WO2019116499A1 - 鉄道車両用電力変換システム - Google Patents

鉄道車両用電力変換システム Download PDF

Info

Publication number
WO2019116499A1
WO2019116499A1 PCT/JP2017/044903 JP2017044903W WO2019116499A1 WO 2019116499 A1 WO2019116499 A1 WO 2019116499A1 JP 2017044903 W JP2017044903 W JP 2017044903W WO 2019116499 A1 WO2019116499 A1 WO 2019116499A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power conversion
storage device
voltage
circuit breaker
Prior art date
Application number
PCT/JP2017/044903
Other languages
English (en)
French (fr)
Inventor
達也 兵頭
千代 上林
吉田 幸弘
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/044903 priority Critical patent/WO2019116499A1/ja
Priority to DE112017008270.6T priority patent/DE112017008270T5/de
Priority to JP2019559495A priority patent/JP6851502B2/ja
Publication of WO2019116499A1 publication Critical patent/WO2019116499A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1438Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in combination with power supplies for loads other than batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1446Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in response to parameters of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/24Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices
    • H02J7/2434Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices with pulse modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to a power conversion system for a railway vehicle that charges a power storage device with regenerative power.
  • An energy storage device is mounted on an electric railway vehicle traveling in a DC electrification section, the regenerative power generated by the regenerative braking operation is stored in the power storage device, and the energy stored in the power storage device is used for powering to improve energy efficiency.
  • the power conversion device mounted on the electric railway vehicle operates as an inverter that converts the power supplied from the overhead wire to drive the motor and a converter that converts the regenerative power and supplies the power storage device.
  • the drive device for a railway vehicle disclosed in Patent Document 1 operates an induction motor as a generator during regeneration. AC power generated by the induction motor is converted to DC power by the inverter device and charged in the power storage device.
  • the filter capacitor provided on the input side when operating as an inverter has a high voltage substantially equal to the overhead wire voltage.
  • the storage device is charged using the regenerative power with the difference between the overhead voltage and the voltage of the storage device and the filter capacitor being at a high voltage comparable to the overhead voltage, an overcurrent flows in the storage device. If a discharge circuit for discharging the filter capacitor is additionally provided to suppress an overcurrent, the structure of the power conversion device is complicated.
  • the present invention has been made in view of the above-described circumstances, and it is an object of the present invention to suppress the flow of an overcurrent in a power storage device when charging the power storage device with regenerative power without complicating the structure.
  • a power conversion system for a railway vehicle includes a power conversion unit, a filter capacitor, a high-speed circuit breaker, an electrical path switching unit, a storage device, a storage device breaker, and a control unit.
  • the power conversion unit converts the power supplied from the primary side, supplies the converted power to the motor connected to the secondary side, or converts the power supplied from the motor, and converts the converted power to the primary side.
  • Supply to The filter capacitor is connected to the primary side of the power converter.
  • the high speed circuit breaker opens and closes the electric path between the DC power supply and the power conversion unit.
  • the power path switching unit is provided between the high speed circuit breaker and the power conversion unit, and performs switching or opening of the power path between the high speed circuit breaker and the power conversion unit.
  • the positive electrode terminal of the power storage device is connected to the connection point of the high-speed circuit breaker and the electric path switching unit.
  • the negative electrode terminal of the power storage device is connected to the negative electrode terminal on the primary side of the power conversion unit.
  • the storage device breaker is provided between a positive electrode terminal of the storage device and a connection point of the high-speed breaker and the electrical path switching unit.
  • the control unit controls the high speed circuit breaker, the electric path switching unit, the storage device circuit breaker, and the power conversion unit.
  • the electrical path switching unit switches between a first electrical path including a resistor and a second electrical path not including a resistor.
  • the high speed circuit breaker is turned on, power is supplied to the power conversion unit through the second electrical path of the electrical path switching unit, the storage device circuit breaker is opened, and a powering command is input.
  • the control unit performs voltage balance control to reduce the voltage of the filter capacitor.
  • the control unit turns on the power storage device circuit breaker and controls the circuit switching unit and the power conversion unit.
  • the control unit controls the electric path switching unit to switch to the second electric path.
  • the control unit controls the power conversion unit to perform regenerative charging control of supplying the power supplied from the motor to the power storage device through the second electric path.
  • voltage balance control is performed to reduce the voltage of the filter capacitor, and the difference between the voltage of the filter capacitor and the voltage of the storage device becomes equal to or less than the threshold voltage.
  • the regenerative charging control is performed to supply the power supplied from the motor to the power storage device, whereby the power storage device is over-current when charging the power storage device with the regenerative power without complicating the structure. Can be suppressed.
  • Block diagram showing a configuration of a power conversion system for a railway vehicle according to Embodiment 1 of the present invention A timing chart showing operations of voltage balancing and regenerative charging performed by the power conversion system for a railway vehicle according to Embodiment 1.
  • Block diagram showing another configuration of the power conversion system for railway vehicle according to the first embodiment A timing chart showing operations of voltage balancing and regenerative charging performed by the power conversion system for a railway vehicle according to Embodiment 1.
  • Flowchart showing an example of voltage balancing and regenerative charging operations performed by the railway vehicle power conversion system according to the first embodiment Flowchart showing another example of the operation of voltage balancing and regenerative charging performed by the power conversion system for a railway vehicle according to the first embodiment
  • Embodiment 1 The configuration of a power conversion system for a railway vehicle according to a first embodiment of the present invention will be described.
  • a railway vehicle power conversion system (hereinafter, referred to as a power conversion system) 1 includes a power conversion unit 18 that performs bidirectional power conversion.
  • the power conversion system 1 converts DC power supplied from a DC power source into AC power, and supplies the converted AC power to the motor 5. Further, the power conversion system 1 converts the power supplied from the motor 5 and charges the power storage device 22 with the converted power.
  • the power conversion system 1 reduces the voltage of the filter capacitor 17 provided on the primary side of the power conversion unit 18 and then charges the power storage device 22 so that regeneration caused by the regenerative braking operation can be performed without complicating the structure. When charging the storage device 22 with electric power, it is possible to suppress an overcurrent from flowing in the storage device 22.
  • the power conversion system 1 is mounted on, for example, a railway vehicle traveling on a DC electrification section.
  • a substation not shown is a DC power supply, and the power conversion system 1 takes in the power supplied from the substation via the overhead wire 3 by the current collector 4.
  • the current collector 4 is a pantograph, a third rail, or the like.
  • the positive electrode terminal on the primary side of the power conversion unit 18 is connected to the current collector 4 via the high-speed circuit breaker 11, the reactor 12, and the electric path switching unit 13, and the negative electrode terminal on the primary side is grounded.
  • the reactor 12 and the filter capacitor 17 provided on the primary side of the power conversion unit 18 constitute an LC filter.
  • the electric motor 5 is connected to the secondary side of the power conversion unit 18.
  • the motor 5 is an AC motor, and is, for example, an induction motor or a synchronous motor.
  • the power conversion unit 18 converts the power supplied from the primary side, and supplies the converted power to the motor 5 connected to the secondary side.
  • the power converter 18 also drives the motor 5 by supplying power to the motor 5.
  • the power conversion unit 18 converts the power supplied from the motor 5 and supplies the converted power to the primary side. That is, the power conversion unit 18 converts the power supplied from the motor 5 and supplies the converted power to the primary side.
  • Power conversion unit 18 includes switching elements TRU1, TRU2, TRV1, TRV2, TRW1, TRW2 and free wheeling diodes DU1, DU2, DV1, DV2, DW1, DW2.
  • the power conversion unit 18 includes a U-phase arm, a V-phase arm, and a W-phase arm, and the configuration of each phase arm is the same. The configuration of the power conversion unit 18 will be described by putting the symbols U, V, and W of the respective phase arms together as a symbol x.
  • the switching elements TRx1 and TRx2 are arbitrary semiconductor elements, and in the example of FIG. 1, the power conversion unit 18 uses an IGBT (Insulated Gate Bipolar Transistor: Insulated Gate Bipolar Transistor).
  • the switching elements TRx1 and TRx2 may be formed of a wide band gap semiconductor having a larger band gap than silicon.
  • the wide band gap semiconductor is, for example, silicon carbide, gallium nitride based material, diamond or the like.
  • the switching elements TRx1 and TRx2 formed of the wide band gap semiconductor have higher voltage resistance and allowable current density than switching elements formed of silicon.
  • the switching elements TRx1 and TRx2 formed of the wide band gap semiconductor By using the switching elements TRx1 and TRx2 formed of the wide band gap semiconductor, more current can be supplied to the motor 5 as compared with the switching element formed of silicon. Further, by using a wide band gap semiconductor, the switching elements TRx1 and TRx2 can be miniaturized. By using the miniaturized switching elements TRx1 and TRx2, it is possible to miniaturize a semiconductor module incorporating the switching elements TRx1 and TRx2.
  • the wide band gap semiconductor has high heat resistance, it is possible to miniaturize the heat dissipating fins of the heat sink and air-cool the water-cooled portion, thereby enabling further miniaturization of the semiconductor module. Furthermore, since the power loss is low, the efficiency of the switching elements TRx1 and TRx2 can be increased, and the efficiency of the semiconductor module can be increased.
  • switching elements TRx1 and TRx2 connected in series are connected.
  • Reflux diodes Dx1 and Dx2 are connected in parallel to the switching elements TRx1 and TRx2, respectively.
  • the connection point between the switching elements TRx1 and TRx2 is connected to the motor 5 via the contactor Cx1.
  • a connection point between switching elements TRx1 and TRx2 is connected between storage device contactor 19 and reactor 20 described later via contactor Cx2 and reactor Lx.
  • the high speed circuit breaker 11 opens and closes an electric path between the DC power supply and the power conversion unit 18.
  • the electrical path switching unit 13 is provided between the high speed circuit breaker 11 and the power conversion unit 18, and performs switching or opening of the electrical path between the high speed circuit breaker 11 and the power conversion unit 18. Specifically, the circuit switching unit 13 switches the first circuit including the resistor 16 and the second circuit not including the resistor 16.
  • the electrical path switching unit 13 includes the breaker 14 and the electrical path switching contactor 15. In this case, the electric path passing through the electric path switching contactor 15 and the resistor 16 is the first electric path, and the electric path passing through the breaker 14 is the second electric path.
  • the power conversion system 1 includes a power storage device 22 charged by power supplied from a DC power supply or the motor 5.
