第1及び第2スラグ除去ツールを用いたスラグ除去の説明図である。 上記第3スラグ除去ツールを用いたスラグ除去の説明図である。 上記第4スラグ除去ツールを用いたスラグ除去の説明図である。 上記第5スラグ除去ツールを用いたスラグ除去の説明図である。 上記溶解作業装置の副資材投入ツールの側面図である。 上記溶解作業装置を用いた溶解作業方法を説明するフローチャートである。 上記溶解作業方法における、スラグ除去方法を説明するフローチャートである。 上記実施形態の第1変形例における溶解作業装置のブロック図である。 上記実施形態の第2変形例における溶解作業装置のブロック図である。 上記実施形態の第3変形例における溶解作業装置のブロック図である。 上記実施形態のスラグ除去ツールの変形例の斜視図である。 上記実施形態のスラグ除去ツールの変形例の斜視図である。
 以下、本発明の実施形態について図面を参照して詳細に説明する。
 本実施形態における溶解作業装置は、駆動機構と、駆動機構によって操作される、複数の作業ツールと、を備え、駆動機構は、溶解炉上の任意の場所で作業ツールを任意の方向に移動可能である。
 図1は、本実施形態における溶解作業装置を備えた溶解設備1の模式的な平面図である。図2は、溶解設備1の側面図である。
 溶解設備1は、例えばスクラップ等の金属を溶解して溶湯とする設備であり、本実施形態においては特に、鋳鋼を溶解するものである。溶解設備1は、金属を溶解するために溶解炉2を備えている。
 図3は、溶解炉2の縦断面図である。溶解炉2は、軸線CMが上下方向に延在するように設けられた円筒状の側壁2eと、側壁2eの下側の開口を塞ぐように設けられた底壁2fを備えている。これら側壁2eと底壁2fによって、金属が投入されて溶解される内部空間2gが形成されている。側壁2eと底壁2fの、内部空間2gを形成する内側表面2c近傍は特に、例えばアルミナ-マグネシア等の、耐熱性の高い材料で形成されている。
 本実施形態においては、溶解炉2は誘導炉であり、側壁2eの外周に設けられた、例えばコイルなどの、図示されない導体に電流を流して誘導電流を発生されることにより、金属を溶解する。
 溶解炉2の上端には、出湯口2aと出滓口2bが設けられている。
 出湯口2aは、円筒形状の半径方向において外側へ突出するように設けられている。溶解された金属は、例えば、出湯口2aの下方に図示されない取鍋を設けた状態で、溶解炉2を出湯口2aの方向へ傾けることにより、出湯口2aを介して取り出される。
 出滓口2bは、図18を用いて後に説明するように、溶解により金属から分離した不純物等であるスラグを溶解炉2から排出するために設けられている。溶解炉2の側壁2eには、出滓口2bの近傍において、内側表面2cの表面が傾斜した傾斜部2dが形成されている。
 溶解炉2は、それ自体に設けられた図示されない傾動装置により、出湯口2a及び出滓口2bの方向へ傾けられる。
 溶解設備1は、溶解炉2から除去したスラグを溜め置くための、スラグ廃棄箱3を備えている。
 溶解設備1は、溶解炉2内で材料を溶解してできた溶湯に対して作業を行う溶解作業装置10を備えている。
 溶解作業装置10は、駆動機構11、制御装置12、作業ツールラック13、作業ツール14、プローブラック15、副資材計量機16、シュート17、及びインゴット受け容器18を備えている。溶解作業装置10はまた、図6を用いて後に説明する、ティーチペンダント19と入力装置20を備えている。
 溶解作業装置10は、これらを用いて、溶湯の温度測定、溶解により金属から分離した不純物等であるスラグの除去、溶湯の成分調整のための副資材投入、溶解した金属の分析用試料を取得するサンプリング等の、様々な作業を実行する。
 図4は、溶解設備10における駆動機構11の側面図である。本実施形態においては、駆動機構11は、例えば6軸ロボット等のロボットアームである。駆動機構11は、台座11a、基部11b、長尺の下腕部11dと上腕部11f、及び手首部11hを備えている。
 台座11aは、床面FLに固定されている。基部11bは、台座11aに対して水平面内で回転自在に、台座11a上に設けられている。
 下腕部11dは、一端が第1軸部11cにより基部11bに接続されており、第1軸部11cを中心として基部11bに対して上下方向に回転可能に設けられている。
 下腕部11dの他端には、上腕部11fの一端が第2軸部11eにより接続されている。これにより、上腕部11fは、第2軸部11eを中心として下腕部11dに対して上下方向に回転可能に設けられている。
 上腕部11fの他端には、手首部11hが手首接続部11gにより接続されている。手首接続部11gは、上腕部11fに対して手首部11hを曲げたり、上腕部11fの軸線周りに回転させたりすることが可能な構造となっている。
 図5(a)は、駆動機構11の手首部11hと、後に説明する作業ツールラック13の正面図であり、図5(b)は側面図である。
 手首部11hの先端には、把持部11jが、手首部11hの軸線周りに回転自在となるように設けられている。
 把持部11jには、2つが1組として組み合わされた、計2組の把持先端部11lが設けられている。把持先端部11lの各組においては、2つの把持先端部11lが、互いに対向し、かつ互いに対し離接自在に設けられている。各把持先端部11lは、対向する把持先端部11lの方向へ、先端側が屈曲するような形状を成している。これにより、各組において、把持先端部11lの、屈曲した部分の先端である内端11m同士は、互いに対向するように設けられている。
 内端11mには切欠11nが形成されている。後述するように、駆動機構11の手首部11hは作業ツール14を構成する長尺なロッドを把持するものである。切欠11nは、対向する把持先端部11lが互いに接近した際に、対向する2つの把持先端部11lの切欠11nの表面がロッドの外周に接触し、ロッドを固く把持できるような形状に形成されている。
 駆動機構11は、次に説明する制御装置12によって制御されて、溶解炉2上の任意の場所で作業ツール14を、上下方向を含む、任意の方向に移動可能である。
 図6は、溶解作業装置10のブロック図である。制御装置12は、駆動機構11と、ティーチペンダント19、及び入力装置20に接続されている。
 制御装置12には、ティーチペンダント19により作成されたプログラムが格納されている。すなわち、ティーチペンダント19を介して作業者が、例えば実際に駆動機構11を動作させてティーチングを行い、その動作を制御装置12が学習し記録することにより、制御装置12内に駆動機構11の動作が蓄積される。制御装置12は、ティーチングにより学習した動作を、例えば再現することにより、駆動機構11を駆動制御する。
 このように、駆動機構11は、制御装置12によって、より詳細にはティーチングにより作成されて制御装置12に記録されたプログラムによって制御されている。
 駆動機構11は、繊細な動きを要する作業を行う必要がある場合がある。
 また、駆動機構11は、作業者が溶解炉2内の状況を観察した結果に強く依存する作業を行う必要がある場合もある。例えば、上記のように、駆動機構11は、溶湯の湯面に浮遊するスラグの除去を実行する。スラグは、溶湯の湯面の不特定の場所に出現する。また、スラグが出現するタイミングや量は、周囲の環境、投入された金属の品質や純度等、様々な要因に依存して変動する。このため、ティーチングのみにより作成されたプログラムのみによって、駆動機構11を制御し、スラグを十分に除去するのは容易ではない。
 このような、繊細な動きを要する作業や、作業者の判断に依存する作業を、ティーチングに依存せずに実行するために、入力装置20が設けられている。作業者が入力装置20を操作した場合には、駆動機構11は、入力装置20への入力により遠隔操作される。すなわち、作業者は、制御装置12を介して、駆動機構11を直接遠隔操作することができる。
 以下の説明で、制御装置12が駆動機構11を制御すると記載した際には、制御装置12内に格納された、ティーチングにより作成されたプログラムにより駆動機構11を制御する場合はもとより、作業者が入力装置20と制御装置12を介して駆動機構11を遠隔操作する場合も含むものとする。
 本実施形態においては、より具体的には、溶湯の温度測定、副資材投入、サンプリングと、後に説明する溶湯の湯面の高さ位置の検出がティーチングにより作成されたプログラムにより実行され、スラグの除去が遠隔操作、またはプログラムと遠隔操作を組み合わせて適宜切り替えることにより実行されることを想定しているが、これに限られないのは言うまでもない。
 上記の各作業に際して制御装置12が実際に行う制御動作は、溶解作業装置10を構成する各部位を説明する際に、当該部位に対応して説明する。
 制御装置12は、駆動機構11の各可動部における回転量や移動量を把握できるように構成されている。これにより、制御装置12は駆動機構11の現在の姿勢を、すなわち、手首部11hの空間的な位置を、正確に把握することができる。このため、例えば手首部11hが作業ツール14のロッドの定められた場所を常に把持するようにすることにより、作業ツール14の先端に設けられた、各種作業を実行する部分の空間的な位置を把握することが可能である。
 制御装置12、ティーチペンダント19、及び入力装置20は、駆動機構11から離間して設けられている。
 図1に示されるように、作業ツールラック13は、駆動機構11の近傍に設けられている。図5各図に示されるように、作業ツールラック13は、脚部13a、基部13b、及び作業ツール支持部13cを備えている。
 基部13bは、後述する作業ツール14の各々のロッドに対応した長さを備えた矩形形状の板体であり、この板体が床面FLと略平行に位置付けられて、脚部13aによって床面FL上に固定されている。
 基部13bの上側には、複数の作業ツール支持部13cが、基部13bの長さ方向に互いに離間するように設けられている。作業ツール支持部13cは、略矩形状に形成されており、上下方向に延在するように位置づけられて、下側の側辺が基部13bの上面に対して接合されている。
 作業ツール支持部13cの上側の側辺には、切欠13dが設けられている。切欠13dは、後に説明する作業ツール14のロッドの外径よりも大きくなるように形成されている。図5各図に示されるように、作業ツール14は、使用されていないときには、ロッドが各作業ツール支持部13cを跨ぎ、なおかつ各作業ツール支持部13cに形成された切欠13dに格納されるように、作業ツールラック13上に載置されている。制御装置12は、駆動機構11を制御して、この作業ツールラック13上に載置された作業ツール14を把持部11jで把持して持ち上げて作業を実行し、作業終了後には作業ツールラック13上に作業ツール14を再び載置する。
 図1に示されるプローブラック15は、後に説明する、溶湯の温度測定時に用いられる温度計の、替えのプローブを保管するラックである。
 副資材計量機16は、後に説明する副資材投入時に、副資材を自動計量して、一定の量の副資材を排出する。
 シュート17は、サンプリングにより生成されたインゴットを自重により自動搬送する滑り台である。
 図2に示されるように、シュート17は、一方の端部17aが溶解炉2側に位置し、他方の端部17bが制御装置12側に位置するように、支持台17cにより支持されて設けられている。溶解炉2側の一方の端部17aは、他方の端部17bよりも高く位置づけられている。
 シュート17の他方の端部17bの下方には、インゴット受け容器18が設けられている。
 溶解作業装置10は、駆動機構11によって操作される、複数の作業ツール14を備えている。複数の作業ツール14は、以降順次説明する、湯面検出ツール30、サンプリングツール40、温度測定ツール50、第1~第5スラグ除去ツール(スラグ除去ツール)60、70、80、90、100、及び副資材投入ツール110を備えている。
 まず、湯面検出ツール30について説明する。図7は、湯面検出ツール30の側面図である。湯面検出ツール30は、ロッド31と、ロッド31の先端に設けられて溶湯の湯面の高さ位置を検出する湯面検出部32を備えている。溶解作業装置10は、湯面検出ツール30を用いて、溶湯の湯面の高さ位置を検出する。
 溶解炉における作業としては、既に説明したように、溶湯の温度測定、スラグの除去、副資材投入、サンプリング等が挙げられる。これらの作業のうち、副資材投入以外のものは、溶湯の湯面の高さを基準として、駆動機構11の把持部11jが把持する作業ツール14の先端を湯面より深く溶湯内に埋没させることにより行われる。作業員が自らこれらの作業にあたる場合においては、作業ツール14の先端と溶湯の湯面との相対的な位置関係を目視により常に認識可能であるため、溶湯の湯面の高さ位置を計器等により測定する必要はない。
 しかし、駆動機構11が、特に入力装置20による遠隔操作ではなくティーチングにより作成されたプログラムによって制御されている場合においては、駆動機構11や制御装置12自体は、作業ツール14の先端と溶湯の湯面との相対的な位置関係を認識できない。したがって、上記作業を実行するためには、湯面の高さ位置を常に一定に維持するようにした上で制御装置12内に固定値として高さ位置を記憶させるか、あるいは、何らかの手段で常に湯面の高さ位置を検出できるようにする必要がある。
