WO2019114077A1 - 异方性导电胶膜 - Google Patents

异方性导电胶膜 Download PDF

Info

Publication number
WO2019114077A1
WO2019114077A1 PCT/CN2018/072235 CN2018072235W WO2019114077A1 WO 2019114077 A1 WO2019114077 A1 WO 2019114077A1 CN 2018072235 W CN2018072235 W CN 2018072235W WO 2019114077 A1 WO2019114077 A1 WO 2019114077A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural layer
strip
anisotropic conductive
conductive film
protrusions
Prior art date
Application number
PCT/CN2018/072235
Other languages
English (en)
French (fr)
Inventor
周阳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2019114077A1 publication Critical patent/WO2019114077A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an anisotropic conductive film.
  • Anisotropic Conductive Film is a mixture of insulating rubber and a large number of conductive particles. It can be used to connect two different substrates or lines to make vertical (Z-axis). The electrical conduction can be achieved in the direction and insulated in the horizontal (X-axis, Y-axis) direction.
  • ACF is currently used in many electronic devices. For example, electronic components can be connected to a liquid crystal screen through ACF, or a soft board and a hard board can be connected by ACF in a soft and hard board, and the like.
  • the process of bonding components to a flexible display panel is called a flexible bonding process.
  • the anisotropic conductive film often overflows after being subjected to hot pressing, as shown in FIG. 1 .
  • the anisotropic conductive film 300 is disposed between the component terminal 210 and the panel pad 110 and is heated and pressurized if there is no edge between the edge of the panel terminal 110 and the edge 120 of the panel 100.
  • the anisotropic conductive adhesive film 300 may overflow onto the sides of the PI (polyimide) substrate 400 and the glass substrate 500, which will give The subsequent separation process of the PI substrate 400 and the glass substrate 500 affects.
  • FIG. 1 The process of bonding components to a flexible display panel.
  • the conventional solution is to increase the distance between the panel terminal 110 and the edge 120 of the panel 100.
  • increasing the distance means that the area of the terminal area is increased, the screen ratio is decreased, and the utilization rate of the large board is lowered, thereby causing The increase in production costs.
  • the present invention provides an anisotropic conductive film comprising a first structural layer and a second structural layer on the first structural layer, the materials of the first structural layer and the second structural layer are both included
  • the insulating rubber material and the conductive particles dispersed in the insulating rubber material, the first structural layer is a solid film body having a flat surface, and the surface of the second structural layer has a groove structure.
  • the first structural layer and the second structural layer are integrally formed by using the same material; the first structural layer has a rectangular shape, and the groove structure in the second structural layer is connected to the length of the first structural layer. side.
  • the second structural layer includes a plurality of first strip-shaped protrusions arranged in parallel and parallel to each other, and a plurality of first strip-shaped grooves between the plurality of first strip-shaped protrusions, the plurality of first strips
  • the shaped protrusion and the plurality of first strip-shaped grooves have a triangular cross section; the plurality of first strip-shaped protrusions and the plurality of first strip-shaped grooves extend in a direction parallel to the shortness of the first structural layer And the two ends of the plurality of first strip grooves are flush with the long sides of the first structural layer.
  • the second structural layer includes a first area and second and third areas respectively located on opposite sides of the first area;
  • the first region includes a rectangular parallelepiped protrusion; the two short sides of the rectangular parallelepiped are flush with the two short sides of the first structural layer;
  • the second area and the third area each include a plurality of second strip-shaped protrusions arranged in parallel and parallel to each other, and a plurality of second strip-shaped grooves between the plurality of second strip-shaped protrusions, the number The second strip-shaped protrusions and the plurality of second strip-shaped grooves have a triangular cross section; the plurality of second strip-shaped protrusions and the plurality of second strip-shaped grooves extend parallel to the first direction a short side of the structural layer, and an end of the plurality of second strip-shaped grooves away from the first region is flush with a long side of the first structural layer.
  • the second structural layer includes a plurality of third protrusions arranged in an array and arranged in an array, a third groove located between the plurality of third protrusions and a periphery; the shape of the plurality of third protrusions includes One or more of a cube, a pyramid, and a prism.