  • the rated voltage of power storage device 22 is lower than the voltage of the DC power supply.
  • the positive electrode terminal of the storage device 22 is connected to a connection point of the high speed circuit breaker 11 and the circuit path switching unit 13 via the storage device contactor 19, the reactor 20, and the storage device breaker 21.
  • the positive electrode terminal of the storage device 22 is connected between the reactor 12 and the circuit switching unit 13 via the storage device contactor 19, the reactor 20, and the storage device breaker 21.
  • the negative electrode terminal of the power storage device 22 is connected to the negative electrode terminal on the primary side of the power conversion unit 18.
  • the power conversion system 1 includes a control unit 23 that controls the high-speed circuit breaker 11, the electric path switching unit 13, the storage device circuit breaker 21, and the power conversion unit 18.
  • the control unit 23 switches between closing and opening of the high speed circuit breaker 11 and the storage device breaker 21.
  • the control unit 23 switches between the closing and opening of the current breaker 14 and the electrical path switching contactor 15 included in the electrical path switching unit 13.
  • Control unit 23 switches on and off switching elements TRU1, TRU2, TRV1, TRV2, TRW1, and TRW2 included in power conversion unit 18.
  • the control unit 23 switches on and off of the contactors CU1, CU2, CV1, CV2, CW1, and CW2.
  • the control unit 23 switches between closing and opening of the storage device contactor 19.
  • the power conversion system 1 includes a voltage detector V1 that detects the voltage of the filter capacitor 17 and a voltage detector V2 that detects the voltage of the power storage device 22.
  • Control unit 23 acquires the voltage of filter capacitor 17 from voltage detector V1, and acquires the voltage of power storage device 22 from voltage detector V2.
  • FIG. 2 is a timing chart showing operations of voltage balancing and regenerative charging performed by the power conversion system for a railway vehicle according to the first embodiment. From the power running state to the coasting state, voltage balancing is performed and regenerative charging is performed after voltage balancing. First, control of the control unit 23 during power running will be described.
  • FIG. 2 shows a state in which ON is input and a state in which OFF is not input.
  • the control unit 23 maintains the high speed circuit breaker 11 and the breaker 14 in the closed state.
  • the control unit 23 maintains the open state of the electric path switching contactor 15, the storage device contactor 19, and the storage device breaker 21.
  • the voltage difference in FIG. 2 is a difference between the voltage of the filter capacitor 17 detected by the voltage detector V1 and the voltage of the power storage device 22 detected by the voltage detector V2.
  • the voltage difference is obtained by subtracting the detection value of the voltage of power storage device 22 from the detection value of the voltage of filter capacitor 17. Since the voltage of the filter capacitor 17 matches the overhead voltage from time T1 to time T2, the voltage of the filter capacitor 17 is larger than the voltage of the storage device 22.
  • FIG. 3 is a diagram showing the flow of current in the railcar power conversion system according to the first embodiment.
  • the flow of current in the power conversion system 1 from time T1 to time T2 shown in FIG. 2 is indicated by thick solid arrows.
  • the current flowing from the overhead wire 3 into the power conversion system 1 through the current collector 4 is input to the power conversion unit 18 through the high speed circuit breaker 11, the reactor 12, and the breaker 14.
  • the power converter 18 controls the motor 5 by controlling the magnetic flux component current and the torque component current.
  • the voltage balance control of the control unit 23 during the coasting operation will be described.
  • the railcar travels with inertia. That is, from time T2 to time T4, the railcar performs coasting operation.
  • the control unit 23 starts voltage balance control.
  • the control unit 23 turns on the storage device circuit breaker 21 and controls the circuit switching unit 13 and the power conversion unit 18. By the above control, the voltage of the filter capacitor 17 is reduced.
  • control unit 23 opens the high speed circuit breaker 11 and the electric path switching unit 13, that is, opens the high speed circuit breaker 11 and the breaker 14. Thereafter, control unit 23 turns on storage device contactor 19 and storage device breaker 21.
  • the control unit 23 switches the switching elements TRU1, TRU2, TRV1, TRV2, TRW1, and TRW2 of the power conversion unit 18 on and off to cause the power conversion unit 18 to supply only the excitation current to the motor 5. Since only the excitation current is supplied to the motor 5, the motor 5 is not driven.
  • the voltage of the filter capacitor 17 is reduced, and the voltage difference shown in FIG. 2 is also reduced. After time T3, the voltage difference is less than or equal to the threshold voltage.
  • the control unit 23 ends the voltage balance control. From time T3 to time T4, no current flows between the filter capacitor 17 and the storage device 22.
  • FIG. 4 is a diagram showing the flow of current in the railway vehicle power conversion system according to the first embodiment.
  • the flow of current in the power conversion system 1 from time T2 to time T3 shown in FIG. 2 is indicated by thick solid arrows.
  • the power conversion unit 18 converts the power stored in the filter capacitor 17 and supplies only the excitation current to the motor 5. As a result, the voltage of the filter capacitor 17 is reduced.
  • control unit 23 After the voltage balance control will be described.
  • control unit 23 turns on breaker 14. That is, the control unit 23 controls the electric path switching unit 13 to switch to the second electric path.
  • a brake command is input to the control unit 23.
  • the control unit 23 controls the power conversion unit 18 to supply power from the motor 5. Power supply to the power storage device 22 via the second electric path is started. By the control, the power converted by the power conversion unit 18 is supplied to the power storage device 22 via the second electric path. That is, power conversion unit 18 charges power storage device 22 with regenerative power.
  • FIG. 5 is a diagram showing the flow of current in the railway vehicle power conversion system according to the first embodiment.
  • the flow of current in the power conversion system 1 after time T4 shown in FIG. 2 is indicated by thick solid arrows.
  • Power conversion unit 18 converts the power supplied from motor 5, and converts the converted power into a power storage device via breaker 14, storage device contactor 19, reactor 20, and storage device breaker 21.
  • Supply 22 The reactor 20 smoothes the current output from the power conversion unit 18.
  • the voltage of the filter capacitor 17 is reduced to such an extent that the voltage of the filter capacitor 17 and the voltage of the storage device 22 match by flowing only the excitation current to the motor 5. Since the power storage device 22 is charged with electric power, it is possible to suppress an overcurrent from flowing in the power storage device 22.
  • the control unit 23 acquires the speed of the railcar from a speed sensor, a train information management system, an automatic train control (ATC), etc. (not shown), and only when the speed of the railcar is equal to or higher than the threshold speed. Voltage balance control may be performed.
  • the threshold speed is the lower limit of the speed range in which the regenerative brake can be used, that is, the critical speed.
  • control unit 23 When charging power storage device 22 with electric power supplied from a DC power supply, control unit 23 controls high-speed circuit breaker 11, switch circuit contactor 15, contactors CU2, CV2, CW2, and power storage device breaker 21. To open the breaker 14, the storage device contactor 19, and the contactors CU 1, CV 1 and CW 1. The control unit 23 controls the power conversion unit 18 so that the power conversion unit 18 converts the power supplied from the DC power supply, and supplies the converted power to the power storage device 22 through the first electric path. In this case, the reactors LU, LV, and LW smooth the output current of the power conversion unit 18.
  • the controller 23 controls the breaker 14, the storage device contactor 19, the contactors CU 1, CV 1, CW 1, and the storage device breaker 21. Then, the high speed circuit breaker 11, the contact 15 for switching an electric path, and the contactors CU2, CV2, CW2 are opened.
  • the control unit 23 controls the power conversion unit 18 so that the power conversion unit 18 converts the power supplied from the power storage device 22 and supplies the converted power to the motor 5. In this case, the current flows in the opposite direction to the thick solid line arrow in FIG.
  • a power conversion system 2 which is another configuration of the power conversion system 1 will be described.
  • the power conversion system 2 has a power path switching unit 24 instead of the power path switching unit 13 of the power conversion system 1 shown in FIG. 1.
  • the circuit switching unit 24 includes the breaker 14, the circuit switching contactor 15, and the resistor 16, but the arrangement is different.
  • the electrical path switching unit 24 switches between a first electrical path passing through the breaker 14 and the resistor 16 and a second electrical path passing through the breaker 14 and the electrical path switching contactor 15.
  • FIG. 7 is a timing chart showing operations of voltage balancing and regenerative charging performed by the power conversion system for a railway vehicle according to the first embodiment. The view of the figure is the same as in FIG. Control of control part 23 at the time of power running operation is explained. Similarly to FIG. 2, at time T1, the power running command is input to the control unit 23, and the brake command is not input. While the powering command is being input, the control unit 23 maintains the high speed circuit breaker 11, the breaker 14 and the electrical path switching contactor 15 in a closed state. Further, while the powering command is input, control unit 23 maintains the state where contactor 19 for the storage device and circuit breaker 21 for the storage device are open.
  • FIG. 8 is a diagram showing the flow of current in the railway vehicle power conversion system according to the first embodiment.
  • the flow of current in the power conversion system 2 from time T1 to time T2 shown in FIG. 7 is indicated by thick solid arrows.
  • the current flowing from the overhead wire 3 into the power conversion system 1 through the current collector 4 passes through the high-speed circuit breaker 11, the reactor 12, the breaker 14 and the contact switching circuit 15 to the power conversion unit 18. It is input.
  • a current flows from the power conversion unit 18 to the motor 5, and the motor 5 is driven.
  • the power converter 18 controls the motor 5 by controlling the magnetic flux component current and the torque component current.
  • the voltage balance control of the control unit 23 during the coasting operation will be described.
  • the railcar travels with inertia.
  • the control unit 23 starts voltage balance control.
  • the control unit 23 controls the high speed circuit breaker 11, the electric path switching unit 13, the storage device circuit breaker 21, and the power conversion unit 18. By the above control, the voltage of the filter capacitor 17 is reduced.
  • the control unit 23 opens the high-speed circuit breaker 11 and the circuit switching unit 13, that is, opens the high-speed circuit breaker 11, the breaker 14, and the circuit-switching contactor 15. Thereafter, similarly to FIG. 2, the control unit 23 turns on the storage device contactor 19 and the storage device breaker 21.
  • the control unit 23 switches the switching elements TRU1, TRU2, TRV1, TRV2, TRW1, and TRW2 of the power conversion unit 18 on and off to cause the power conversion unit 18 to supply only the excitation current to the motor 5. Since only the excitation current is supplied to the motor 5, the motor 5 is not driven.
  • the voltage of the filter capacitor 17 is reduced, and the voltage difference shown in FIG. 7 is also reduced.
  • the voltage difference is less than or equal to the threshold voltage.
  • the control unit 23 ends the voltage balance control. From time T3 to time T4, no current flows between the filter capacitor 17 and the storage device 22.
  • control unit 23 After the voltage balance control will be described.
  • the control unit 23 turns on the breaker 14 and the electrical path switching contactor 15. That is, the control unit 23 controls the electric path switching unit 13 to switch to the second electric path.
  • the brake command is input to the control unit 23.
  • the control unit 23 controls the power conversion unit 18 to supply power from the motor 5. Power supply to the power storage device 22 via the second electric path is started.