 ここで、溶湯の湯面の高さ位置を一定の場所に保つことは、以下の理由で容易ではない。まず、溶湯の湯面の高さ位置を一定に保つために、常に一定の金属を溶解炉2内に投入することは、特に投入する金属がスクラップの場合等には、容易ではない。また、溶解炉2の内側表面2cは、溶湯の撹拌や、内側表面2cに対する化学反応などにより少しずつ削られるため、溶解を繰り返すに伴い内部空間2gが増大する。すなわち、仮に常に一定の金属を溶解炉2内に投入できたとしても、溶湯の湯面の高さ位置は、金属の溶解を繰り返すに伴って少しずつ変化する。
 このため、本溶解作業装置10においては、駆動機構11により各種作業を実行する前に、溶湯の湯面の高さ位置を検出するよう、制御装置12が駆動機構11を制御する。
 湯面検出ツール30の湯面検出部32は、棒状の第1電極33と第2電極34を備えている。第1電極33と第2電極34は、本実施形態においては、一般構造用圧延鋼材により形成されたφ6mmの丸棒を基に製作されているが、これに限らず導電材料であれば適用可能である。
 湯面検出部32はまた、第1電極33及び第2電極34の各々のロッド31側の端部に接続された第1導線35と第2導線36を備えている。第1導線35と第2導線36の、第1電極33及び第2電極34に接続されていない、図示されていない端部は、例えば電流センサ等に接続されている。これにより、第1電極33と第2電極34の間に電流が導通した場合においては、この電流を検出可能な構成となっている。
 溶解作業装置10は、溶解炉2上の任意の場所で湯面検出ツール30を、上下方向を含む、任意の方向に移動させる。
 より詳細には、制御装置12は、湯面検出ツール30のロッド31を駆動機構11の各把持部11jの対向する把持先端部11lの切欠11nの間に位置付けた状態で、把持先端部11lを互いに近接させて、ロッド31を把持するように、駆動機構11を制御する。制御装置12は、第1電極33と第2電極34のロッド31から突出した先端を下側に向けて、湯面検出ツール30を移動させて溶解炉2の上の任意の場所に位置付け、その後、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する。
 ここで、溶解炉2内の溶湯は導電性を有する金属であるため、第1電極33と第2電極34が下降して先端が共に溶湯に接触した時点で、第1導線35と第2導線36を介して電流が流れる。この電流は、上記の電流センサ等で検出される。制御装置12は、電流が検出された時点での第1電極33と第2電極34の先端の位置を、この時点における駆動機構11の状態、例えば各可動部の回転量、移動量等を基に演算して、溶湯の湯面の高さ位置を検出し、記憶する。
 本実施形態においては、第1電極33は、第2電極34よりも長くロッド31から突出して設けられている。この理由を説明するために、2つの電極のロッドからの突出長が同じ場合について説明する。図8は、2本の電極38の長さが等しい場合の湯面検出ツール37の説明図である。
 上記のように、スラグSは、溶湯Lの湯面の不特定の場所に出現する。2つの電極38のロッドからの突出長が同じ場合には、ロッドを下方に移動させたときに、2つの電極38が同時にスラグSに接することがある。スラグSは電流を導通しないため、この時点では電極38間に電流は流れない。
 ここで、スラグSの層においては、下側は溶湯Lに面しているため熱く、柔らかいが、上側は空気に触れて冷え、硬くなっている。したがって、ロッドを更に下方に移動させても、電極38はこの固いスラグSの表面に当接され、なおかつ電極38を下方に移動させてスラグSを押す力が2つの電極38に分散される。このため、図8に示されるように電極38の先端がスラグSの層を破ることができない場合がある。この結果、スラグSの層は下方に湾曲し、電極38の先端は溶湯Lの湯面の高さ位置よりも下方に位置することがある。
 ロッドを更に下方へ移動させ、電極38の先端がスラグSの表面を押す力がスラグSの上面の硬度を上回ると、2つの電極38が共にスラグSを突き破り溶湯L内に没入し、電極38間に電流が流れる。しかし、上記のように、この時点においては既に溶湯Lの湯面の高さ位置よりも下方に電極38の先端が移動しているため、検出された溶湯Lの湯面の高さ位置は、本来の高さ位置よりも下方の位置のものとなる。
 このように、上記のような2本の電極38の長さが等しい場合の湯面検出ツール37においては、実際の溶湯Lの湯面の高さ位置よりも低い位置を、湯面の高さ位置として検出することがある。このため、この高さ位置を基準として後続の作業を実行した場合においては、駆動機構11が把持した作業ツール14を溶解炉2の溶湯内に必要以上の深さで没入させるように、制御装置12が制御する可能性がある。
 上記のような要因により生じ得る、溶湯Lの高さ位置の検出誤差を抑制するために、本実施形態の湯面検出ツール30においては、第1電極33は、第2電極34よりも長くロッド31から突出して設けられている。図9は、このような湯面検出ツール30を用いた湯面検出の説明図である。
 まず、図9(a)に示されるように、制御装置12は、第1電極33と第2電極34のロッド31から突出した先端を下側に位置付けるように、駆動機構11を制御する。
 その後、制御装置12は、湯面検出ツール30を溶解炉2中の溶湯Lへ向けて下降させるように、駆動機構11を制御する。より長く先端がロッド31から突出した第1電極33がまずスラグSの表面に当接する。更に下方へと湯面検出ツール30を移動させると、湯面検出ツール30を下方に移動させる力が第1電極33の先端に集中するため、図9(b)に示されるように第1電極33の先端が容易にスラグSの層を破り、湯面Bが外気に露出する。
 制御装置12が更に湯面検出ツール30を下方へと移動させるように、駆動機構11を制御すると、図9(c)に示されるように、この露出した湯面Bに第2電極34の先端が接触し、第1電極33と第2電極34間に電流が流れる。制御装置12は、この電流を検出し、この時点での第1電極33と第2電極34の先端の位置を、この時点における駆動機構11の状態等を基に演算して、溶湯Lの湯面Bの高さ位置を検出し、記憶する。
 溶湯Lの湯面Bの高さ位置を検出した後に、制御装置12は駆動機構11を制御して、湯面検出ツール30を上昇させ、作業ツールラック13近傍へ移動させて、作業ツールラック13上の所定の位置に、ロッド31が水平になるように位置付ける。その後、制御装置12は把持先端部11lを広げて湯面検出ツール30を離すように制御し、湯面検出ツール30を作業ツールラック13へと返却する。
 上記のように、より長く突出した第1電極33がまずスラグSに当接してスラグSの層を破り、露出した湯面Bに第2電極34が接触するため、スラグSに起因する溶湯Lの高さ位置の検出誤差を抑制することができる。
 第1電極33がスラグSの層を破るまでに第2電極34が湯面Bの高さ位置に到達しないように、第1電極33は第2電極34よりも、例えば3cm以上、突出しているのが望ましい。
 また、第1電極33がスラグSの層を破ることにより露出した湯面Bに第2電極34を当接させるため、第1電極33と第2電極34の間の距離は、2~3cm程度以下とするのが望ましい。
 次に、サンプリングツール40について説明する。図10(a)は、溶解作業装置10のサンプリングツール40の側面図である。サンプリングツール40は、ロッド41と、ロッド41の先端に設けられて溶湯をすくいインゴットを生成するサンプル生成部42を備えている。溶解作業装置10は、サンプリングツール40を用いて、溶解した金属の分析用試料であるインゴットを生成する。
 一般にサンプリングは、柄杓等で溶湯をすくって型に流し込むことにより行われることが多い。
 ここで、本実施形態においては、溶解設備1は鋳鋼を溶解するものである。鋳鋼は凝固温度が高く、溶解炉2から柄杓ですくい上げて型に流し込むまでの一連の作業を迅速に行わなければ、型に流し込むまでにすぐに冷却して凝固することがある。特に、本実施形態におけるロボットアームなどの駆動機構11によって、鋳鋼が凝固するまでの短い時間で溶湯を型に流し込むことは、駆動機構11は人間ほどの迅速な作業ができないため、容易ではない。
 したがって、本実施形態においては、溶湯を型に流し込まず、その替わりに鋳鋼が冷却しやすいという特性に拠り、溶解炉2からすくい上げた状態で冷却させ凝固させる。
 図10(b)は、サンプル生成部42の斜視図である。サンプル生成部42は、略円柱状に形成されており、一方の底面を上面42dとし、この上面42dにロッド41が直交するようにロッド41に接合されている。サンプル生成部42は、上面42dに凹部42aを備えている。この凹部42aの表面により形成される内部空間42eは、上面42dと平行な平面により断面視した際の断面積が、凹部42aの底面42cから開口部42bへと向かうにつれて漸次拡大するようになっている。このように、凹部42aは、開口部42bが底面42cよりも大きくテーパー状に形成されている。
 サンプル生成部42は、熱伝導率の高い材料、例えばカーボンにより形成されている。
 図11は、サンプリングツール40を用いたサンプリングの説明図である。
 サンプリングは、サンプリングツール40に対するスラグの付着を抑制するため、後に説明するスラグ除去を予め行った後に実行するのが望ましい。
 溶解作業装置10は、溶解炉2上の任意の場所でサンプリングツール40を、上下方向を含む、任意の方向に移動させる。
 より詳細には、制御装置12は、サンプリングツール40のロッド41を駆動機構11の各把持部11jの対向する把持先端部11lの切欠11nの間に位置付けた状態で把持先端部11lを互いに近接させて、ロッド41を把持するように、駆動機構11を制御する。制御装置12は、図11(a)に示されるように、サンプル生成部42を下側に向けて、サンプリングツール40を移動させて溶解炉2の上の任意の場所に位置付け、その後、サンプリングツール40を鉛直方向に対して傾けて、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する。
 ここで、制御装置12は、少なくともサンプル生成部42の上面42dが、予め湯面検出ツール30により測定された溶湯Lの湯面Bの高さ位置より下に位置するまで下降させるように、駆動機構11を制御する。
 その後、図11(b)に示されるように、制御装置12は、サンプリングツール40を上昇させて、凹部42a内に溶湯Lをすくい上げるように、駆動機構11を制御する。
 このとき、制御装置12は、ロッド41を鉛直方向に対して傾けたままの状態でサンプリングツール40を上昇させるように駆動機構11を制御する。ロッド41を傾けたままの状態とすることにより、凹部42a内の溶湯Lの量が、凹部42aの例えば8~9割程度となり、溶湯Lが上面42d上に残留しにくくなる。これにより、上面42dの上で溶湯Lが凝固するのが抑制され、上面42dの上で凝固した金属が上面42dに貼り付くことにより金属がサンプル生成部42から取り出しにくくなるのを抑制する。その後、サンプリングツール40の角度を垂直にし、凹部42a内の溶湯Lの湯面が上面42dと略平行となるようにする。
 上記のようにサンプル生成部42は熱伝導率の高い材料で形成されており、なおかつ本実施形態においては溶湯Lは凝固温度の高い鋳鋼であるため、すくい上げられた溶湯Lはすぐに冷却されて凝固する。凝固した金属は収縮するため、凹部42aの表面と凝固した金属の間にわずかな空間が生じ、更に、テーパー状に形成された凹部42aの抜け勾配の効果により、金属は凹部42aの表面から離間する。
 この状態で、制御装置12は、サンプリングツール40が図1、図2に示されるシュート17の近傍まで移動するように駆動機構11を制御する。その後、制御装置12は、サンプリングツール40を上下方向に反転させ、サンプル生成部42の上面42dが、シュート17の溶解炉2側の一方の端部17aの直上で、下方を向くように位置づけるように、駆動機構11を制御する。すると、金属はシュート17の一方の端部17aの上に落下する。
 落下した金属は、制御装置12の方向にシュート17を滑り、他方の端部17bからインゴット受け容器18へと落下する。落下した金属は、図11(c)に示されるインゴット120として利用される。
 インゴット120をシュート17へ落下させた後に、制御装置12は駆動機構11を制御して、サンプリングツール40を作業ツールラック13近傍へ移動させ、作業ツールラック13上の所定の位置に、ロッド41が水平になるように位置付ける。その後、把持先端部11lを広げてサンプリングツール40を離すように制御し、サンプリングツール40を作業ツールラック13へと返却する。
 次に、温度測定ツール50について説明する。図12は、溶解作業装置10の温度測定ツール50の側面図である。温度測定ツール50は、温度計本体51、プローブ52、及び、温度計本体51とプローブ52を接続する接続部材53を備えている。溶解作業装置10は、この温度測定ツール50を用いて、溶湯Lの温度を測定する。
 図12においては、接続部材53は屈曲して形成されているが、屈曲部を有さず直線状に形成されていてもよい。
 溶解作業装置10は、溶解炉2上の任意の場所で温度測定ツール50を、上下方向を含む、任意の方向に移動させる。