  • the shape of the plurality of third protrusions is a quadrangular prism body, and the bottom surface and the top surface of the quadrangular prism body are both square; the plurality of third protrusions are arranged in two rows; or
  • the shape of the plurality of third protrusions is a quadrangular pyramid body, and the bottom surface and the top surface of the quadrangular prism body are both rectangular, and the long sides of the rectangle are parallel to the short sides of the first structural layer; A plurality of third protrusions are arranged in a row.
  • the present invention also provides an anisotropic conductive adhesive film comprising a first material layer and a second material layer on a side of the first material layer, the material of the first material layer comprising an insulating rubber material and dispersed in an insulating rubber material
  • the conductive particles in the second material layer comprise an insulating rubber material
  • the first material layer is a solid film body having a flat surface
  • the surface of the second material layer has a groove structure.
  • the first material layer has a rectangular shape, and the groove structure in the second material layer communicates with a long side of the first material layer; the second material layer has a thickness greater than a thickness of the first material layer.
  • the second material layer includes a plurality of fourth protrusions arranged at an interval and arranged in an array, a fourth groove located between the plurality of fourth protrusions and a periphery; the shape of the plurality of fourth protrusions includes One or more of a cube, a pyramid, and a prism.
  • the anisotropic conductive film further includes a third material layer on the other side of the first material layer, the material of the third material layer includes an insulating rubber material, and the surface of the third material layer has a groove structure; a groove structure in the third material layer is connected to a long side of the first material layer; a thickness of the third material layer is greater than a thickness of the first material layer;
  • the third material layer includes a plurality of fifth protrusions arranged in an array and arranged in an array, a fifth groove located between the plurality of fifth protrusions and a periphery; the shapes of the plurality of fifth protrusions include One or more of a cube, a pyramid, and a prism.
  • the present invention also provides an anisotropic conductive adhesive film, comprising a first structural layer and a second structural layer on the first structural layer, the materials of the first structural layer and the second structural layer both comprise an insulating rubber material and a conductive particle dispersed in an insulating rubber material, the first structural layer is a solid film body having a flat surface, and a surface of the second structural layer has a groove structure;
  • first structural layer and the second structural layer are integrally formed by using the same material; the first structural layer has a rectangular shape, and the groove structure in the second structural layer is connected to the first structural layer. Long side
  • the second structural layer includes a plurality of first strip-shaped protrusions arranged in parallel and parallel to each other, and a plurality of first strip-shaped grooves between the plurality of first strip-shaped protrusions, the plurality of The strip-shaped protrusions and the plurality of first strip-shaped grooves have a triangular cross section; the plurality of first strip-shaped protrusions and the plurality of first strip-shaped grooves extend in parallel with the first structural layer The short sides, and both ends of the plurality of first strip grooves are flush with the long sides of the first structural layer.
  • the present invention provides an anisotropic conductive adhesive film having a groove structure on one side or both side surfaces of the entire film body, and the anisotropic conductive film in the component bonding process It is melted by hot pressing into a flowing colloid.
  • the groove structure can accumulate the flowing colloid to a certain extent, reduce the discharge amount of the colloid, prevent the overflow of the anisotropic conductive film, and solve the glass substrate during laser scanning.
  • the problem of difficult separation of the PI substrate can reduce the width of the terminal area of the panel, increase the proportion of the screen surface, and the number of large board faces (the number of displays taken out of the large board).
  • FIG. 1 is a schematic view showing a phenomenon of overflowing glue in a conventional flexible bonding process
  • FIG. 2 is a schematic view showing difficulty in separating the glass substrate from the PI substrate due to the overflow of the anisotropic conductive film
  • FIG. 3 is a schematic diagram of increasing the distance from the panel terminal to the edge of the panel to solve the problem of overflowing glue
  • FIG. 4A is a front elevational view showing a first embodiment of the first anisotropic conductive film of the present invention
  • 4B is a plan view showing a first embodiment of the first anisotropic conductive film of the present invention.
  • 4C is a side view of the first embodiment of the first anisotropic conductive film of the present invention.
  • Figure 5A is a front elevational view showing a second embodiment of the first anisotropic conductive film of the present invention.
  • 5B is a plan view showing a second embodiment of the first anisotropic conductive film of the present invention.
  • Figure 5C is a side view of a second embodiment of the first anisotropic conductive film of the present invention.
  • Figure 6A is a front elevational view showing a third embodiment of the first anisotropic conductive film of the present invention.
  • 6B is a plan view showing a third embodiment of the first anisotropic conductive film of the present invention.