  • the power converted by the power conversion unit 18 is supplied to the power storage device 22 through the second electric path. That is, power conversion unit 18 charges power storage device 22 with regenerative power.
  • FIG. 9 is a diagram showing the flow of current in the railcar power conversion system according to the first embodiment.
  • the flow of current in the power conversion system 2 after time T4 shown in FIG. 7 is indicated by thick solid arrows.
  • the power conversion unit 18 converts the power supplied from the motor 5 and converts the converted power into the circuit-switching contactor 15, the breaker 14, the storage device contactor 19, the reactor 20, and the storage device blocking.
  • the power storage device 22 is supplied through the
  • the voltage of filter capacitor 17 is reduced to such an extent that the voltage of filter capacitor 17 and the voltage of power storage device 22 match, and power storage is performed with regenerative power. Since the device 22 is charged, it is possible to suppress an overcurrent from flowing in the power storage device 22.
  • control unit 23 may perform the above-described voltage balance control only when the speed of the railcar is equal to or higher than the threshold speed.
  • control unit 23 When charging power storage device 22 with the power supplied from the DC power supply, control unit 23 turns on high-speed circuit breaker 11, breaker 14, contactors CU2, CV2, CW2, and power storage device breaker 21. Then, the electric path switching contactor 15, the storage device contactor 19, and the contactors CU1, CV1, CW1 are opened.
  • the control unit 23 controls the power conversion unit 18 so that the power conversion unit 18 converts the power supplied from the DC power supply, and supplies the converted power to the power storage device 22 through the first electric path.
  • the reactors LU, LV, and LW smooth the output current of the power conversion unit 18.
  • the control unit 23 When the electric motor 5 is driven by the electric power stored in the storage device 22, the control unit 23 includes the breaker 14, the contact for switching electric path 15, the storage device contactor 19, the contactors CU1, CV1, CW1, and The storage device circuit breaker 21 is turned on, and the high speed circuit breaker 11 and the contactors CU2, CV2, CW2 are opened.
  • the control unit 23 controls the power conversion unit 18 so that the power conversion unit 18 converts the power supplied from the power storage device 22 and supplies the converted power to the motor 5. In this case, the current flows in the opposite direction to the thick solid line arrow in FIG.
  • FIG. 10 is a flowchart showing an example of voltage balancing and regenerative charging operations performed by the power conversion system for a railway vehicle according to the first embodiment.
  • the control unit 23 repeats the process of step S11 while the powering command is input (step S11; Y). When the powering command is not input (step S11; N), the control unit 23 performs voltage balance control (step S12). If the voltage difference between the voltage of the filter capacitor 17 and the voltage of the storage device 22 is not equal to or less than the threshold voltage (step S13; N), the process of step S13 is repeated. If the voltage difference between the voltage of the filter capacitor 17 and the voltage of the storage device 22 is equal to or less than the threshold voltage (step S13; Y), the process proceeds to step S14.
  • the control unit 23 controls the electric path switching unit 13 to switch to the second electric path (step S14). If the brake command has not been acquired (step S15; N), the process of step S15 is repeated. When the brake command is obtained (step S15; Y), the control unit 23 performs regenerative charge control (step S16). The control unit 23 performs regenerative charge control, for example, until the railcar speed becomes equal to or less than the critical speed. When the process of step S16 is completed, the power conversion systems 1 and 2 end the process.
  • FIG. 11 is a flowchart showing another example of the voltage balancing and regenerative charging operations performed by the power conversion system for a railway vehicle according to the first embodiment.
  • the processes of steps S11 to S16 are the same as the example of FIG.
  • the control unit 23 performs voltage balance control (step S12). If the powering command is not input (step S11; N) and the railcar is less than the threshold speed (step S17; N), the power conversion systems 1 and 2 end the processing. That is, charging of power storage device 22 with regenerative power is not performed.
  • the voltage of the filter capacitor 17 and the voltage of the storage device 22 are obtained by flowing only the excitation current from the power conversion unit 18 to the motor 5. Since the power storage device 22 is charged with the regenerated power after reducing the voltage of the filter capacitor 17 to such an extent that it can be considered to match, it is possible to suppress the flow of an overcurrent in the power storage device 22. Since only the excitation current flows from the power conversion unit 18 to the motor 5, the voltage of the filter capacitor 17 is reduced, and it is not necessary to newly provide a circuit for reducing the voltage of the filter capacitor 17. Therefore, it is possible to suppress an overcurrent from flowing into power storage device 22 without complicating the structure.
  • FIG. 12 is a timing chart showing operations of voltage balancing and regenerative charging performed by the power conversion system for a railway vehicle according to Embodiment 2 of the present invention.
  • the view of the figure is the same as that of FIG.
  • the control of the control unit 23 of the power conversion system 1 according to the second embodiment from time T1 to time T2 is similar to that of the example of FIG.
  • the flow of the current in the power conversion system 1 from time T1 to time T2 is the same as that of the example of FIG.
  • control unit 23 controls the high speed circuit breaker 11, the circuit switching unit 13, the storage device circuit breaker 21, and the power conversion unit 18 to filter.
  • the voltage balance control to reduce the voltage of the capacitor 17 is started.
  • the voltage balance control will be described.
  • the control unit 23 opens the high speed circuit breaker 11 and switches the electric path switching unit 13 to the first electric path, that is, opens the high speed circuit breaker 11 and the breaker 14 to contact the electric path switching.
  • the vessel 15 is inserted.
  • control unit 23 turns on storage device contactor 19 and storage device breaker 21.
  • the control unit 23 opens the switching elements TRU 1, TRU 2, TRV 1, TRV 2, TRW 1, and TRW 2 included in the power conversion unit 18 and stops the power conversion unit 18. Thereby, a current flows from the filter capacitor 17 to the power storage device 22 through the first electric path.
  • the voltage of the filter capacitor 17 is reduced, and the voltage difference shown in FIG. 12 is also reduced. After time T3, the voltage difference is less than or equal to the threshold voltage.
  • FIG. 13 is a diagram showing the flow of current in the railcar power conversion system according to the second embodiment.
  • the flow of current in the power conversion system 1 from time T2 to time T3 shown in FIG. 12 is indicated by thick solid arrows.
  • control unit 23 After the voltage balance control will be described.
  • the control unit 23 turns on the breaker 14 and opens the electrical path switching contactor 15. That is, the control unit 23 controls the electric path switching unit 13 to switch to the second electric path.
  • a brake command is input to the control unit 23.
  • the control unit 23 controls the power conversion unit 18 to supply power from the motor 5. Power supply to the power storage device 22 via the second electric path is started. By the above control, the power converted by the power conversion unit 18 is supplied to the power storage device 22 through the second electric path.
  • the voltage of filter capacitor 17 and the voltage of power storage device 22 can be considered to match by supplying a current from filter capacitor 17 to power storage device 22 through resistor 16.
  • the power storage device 22 since the power storage device 22 is charged with the regenerated power after the voltage of the filter capacitor 17 is reduced, it is possible to suppress an overcurrent from flowing in the power storage device 22.
  • control unit 23 may perform the above-described voltage balance control only when the speed of the railcar is equal to or higher than the threshold speed.
  • the operation of control unit 23 according to the first embodiment is the operation of control unit 23 in the case where electric storage device 22 is charged with electric power supplied from a DC power supply, and in the case where electric motor 5 is driven with electric power stored in electric storage device 22. Similar to 1.
  • FIG. 14 is a timing chart showing operations of voltage balancing and regenerative charging performed by the power conversion system for a railway vehicle according to the second embodiment.
  • the view of the figure is the same as that of FIG.
  • the control of the control unit 23 of the power conversion system 2 according to the second embodiment between time T1 and time T2 is the same as that of the example of FIG. 7.
  • the flow of current in the power conversion system 2 from time T1 to time T2 is the same as in the example of FIG.
  • control unit 23 controls the high speed circuit breaker 11, the circuit switching unit 13, the storage device circuit breaker 21 and the power conversion unit 18 to filter.
  • the voltage balance control to reduce the voltage of the capacitor 17 is started.
  • the control unit 23 opens the high speed circuit breaker 11 and switches the electric path switching unit 13 to the state of passing the first electric path, that is, opens the high speed circuit breaker 11 and the electric path switching contactor 15 . Thereafter, as in FIG. 7, the control unit 23 turns on the storage device contactor 19 and the storage device breaker 21.
  • the control unit 23 opens the switching elements TRU 1, TRU 2, TRV 1, TRV 2, TRW 1, and TRW 2 included in the power conversion unit 18 and stops the power conversion unit 18. Thereby, a current flows from the filter capacitor 17 to the power storage device 22 through the first electric path.
  • the voltage of the filter capacitor 17 is reduced, and the voltage difference shown in FIG. 14 is also reduced. After time T3, the voltage difference is less than or equal to the threshold voltage.
  • FIG. 15 is a diagram showing the flow of current in the railcar power conversion system according to the second embodiment.
  • the flow of current in the power conversion system 2 from time T2 to time T3 shown in FIG. 14 is indicated by thick solid arrows.
  • control unit 23 After the voltage balance control will be described.
  • control unit 23 turns on contact path 15 for switching the electric path. That is, the control unit 23 controls the electric path switching unit 13 to switch to the second electric path.
  • the brake command is input to the control unit 23.
  • the control unit 23 controls the power conversion unit 18 to supply power from the motor 5. Power supply to the power storage device 22 via the second electric path is started. By the above control, the power converted by the power conversion unit 18 is supplied to the power storage device 22 through the second electric path.
  • the flow of current in the power conversion system 2 after time T4 is the same as that in FIG.
  • a current flows from the filter capacitor 17 to the power storage device 22 through the resistor 16, thereby the filter capacitor 17.
  • the storage battery 22 is charged with regenerative electric power, so that an overcurrent is prevented from flowing in the storage battery 22. It is possible.
  • control unit 23 may perform the above-described voltage balance control only when the speed of the railcar is equal to or higher than the threshold speed.
  • the operation of control unit 23 according to the first embodiment is the operation of control unit 23 in the case where electric storage device 22 is charged with electric power supplied from a DC power supply, and in the case where electric motor 5 is driven with electric power stored in electric storage device 22. Similar to 2.
  • the current of the filter capacitor 17 flows to the power storage device 22 through the resistor 16, whereby the voltage of the filter capacitor 17 and the power storage device 22 Since the power storage device 22 is charged with regenerative power after reducing the voltage of the filter capacitor 17 to such an extent that the voltage matches the voltage, it is possible to suppress an overcurrent from flowing in the power storage device 22.
  • the resistor 16 is already provided to charge the storage device 22 with a DC power supply, and it is not necessary to newly provide a circuit for reducing the voltage of the filter capacitor 17. Therefore, it is possible to suppress an overcurrent from flowing into power storage device 22 without complicating the structure.
  • Embodiments of the present invention are not limited to the above-described embodiments.
  • the above-described circuit configuration is an example.