 より詳細には、制御装置12は、温度測定ツール50の温度計本体51または接続部材53を駆動機構11の各把持部11jの対向する把持先端部11lの切欠11nの間に位置付けた状態で把持先端部11lを互いに近接させて、温度測定ツール50を把持するように、駆動機構11を制御する。制御装置12は、プローブ52を下側に向けて、温度測定ツール50を移動させて溶解炉2の上の任意の場所に位置づけ、その後、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する。
 ここで、制御装置12は、少なくともプローブ52の先端側が、予め湯面検出ツール30により測定された溶湯Lの湯面Bの高さ位置より下に位置するまで下降させるように、駆動機構11を制御する。この状態で所定の時間静止することにより、溶湯Lの温度が測定される。
 その後、制御装置12は、温度測定ツール50を上昇させて、溶解炉2から離れた作業員の方向に移動させるよう、駆動機構11を制御する。作業員は、温度計本体51に表示された溶湯温度の測定結果を確認する。その後、制御装置12は駆動機構11を制御して、例えば作業ツールラック13の角部等にプローブ52の角部52aを引っ掛けて当接させ、温度測定ツール50をプローブ52とは反対側の、すなわち温度計本体51の方向へと引っ張る。すると、引っ掛けられることにより移動が制限されたプローブ52は接続部材53から外れ、接続部材53の図示されない先端が露出する。制御装置12は、図1に示されるプローブラック15へと温度測定ツール50を移動させ、プローブラック15に設置された新規のプローブの方向へと接続部材53の先端を移動させて、接続部材53に新規のプローブ52を装着するよう、駆動機構11を制御する。
 プローブ52が交換された後に、制御装置12は駆動機構11を制御して、温度測定ツール50を作業ツールラック13近傍へ移動させ、作業ツールラック13上の所定の位置に位置付ける。その後、制御装置12は把持先端部11lを広げて温度測定ツール50を離すように制御し、温度測定ツール50を作業ツールラック13へと返却する。
 次に、第1~第5スラグ除去ツール(スラグ除去ツール)60、70、80、90、100について説明する。図13(a)、(b)、(c)、(d)、(e)は、それぞれ、溶解作業装置10の第1~第5スラグ除去ツール60、70、80、90、100の側面図である。第1~第5スラグ除去ツール60、70、80、90、100は、ロッド61、71、81、91、101と、ロッド61、71、81、91、101の先端に設けられたスラグ除去部62、72、82、92、102を備えている。溶解作業装置10は、第1~第5スラグ除去ツール60、70、80、90、100を用いて、溶湯の湯面Bに浮遊するスラグを除去する。
 まず、第1及び第2スラグ除去ツール60、70を説明する。図14(a)、(b)は、それぞれ、第1及び第2スラグ除去ツール60、70のスラグ除去部62、72の斜視図である。
 これらのスラグ除去部62、72は、共に、円板形状を成しており、円板の略中心に、スラグ除去部62、72と直交するようにロッド61、71が接合されている。
 第2スラグ除去ツール70のスラグ除去部72においては特に、複数の孔72aが開設されている。
 図15は、第1及び第2スラグ除去ツール60、70を用いたスラグ除去の説明図である。
 溶解作業装置10は、溶解炉2上の任意の場所で第1及び第2スラグ除去ツール60、70を、上下方向を含む、任意の方向に移動させる。
 より詳細には、制御装置12は、第1及び第2スラグ除去ツール60、70のロッド61、71を駆動機構11の各把持部11jの対向する把持先端部11lの切欠11nの間に位置付けた状態で把持先端部11lを互いに近接させて、ロッド61、71を把持するように、駆動機構11を制御する。制御装置12は、図15(a)に示されるように、スラグ除去部62、72を下側に向けて、第1及び第2スラグ除去ツール60、70を移動させて溶解炉2の上の任意の場所に位置付け、その後、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する。
 ここで、制御装置12は、少なくともスラグ除去部62、72の全体が、予め湯面検出ツール30により測定された溶湯Lの湯面Bの高さ位置より下に位置するまで下降させるように、駆動機構11を制御する。
 その後、図15(b)に示されるように、制御装置12は、第1及び第2スラグ除去ツール60、70を上昇させるように、駆動機構11を制御する。このとき、溶湯Lの湯面Bに浮遊するスラグSは、スラグ除去部62、72の上面によりすくい上げられる。
 スラグSをスラグ除去部62、72の上面に乗せた状態で、制御装置12は、第1及び第2スラグ除去ツール60、70を図1に示されるスラグ廃棄箱3の近傍まで移動して、スラグ廃棄箱3へスラグSを廃棄するように、駆動機構11を制御する。
 制御装置12は、この一連のスラグ除去の動作を、溶解炉2上の異なる水平位置に対して繰り返し実行する。
 スラグSを廃棄した後に、制御装置12は駆動機構11を制御して、第1及び第2スラグ除去ツール60、70を作業ツールラック13近傍へ移動させ、作業ツールラック13上の所定の位置に、ロッド61、71が水平になるように位置付ける。その後、制御装置12は把持先端部11lを広げて第1及び第2スラグ除去ツール60、70を離すように制御し、第1及び第2スラグ除去ツール60、70を作業ツールラック13へと返却する。
 次に、第3スラグ除去ツール80を説明する。図14(c)は、第3スラグ除去ツール80のスラグ除去部82の斜視図である。
 スラグ除去部82は、ロッド81の軸線方向CRに所定の長さを有し、軸線周りにスラグ付着部82aを備えている。より詳細には、スラグ除去部82は、ロッド81の軸線方向CRに所定の長さにわたって延在するような、円柱形状を成している。次に説明するように、この円柱形状の側面82aと、ロッド81とは反対側の底面82bが、スラグを付着するスラグ付着部82a、82bとして機能する。
 図16は、第3スラグ除去ツール80を用いたスラグ除去の説明図である。
 溶解作業装置10は、溶解炉2上の任意の場所で第3スラグ除去ツール80を、上下方向を含む、任意の方向に移動させる。
 より詳細には、制御装置12は、第3スラグ除去ツール80のロッド81を駆動機構11の各把持部11jの対向する把持先端部11lの切欠11nの間に位置付けた状態で把持先端部11lを互いに近接させて、ロッド81を把持するように、駆動機構11を制御する。制御装置12は、図16(a)に示されるように、スラグ除去部82を下側に向けて、第3スラグ除去ツール80を水平方向に移動させて溶解炉2の上の任意の場所に位置付け、その後、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する。
 ここで、制御装置12は、少なくともスラグ除去部82の底面82b側が、予め湯面検出ツール30により測定された溶湯Lの湯面Bの高さ位置より下に位置するまで下降させるように、駆動機構11を制御する。
 その後、図16(b)に示されるように、制御装置12は、第3スラグ除去ツール80を上昇させるように、駆動機構11を制御する。このとき、溶湯Lの湯面Bに浮遊するスラグSは、スラグ除去部82の側面82a及び底面82bに付着し、溶解炉2から排出される。
 スラグSをスラグ除去部82に付着させた状態で、制御装置12は、第3スラグ除去ツール80を図1に示されるスラグ廃棄箱3の近傍まで移動して、スラグ廃棄箱3へスラグSを廃棄するように、駆動機構11を制御する。
 制御装置12は、この一連のスラグ除去の動作を、溶解炉2上の異なる水平位置に対して繰り返し実行する。
 スラグSを廃棄した後に、制御装置12は駆動機構11を制御して、第3スラグ除去ツール80を作業ツールラック13近傍へ移動させ、作業ツールラック13上の所定の位置に、ロッド81が水平になるように位置付ける。その後、制御装置12は把持先端部11lを広げて第3スラグ除去ツール80を離すように制御し、第3スラグ除去ツール80を作業ツールラック13へと返却する。
 次に、第4スラグ除去ツール90を説明する。図14(d)は、第4スラグ除去ツール90のスラグ除去部92の斜視図である。
 スラグ除去部92は、ロッド91の軸線方向CRに所定の長さを有し、軸線周りにスラグ付着部92aを備えている。より詳細には、スラグ除去部92は、ロッド91の軸線方向CRに所定の長さにわたって、複数の円板92aが互いに離間して設けられることにより形成されている。後に説明するように、この複数の円板92aが、スラグを付着するスラグ付着部92aとして機能する。図14(d)においては4枚の円板92aが示されているが、円板92aの数は、例えば2枚以上20枚以下の範囲内から、適宜選択されてよい。
 第4スラグ除去ツール90においては、ロッド91のスラグ除去部92が設けられた端部とは反対側の端部には、図13(d)に示されるように、駆動部94が設けられている。駆動部94は、ロッド91を軸線回りに回転可能である。
 駆動部94には、駆動機構11の2つの把持部11j間の間隔と略同等の距離を置いて、2つの被把持部95が設けられている。被把持部95は、例えば、両端が屈曲した鋼棒の、屈曲した双方の端部の先端を駆動部94に接合するように形成されている。これにより、駆動機構11の2つの把持部11jがこれら被把持部95を各々把持することで、駆動機構11に駆動部94が固定可能な構造となっている。
 図17は、第4スラグ除去ツール90を用いたスラグ除去の説明図である。
 溶解作業装置10は、溶解炉2上の任意の場所で第4スラグ除去ツール90を、上下方向を含む、任意の方向に移動させる。
 より詳細には、制御装置12は、第4スラグ除去ツール90の駆動部94に設けられた被把持部95を、駆動機構11の各把持部11jの対向する把持先端部11lの切欠11nの間に位置付けた状態で把持先端部11lを互いに近接させて、被把持部95を把持するように、駆動機構11を制御する。次に、制御装置12は、図17(a)に示されるように、スラグ除去部92を下側に向けて、第4スラグ除去ツール90を移動させて溶解炉2の上の任意の場所に位置付け、その後、駆動部94を動作させた状態で、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する。
 ここで、制御装置12は、少なくともスラグ除去部92の先端側が、予め湯面検出ツール30により測定された溶湯Lの湯面Bの高さ位置より下に位置するまで下降させるように、駆動機構11を制御する。
 この状態においては、駆動部94が動作されているため、ロッド91は回転している。図17(b)には、ロッド91の回転に伴い、スラグ除去部92が方向Dに、本実施形態においては時計回りに、回転している様子が示されている。
 このように駆動部94がロッド91を回転させるに際し、駆動機構11は、制御装置12によって制御されて、スラグ除去部92の高さ位置を維持しつつ、ロッド91の回転方向Dと同じ回転方向Rに、溶解炉2の略中央に設定された上下方向に延在する仮想軸線Vを中心として、第4スラグ除去ツール90を公転させる。
 スラグ除去部92の自転及び第4スラグ除去ツール90の公転により、スラグ除去部92が移動した軌跡の近傍に位置していた、溶湯Lの湯面Bに浮遊するスラグSは、スラグ除去部92に巻き取られる。
 その後、図17(c)に示されるように、制御装置12は、第4スラグ除去ツール90を上昇させるように、駆動機構11を制御する。これにより、スラグ除去部92により巻き取られたスラグSは、溶解炉2から排出される。
 スラグSをスラグ除去部92に付着させた状態で、制御装置12は、第4スラグ除去ツール90を図1に示されるスラグ廃棄箱3の近傍まで移動して、スラグ廃棄箱3へスラグSを廃棄するように、駆動機構11を制御する。
 制御装置12は、この一連のスラグ除去の動作を、適切な回数、繰り返し実行する。
 スラグSを廃棄した後に、制御装置12は駆動機構11を制御して、第4スラグ除去ツール90を作業ツールラック13近傍へ移動させ、作業ツールラック13上の所定の位置に、ロッド91が水平になるように位置付ける。その後、制御装置12は把持先端部11lを広げて第4スラグ除去ツール90を離すように制御し、第4スラグ除去ツール90を作業ツールラック13へと返却する。
 次に、第5スラグ除去ツール100を説明する。図14(e)は、第5スラグ除去ツール100のスラグ除去部102の斜視図である。
 スラグ除去部102は、矩形形状を成しており、この矩形形状の幅方向がロッド101の軸線方向CRに一致するように設けられて、一方の長辺102bにロッド101が接合されている。他方の長辺102aは、ロッド101とは反対側に位置している。
 図18は、第5スラグ除去ツール100を用いたスラグ除去の説明図である。
 第5スラグ除去ツール100によりスラグを除去する前に、溶解炉2の傾動装置を操作して、図18(a)に示されるように、溶解炉2を出滓口2bの方向へ傾かせて、湯面BまたはスラグSを出滓口2bの傾斜部2d上に位置付ける。
 ここで、溶解炉2を傾動したために、湯面Bの高さは、図9各図を用いて説明したような溶解炉2を傾動させていない状態で測定した高さとは、異なる値となっている場合がある。このため、溶解炉2を傾動させた状態で、既に説明したような溶湯Lの湯面Bの高さ位置の検出を実行するのが望ましい。