  • Figure 6C is a side view of a third embodiment of the first anisotropic conductive film of the present invention.
  • Figure 7A is a front elevational view showing a fourth embodiment of the first anisotropic conductive film of the present invention.
  • FIG. 7B is a plan view showing a fourth embodiment of the first anisotropic conductive film of the present invention.
  • Figure 7C is a side view showing a fourth embodiment of the first anisotropic conductive film of the present invention.
  • Figure 8A is a front elevational view showing a first embodiment of a second anisotropic conductive film of the present invention.
  • FIG. 8B is a plan view showing a first embodiment of a second anisotropic conductive film of the present invention.
  • Figure 8C is a side view of a first embodiment of a second anisotropic conductive film of the present invention.
  • Figure 9A is a front elevational view showing a second embodiment of a second anisotropic conductive film of the present invention.
  • 9B is a plan view showing a second embodiment of a second anisotropic conductive film of the present invention.
  • Figure 9C is a side view of a second embodiment of a second anisotropic conductive film of the present invention.
  • the present invention provides a first anisotropic conductive film, comprising a first structural layer 10 and a second structural layer 20 on the first structural layer 10, the first structural layer 10 and
  • the material of the second structural layer 20 includes an insulating rubber material and conductive particles dispersed in the insulating rubber material.
  • the first structural layer 10 is a solid film body having a flat surface, and the surface of the second structural layer 20 has a groove. structure.
  • the groove structure in the second structural layer 20 has a certain ability to accumulate colloid, which can reduce the discharge amount of the colloid, thereby avoiding occurrence Overflow phenomenon, improve the fit effect.
  • the existing anisotropic conductive film is usually a solid film body with a flat surface, so that a large amount of the colloid is discharged outward when subjected to hot pressing, and the phenomenon of overflowing is likely to occur.
  • first structural layer 10 and the second structural layer 20 are integrally formed by using the same material.
  • the shape of the first structural layer 10 is rectangular, and the groove structure in the second structural layer 20 is connected to the long side of the first structural layer 10; when the anisotropic conductive film is pressed
  • the air in the groove structure is discharged outward, so as to avoid bubbles generated in the anisotropic conductive film after the bonding process is completed.
  • the groove structure of the second structural layer 20 is realized by a yellow light process using a photomask.
  • FIGS. 4A, 4B, and 4C are respectively a front view, a plan view, and a side view of a first embodiment of the first anisotropic conductive film of the present invention; as shown in FIGS. 4A to 4C, the first embodiment
  • the second structural layer 20 includes a plurality of first strip-shaped protrusions 201 arranged in parallel and parallel to each other, and a plurality of first strip-shaped recesses 202 between the plurality of first strip-shaped protrusions 201.
  • the plurality of first strip-shaped protrusions 201 and the plurality of first strip-shaped grooves 202 have a triangular cross section; the plurality of first strip-shaped protrusions 201 and the extension of the plurality of first strip-shaped grooves 202 The directions are all parallel to the short sides of the first structural layer 10, and both ends of the plurality of first strip grooves 202 are flush with the long sides of the first structural layer 10.
  • 5A, 5B, and 5C are respectively a front view, a top view, and a side view of a second embodiment of the first anisotropic conductive film of the present invention; as shown in FIGS. 5A to 5C, the second embodiment
  • the second structural layer 20 includes a first region 21 and a second region 22 and a third region 23 respectively located on opposite sides of the first region 21;
  • the first region 21 includes a rectangular parallelepiped protrusion 211; the two short sides of the rectangular parallelepiped protrusion 211 are flush with the two short sides of the first structural layer 10;
  • the second region 22 and the third region 23 each include a plurality of second strip-shaped protrusions 221 arranged in parallel and parallel to each other, and a plurality of second strip-shaped grooves between the plurality of second strip-shaped protrusions 221 222, the plurality of second strip-shaped protrusions 221 and the plurality of second strip-shaped recesses 222 are both triangular in cross section; the plurality of second strip-shaped protrusions 221 and the plurality of second strip-shaped grooves
  • the extending direction of the second structural layer 10 is parallel to the short side of the first structural layer 10, and one end of the plurality of second strip-shaped recesses 222 away from the first region 21 is flush with the long side of the first structural layer 10.
  • the top end of the second strip-shaped protrusion 221 is flush with the upper surface of the rectangular parallelepiped protrusion 211.