Abstract

電力変換システム(1)は、双方向の電力変換を行う電力変換部(18)、および直流電源または電動機(5)から供給される電力によって充電される蓄電装置(22)を備える。制御部(23)は、力行指令が入力されている状態から、力行指令が入力されなくなると、高速度遮断器(11)、電路切替部(13)、蓄電装置用遮断器(21)、および電力変換部(18)を制御することでフィルタコンデンサ(17)の電圧を低減させる電圧平衡制御を行う。制御部(23)は、フィルタコンデンサ(17)の電圧と蓄電装置(22)の電圧との差が閾値電圧以下となると、電路切替部(13)を第2経路に切り替える。その後、ブレーキ指令を取得すると、制御部(23)は、電力変換部(18)を制御することで、電動機(5)から供給される電力を第2電路を介して蓄電装置(22)に供給する回生充電制御を行う。

Description

鉄道車両用電力変換システム
 この発明は、回生電力によって蓄電装置を充電する鉄道車両用電力変換システムに関する。
 直流電化区間を走行する電気鉄道車両に蓄電装置を搭載し、回生ブレーキ動作によって生じる回生電力を蓄電装置に蓄え、蓄電装置に蓄えられた電力を力行時に利用することで、エネルギー効率を向上させることができる。この場合、電気鉄道車両に搭載される電力変換装置は、架線から供給される電力を変換して電動機を駆動するインバータ、および、回生電力を変換して蓄電装置に供給するコンバータとして動作する。
 特許文献1に開示される鉄道車両の駆動装置は、回生時には、誘導電動機を発電機として動作させる。誘導電動機で発生した交流電力はインバータ装置にて直流電力に変換され、蓄電装置に充電される。
特開2013-211964号公報
 電気鉄道車両に搭載される電力変換装置において、インバータとして動作する際の入力側に設けられるフィルタコンデンサは、架線電圧と同程度の高電圧である。架線電圧と蓄電装置の電圧との差があり、フィルタコンデンサが架線電圧と同程度の高電圧である状態で、回生電力を用いて蓄電装置を充電すると、蓄電装置に過電流が流れてしまう。過電流を抑制するためにフィルタコンデンサを放電する放電回路を別途設けると、電力変換装置の構造が複雑化してしまう。
 本発明は上述の事情に鑑みてなされたものであり、構造を複雑化することなく、回生電力で蓄電装置を充電する際に蓄電装置に過電流が流れることを抑制することが目的である。
 上記目的を達成するために、本発明の鉄道車両用電力変換システムは、電力変換部、フィルタコンデンサ、高速度遮断器、電路切替部、蓄電装置、蓄電装置用遮断器、および制御部を備える。電力変換部は、一次側から供給される電力を変換し、変換した電力を二次側に接続される電動機に供給し、または、電動機から供給される電力を変換し、変換した電力を一次側に供給する。フィルタコンデンサは、電力変換部の一次側に接続される。高速度遮断器は、直流電源と電力変換部との間の電路を開閉する。電路切替部は、高速度遮断器と電力変換部との間に設けられ、高速度遮断器と電力変換部との間の電路の切替または開放を行う。蓄電装置の正極端子は、高速度遮断器および電路切替部の接続点に接続される。蓄電装置の負極端子は、電力変換部の一次側の負極端子に接続される。蓄電装置用遮断器は、蓄電装置の正極端子と、高速度遮断器および電路切替部の接続点との間に設けられる。制御部は、高速度遮断器、電路切替部、蓄電装置用遮断器、および、電力変換部を制御する。電路切替部は、抵抗を含む第1電路および抵抗を含まない第2電路の切替を行う。高速度遮断器が投入され、電路切替部の第2電路を通って電力変換部に電力が供給されていて、蓄電装置用遮断器が開放され、力行指令が入力されている状態から、該力行指令が入力されなくなった場合、制御部は、フィルタコンデンサの電圧を低減させる電圧平衡制御を行う。電圧平衡制御において、制御部は、高速度遮断器を開放した後に、蓄電装置用遮断機を投入し、電路切替部、および電力変換部を制御する。電圧平衡制御によって、フィルタコンデンサの電圧と蓄電装置の電圧との差が閾値電圧以下になった場合に、制御部は、電路切替部を制御して第2電路に切り替える。第2電路に切り替えた後にブレーキ指令を取得すると、制御部は、電力変換部を制御することで、電動機から供給される電力を第2電路を介して蓄電装置に供給する回生充電制御を行う。
 本発明によれば、力行指令を入力されなくなった場合に、フィルタコンデンサの電圧を低減させる電圧平衡制御を行い、フィルタコンデンサの電圧と蓄電装置の電圧との差が閾値電圧以下になった場合に、ブレーキ指令を取得すると、電動機から供給される電力を蓄電装置に供給する回生充電制御を行うことで、構造を複雑化することなく、回生電力で蓄電装置を充電する際に蓄電装置に過電流が流れることを抑制することが可能である。
本発明の実施の形態1に係る鉄道車両用電力変換システムの構成を示すブロック図 実施の形態1に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作を示すタイミングチャート 実施の形態1に係る鉄道車両用電力変換システムにおける電流の流れを示す図 実施の形態1に係る鉄道車両用電力変換システムにおける電流の流れを示す図 実施の形態1に係る鉄道車両用電力変換システムにおける電流の流れを示す図 実施の形態1に係る鉄道車両用電力変換システムの他の構成を示すブロック図 実施の形態1に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作を示すタイミングチャート 実施の形態1に係る鉄道車両用電力変換システムにおける電流の流れを示す図 実施の形態1に係る鉄道車両用電力変換システムにおける電流の流れを示す図 実施の形態1に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作の一例を示すフローチャート 実施の形態1に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作の他の例を示すフローチャート 本発明の実施の形態2に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作を示すタイミングチャート 実施の形態2に係る鉄道車両用電力変換システムにおける電流の流れを示す図 実施の形態2に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作を示すタイミングチャート 実施の形態2に係る鉄道車両用電力変換システムにおける電流の流れを示す図
 以下、本発明の実施の形態に係る鉄道車両用電力変換システムについて図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。
 (実施の形態1)
 本発明の実施の形態1に係る鉄道車両用電力変換システムの構成について説明する。図1に示すように、鉄道車両用電力変換システム(以下、電力変換システムという)1は、双方向の電力変換を行う電力変換部18を備える。電力変換システム1は、直流電源から供給される直流電力を交流電力に変換し、変換した交流電力を電動機5に供給する。また電力変換システム1は、電動機5から供給された電力を変換し、変換した電力で蓄電装置22を充電する。電力変換システム1は、電力変換部18の一次側に設けられるフィルタコンデンサ17の電圧を低減してから、蓄電装置22を充電することで、構造を複雑化することなく、回生ブレーキ動作によって生じる回生電力で蓄電装置22を充電する際に蓄電装置22に過電流が流れることを抑制することが可能である。
 電力変換システム1は、例えば、直流電化区間を走行する鉄道車両に搭載される。図1の例では、図示しない変電所が直流電源であり、電力変換システム1は、変電所から架線3を経由して供給される電力を集電装置4によって取り入れる。集電装置4は、パンタグラフ、第3軌条等である。
 電力変換部18の一次側の正極端子は、高速度遮断器11、リアクトル12、および電路切替部13を介して集電装置4に接続され、一次側の負極端子は接地されている。リアクトル12、および電力変換部18の一次側に設けられるフィルタコンデンサ17は、LCフィルタを構成する。電力変換部18の二次側には、電動機5が接続される。電動機5は交流電動機であり、例えば、誘導電動機または同期電動機である。電力変換部18は、一次側から供給される電力を変換し、変換した電力を二次側に接続される電動機5に供給する。また電力変換部18は、電動機5に電力を供給することで、電動機5を駆動する。電動機5が駆動されると、電力変換システム1が搭載される鉄道車両は動力を得る。さらに、電力変換部18は、電動機5から供給される電力を変換し、変換した電力を一次側に供給する。すなわち、電力変換部18は、電動機5から供給される電力を変換し、変換した電力を一次側に供給する。
 電力変換部18は、スイッチング素子TRU1,TRU2,TRV1,TRV2,TRW1,TRW2および還流ダイオードDU1,DU2,DV1,DV2,DW1,DW2を備える。図1の例では、電力変換部18は、U相アーム、V相アーム、およびW相アームを有し、各相アームの構成は同じである。各相アームの符号U,V,Wをまとめて符号xとして電力変換部18の構成について説明する。スイッチング素子TRx1,TRx2は任意の半導体素子であり、図1の例では、電力変換部18は、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)を用いる。スイッチング素子TRx1,TRx2を、ケイ素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成してもよい。ワイドバンドギャップ半導体とは、例えば、炭化ケイ素、窒化ガリウム系材料、ダイヤモンド等である。ワイドバンドギャップ半導体によって形成されたスイッチング素子TRx1,TRx2は、ケイ素で形成されたスイッチング素子に比べて、耐電圧性および許容電流密度が高い。