 次に、制御装置12は、第5スラグ除去ツール100のロッド101を駆動機構11の各把持部11jの対向する把持先端部11lの切欠11nの間に位置付けた状態で把持先端部11lを互いに近接させて、ロッド101を把持するように、駆動機構11を制御する。図18(b)に示されるように、制御装置12は、スラグ除去部102を下側に向けて、第5スラグ除去ツール100を移動させて溶解炉2の上の、溶解炉2の出滓口2bとは反対側に位置する出湯口2aの近傍に位置付け、その後、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する。
 その後、図18(c)に示されるように、制御装置12は、第5スラグ除去ツール100を溶解炉2の出滓口2bに向けて、水平方向に移動するように、駆動機構11を制御する。これにより、溶湯Lの湯面Bに浮遊するスラグSは、傾斜部2dの方向にかき集められる。
 スラグ除去部102の下側に位置する長辺102aが出滓口2bの傾斜部2dに接触した際には、スラグ除去部102の側面と傾斜部2dの間に、かき集められたスラグSが集められた状態となっている。ここで制御装置12は、第5スラグ除去ツール100を傾斜部2dの傾斜に沿って、上及び水平方向に動かし、集められたスラグSを出滓口2bから溶解炉2の外部へ排出するように、駆動機構11を制御する。
 スラグSを廃棄した後に、制御装置12は駆動機構11を制御して、第5スラグ除去ツール100を作業ツールラック13近傍へ移動させ、作業ツールラック13上の所定の位置に、ロッド101が水平になるように位置付ける。その後、制御装置12は把持先端部11lを広げて第5スラグ除去ツール100を離すように制御し、第5スラグ除去ツール100を作業ツールラック13へと返却する。
 次に、副資材投入ツール110について説明する。図19は、溶解作業装置10の副資材投入ツール110の側面図である。副資材投入ツール110は、ロッド111と、ロッド111の先端に設けられて副資材をその上に載置可能な副資材載置部112を備えている。溶解作業装置10は、副資材投入ツール110を用いて、溶湯の成分調整のための副資材を溶解炉2内に投入する。
 副資材載置部112は、例えばスコップの先端のような、凹部112aを備える板材である。副資材載置部112は、凹部112aの凹む方向が、ロッド111の軸線方向CRに直交するように設けられている。
 制御装置12は、副資材投入ツール110のロッド111を駆動機構11の各把持部11jの対向する把持先端部11lの切欠11nの間に位置付けた状態で把持先端部11lを互いに近接させて、ロッド111を把持するように、駆動機構11を制御する。制御装置12は、ロッド111が略水平になるように副資材投入ツール110の姿勢を保ちつつ、副資材載置部112を図1に示される副資材計量機16近傍へ移動し、副資材計量機16により自動計量されて排出された一定の量の副資材を凹部112a内へ載置するよう、駆動機構11を制御する。
 この状態で、制御装置12は、駆動機構11を制御して、副資材載置部112を移動して溶解炉2の上方に位置せしめ、ロッド111を傾かせて凹部112a中の副資材を溶解炉2の溶湯L内へ投入する。
 副資材を投入した後に、制御装置12は駆動機構11を制御して、副資材投入ツール110を作業ツールラック13近傍へ移動させ、作業ツールラック13上の所定の位置に、ロッド111が水平になるように位置付ける。その後、制御装置12は把持先端部11lを広げて副資材投入ツール110を離すように制御し、副資材投入ツール110を作業ツールラック13へと返却する。
 次に、溶解設備1を用いて金属を溶解する方法を説明する。
 まず、スクラップヤード等から溶解対象となる金属を運搬し、溶解炉2へと投入する。
 その後、溶解炉2により金属を溶解する。
 金属の溶解が進行すると、既に説明した溶解作業装置10を用いて、後に説明する溶解作業方法に従って溶解作業を実行する。
 溶解作業は、本実施形態においては、溶湯の湯面の高さ位置の検出、溶湯の温度測定、スラグの除去、副資材投入、サンプリングを含む。
 これら各種作業のうち、最初に溶湯の湯面の高さ位置の検出を実行する。その後、サンプリング、スラグの除去、副資材投入、及び溶湯の温度測定を、概ねこの順に沿って、必要に応じて順不同に、実行する。
 金属が溶解されると、傾動装置により溶解炉2を出湯口2aの方向に傾け、出湯する。
 次に、溶解作業装置10を用いた溶解作業方法を説明する。図20は、溶解作業方法を説明するフローチャートである。
 本実施形態における溶解作業方法は、溶解炉内で材料を溶解してできた溶湯に対して作業を行うものであって、複数の作業ツールの中の任意の作業ツールを駆動機構に固定し、駆動機構により溶解炉上の任意の場所で作業ツールを下降させ、任意の場所に移動させてから、駆動機構により作業ツールを上昇させる。
 作業員の指示等により、溶湯作業が開始される(ステップS1)と、まず、溶湯の湯面の高さ位置の検出を実行する。
 制御装置12は、作業ツールラック13上へ駆動機構11の手首部11hを移動させ、湯面検出ツール30を把持するよう、駆動機構11を制御する(ステップS30)。
 次に、制御装置12は、第1電極33と第2電極34のロッド31から突出した先端を下側に向けて、湯面検出ツール30を移動させて溶解炉2の上の任意の場所に位置付けるように、駆動機構11を制御する(ステップS31)。
 その後、制御装置12は、湯面検出ツール30を溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する。第1電極33がスラグSの表面に当接し、更に下方へと湯面検出ツール30を移動させると、第1電極33の先端が容易にスラグSの層を破り、湯面Bが外気に露出する。
 制御装置12が更に湯面検出ツール30を下方へと移動させるように、駆動機構11を制御すると、この露出した湯面Bに第2電極34の先端が接触し、第1電極33と第2電極34間に電流が流れる。制御装置12は、この電流を検出し、この時点での第1電極33と第2電極34の先端の位置を、この時点における駆動機構11の状態等を基に演算して、溶湯Lの湯面Bの高さ位置を検出し、記憶する(ステップS32)。
 このように、本実施形態の溶解作業方法においては、駆動機構11に湯面検出ツール30を固定し、駆動機構11により湯面検出ツール30を下降させて湯面Bの高さ位置を検出する。
 溶湯Lの湯面Bの高さ位置を検出した後に、制御装置12は駆動機構11を制御して、湯面検出ツール30を上昇させる(ステップS33)。
 制御装置12は、駆動機構11を制御して湯面検出ツール30を作業ツールラック13近傍へ移動させて、作業ツールラック13上の所定の位置に、ロッド31が水平になるように位置付ける。その後、制御装置12は把持先端部11lを広げて湯面検出ツール30を離すように制御し、湯面検出ツール30を作業ツールラック13へと返却する(ステップS34)。
 次に、作業者または制御装置12は、サンプリング、スラグの除去、副資材投入、及び溶湯の温度測定の中から、次に実行する作業を選択する(ステップS2)。
 まず、制御装置12は、選択された作業がサンプリングであるか否かを判定する(ステップS3)。選択された作業がサンプリングの場合には(ステップS3のYes)、次に説明するステップS40へと遷移する。サンプリングでない場合には(ステップS3のNo)、後に説明するステップS4へと遷移する。
 選択された作業がサンプリングの場合には、制御装置12は、作業ツールラック13上へ駆動機構11の手首部11hを移動させ、サンプリングツール40を把持するよう、駆動機構11を制御する(ステップS40)。
 制御装置12は、サンプル生成部42を下側に向けて、サンプリングツール40を移動させて溶解炉2の上の任意の場所に位置付け(ステップS41)、サンプリングツール40を鉛直方向に対して傾けて、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する(ステップS42)。
 その後、制御装置12は、サンプリングツール40を上昇させて、凹部42a内に溶湯Lをすくい上げるように、駆動機構11を制御する。このとき、制御装置12は、ロッド41を鉛直方向に対して傾けたままの状態でサンプリングツール40を上昇させるように駆動機構11を制御する。その後、サンプリングツール40の角度を垂直にし、凹部42a内の溶湯Lの湯面が上面42dと略平行となるようにする(ステップS43)。
 サンプル生成部42は熱伝導率の高い材料で形成されており、なおかつ本実施形態においては溶湯Lは凝固温度の高い鋳鋼であるため、すくい上げられた溶湯Lはすぐに冷却されて凝固する。
 この状態で、制御装置12は、サンプリングツール40がシュート17の近傍まで移動するように駆動機構11を制御する。その後、制御装置12は、サンプリングツール40を上下方向に反転させ、サンプル生成部42の上面42dが、シュート17の溶解炉2側に位置する一方の端部17aの直上で、下方を向くように位置づけるように、駆動機構11を制御する。すると、金属はシュート17の一方の端部17aの上に落下する(ステップS44)。
 このように、本実施形態の溶解作業方法においては、駆動機構11にサンプリングツール40を固定し、駆動機構11によりサンプリングツール40を下降させて溶湯をすくう。
 その後、後に説明するステップS7へ遷移する。
 選択された作業がサンプリングではない場合には、制御装置12は、選択された作業がスラグ除去であるか否かを判定する(ステップS4)。選択された作業がスラグ除去の場合には(ステップS4のYes)、次に説明するステップS11へと遷移する。スラグ除去でない場合には(ステップS4のNo)、後に説明するステップS5へと遷移する。図21は、スラグ除去方法(ステップS11)を説明するフローチャートである。
 本実施形態におけるスラグ除去方法は、スラグ除去ツールを、駆動機構に固定し、駆動機構により溶解炉上の任意の場所でスラグ除去ツールを下降させて、スラグ除去部を溶湯に所定の深さだけ没入し、駆動機構によりスラグ除去ツールを上昇させる。
 スラグ除去が開始されると(ステップS12)、作業者は、制御装置12により、スラグ除去作業を自動で行うか否か、すなわち、制御装置12がティーチングにより作成されたプログラムにより駆動機構11を自動制御するか、作業者が入力装置20と制御装置12を介して駆動機構11を遠隔操作するかを選択する(ステップS13)。既に説明したように、以下の説明においては、いずれの場合においても、制御装置12が駆動機構11を制御すると記載する。
 ステップS13において、自動制御を選択した場合には、スラグ除去作業が終了するまでの作業が基本的には自動で実行されるが、例えばスラグSが自動制御では除去しにくい場所に位置するとき等に、作業者が一時的に制御装置12を介して駆動機構11を遠隔操作してもよい。逆に、遠隔操作を選択した場合に、作業者が自動制御に任せてよいと判断した場合に自動制御に移行してもよい。
 次に、作業者は、制御装置12により、スラグ除去に使用するツールを選択し、把持する(ステップS14)。すなわち、第1~第5スラグ除去ツール(スラグ除去ツール)60、70、80、90、100のいずれを使用するかを選択し、これに基づき、制御装置12は、作業ツールラック13上へ駆動機構11の手首部11hを水平移動させ、指示されたスラグ除去ツール60、70、80、90、100を把持するよう、駆動機構11を制御する。
 次に、制御装置12は、選択されたスラグ除去ツールが第1及び第2スラグ除去ツール60、70であるか否かを判定する(ステップS15)。選択されたスラグ除去ツールが第1及び第2スラグ除去ツール60、70である場合には(ステップS15のYes)、次に説明するステップS60へと遷移する。第1及び第2スラグ除去ツール60、70でない場合には(ステップS15のNo)、後に説明するステップS16へと遷移する。
 選択されたスラグ除去ツールが第1及び第2スラグ除去ツール60、70である場合には、制御装置12は、スラグ除去部62、72を下側に向けて、第1及び第2スラグ除去ツール60、70を移動させて溶解炉2の上の任意の場所に位置付け(ステップS60)、その後、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する(ステップS61)。
 その後、制御装置12は、第1及び第2スラグ除去ツール60、70を上昇させるように、駆動機構11を制御する。このとき、溶湯Lの湯面Bに浮遊するスラグSは、スラグ除去部62、72の上面によりすくい上げられる(ステップS62)。
 スラグSをスラグ除去部62、72の上面に乗せた状態で、制御装置12は、第1及び第2スラグ除去ツール60、70をスラグ廃棄箱3の近傍まで移動して、スラグ廃棄箱3へスラグSを廃棄するように、駆動機構11を制御する(ステップS63)。
 その後、後に説明するステップS19へ遷移する。
 選択されたスラグ除去ツールが第1及び第2スラグ除去ツール60、70ではない場合には、制御装置12は、選択されたスラグ除去ツールが第3スラグ除去ツール80であるか否かを判定する(ステップS16)。選択されたスラグ除去ツールが第3スラグ除去ツール80である場合には(ステップS16のYes)、次に説明するステップS80へと遷移する。第3スラグ除去ツール80でない場合には(ステップS16のNo)、後に説明するステップS17へと遷移する。