  • FIGS. 6A, 6B, and 6C are respectively a front view, a plan view, and a side view of a third embodiment of the first anisotropic conductive film of the present invention; as shown in FIGS. 6A to 6C, the third embodiment
  • the second structural layer 20 includes a plurality of third protrusions 231 arranged in an array and arranged in an array, and a third groove 232 located between the periphery and the periphery of the plurality of third protrusions 231;
  • the shape of the three protrusions 231 may include one or more of a cube, a pyramid, and a prism.
  • the shape of the plurality of third protrusions 231 is a quadrangular prism body, and the bottom surface and the top surface of the quadrangular prism body are both square;
  • the three protrusions 231 are arranged in two rows.
  • the second structural layer 20 includes a plurality of third protrusions 231 arranged in an array and arranged in an array, and a third groove 232 located between the periphery and the periphery of the plurality of third protrusions 231;
  • the shape of the three protrusions 231 may include one or more of a cube, a pyramid, and a prism.
  • the shape of the plurality of third protrusions 231 is a quadrangular prism body, and the bottom surface and the top surface of the quadrangular prism body are both rectangular, and the length of the rectangle is long.
  • the sides are parallel to the short sides of the first structural layer 10; the plurality of third protrusions 231 are arranged in a row.
  • the first anisotropic conductive adhesive film provided by the invention has a groove structure on one side surface of the whole film body, and in the component bonding process, the anisotropic conductive adhesive film is hot-melted and melted into a flowing colloid.
  • the groove structure can accumulate the flowing colloid to a certain extent, reduce the discharge amount of the colloid, and prevent the anisotropic conductive film from overflowing.
  • the present invention provides a second anisotropic conductive film, comprising a first material layer 30 and a second material layer 40 on a side of the first material layer 30, the first material layer 30.
  • the material comprises an insulating rubber material and conductive particles dispersed in the insulating rubber material
  • the material of the second material layer 40 comprises an insulating rubber material
  • the first material layer 30 is a solid film body with a flat surface
  • the second The surface of the material layer 40 has a groove structure.
  • the groove structure in the second material layer 40 has a certain ability to accumulate colloid, which can reduce the discharge amount of the colloid, thereby avoiding occurrence Overflow phenomenon, improve the fit effect.
  • the shape of the first material layer 30 is rectangular, and the groove structure in the second material layer 40 is connected to the long side of the first material layer 30; when the anisotropic conductive film is pressed
  • the air in the groove structure is discharged outward, so as to avoid bubbles generated in the anisotropic conductive film after the bonding process is completed.
  • the first material layer 30 has a small thickness, usually slightly larger than or equal to the particle diameter of the conductive particles.
  • the thickness of the second material layer 40 is greater than the thickness of the first material layer 30.
  • the first material layer 30 contains conductive particles, the fluidity after heating and melting is poor, and the phenomenon of overflowing is not likely to occur; the second material layer 40 does not contain conductive particles, and the fluidity after heating and melting is good, so The groove structure is disposed in the second material layer 40 to fully exert its function of accumulating colloid, thereby effectively avoiding the phenomenon of overflowing glue.
  • the groove structure of the second material layer 40 is realized by a yellow light process using a photomask.
  • the second material layer 40 includes a plurality of fourth protrusions 41 arranged in an array and arranged in an array, and a fourth groove 42 located between the periphery and the periphery of the plurality of fourth protrusions 41;
  • the shape of the four protrusions 41 may include one or more of a cube, a pyramid, and a prism.
  • the shape of the plurality of fourth protrusions 41 is a quadrangular prism body, and the bottom surface and the top surface of the quadrangular prism body are both rectangular, and the length of the rectangle is long.
  • the sides are parallel to the short sides of the first material layer 30; the plurality of fourth protrusions 41 are arranged in a row.
  • the anisotropic conductive film further includes a third material layer 50 on the other side of the first material layer 30, and the material of the third material layer 50 includes an insulating rubber material.
  • the surface of the third material layer 50 has a groove structure; the groove structure in the third material layer 50 is connected to the long side of the first material layer 30.
  • the groove structure in the third material layer 50 also has a certain ability to accumulate colloids, and the second material layer 40 can be The groove structure in the joint acts to avoid the phenomenon of overflowing of the anisotropic conductive film and improve the bonding effect.
  • the thickness of the third material layer 50 is greater than the thickness of the first material layer 30.