 ワイドバンドギャップ半導体によって形成されたスイッチング素子TRx1,TRx2を用いることで、ケイ素で形成されたスイッチング素子に比べて、より多くの電流を電動機5に流すことができる。またワイドバンドギャップ半導体を用いることで、スイッチング素子TRx1,TRx2の小型化が可能である。小型化されたスイッチング素子TRx1,TRx2を用いることにより、スイッチング素子TRx1,TRx2を組み込んだ半導体モジュールの小型化が可能となる。
 ワイドバンドギャップ半導体は耐熱性も高いため、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化が可能であり、半導体モジュールの一層の小型化が可能になる。さらに電力損失が低いため、スイッチング素子TRx1,TRx2の高効率化が可能であり、ひいては半導体モジュールの高効率化が可能になる。
 フィルタコンデンサ17と並列に、直列に接続されたスイッチング素子TRx1,TRx2が接続される。スイッチング素子TRx1,TRx2のそれぞれに並列に還流ダイオードDx1,Dx2が接続される。スイッチング素子TRx1,TRx2の接続点は、接触器Cx1を介して電動機5に接続される。またスイッチング素子TRx1,TRx2の接続点は、接触器Cx2およびリアクトルLxを介して、後述する蓄電装置用接触器19とリアクトル20との間に接続される。
 高速度遮断器11は、直流電源と電力変換部18との間の電路を開閉する。電路切替部13は、高速度遮断器11と電力変換部18との間に設けられ、高速度遮断器11と電力変換部18との間の電路の切替または開放を行う。詳細には、電路切替部13は、抵抗16を含む第1電路および抵抗16を含まない第2電路を切り替える。図1の例では、電路切替部13は、断流器14および電路切替用接触器15を備える。この場合、電路切替用接触器15および抵抗16を通る電路が第1電路であり、断流器14を通る電路が第2電路である。
 電力変換システム1は、直流電源または電動機5から供給される電力によって充電される蓄電装置22を備える。蓄電装置22の定格電圧は、直流電源の電圧より低い。蓄電装置22の正極端子は、蓄電装置用接触器19、リアクトル20、および蓄電装置用遮断器21を介して、高速度遮断器11および電路切替部13の接続点に接続される。図1の例では、蓄電装置22の正極端子は、リアクトル12と電路切替部13との間に、蓄電装置用接触器19、リアクトル20、および蓄電装置用遮断器21を介して接続される。蓄電装置22の負極端子は、電力変換部18の一次側の負極端子に接続されている。
 電力変換システム1は、高速度遮断器11、電路切替部13、蓄電装置用遮断器21、および電力変換部18を制御する制御部23を備える。制御部23は、高速度遮断器11および蓄電装置用遮断器21の投入と開放とを切り替える。また制御部23は、電路切替部13が有する断流器14および電路切替用接触器15の投入と開放とを切り替える。制御部23は、電力変換部18が有するスイッチング素子TRU1,TRU2,TRV1,TRV2,TRW1,TRW2の投入と開放とを切り替える。制御部23は、接触器CU1,CU2,CV1,CV2,CW1,CW2の投入と開放とを切り替える。制御部23は、蓄電装置用接触器19の投入と開放とを切り換える。
 電力変換システム1は、フィルタコンデンサ17の電圧を検出する電圧検出器V1、および、蓄電装置22の電圧を検出する電圧検出器V2を備える。制御部23は、電圧検出器V1からフィルタコンデンサ17の電圧を取得し、電圧検出器V2から蓄電装置22の電圧を取得する。
 鉄道車両が力行運転から惰行運転になった後にブレーキがかけられる場合に、電力変換システム1が行う電圧平衡化および回生充電について説明する。電圧平衡化は、フィルタコンデンサ17の電圧と蓄電装置22の電圧との差を低減することである。また回生充電とは、電動機5から供給される電力を、第2電路を介して蓄電装置22に供給して、蓄電装置22を充電することである。図2は、実施の形態1に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作を示すタイミングチャートである。力行運転の状態から、惰行運転の状態になると、電圧平衡化が行われ、電圧平衡化の後に回生充電が行われる。最初に力行運転時の制御部23の制御について説明する。時刻T1において、例えば運転台のマスターコントローラが力行に設定されており、制御部23には力行指令が入力されている。なお時刻T1において、制御部23にブレーキ指令は入力されていない。力行指令およびブレーキ指令に関して、図2において、ONが入力されている状態、OFFが入力されていない状態を示す。力行指令が入力されている間、制御部23は、高速度遮断器11および断流器14が投入されている状態を維持する。また力行指令が入力されている間、制御部23は、電路切替用接触器15、蓄電装置用接触器19、および蓄電装置用遮断器21が開放されている状態を維持する。高速度遮断器11、断流器14、電路切替用接触器15、蓄電装置用接触器19、および蓄電装置用遮断器21に関して、図2において、ONが投入されている状態を示し、OFFが開放されている状態を示す。図2における電圧差は、電圧検出器V1が検出したフィルタコンデンサ17の電圧と、電圧検出器V2が検出した蓄電装置22の電圧との差である。電圧差は、フィルタコンデンサ17の電圧の検出値から、蓄電装置22の電圧の検出値を減算することで得られる。時刻T1から時刻T2までの間、フィルタコンデンサ17の電圧は架線電圧に一致するため、フィルタコンデンサ17の電圧は、蓄電装置22の電圧より大きい。
 力行運転時の電流の流れについて説明する。図3は、実施の形態1に係る鉄道車両用電力変換システムにおける電流の流れを示す図である。図2に示す時刻T1から時刻T2までの間の、電力変換システム1における電流の流れを太い実線の矢印で示す。架線3から集電装置4を介して電力変換システム1に流入する電流は、高速度遮断器11、リアクトル12、および断流器14を通って、電力変換部18に入力される。電力変換部18から電動機5に電流が流れ、電動機5が駆動される。電力変換部18は、磁束分電流とトルク分電流とを制御することで、電動機5を制御する。
 惰行運転時における制御部23の電圧平衡制御について説明する。図2に示す時刻T2において、力行指令が入力されなくなると、鉄道車両は惰性で走行する。すなわち、時刻T2から時刻T4まで、鉄道車両は惰行運転を行う。時刻T2において、力行指令が入力されなくなると、制御部23は、電圧平衡制御を開始する。電圧平衡制御において、制御部23は、高速度遮断器11を開放した後に、蓄電装置用遮断器21を投入し、電路切替部13および電力変換部18を制御する。上記制御により、フィルタコンデンサ17の電圧が低減する。
 電圧平衡制御において、制御部23は、高速度遮断器11および電路切替部13を開放する、すなわち、高速度遮断器11および断流器14を開放する。その後、制御部23は、蓄電装置用接触器19および蓄電装置用遮断器21を投入する。制御部23は、電力変換部18が有するスイッチング素子TRU1,TRU2,TRV1,TRV2,TRW1,TRW2の投入と開放とを切り替えることで、電力変換部18から電動機5に励磁電流のみを供給させる。電動機5には励磁電流のみが供給されるので、電動機5は駆動されない。上述のように電圧平衡制御を行うことで、フィルタコンデンサ17の電圧が低減し、図2に示す電圧差も低減する。時刻T3以降、電圧差は閾値電圧以下である。閾値電圧を十分に小さい値とすることで、時刻T3以降、フィルタコンデンサ17の電圧と蓄電装置22の電圧とは一致するとみなすことができる。時刻T3において、制御部23は、電圧平衡制御を終了する。時刻T3から時刻T4までは、フィルタコンデンサ17と蓄電装置22の間で電流は流れない。
 電圧平衡制御時の電流の流れについて説明する。図4は、実施の形態1に係る鉄道車両用電力変換システムにおける電流の流れを示す図である。図2に示す時刻T2から時刻T3までの間の、電力変換システム1における電流の流れを太い実線の矢印で示す。電力変換部18は、フィルタコンデンサ17に蓄積されている電力を変換し、電動機5に励磁電流のみを供給する。これにより、フィルタコンデンサ17の電圧が低下する。
 電圧平衡制御後における制御部23の制御について説明する。図2に示す時刻T3において、電圧差が閾値電圧以下となると、制御部23は、断流器14を投入する。すなわち、制御部23は、電路切替部13を制御して第2電路に切り替える。その後、図2に示す時刻T4において、例えば運転台のマスターコントローラがブレーキに設定されると、制御部23にはブレーキ指令が入力される。フィルタコンデンサ17の電圧と蓄電装置22の電圧との差が閾値電圧以下となった場合に、ブレーキ指令を取得すると、制御部23は、電力変換部18を制御することで、電動機5から供給される電力を第2電路を介して蓄電装置22に供給する回生充電制御を開始する。上記制御により、電力変換部18で変換された電力は第2電路を介して蓄電装置22に供給される。すなわち、電力変換部18は、回生電力で蓄電装置22を充電する。
 回生充電制御における電流の流れについて説明する。図5は、実施の形態1に係る鉄道車両用電力変換システムにおける電流の流れを示す図である。図2に示す時刻T4以降の電力変換システム1における電流の流れを太い実線の矢印で示す。電力変換部18は、電動機5から供給される電力を変換し、変換された電力を、断流器14、蓄電装置用接触器19、リアクトル20、および蓄電装置用遮断器21を介して蓄電装置22に供給する。リアクトル20は、電力変換部18が出力する電流を平滑化する。
 電力変換システム1によれば、電動機5に励磁電流のみを流すことで、フィルタコンデンサ17の電圧と蓄電装置22の電圧とが一致するとみなせる程度に、フィルタコンデンサ17の電圧を低減してから、回生電力で蓄電装置22を充電するため、蓄電装置22に過電流が流れることを抑制することが可能である。
 制御部23は、図示しない速度センサ、列車情報管理システム、ATC(Automatic Train Control:自動列車制御装置)等から鉄道車両の速度を取得し、鉄道車両の速度が閾値速度以上の場合にのみ、上述の電圧平衡制御を行ってもよい。例えば、閾値速度は、回生ブレーキが使用可能な速度範囲の下限値、すなわち、臨界速度である。