 選択されたスラグ除去ツールが第3スラグ除去ツール80である場合には、制御装置12は、スラグ除去部82を下側に向けて、第3スラグ除去ツール80を移動させて溶解炉2の上の任意の場所に位置付け(ステップS80)、その後、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する(ステップS81)。このとき、溶湯Lの湯面Bに浮遊するスラグSは、スラグ除去部82の側面82a及び底面82bに付着する。
 その後、制御装置12は、第3スラグ除去ツール80を上昇させるように、駆動機構11を制御する(ステップS82)。スラグSをスラグ除去部82に付着させた状態で、制御装置12は、第3スラグ除去ツール80をスラグ廃棄箱3の近傍まで移動して、スラグ廃棄箱3へスラグSを廃棄するように、駆動機構11を制御する(ステップS83)。
 その後、後に説明するステップS19へ遷移する。
 選択されたスラグ除去ツールが第3スラグ除去ツール80ではない場合には、制御装置12は、選択されたスラグ除去ツールが第4スラグ除去ツール90であるか否かを判定する(ステップS17)。選択されたスラグ除去ツールが第4スラグ除去ツール90である場合には(ステップS17のYes)、次に説明するステップS90へと遷移する。第4スラグ除去ツール90でない場合には(ステップS17のNo)、後に説明するステップS100へと遷移する。
 選択されたスラグ除去ツールが第4スラグ除去ツール90である場合には、制御装置12は、スラグ除去部92を下側に向けて、第4スラグ除去ツール90を移動させて溶解炉2の上の任意の場所に位置付け(ステップS90)、その後、駆動部94を動作させてスラグ除去部92を回転させた状態で(ステップS91)、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する(ステップS92)。
 この状態においては、駆動部94が動作されているため、ロッド91は回転している。駆動部94がロッド91を回転させるに際し、制御装置12は、駆動機構11を制御して、スラグ除去部92の高さ位置を維持しつつ、ロッド91の回転方向Dと同じ回転方向Rに、溶解炉2の略中央に設定された上下方向に延在する仮想軸線Vを中心として、第4スラグ除去ツール90を公転させる。
 スラグ除去部92の自転及び第4スラグ除去ツール90の公転により、スラグ除去部92が移動した軌跡の近傍に位置していた、溶湯Lの湯面Bに浮遊するスラグSは、スラグ除去部92に巻き取られる(ステップS93)。
 そして、制御装置12は、第4スラグ除去ツール90を上昇させるように、駆動機構11を制御する(ステップS94)。スラグSをスラグ除去部92に付着させた状態で、制御装置12は、第4スラグ除去ツール90をスラグ廃棄箱3の近傍まで移動して、スラグ廃棄箱3へスラグSを廃棄するように、駆動機構11を制御する(ステップS95)。
 その後、後に説明するステップS19へ遷移する。
 選択されたスラグ除去ツールが第4スラグ除去ツール90ではない場合には、制御装置12は、選択されたスラグ除去ツールが第5スラグ除去ツール100であると判断する。
 この場合には、まず、溶解炉2の傾動装置を操作して、溶解炉2を出滓口2bの方向へ傾かせて、湯面BまたはスラグSを出滓口2bの傾斜部2d上に位置付ける(ステップS100)。
 ここで、溶解炉2を傾動したために、湯面Bの高さは、図9各図を用いて説明したような溶解炉2を傾動させていない状態で測定した高さとは、異なる値となっている場合がある。このため、溶解炉2を傾動させた状態で、再度、既に説明したステップS30~S34を再度実行し、溶湯Lの湯面Bの高さ位置を検出するのが望ましい。
 次に、制御装置12は、スラグ除去部102を下側に向けて、第5スラグ除去ツール100を移動させて溶解炉2の上の、溶解炉2の出滓口2bとは反対側に位置する出湯口2aの近傍に位置付け(ステップS101)、その後、溶解炉2中の溶湯へ向けて下降させるように、駆動機構11を制御する(ステップS102)。
 その後、制御装置12は、第5スラグ除去ツール100を溶解炉2の出滓口2bに向けて、水平方向に移動するように、駆動機構11を制御する。これにより、溶湯Lの湯面Bに浮遊するスラグSは、傾斜部2dの方向にかき集められる(ステップS103)。
 スラグ除去部102の下側に位置する長辺102aが出滓口2bの傾斜部2dに接触した際には、スラグ除去部102の側面と傾斜部2dの間に、かき集められたスラグSが集められた状態となっている。ここで制御装置12は、第5スラグ除去ツール100を傾斜部2dの傾斜に沿って、上及び水平方向に動かし、集められたスラグSを出滓口2bから溶解炉2の外部へ排出するように、駆動機構11を制御する(ステップS104)。
 その後、溶解炉2の傾動を元の状態に戻し(ステップS105)、次に説明するステップS19へ遷移する。
 次に、スラグ除去作業を継続するか否かを判断する(ステップS19)。上記のステップS60、S80、S90、及びS100の各々から始まる一連のスラグ除去処理を一度実行したのみでは、スラグSを十分に除去できていない可能性がある。例えばこのような、十分にスラグSが除去されていないと判断される場合に(ステップS19のYes)、ステップS14へ戻り、例えば湯面B上の異なる水平位置において、一連のスラグ除去処理を再度実行する。このとき、一旦使用したスラグ除去ツールを作業ツールラック13へと返却し、これとは異なるツールを使用してもよい。
 一連のスラグ除去処理を再実行する必要がないと判断される場合には(ステップS19のNo)、スラグ除去処理を終了し(ステップS20)、図20に示される、後に説明するステップS7へ遷移する。
 選択された作業がスラグ除去ではない場合には、制御装置12は、選択された作業が副資材投入であるか否かを判定する(ステップS5)。選択された作業が副資材投入の場合には(ステップS5のYes)、次に説明するステップS110へと遷移する。副資材投入でない場合には(ステップS5のNo)、後に説明するステップS50へと遷移する。
 選択された作業が副資材投入の場合には、制御装置12は、作業ツールラック13上へ駆動機構11の手首部11hを移動させ、副資材投入ツール110を把持するよう、駆動機構11を制御する(ステップS110)。
 制御装置12は、ロッド111が略水平になるように副資材投入ツール110の姿勢を保ちつつ、副資材載置部112を図1に示される副資材計量機16近傍へ移動し(ステップS111)、副資材計量機16により自動計量されて排出された一定の量の副資材を凹部112a内へ載置する(ステップS112)よう、駆動機構11を制御する。
 この状態で、制御装置12は、駆動機構11を制御して、副資材載置部112を移動して溶解炉2の上方に位置せしめ(ステップS113)、ロッド111を傾かせて凹部112a中の副資材を溶解炉2の溶湯L内へ投入する(ステップS114)。
 その後、後に説明するステップS7へ遷移する。
 選択された作業が副資材投入ではない場合には、制御装置12は、選択された作業が溶湯の温度測定であると判断する。
 この場合には、制御装置12は、作業ツールラック13上へ駆動機構11の手首部11hを移動させ、温度測定ツール50を把持するよう、駆動機構11を制御する(ステップS50)。
 制御装置12は、プローブ52を下側に向けて、温度測定ツール50を移動させて溶解炉2の上の任意の場所に位置づけ(ステップS51)、その後、溶解炉2中の溶湯へ向けて下降させるように制御する。これにより、溶湯Lの温度が測定される(ステップS52)。
 その後、制御装置12は、温度測定ツール50を上昇させて、作業員の方向に移動させるよう、駆動機構11を制御する。作業員による、温度計本体51に表示された溶湯温度の測定結果の確認が終了した後に(ステップS53)、制御装置12は駆動機構11を制御して、プローブを交換する(ステップS54)。
 その後、次に説明するステップS7へ遷移する。
 上記のような、各作業ツール14を用いた作業が終了した後、制御装置12は、駆動機構11を制御して作業ツール14を作業ツールラック13近傍へ移動させて、作業ツールラック13上の所定の位置に、作業ツール14が水平になるように位置付ける。その後、制御装置12は把持先端部11lを広げて作業ツール14を離すように制御し、作業ツール14を作業ツールラック13へと返却する(ステップS7)。
 次に、溶解作業を継続するか否かを判断する(ステップS8)。溶解作業を継続すると判断される場合に(ステップS8のYes)、ステップS2へ戻り、作業の選択から始まる一連の処理を再度実行する。
 溶解作業を継続する必要がないと判断される場合には(ステップS8のNo)、溶解作業を終了する(ステップS9)。
 次に、上記の溶解作業装置及び溶解作業方法の効果について説明する。
 溶解作業装置10は、溶解炉2内で材料を溶解してできた溶湯Lに対して作業を行うものであって、駆動機構11と、駆動機構11によって操作される、複数の作業ツール14と、を備え、駆動機構11は、溶解炉2上の任意の場所で作業ツール14を任意の方向に移動可能である。
 上記のような構成によれば、溶解作業は、溶解炉2上の任意の場所で作業ツール14を任意の方向に移動可能な駆動機構11が実行するため、対応した作業ツール14が用意されている作業に関しては、作業員は基本的には溶解炉2へ近づかなくてよい。また、駆動機構11は、複数の作業ツール14を備えているため、複数種類の炉前作業を実行可能である。このため、溶解炉に対する作業を容易に実行可能である。
 また、複数の作業ツール14は、溶湯Lの湯面Bに浮遊するスラグSを除去するスラグ除去ツール60、70、80、90、100を備え、スラグ除去ツール60、70、80、90、100は、ロッド61、71、81、91、101の先端に設けられたスラグ除去部62、72、82、92、102を備えている。
 上記のような構成によれば、ロッド61、71、81、91、101の先端にスラグ除去部62、72、82、92、102が設けられており、丸棒を使用するよりも効率的にスラグを除去することができる構造となっている。
 効率的にスラグを除去できることは、溶解炉2内への一度の作業ツール14の投入で除去できるスラグSの量が多いことを意味する。すなわち、丸棒に比べると、付着するスラグの量が増加する。これに加え、先端にスラグ除去部62、72、82、92、102が設けられることにより、支持すべき重量が増大する。このため、作業員が上記のようなスラグ除去ツール60、70、80、90、100を用いて人力でスラグSを除去するのは、容易ではない。これに対し、本実施形態においては、作業員ではなく、駆動機構11がスラグ除去ツール60、70、80、90、100を把持してスラグSを除去するため、スラグSを効率的に除去しながらも、作業員への負担を低減可能である。
 また、様々な形状のスラグ除去ツール60、70、80、90、100を、例えばスラグSの発生位置や発生量、分布等に応じて使い分けることができる。したがって、更に効率的にスラグSを除去することができる。
 特に、第3スラグ除去ツール80、第4スラグ除去ツール90においては、ロッド81、91の軸線方向CRに所定の長さを有し、軸線周りにスラグ付着部82a、82b、92aを備えている。
 具体的には、第3スラグ除去ツール80においては、スラグ除去部82は円柱形状を成している。また、第4スラグ除去ツール90においては、スラグ除去部92は、ロッド91の軸線方向CRに、複数の円板92aが互いに離間して設けられることにより形成されている。
 上記のような構成によれば、スラグSの付着面積を大きくすることができるため冷却し易くなり、溶解炉2内への一度の作業ツール14の投入で除去できるスラグSの量を増やすことができる。これにより、効率的にスラグSを除去することが可能となる。
 更に、第4スラグ除去ツール90においては、ロッド91を軸線回りに回転可能な駆動部94を備え、駆動部94が駆動機構11に固定可能である。
 上記のような構成によれば、駆動機構11に駆動部94が固定されつつ、駆動部94がロッド91を軸線回りに回転可能であるため、駆動機構11が第4スラグ除去ツール90を把持した状態で、第4スラグ除去ツール90に設けられたスラグ除去部92を回転させることができる。これにより、スラグSをスラグ除去部92へ巻きつけるようにして付着させることができるため、溶解炉2内への一度の投入で除去できるスラグSの量を更に増やすことができる。
 更に、第4スラグ除去ツール90においては、第4スラグ除去ツール90が駆動部94によりロッド91を回転させるに際し、駆動機構11は、スラグ除去部92の高さ位置を維持しつつ、ロッド91の回転方向Dと同じ回転方向Rに、上下方向に延在する仮想軸線Vを中心として第4スラグ除去ツール90を公転させる。
 上記のような構成によれば、第4スラグ除去ツール90を公転させるため、溶解炉2内への一度の作業ツール14の投入で除去できるスラグSの量を更に増やすことができる。