 直流電源から供給される電力によって蓄電装置22を充電する場合は、制御部23は、高速度遮断器11、電路切替用接触器15、接触器CU2,CV2,CW2、および蓄電装置用遮断器21を投入し、断流器14、蓄電装置用接触器19、および接触器CU1,CV1,CW1を開放する。制御部23が電力変換部18を制御することで、電力変換部18は、直流電源から供給される電力を変換し、変換した電力を、第1電路を介して蓄電装置22に供給する。この場合、リアクトルLU,LV,LWが電力変換部18の出力電流を平滑化する。
 蓄電装置22に蓄電された電力で電動機5を駆動する場合は、制御部23は、断流器14、蓄電装置用接触器19、接触器CU1,CV1,CW1、および蓄電装置用遮断器21を投入し、高速度遮断器11、電路切替用接触器15、および接触器CU2,CV2,CW2を開放する。制御部23が電力変換部18を制御することで、電力変換部18は、蓄電装置22から供給される電力を変換し、変換した電力を電動機5に供給する。この場合、図5の太い実線の矢印と逆の方向に電流が流れる。
 電力変換システム1の他の構成である電力変換システム2について説明する。図6に示すように、電力変換システム2は、図1に示す電力変換システム1が有する電路切替部13に代えて、電路切替部24を有する。電路切替部24は、電路切替部13と同様に、断流器14、電路切替用接触器15、および抵抗16を有するが、それぞれの配置が異なる。電路切替部24は、断流器14および抵抗16を通る第1電路と、断流器14および電路切替用接触器15を通る第2電路とを切り替える。
 鉄道車両が力行運転から惰行運転になった後にブレーキがかけられる場合に、電力変換システム2が行う電圧平衡化および回生充電について説明する。図7は、実施の形態1に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作を示すタイミングチャートである。図の見方は図2と同様である。力行運転時の制御部23の制御について説明する。図2と同様に、時刻T1において、制御部23には力行指令が入力されており、ブレーキ指令は入力されていない。力行指令が入力されている間、制御部23は、高速度遮断器11、断流器14、および電路切替用接触器15が投入されている状態を維持する。また力行指令が入力されている間、制御部23は、蓄電装置用接触器19、および蓄電装置用遮断器21が開放されている状態を維持する。
 力行運転時の電流の流れについて説明する。図8は、実施の形態1に係る鉄道車両用電力変換システムにおける電流の流れを示す図である。図7に示す時刻T1から時刻T2までの間の、電力変換システム2における電流の流れを太い実線の矢印で示す。架線3から集電装置4を介して電力変換システム1に流入する電流は、高速度遮断器11、リアクトル12、断流器14、および電路切替用接触器15を通って、電力変換部18に入力される。電力変換部18から電動機5に電流が流れ、電動機5が駆動される。電力変換部18は、磁束分電流とトルク分電流とを制御することで、電動機5を制御する。
 惰行運転時における制御部23の電圧平衡制御について説明する。図7に示す時刻T2において、力行指令が入力されなくなると、鉄道車両は惰性で走行する。時刻T2において、力行指令が入力されなくなると、制御部23は、電圧平衡制御を開始する。電圧平衡制御において、制御部23は、高速度遮断器11、電路切替部13、蓄電装置用遮断器21、および電力変換部18を制御する。上記制御により、フィルタコンデンサ17の電圧が低減する。
 電圧平衡制御において、制御部23は、高速度遮断器11および電路切替部13を開放する、すなわち、高速度遮断器11、断流器14、および電路切替用接触器15を開放する。その後、図2と同様に、制御部23は、蓄電装置用接触器19および蓄電装置用遮断器21を投入する。制御部23は、電力変換部18が有するスイッチング素子TRU1,TRU2,TRV1,TRV2,TRW1,TRW2の投入と開放とを切り替えることで、電力変換部18から電動機5に励磁電流のみを供給させる。電動機5には励磁電流のみが供給されるので、電動機5は駆動されない。上述のように電圧平衡制御を行うことで、フィルタコンデンサ17の電圧が低減し、図7に示す電圧差も低減する。時刻T3以降、電圧差は閾値電圧以下である。閾値電圧を十分に小さい値とすることで、時刻T3以降、フィルタコンデンサ17の電圧と蓄電装置22の電圧とは一致するとみなすことができる。時刻T3において、制御部23は、電圧平衡制御を終了する。時刻T3から時刻T4までは、フィルタコンデンサ17と蓄電装置22の間で電流は流れない。
 電圧平衡制御時の電流の流れについて説明する。図7に示す時刻T2から時刻T3までの間は、電力変換システム1と同様に、電力変換システム2が有する電力変換部18は、フィルタコンデンサ17に蓄積されている電力を変換し、電動機5に励磁電流のみを供給する。これにより、フィルタコンデンサ17の電圧が低下する。
 電圧平衡制御後における制御部23の制御について説明する。図7に示す時刻T3において、電圧差が閾値電圧以下となると、制御部23は、断流器14および電路切替用接触器15を投入する。すなわち、制御部23は、電路切替部13を制御して第2電路に切り替える。その後、図7に示す時刻T4において、制御部23にはブレーキ指令が入力される。フィルタコンデンサ17の電圧と蓄電装置22の電圧との差が閾値電圧以下となった場合に、ブレーキ指令を取得すると、制御部23は、電力変換部18を制御することで、電動機5から供給される電力を第2電路を介して蓄電装置22に供給する回生充電制御を開始する。上記制御により、電力変換部18で変換された電力は、第2電路を介して蓄電装置22に供給される。すなわち、電力変換部18は、回生電力で蓄電装置22を充電する。
 回生充電制御における電流の流れについて説明する。図9は、実施の形態1に係る鉄道車両用電力変換システムにおける電流の流れを示す図である。図7に示す時刻T4以降の電力変換システム2における電流の流れを太い実線の矢印で示す。電力変換部18は、電動機5から供給される電力を変換し、変換された電力を、電路切替用接触器15、断流器14、蓄電装置用接触器19、リアクトル20、および蓄電装置用遮断器21を介して蓄電装置22に供給する。
 電力変換システム2によれば、電力変換システム1と同様に、フィルタコンデンサ17の電圧と蓄電装置22の電圧とが一致するとみなせる程度に、フィルタコンデンサ17の電圧を低減してから、回生電力で蓄電装置22を充電するため、蓄電装置22に過電流が流れることを抑制することが可能である。
 電力変換システム1と同様に、電力変換システム2においても、制御部23は、鉄道車両の速度が閾値速度以上の場合にのみ、上述の電圧平衡制御を行ってもよい。
 直流電源から供給される電力によって蓄電装置22を充電する場合は、制御部23は、高速度遮断器11、断流器14、接触器CU2,CV2,CW2、および蓄電装置用遮断器21を投入し、電路切替用接触器15、蓄電装置用接触器19、および接触器CU1,CV1,CW1を開放する。制御部23が電力変換部18を制御することで、電力変換部18は、直流電源から供給される電力を変換し、変換した電力を第1電路を介して蓄電装置22に供給する。この場合、リアクトルLU,LV,LWが電力変換部18の出力電流を平滑化する。
 蓄電装置22に蓄電された電力で電動機5を駆動する場合は、制御部23は、断流器14、電路切替用接触器15、蓄電装置用接触器19、接触器CU1,CV1,CW1、および蓄電装置用遮断器21を投入し、高速度遮断器11、および接触器CU2,CV2,CW2を開放する。制御部23が電力変換部18を制御することで、電力変換部18は、蓄電装置22から供給される電力を変換し、変換した電力を電動機5に供給する。この場合、図9の太い実線の矢印と逆の方向に電流が流れる。
 図10は、実施の形態1に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作の一例を示すフローチャートである。制御部23は、力行指令が入力されている間は(ステップS11;Y)、ステップS11の処理を繰り返す。制御部23は、力行指令が入力されなくなると(ステップS11;N)、電圧平衡制御を行う(ステップS12)。フィルタコンデンサ17の電圧と蓄電装置22の電圧との電圧差が閾値電圧以下でない場合(ステップS13;N)は、ステップS13の処理を繰り返す。フィルタコンデンサ17の電圧と蓄電装置22の電圧との電圧差が閾値電圧以下である場合(ステップS13;Y)、ステップS14の処理に進む。制御部23は、電路切替部13を制御して第2電路に切り替える(ステップS14)。ブレーキ指令を取得していない場合は(ステップS15;N)、ステップS15の処理を繰り返す。ブレーキ指令を取得した場合は(ステップS15;Y)、制御部23は、回生充電制御を行う(ステップS16)。制御部23は、例えば、鉄道車両速度が臨界速度以下となるまで、回生充電制御を行う。ステップS16の処理が完了すると、電力変換システム1,2は、処理を終了する。
 図11は、実施の形態1に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作の他の例を示すフローチャートである。ステップS11~S16の処理は、図10の例と同様である。制御部23は、力行指令が入力されなくなり(ステップS11;N)、鉄道車両が閾値速度以上である場合(ステップS17;Y)、電圧平衡制御を行う(ステップS12)。力行指令が入力されなくなり(ステップS11;N)、鉄道車両が閾値速度未満である場合(ステップS17;N)、電力変換システム1,2は、処理を終了する。すなわち、回生電力による蓄電装置22の充電は行われない。