 この公転の回転方向Rは、スラグ除去部92の回転方向Dと同じ方向となっている。公転の回転方向Rが、スラグ除去部92の回転方向Dと異なる場合には、公転の進行方向前方に位置するスラグSは、スラグ除去部92の回転により溶解炉2の半径方向外側、すなわち溶解炉2の内側表面2c方向へ流され、内側表面2cへと付着し得る。公転の回転方向Rとロッド91の回転方向Dを同一方向とすることにより、公転の進行方向前方に位置するスラグSを、溶解炉2の内側表面2cではなく溶解炉2の半径方向内側へ流すことができる。このため、内側表面2cへのスラグSの付着を抑制可能である。
 また、複数の作業ツール14は、ロッド31の先端に設けられて溶湯Lの湯面Bの高さ位置を検出する湯面検出部32を備えた、湯面検出ツール30を備えている。
 既に説明したように、様々な理由に因り溶湯Lの湯面Bの高さ位置を一定の場所に保つことが容易ではないため、駆動機構11が、例えばティーチングにより作成されたプログラムによって制御されている場合においては、作業ツール14の先端と溶湯の湯面Bとの相対的な位置関係を把握する必要がある。
 上記のような構成によれば、湯面検出ツール30により溶湯Lの湯面Bの高さ位置を検出できるため、作業ツール14を用いた駆動機構11による作業を正確に遂行可能である。
 また、湯面検出部32は、棒状の第1及び第2電極33、34を備え、第1電極33は、第2電極34よりも長くロッド31から突出して設けられている。
 上記のような構成によれば、既に説明したように、溶湯Lの高さ位置の検出誤差を抑制可能である。
 また、複数の作業ツール14は、ロッド40の先端に設けられて溶湯Lをすくいインゴット120を生成するサンプル生成部42を備えた、サンプリングツール40を備えている。
 上記のような構成によれば、溶解作業装置10によるサンプリング作業が可能となる。
 また、サンプル生成部42は凹部42aを備え、凹部42aは開口部42bが底面42cよりも大きくテーパー状に形成されている。
 上記のような構成によれば、サンプル生成部42内で凝固した金属を、サンプル生成部42の凹部42aから容易に取り出すことが可能である。
 また、サンプル生成部42はカーボンにより形成されている。
 上記のような構成によれば、サンプル生成部42の凹部42a内にすくい取った溶湯を、速く凝固させることができる。
 また、制御装置12は、サンプリングツール40を上昇させて、凹部42a内に溶湯Lをすくい上げるに際し、サンプリングツール40を鉛直方向に対して傾けて溶解炉2中の溶湯へ向けて下降させ、ロッド41を鉛直方向に対して傾けたままの状態でサンプリングツール40を上昇させるように駆動機構11を制御する。
 上記のような構成によれば、既に説明したように、溶湯Lが凝固した後に上面42dの上で溶湯Lが凝固するのが抑制され、上面42dの上で凝固した金属が上面42dに貼り付くことにより金属がサンプル生成部42から取り出しにくくなるのを抑制する。
 また、複数の作業ツール14は、ロッド111の先端に設けられて副資材をその上に載置可能な副資材載置部112を備えた、副資材投入ツール110を備えている。
 上記のような構成によれば、溶解作業装置10による副資材投入作業が可能となる。
 また、複数の作業ツール14は、溶湯Lの温度を測定する、温度測定ツール50を備えている。
 上記のような構成によれば、溶解作業装置10による溶湯Lの温度の測定が可能となる。
 また、本実施形態においては、溶解炉2は、鋳鋼を溶解する。
 例えば鋳鉄においては、スラグを除去するに当たり、珪石等を散布することによりスラグを固形化し、除去しやすくすることも可能である。しかし、鋳鋼においては、溶湯温度が鋳鉄よりも高く1550℃以上となり、珪石は溶解してしまうため、スラグの除去は容易ではない。
 しかし、本実施形態においては、例えば上記のような第3スラグ除去ツール80、第4スラグ除去ツール90のような、スラグSを付着させることにより除去するスラグ除去ツールを使用可能である。したがって、スラグSの除去が容易ではない鋳鋼の溶解においても、効率的にスラグSを除去することができる。
 また、駆動機構11はロボットアームである。このロボットアームは、ティーチングにより作成されたプログラムによって制御されている。
 上記のような構成によれば、駆動機構11を自動制御することが可能となる。
 また、溶解作業装置10は駆動機構11から離間して設けられた入力装置20を更に備え、駆動機構11は入力装置20への入力により遠隔操作される。
 上記のような構成によれば、例えばスラグ除去等の、繊細な動きを要する作業や、作業者が溶解炉2内の状況を観察した結果に強く依存する作業を行う場合に、作業者自ら駆動機構11を操作することができる。すなわち、ティーチングにより作成されたプログラムに完全に依存する必要がないため、プログラムの開発が比較的容易である。したがって、溶解作業装置10を容易に製造可能であり、開発コストを低減できる。
 更に、スラグ除去の精度を向上させることができる。
 また、駆動機構11は、2つの把持部11jを備えており、これら2つの把持部11jで作業ツール14の異なる部分を把持する。
 上記のような構成によれば、安定して作業ツール14を把持することができる。
(実施形態の第1変形例)
 次に、図22を用いて、上記実施形態として示した溶解作業装置10の第1変形例を説明する。図22は、本第1変形例における溶解作業装置10Aのブロック図である。本第1変形例の溶解作業装置10Aにおいては、上記実施形態の溶解作業装置10とは、入力装置20を備えていない点が異なっている。溶解作業装置10Aにおける溶解作業が、プログラムで実行可能な作業のみである場合等においては、このような構成により溶解作業装置10Aを実現可能である。
(実施形態の第2変形例)
 次に、図23を用いて、上記実施形態として示した溶解作業装置10の第2変形例を説明する。図23は、本第2変形例における溶解作業装置10Bのブロック図である。本第2変形例の溶解作業装置10Bにおいては、上記実施形態の溶解作業装置10とは、駆動機構11Bがロボットアームではなく、作業員の操作を前提とした作業アームであり、これに伴いティーチペンダント19を備えていない点が異なっている。
(実施形態の第3変形例)
 次に、図24を用いて、上記実施形態として示した溶解作業装置10の第3変形例を説明する。図24は、本第4変形例における溶解作業装置10Cのブロック図である。本第3変形例の溶解作業装置10Cにおいては、上記実施形態の溶解作業装置10とは、撮像装置22を備えている点が異なっている。
 撮像装置22は、溶解炉2を撮像するものであり、制御装置12は溶解炉2の湯面B上のスラグSの位置や量、分布等を、撮像装置22により撮像された画像を基に解析する。この解析情報を基に、制御装置12は、使用するスラグ除去ツール60、70、80、90、100の種類や溶解炉2上の下降位置を決定し、駆動機構(ロボットアーム)11を制御して、スラグを除去する。
 制御装置12におけるスラグの解析は、例えば人工知能などにより行われてよい。
 なお、本発明の溶解作業装置及び溶解作業方法は、図面を参照して説明した上述の実施形態及び各変形例に限定されるものではなく、その技術的範囲において他の様々な変形例が考えられる。
 例えば、上記実施形態においては、溶解炉2は鋳鋼を溶解するものであったが、本発明の主旨を逸脱しない限り、鋳鉄など他の金属を溶解するものであってもよい。
 また、上記実施形態においては、湯面検出ツール30の各電極33、34は、駆動機構11の外部に設けられた電源センサ等に接続されていたが、これに限られないことは言うまでもない。例えば、駆動機構11の把持先端部11lにより湯面検出ツール30を把持した際に、把持先端部11lとの接触により検知回路を形成してもよいし、把持部11jに端子を設け、これに接続させて検知回路を形成してもよい。
 また、上記実施形態においては、第4スラグ除去ツール90のスラグ除去部92は、ロッド81の軸線方向CRに所定の長さにわたって、複数の円板92aが互いに離間して設けられることにより形成されていたが、これに限られない。
 例えば、図25(a)に示されるように、第4スラグ除去ツール90Aのスラグ除去部92Aは、円柱形状の側面に、複数の、周方向に延在する凹条96を備えていてもよい。
 また、図25(b)に示されるように、第4スラグ除去ツール90Bのスラグ除去部92Bは、複数の、軸線方向に延在する凹条97を備えていてもよい。
 また、図25(c)、(d)に示されるように、第4スラグ除去ツール90C、90Dのスラグ除去部92C、92Dは、金属線98または金属板99がロッド91の軸線の周りを周回して囲うように、スクリュー形状にして設けられることにより形成されていてもよい。
 このように、スラグ除去部92、92A、92B、90C、90Dが大きな表面積を備えたスラグ付着部を備えるように形成されることにより、スラグSの付着面積を大きくすることができる。
 あるいは、溶解作業装置は、上記実施形態として説明した第4スラグ除去ツール90に加えて、図25を用いて説明した第4スラグ除去ツール90A、90B、90C、90Dのいずれか、あるいはこれらの全てを併せ持っていてもよい。
 また、上記実施形態においては、第4スラグ除去ツール90を公転させたが、これに加え、あるいはこれに替えて、直線状に動かすようにしてもよい。
 または、スラグ除去ツール90が駆動部94によりロッド91を回転させるに際し、駆動機構11は、スラグ除去部92の高さ位置をスラグSを補足する上下方向一定範囲内に維持しつつ、ロッド91を上下方向に移動させるようにしてもよい。
 また、上記実施形態においては、第4スラグ除去ツール90のみが駆動部94を備えていたが、他のスラグ除去ツールにも駆動部を設けて、スラグ除去部が回転するような構成としてもよい。
 また、上記実施形態においては、第5スラグ除去ツール100のスラグ除去部102は、矩形形状の幅方向がロッド101の軸線方向CRに一致するように設けられていたが、これに限られない。例えば、図26に示される第5スラグ除去ツール100Aのように、スラグ除去部102Aと直交するようにロッド101が接合されていてもよい。
 この場合においては、制御装置12は、スラグ除去部102Aが湯面Bに対して垂直に位置するように、すなわち、ロッド101が略水平に延在するように第5スラグ除去ツール100Aを位置づけて、スラグを除去するように、駆動機構11を制御する。
 また、上記実施形態においては、サンプリングツール40に関して、制御装置12は、ロッド41が鉛直方向に対して傾くように駆動機構11によりサンプリングツール40を把持して、サンプリングツール40を上昇させるように駆動機構11を制御したが、これに限られない。例えば、制御装置12は、ロッド41が鉛直方向に延在するように把持した状態で溶解炉2から上昇させて一旦静止させた後、溶解炉2の上方において、一定の時間だけ傾けてもよいのは、言うまでもない。
 また、シュート17上でサンプリングツール40を反転させた後、駆動機構11によりサンプリングツール40に振動を加えて、サンプル生成部42からインゴット120がより容易に落下するようにしてもよい。
 また、上記実施形態における、温度測定ツール50の温度計本体51の電源の投入、切断は、作業員が実施してもよいし、無線等により切り替えられるようにしてもよい。
 同様に、温度測定ツール50における測定結果の確認は、作業員の目視に限られず、例えば、測定結果を温度測定ツール50が無線で制御装置12へ送信するように構成してもよいのは、言うまでもない。
 また、溶解炉2の傾動装置を、溶解作業装置10の制御装置12と連動させるようにし、制御装置12が傾動装置を制御して、溶解炉2を傾動させるように構成してもよい。
 これ以外にも、本発明の主旨を逸脱しない限り、上記実施形態及び各変形例で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
1   溶解設備
2   溶解炉
10、10A、10B、10C 溶解作業装置
11、11B         駆動機構
11j 把持部
12  制御装置
13  作業ツールラック
14  作業ツール
19  ティーチペンダント
20  入力装置
22  撮像装置
30  湯面検出ツール
31  ロッド
32  湯面検出部
33  第1電極
34  第2電極
40  サンプリングツール
41  ロッド
42  サンプル生成部
42a 凹部
42b 開口部
42c 凹部の底面
50  温度測定ツール
60  第1スラグ除去ツール(スラグ除去ツール)
70  第2スラグ除去ツール(スラグ除去ツール)
80  第3スラグ除去ツール(スラグ除去ツール)
90、90A、90B、90C、90D 第4スラグ除去ツール(スラグ除去ツール)
100 第5スラグ除去ツール(スラグ除去ツール)
61、71、81、91、101    ロッド
62、72、82、92、92A、92B、92C、92D、102 スラグ除去部
82a 側面(スラグ付着部)
82b 底面(スラグ付着部)
92a 円板(スラグ付着部)
94  駆動部
96  凹条(スラグ付着部)
98  金属線(スラグ付着部)
99  金属板(スラグ付着部)
110 副資材投入ツール
111 ロッド
120 インゴット
B   湯面
R   公転方向
CR  軸線方向
D   ロッドの回転方向
L   溶湯
V   仮想軸線
S   スラグ