 以上説明したとおり、実施の形態1に係る電力変換システム1,2によれば、電力変換部18から電動機5に励磁電流のみを流すことで、フィルタコンデンサ17の電圧と蓄電装置22の電圧とが一致するとみなせる程度に、フィルタコンデンサ17の電圧を低減してから、回生電力で蓄電装置22を充電するため、蓄電装置22に過電流が流れることを抑制することが可能である。電力変換部18から電動機5に励磁電流のみを流すことで、フィルタコンデンサ17の電圧を低減するため、フィルタコンデンサ17の電圧を低減するための回路を新たに設ける必要がない。そのため、構造を複雑化することなく、蓄電装置22に過電流が流れることを抑制することが可能である。フィルタコンデンサ17の電圧を低減する際には、電力変換部18のスイッチング素子TRU1,TRU2,TRV1,TRV2,TRW1,TRW2の投入と開放とを切り替えるだけでよく、高速度遮断器11、断流器14、電路切替用接触器15、蓄電装置用接触器19、および蓄電装置用遮断器21の操作は不要であるから、投入と開放とを繰り返すことによる機械寿命の短命化を抑制することが可能である。
 (実施の形態2)
 実施の形態2に係る電力変換システム1が行う電圧平衡化および回生充電について説明する。実施の形態2に係る電力変換システム1の構成は、図1に示す実施の形態1に係る電力変換システム1と同様である。図12は、本発明の実施の形態2に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作を示すタイミングチャートである。図の見方は、図2と同様である。時刻T1から時刻T2までの間の実施の形態2に係る電力変換システム1が有する制御部23の制御は、図2の例と同様である。また時刻T1から時刻T2までの間の、電力変換システム1における電流の流れは、図3の例と同様である。
 図12に示す時刻T2において、力行指令が入力されなくなると、制御部23は、高速度遮断器11、電路切替部13、蓄電装置用遮断器21、および電力変換部18を制御することでフィルタコンデンサ17の電圧を低減させる電圧平衡制御を開始する。
 電圧平衡制御について説明する。電圧平衡制御において、制御部23は、高速度遮断器11を開放し、電路切替部13を第1電路に切り替える、すなわち、高速度遮断器11および断流器14を開放し、電路切替用接触器15を投入する。その後、制御部23は、蓄電装置用接触器19および蓄電装置用遮断器21を投入する。制御部23は、電力変換部18が有するスイッチング素子TRU1,TRU2,TRV1,TRV2,TRW1,TRW2を開放して、電力変換部18を停止させる。これにより、フィルタコンデンサ17から第1電路を通って、蓄電装置22に電流が流れる。電圧平衡制御を行うことで、フィルタコンデンサ17の電圧が低減し、図12に示す電圧差も低減する。時刻T3以降、電圧差は閾値電圧以下である。
 電圧平衡制御時の電流の流れについて説明する。図13は、実施の形態2に係る鉄道車両用電力変換システムにおける電流の流れを示す図である。図12に示す時刻T2から時刻T3までの間の、電力変換システム1における電流の流れを太い実線の矢印で示す。電力変換部18が停止することで、フィルタコンデンサ17から第1電路を通って、蓄電装置22に電流が流れる。これにより、フィルタコンデンサ17の電圧が低減する。
 電圧平衡制御後における制御部23の制御について説明する。図12に示す時刻T3において、電圧差が閾値電圧以下となると、制御部23は、断流器14を投入し、電路切替用接触器15を開放する。すなわち、制御部23は、電路切替部13を制御して第2電路に切り替える。その後、図12に示す時刻T4において、制御部23にはブレーキ指令が入力される。フィルタコンデンサ17の電圧と蓄電装置22の電圧との差が閾値電圧以下となった場合に、ブレーキ指令を取得すると、制御部23は、電力変換部18を制御することで、電動機5から供給される電力を第2電路を介して蓄電装置22に供給する回生充電制御を開始する。上記制御により、電力変換部18で変換された電力は、第2電路を介して蓄電装置22に供給される。
 実施の形態2に係る電力変換システム1によれば、フィルタコンデンサ17から抵抗16を介して蓄電装置22に電流を流すことで、フィルタコンデンサ17の電圧と蓄電装置22の電圧とが一致するとみなせる程度に、フィルタコンデンサ17の電圧を低減してから、回生電力で蓄電装置22を充電するため、蓄電装置22に過電流が流れることを抑制することが可能である。
 実施の形態1と同様に、制御部23は、鉄道車両の速度が閾値速度以上の場合にのみ、上述の電圧平衡制御を行ってもよい。直流電源から供給される電力によって蓄電装置22を充電する場合、および、蓄電装置22に蓄電された電力で電動機5を駆動する場合の制御部23の動作は、実施の形態1に係る電力変換システム1と同様である。
 実施の形態2に係る電力変換システム2が行う電圧平衡化および回生充電の動作について説明する。実施の形態2に係る電力変換システム2の構成は、図6に示す実施の形態1に係る電力変換システム2と同様である。図14は、実施の形態2に係る鉄道車両用電力変換システムが行う電圧平衡化および回生充電の動作を示すタイミングチャートである。図の見方は、図7と同様である。時刻T1から時刻T2までの間の実施の形態2に係る電力変換システム2が有する制御部23の制御は、図7の例と同様である。また時刻T1から時刻T2までの間の、電力変換システム2における電流の流れは、図8の例と同様である。
 図14に示す時刻T2において、力行指令が入力されなくなると、制御部23は、高速度遮断器11、電路切替部13、蓄電装置用遮断器21、および電力変換部18を制御することでフィルタコンデンサ17の電圧を低減させる電圧平衡制御を開始する。
 電圧平衡制御において、制御部23は、高速度遮断器11を開放し、電路切替部13を第1電路を通る状態に切り替える、すなわち、高速度遮断器11および電路切替用接触器15を開放する。その後、図7と同様に、制御部23は、蓄電装置用接触器19および蓄電装置用遮断器21を投入する。制御部23は、電力変換部18が有するスイッチング素子TRU1,TRU2,TRV1,TRV2,TRW1,TRW2を開放して、電力変換部18を停止させる。これにより、フィルタコンデンサ17から第1電路を通って、蓄電装置22に電流が流れる。電圧平衡制御を行うことで、フィルタコンデンサ17の電圧が低減し、図14に示す電圧差も低減する。時刻T3以降、電圧差は閾値電圧以下である。
 電圧平衡制御時の電流の流れについて説明する。図15は、実施の形態2に係る鉄道車両用電力変換システムにおける電流の流れを示す図である。図14に示す時刻T2から時刻T3までの間の、電力変換システム2における電流の流れを太い実線の矢印で示す。電力変換部18が停止することで、フィルタコンデンサ17から第1電路を通って、蓄電装置22に電流が流れる。これにより、フィルタコンデンサ17の電圧が低下する。
 電圧平衡制御後における制御部23の制御について説明する。図14に示す時刻T3において、電圧差が閾値電圧以下となると、制御部23は、電路切替用接触器15を投入する。すなわち、制御部23は、電路切替部13を制御して第2電路に切り替える。その後、図14に示す時刻T4において、制御部23にはブレーキ指令が入力される。フィルタコンデンサ17の電圧と蓄電装置22の電圧との差が閾値電圧以下となった場合に、ブレーキ指令を取得すると、制御部23は、電力変換部18を制御することで、電動機5から供給される電力を第2電路を介して蓄電装置22に供給する回生充電制御を開始する。上記制御により、電力変換部18で変換された電力は、第2電路を介して蓄電装置22に供給される。時刻T4以降の電力変換システム2における電流の流れは、図9と同様である。
 実施の形態2に係る電力変換システム2によれば、実施の形態2に係る電力変換システム1と同様に、フィルタコンデンサ17から抵抗16を介して蓄電装置22に電流を流すことで、フィルタコンデンサ17の電圧と蓄電装置22の電圧とが一致するとみなせる程度に、フィルタコンデンサ17の電圧を低減してから、回生電力で蓄電装置22を充電するため、蓄電装置22に過電流が流れることを抑制することが可能である。
 電力変換システム1と同様に、電力変換システム2においても、制御部23は、鉄道車両の速度が閾値速度以上の場合にのみ、上述の電圧平衡制御を行ってもよい。直流電源から供給される電力によって蓄電装置22を充電する場合、および、蓄電装置22に蓄電された電力で電動機5を駆動する場合の制御部23の動作は、実施の形態1に係る電力変換システム2と同様である。
 実施の形態2に係る電力変換システム1,2が行う回生充電の動作は、図10、図11の例と同様である。
 以上説明したとおり、実施の形態2に係る電力変換システム1,2によれば、フィルタコンデンサ17から抵抗16を介して蓄電装置22に電流を流すことで、フィルタコンデンサ17の電圧と蓄電装置22の電圧とが一致するとみなせる程度に、フィルタコンデンサ17の電圧を低減してから、回生電力で蓄電装置22を充電するため、蓄電装置22に過電流が流れることを抑制することが可能である。フィルタコンデンサ17から抵抗16を介して蓄電装置22に電流を流すことで、フィルタコンデンサ17の電圧を低減する。抵抗16は、直流電源で蓄電装置22を充電するために既に設けられており、フィルタコンデンサ17の電圧を低減するための回路を新たに設ける必要がない。そのため、構造を複雑化することなく、蓄電装置22に過電流が流れることを抑制することが可能である。
 本発明の実施の形態は上述の実施の形態に限られない。上述の回路構成は一例である。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 1,2 鉄道車両用電力変換システム、3 架線、4 集電装置、5 電動機、11 高速度遮断器、12,20,LU,LV,LW リアクトル、13,24 電路切替部、14 断流器、15 電路切替用接触器、16 抵抗、17 フィルタコンデンサ、18 電力変換部、19 蓄電装置用接触器、21 蓄電装置用遮断器、22 蓄電装置、23 制御部、CU1,CU2,CV1,CV2,CW1,CW2 接触器、DU1,DU2,DV1,DV2,DW1,DW2 還流ダイオード、TRU1,TRU2,TRV1,TRV2,TRW1,TRW2 スイッチング素子、V1,V2 電圧検出器。