Claims (32)

  1.  溶解炉内で材料を溶解してできた溶湯に対して作業を行う溶解作業装置であって、
     駆動機構と、
     該駆動機構によって操作される、複数の作業ツールと、を備え、
     前記駆動機構は、前記溶解炉上の任意の場所で前記作業ツールを任意の方向に移動可能である、溶解作業装置。
  2.  前記複数の作業ツールは、前記溶湯の湯面に浮遊するスラグを除去するスラグ除去ツールを備え、
     該スラグ除去ツールは、ロッドの先端に設けられたスラグ除去部を備え、
     前記スラグ除去部は、前記ロッドの軸線方向に所定の長さを有し、軸線周りにスラグ付着部を備えている、請求項1に記載の溶解作業装置。
  3.  前記スラグ除去部は、円柱形状を成している、請求項2に記載の溶解作業装置。
  4.  前記スラグ除去部は、前記円柱形状の側面に、複数の、周方向に延在する凹条を備えている、請求項3に記載の溶解作業装置。
  5.  前記スラグ除去部は、前記ロッドの軸線方向に、複数の円板が互いに離間して設けられることにより形成されている、請求項2に記載の溶解作業装置。
  6.  前記スラグ除去部は、前記ロッドの軸線の周りを周回するスクリュー形状にして設けられることにより形成されている、請求項2に記載の溶解作業装置。
  7.  前記スラグ除去ツールは、前記ロッドを軸線回りに回転可能な駆動部を備え、
     該駆動部が前記駆動機構に固定可能である、請求項2から6のいずれか一項に記載の溶解作業装置。
  8.  前記スラグ除去ツールが前記駆動部により前記ロッドを回転させるに際し、前記駆動機構は、前記スラグ除去部の高さ位置を維持しつつ、前記ロッドの回転方向と同じ回転方向に、上下方向に延在する仮想軸線を中心として前記スラグ除去ツールを公転させる、請求項7に記載の溶解作業装置。
  9.  前記スラグ除去ツールが前記駆動部により前記ロッドを回転させるに際し、前記駆動機構は、前記スラグ除去部の高さ位置を前記スラグを補足する上下方向一定範囲内に維持しつつ、前記ロッドを上下方向に移動させる、請求項7に記載の溶解作業装置。
  10.  前記複数の作業ツールは、ロッドの先端に設けられて前記溶湯の湯面の高さ位置を検出する湯面検出部を備えた、湯面検出ツールを備えている、請求項1に記載の溶解作業装置。
  11.  前記湯面検出部は、棒状の第1及び第2電極を備え、
     前記第1電極は、前記第2電極よりも長く前記ロッドから突出して設けられている、請求項10に記載の溶解作業装置。
  12.  前記複数の作業ツールは、ロッドの先端に設けられて前記溶湯をすくいインゴットを生成するサンプル生成部を備えた、サンプリングツールを備えている、請求項1に記載の溶解作業装置。
  13.  前記サンプル生成部は凹部を備え、該凹部は開口部が底面よりも大きくテーパー状に形成されている、請求項12に記載の溶解作業装置。
  14.  前記サンプル生成部はカーボンにより形成されている、請求項12または13に記載の溶解作業装置。
  15.  前記溶解炉は、鋳鋼を溶解する、請求項1から14のいずれか一項に記載の溶解作業装置。
  16.  前記駆動機構はロボットアームである、請求項1から15のいずれか一項に記載の溶解作業装置。
  17.  前記ロボットアームは、ティーチングにより作成されたプログラムによって制御されている、請求項16に記載の溶解作業装置。
  18.  前記溶解炉を撮像する撮像装置を更に備え、
     前記ロボットアームは、前記撮像装置により撮像された画像を基にスラグを除去する、請求項16または17に記載の溶解作業装置。
  19.  前記駆動機構から離間して設けられた入力装置を更に備え、
     前記駆動機構は前記入力装置への入力により遠隔操作される、請求項1から15のいずれか一項に記載の溶解作業装置。
  20.  溶解炉内で材料を溶解してできた溶湯に対して作業を行う溶解作業方法であって、
     複数の作業ツールの中の任意の前記作業ツールを駆動機構に固定し、
     前記駆動機構により前記溶解炉上の任意の場所で前記作業ツールを下降させ、任意の場所に移動させてから、
     前記駆動機構により前記作業ツールを上昇させる、溶解作業方法。
  21.  前記複数の作業ツールは、前記溶湯の湯面に浮遊するスラグを除去するスラグ除去ツールを備え、
     ロッドの先端に設けられ、前記ロッドの軸線方向に所定の長さを有し、軸線周りにスラグ付着部を備えているスラグ除去部を備えたスラグ除去ツールを、駆動機構に固定し、
     前記駆動機構により前記溶解炉上の任意の場所で前記スラグ除去ツールを下降させて、前記スラグ除去部を前記溶湯に所定の深さだけ没入し、
     前記駆動機構により前記スラグ除去ツールを上昇させる、請求項20に記載の溶解作業方法。
  22.  前記スラグ除去部は、円柱形状を成している、請求項21に記載の溶解作業方法。
  23.  前記スラグ除去部は、前記円柱形状の側面に、複数の、周方向に延在する凹条を備えている、請求項22に記載の溶解作業方法。
  24.  前記スラグ除去部は、前記ロッドの軸線方向に、複数の円板が互いに離間して設けられることにより形成されている、請求項21に記載の溶解作業方法。
  25.  前記スラグ除去部は、前記ロッドの軸線の周りを周回するスクリュー形状にして設けられることにより形成されている、請求項21に記載の溶解作業方法。
  26.  前記スラグ除去ツールは、前記ロッドを軸線回りに回転可能な駆動部を備え、
     該駆動部を前記駆動機構に固定する、請求項21から25のいずれか一項に記載の溶解作業方法。
  27.  前記駆動機構に前記スラグ除去ツールを固定して前記駆動部により前記ロッドを回転し、
     前記駆動機構により、前記スラグ除去部の高さ位置を維持しつつ、前記ロッドの回転方向と同じ回転方向に、上下方向に延在する仮想軸線を中心として前記スラグ除去ツールを公転させる、請求項26に記載の溶解作業方法。
  28.  前記駆動機構に前記スラグ除去ツールを固定して前記駆動部により前記ロッドを回転し、
     前記駆動機構により、前記スラグ除去部の高さ位置を前記スラグを補足する上下方向一定範囲内に維持しつつ、前記ロッドを上下方向に移動させる、請求項26に記載の溶解作業方法。
  29.  前記複数の作業ツールは、ロッドの先端に設けられて前記溶湯の湯面の高さ位置を検出する湯面検出部を備えた、湯面検出ツールを備え、
     前記駆動機構に前記湯面検出ツールを固定し、
     前記駆動機構により前記湯面検出ツールを下降させて前記湯面の高さ位置を検出する、請求項20に記載の溶解作業方法。
  30.  前記湯面検出部は、棒状の第1及び第2電極を備え、
     前記第1電極は、前記第2電極よりも長く前記ロッドから突出して設けられている、請求項29に記載の溶解作業方法。
  31.  前記複数の作業ツールは、ロッドの先端に設けられて前記溶湯をすくいインゴットを生成するサンプル生成部を備えた、サンプリングツールを備え、
     前記駆動機構に前記サンプリングツールを固定し、
     前記駆動機構により前記サンプリングツールを下降させて前記溶湯をすくう、請求項20に記載の溶解作業方法。
  32.  前記溶解炉は、鋳鋼を溶解する、請求項20から31のいずれか一項に記載の溶解作業方法。
PCT/JP2018/039268 2017-12-12 2018-10-23 溶解作業装置及び溶解作業方法 WO2019116729A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/764,978 US11473842B2 (en) 2017-12-12 2018-10-23 Melting work device and melting work method
CN201880080534.6A CN111480046B (zh) 2017-12-12 2018-10-23 熔解作业装置和熔解作业方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017237281A JP6828670B2 (ja) 2017-12-12 2017-12-12 溶解作業装置及び溶解作業方法
JP2017-237281 2017-12-12