Claims (4)

  1.  一次側から供給される電力を変換し、変換した電力を二次側に接続される電動機に供給し、または、前記電動機から供給される電力を変換し、変換した電力を前記一次側に供給する電力変換部と、
     前記電力変換部の前記一次側に接続されるフィルタコンデンサと、
     直流電源と前記電力変換部との間の電路を開閉する高速度遮断器と、
     前記高速度遮断器と前記電力変換部との間に設けられ、前記高速度遮断器と前記電力変換部との間の電路の切替または開放を行う電路切替部と、
     正極端子が前記高速度遮断器および前記電路切替部の接続点に接続され、負極端子が前記電力変換部の前記一次側の負極端子に接続される蓄電装置と、
     前記蓄電装置の前記正極端子と、前記高速度遮断器および前記電路切替部の接続点との間に設けられる蓄電装置用遮断器と、
     前記高速度遮断器、前記電路切替部、前記蓄電装置用遮断器、および、前記電力変換部を制御する制御部と、
     を備え、
     前記電路切替部は、抵抗を含む第1電路および前記抵抗を含まない第2電路の切替を行い、
     前記高速度遮断器が投入され、前記電路切替部の前記第2電路を通って前記電力変換部に電力が供給されていて、前記蓄電装置用遮断器が開放され、力行指令が入力されている状態から、該力行指令が入力されなくなった場合、前記制御部は、前記フィルタコンデンサの電圧を低減させる電圧平衡制御を行い、
     前記電圧平衡制御において、前記制御部は、前記高速度遮断器を開放した後に、前記蓄電装置用遮断器を投入し、前記電路切替部、および前記電力変換部を制御し、
     前記電圧平衡制御によって、前記フィルタコンデンサの電圧と前記蓄電装置の電圧との差が閾値電圧以下になった場合に、前記制御部は、前記電路切替部を制御して前記第2電路に切り替え、
     前記第2電路に切り替えた後にブレーキ指令を取得すると、前記制御部は、前記電力変換部を制御することで、前記電動機から供給される電力を前記第2電路を介して前記蓄電装置に供給する回生充電制御を行う、
     鉄道車両用電力変換システム。
  2.  前記電圧平衡制御において、前記制御部は、前記高速度遮断器および前記電路切替部を開放した後に、前記蓄電装置用遮断器を投入し、前記電力変換部を制御して前記電力変換部から前記電動機に励磁電流のみを供給させる、
     請求項1に記載の鉄道車両用電力変換システム。
  3.  前記電圧平衡制御において、前記制御部は、前記高速度遮断器を開放した後に、前記蓄電装置用遮断器を投入し、前記電力変換部の動作を停止させ、前記電路切替部を制御して前記第1電路を通る状態に切り替えて、前記フィルタコンデンサから前記第1電路を介して前記蓄電装置に電流を流す、
     請求項1に記載の鉄道車両用電力変換システム。
  4.  前記制御部は、前記電動機によって駆動される鉄道車両の速度を取得し、
     前記制御部は、前記速度が閾値速度以上である場合に、前記電圧平衡制御を行う、
     請求項1から3のいずれか1項に記載の鉄道車両用電力変換システム。
PCT/JP2017/044903 2017-12-14 2017-12-14 鉄道車両用電力変換システム WO2019116499A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/044903 WO2019116499A1 (ja) 2017-12-14 2017-12-14 鉄道車両用電力変換システム
DE112017008270.6T DE112017008270T5 (de) 2017-12-14 2017-12-14 Schienenfahrzeugleistungswandlersystem
JP2019559495A JP6851502B2 (ja) 2017-12-14 2017-12-14 鉄道車両用電力変換システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044903 WO2019116499A1 (ja) 2017-12-14 2017-12-14 鉄道車両用電力変換システム

Publications (1)

Publication Number Publication Date
WO2019116499A1 true WO2019116499A1 (ja) 2019-06-20

Family

ID=66820160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044903 WO2019116499A1 (ja) 2017-12-14 2017-12-14 鉄道車両用電力変換システム

Country Status (3)

Country Link
JP (1) JP6851502B2 (ja)
DE (1) DE112017008270T5 (ja)
WO (1) WO2019116499A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114633640A (zh) * 2022-01-17 2022-06-17 中车青岛四方机车车辆股份有限公司 轨道车辆的动力切换系统、方法及轨道车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130772A (ja) * 2008-11-27 2010-06-10 Toshiba Corp 鉄道車両駆動システム
JP2012085535A (ja) * 2010-07-30 2012-04-26 Mitsubishi Electric Corp 電気車の推進制御装置、および鉄道車両システム
JP2013211964A (ja) * 2012-03-30 2013-10-10 Hitachi Ltd 鉄道車両の駆動装置
JP2014082907A (ja) * 2012-10-18 2014-05-08 Toshiba Corp 電気車制御装置
JP2015154579A (ja) * 2014-02-14 2015-08-24 日立オートモティブシステムズ株式会社 モータ制御装置
JP2016226127A (ja) * 2015-05-28 2016-12-28 株式会社日立製作所 電力変換装置、電力変換装置を備える移動体の駆動システム及び電力貯蔵システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130772A (ja) * 2008-11-27 2010-06-10 Toshiba Corp 鉄道車両駆動システム
JP2012085535A (ja) * 2010-07-30 2012-04-26 Mitsubishi Electric Corp 電気車の推進制御装置、および鉄道車両システム
JP2013211964A (ja) * 2012-03-30 2013-10-10 Hitachi Ltd 鉄道車両の駆動装置
JP2014082907A (ja) * 2012-10-18 2014-05-08 Toshiba Corp 電気車制御装置
JP2015154579A (ja) * 2014-02-14 2015-08-24 日立オートモティブシステムズ株式会社 モータ制御装置
JP2016226127A (ja) * 2015-05-28 2016-12-28 株式会社日立製作所 電力変換装置、電力変換装置を備える移動体の駆動システム及び電力貯蔵システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114633640A (zh) * 2022-01-17 2022-06-17 中车青岛四方机车车辆股份有限公司 轨道车辆的动力切换系统、方法及轨道车辆
CN114633640B (zh) * 2022-01-17 2023-09-26 中车青岛四方机车车辆股份有限公司 轨道车辆的动力切换系统、方法及轨道车辆

Also Published As

Publication number Publication date
DE112017008270T5 (de) 2020-08-27
JP6851502B2 (ja) 2021-03-31
JPWO2019116499A1 (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
KR101171908B1 (ko) 플러그인 하이브리드 자동차의 충전장치
JP5556677B2 (ja) バッテリ充電回路
WO2010026699A1 (ja) 電力変換装置
WO2013005457A1 (ja) 電力変換装置
JP7211771B2 (ja) 電力変換装置、電力系統、および電力系統を制御する方法
JP2012115133A (ja) 高出力密度で高逆起電力の永久磁石機械及びその製造方法
US8816615B2 (en) Drive device for railway vehicle
JP2007274893A (ja) 回路装置及び車両運行システム
JP5931669B2 (ja) 電気車用電源システム及び電力供給制御方法
JP5914068B2 (ja) 電気車用電源システム及び電力供給制御方法
JP2020005389A (ja) 電源システム
JP6289597B1 (ja) 車両用電源装置および車両用電源装置の制御方法
JP4827679B2 (ja) 鉄道車両のバッテリ用充放電装置
US20190299789A1 (en) Circuit system for railroad vehicle
WO2019116499A1 (ja) 鉄道車両用電力変換システム
EP0787620B1 (en) Electric vehicle controller
JP2017055500A (ja) 鉄道車両の制御システム及び制御方法
JP4969504B2 (ja) 車両用電力変換装置及び車両用駆動制御装置
JP5248880B2 (ja) 車両用電力変換装置及び車両用駆動制御装置
JP5995470B2 (ja) 電気車用電源システム及び電力供給制御方法
JP7244075B2 (ja) 充電システム
JP7407079B2 (ja) 電力変換システム、その制御方法およびそれを搭載した鉄道車両
JP2766584B2 (ja) 交流電気車の制御装置
JP2001354053A (ja) 給電システム
JP2008161002A (ja) モータ駆動用電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559495

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17934748

Country of ref document: EP

Kind code of ref document: A1