Publications (1)

Publication Number Publication Date
WO2019116729A1 true WO2019116729A1 (ja) 2019-06-20

Family

ID=66819206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039268 WO2019116729A1 (ja) 2017-12-12 2018-10-23 溶解作業装置及び溶解作業方法

Country Status (5)

Country Link
US (1) US11473842B2 (ja)
JP (1) JP6828670B2 (ja)
CN (1) CN111480046B (ja)
TW (1) TW201932777A (ja)
WO (1) WO2019116729A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292627B2 (ja) * 2018-11-29 2023-06-19 オーエム金属工業株式会社 自動スラグ除去装置及び自動スラグ除去プログラム
WO2021019747A1 (ja) * 2019-07-31 2021-02-04 株式会社マクニカ 不純物除去制御装置、制御方法、及び制御プログラム
WO2021038811A1 (ja) * 2019-08-29 2021-03-04 株式会社マクニカ 不純物検出装置、不純物検出方法、及びコンピュータプログラム
US11890673B2 (en) * 2021-07-13 2024-02-06 Additive Technologies, LLC Dross extraction system and methods thereof
US20230034213A1 (en) * 2021-08-02 2023-02-02 Xerox Corporation Vessel for melting metal in a metal drop ejecting three-dimensional (3d) object printer
CN116853757B (zh) * 2023-08-23 2024-01-30 苏州朗信智能科技有限公司 工具存放装置及行走设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947305A (ja) * 1982-09-08 1984-03-17 Nippon Steel Corp 高速排滓方法
JPS61285385A (ja) * 1985-06-10 1986-12-16 新日本製鐵株式会社 溶鉄中に残留するスラグの除去方法
JPS61288007A (ja) * 1985-06-13 1986-12-18 Godo Seitetsu Kk 製鋼用電気炉内自動作業装置
JPS63111424A (ja) * 1986-10-20 1988-05-16 アレゲニー・ラドラム・コーポレーション 液面を監視するための方法および装置
JPH05240588A (ja) * 1992-02-26 1993-09-17 Daido Steel Co Ltd スラグの除去方法および装置
JPH1096722A (ja) * 1996-09-24 1998-04-14 Nkk Corp 溶湯からの分析試料の採取器及び採取方法
JPH10132809A (ja) * 1996-11-01 1998-05-22 Kobe Steel Ltd Feを含むCu基合金鋳塊の健全性判定方法及び鋳造方法並びにその鋳塊
JPH11262884A (ja) * 1998-03-19 1999-09-28 Denso Corp ロボットのマニュアル操作装置
JP2011033315A (ja) * 2009-08-05 2011-02-17 Toyota Motor Corp 自動滓回収装置
EP3165618A1 (en) * 2015-11-03 2017-05-10 Befesa Aluminio, S.L. Crucible skimming, stirring and sample taking station

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256431A (en) * 1962-12-20 1966-06-14 Union Carbide Corp Analyzing apparatus
US3894727A (en) * 1972-05-24 1975-07-15 Us Reduction Co Mechanical puddling and skimming device
DE3016160C2 (de) * 1980-04-26 1982-12-23 Preussag - Boliden - Blei GmbH, 3380 Goslar Vorrichtung zum Entfernen einer auf einer Schmelze befindlichen Schlackenschicht
GB8811066D0 (en) * 1988-05-10 1988-06-15 Handling Consultants Ltd Device for skimming material from free surface of body of liquid
US5360204A (en) * 1993-09-20 1994-11-01 Keibler-Thompson Corp. Boom and lance for removing slag from crucible
JP3308101B2 (ja) 1994-04-05 2002-07-29 北芝電機株式会社 誘導溶解炉
US5536295A (en) * 1995-05-15 1996-07-16 Garfield Alloys, Inc. Robotic device for molten metal processing
CN1241704C (zh) * 2003-12-15 2006-02-15 盛富春 一种铁水高效捞渣方法及其专用装置
CN203593765U (zh) * 2013-12-13 2014-05-14 武汉钢铁(集团)公司 一种狼牙棒式钢渣吸附器
WO2016182892A1 (en) * 2015-05-14 2016-11-17 Epps Larry J Improved method and apparatus for slag removal during metal processing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947305A (ja) * 1982-09-08 1984-03-17 Nippon Steel Corp 高速排滓方法
JPS61285385A (ja) * 1985-06-10 1986-12-16 新日本製鐵株式会社 溶鉄中に残留するスラグの除去方法
JPS61288007A (ja) * 1985-06-13 1986-12-18 Godo Seitetsu Kk 製鋼用電気炉内自動作業装置
JPS63111424A (ja) * 1986-10-20 1988-05-16 アレゲニー・ラドラム・コーポレーション 液面を監視するための方法および装置
JPH05240588A (ja) * 1992-02-26 1993-09-17 Daido Steel Co Ltd スラグの除去方法および装置
JPH1096722A (ja) * 1996-09-24 1998-04-14 Nkk Corp 溶湯からの分析試料の採取器及び採取方法
JPH10132809A (ja) * 1996-11-01 1998-05-22 Kobe Steel Ltd Feを含むCu基合金鋳塊の健全性判定方法及び鋳造方法並びにその鋳塊
JPH11262884A (ja) * 1998-03-19 1999-09-28 Denso Corp ロボットのマニュアル操作装置
JP2011033315A (ja) * 2009-08-05 2011-02-17 Toyota Motor Corp 自動滓回収装置
EP3165618A1 (en) * 2015-11-03 2017-05-10 Befesa Aluminio, S.L. Crucible skimming, stirring and sample taking station

Also Published As

Publication number Publication date
CN111480046B (zh) 2022-11-08
US11473842B2 (en) 2022-10-18
JP2019105389A (ja) 2019-06-27
TW201932777A (zh) 2019-08-16
CN111480046A (zh) 2020-07-31
US20200400376A1 (en) 2020-12-24
JP6828670B2 (ja) 2021-02-10

Similar Documents

Publication Publication Date Title
WO2019116729A1 (ja) 溶解作業装置及び溶解作業方法
EP3165618B1 (en) Crucible skimming, stirring and sample taking station
JP6322633B2 (ja) 分析試料を製造する装置及び方法
EP2135484B1 (en) Integrated process control system for electric induction metal melting furnaces
JP2010189766A (ja) 電気抵抗炉の操業方法
JP2010121937A (ja) 溶融物のサンプリング方法および装置
JP7292627B2 (ja) 自動スラグ除去装置及び自動スラグ除去プログラム
WO2004008135A3 (en) Method for online measurement of molten phases
JP7325196B2 (ja) 金属溶融及び溶解状態確認システム
JPH0716708A (ja) 小型金属インゴットの鋳造方法および鋳造装置
JP3212073B2 (ja) 溶融金属収納鍋のノズル押抜き装置及びノズル廃棄装置
CN117660714B (zh) 一种研究碳的固液竞争还原熔融铁氧化物的装置及方法
JP6475962B2 (ja) 金属粗材の溶解供給システム及び溶解装置
JP2551278B2 (ja) 滓除去方法および除去装置
JPH11108736A (ja) 容器内の溶湯の重量測定方法
CN110426140B (zh) 一种自动更换检测器的装置及钢包检测系统
JP7516994B2 (ja) 乾式試金分析のための試料融解装置
CN112247134B (zh) 用于操作遮蔽管的装置和方法
JPH1058103A (ja) モールドフラックスの溶融試験方法および観察試料採取用鋳型
JP3289057B2 (ja) 浸漬ノズル交換装置
JPH058480Y2 (ja)
JP2018004452A (ja) プローブ装着装置
Demetlika et al. Q-Robot CAST for Ladle Area: reaching new levels of automation and safety in continuous casting
JP2022146634A (ja) 試料溶解装置
KR20240058484A (ko) 주조 용해 공정의 로봇 자동화 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889406

Country of ref document: EP

Kind code of ref document: A1