  • the thickness of the third material layer 50 is equal to the thickness of the second material layer 40.
  • the third material layer 50 does not contain conductive particles, and has good fluidity after heating and melting. Therefore, the groove structure is disposed in the third material layer 50 to fully exert its function of accumulating colloid, thereby effectively avoiding the phenomenon of overflow.
  • the groove structure of the third material layer 50 is realized by a yellow light process using a photomask.
  • the third material layer 50 includes a plurality of fifth protrusions 51 arranged at an interval and arranged in an array, and between the plurality of fifth protrusions 51 and the periphery thereof.
  • the five grooves 52; the shape of the plurality of fifth protrusions 51 may include one or more of a cube, a pyramid, and a prism.
  • the shape of the plurality of fifth protrusions 51 is a quadrangular prism body, and the bottom surface and the top surface of the quadrangular prism body are both rectangular, and the length of the rectangle is long.
  • the sides are parallel to the short sides of the first material layer 30; the plurality of fifth protrusions 51 are arranged in a row.
  • the second anisotropic conductive adhesive film provided by the invention has a groove structure on one side or both sides of the whole film body, and in the component bonding process, the anisotropic conductive film is hot-melted and melted into The flowing colloid can accumulate the flowing colloid to a certain extent, reduce the discharge amount of the colloid, and prevent the anisotropic conductive film from overflowing.
  • the present invention provides an anisotropic conductive film with a groove structure on one or both sides of the entire film body.
  • the anisotropic conductive film is The hot melt is melted into a flowing colloid, and the groove structure can accumulate the flowing colloid to a certain extent, reduce the discharge amount of the colloid, prevent the overflow of the anisotropic conductive film, and solve the glass substrate and the PI during laser scanning.
  • the problem of difficult substrate separation can reduce the width of the terminal area of the panel, increase the proportion of the screen surface, and the number of large board faces (the number of displays taken out of the large board).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

一种异方性导电胶膜,在整个膜体的一侧或者两侧表面设置凹槽结构,在元器件贴合制程中,所述异方性导电胶膜被热压熔化成流动的胶体,所述凹槽结构能够在一定程度上蓄积流动的胶体,减少胶体的排出量,防止异方性导电胶膜出现溢胶现象,解决了激光扫描时玻璃基板与PI基板分离困难的问题,同时可以缩小面板的端子区宽度,提升屏幕面占比以及从大板中取出的显示屏个数。

Description

异方性导电胶膜 技术领域
本发明涉及显示技术领域,尤其涉及一种异方性导电胶膜。
背景技术
随着科学技术的不断发展,电子技术也得到了飞速的发展,电子产品的种类也越来越多,手机、平板电脑(PAD)、数码相机等电子设备已经成为人们生活中一个不可或缺的部分,并且,各种电子设备也正朝着高分辨率方向发展,那么在数字信号转化过程中,元器件的连接是必不可少的一步。
异方性导电胶膜(Anisotropic Conductive Film,ACF)是一种由绝缘胶材与大量的导电粒子混合而成的物质,可以用来连接两种不同的基材或线路,使得竖直(Z轴)方向上能够实现电气导通,而水平(X轴、Y轴)方向上绝缘。目前许多电子设备中都会用到ACF,例如,可以通过ACF将电子元件与液晶屏幕连接,或者可以在软硬结合板中通过ACF将软板和硬板进行连接,等等。
将元器件贴合至柔性显示面板的制程被称为柔性贴合(Bonding)制程,所述柔性贴合制程中,异方性导电胶膜受热压后经常会出现溢胶现象,如图1所示,异方性导电胶膜300设于元器件端子210与面板端子(Panel pad)110之间并被加热加压,如果面板端子110的边缘到面板(Panel)100的边缘120之间没有预留足够空间,那么在元器件200与面板100的连接工艺中,异方性导电胶膜300会溢胶到PI(聚酰亚胺)基板400和玻璃基板500的侧边上,这会给后续PI基板400与玻璃基板500的分离制程带来影响,如图2所示,在采用激光扫描对PI基板400与玻璃基板500进行分离时,由于异方性导电胶膜300的胶体粘着PI基板400与玻璃基板500,使得PI基板400与玻璃基板500的分离变得非常困难。
如图3所示,传统的解决方法是将面板端子110到面板100的边缘120的距离增加,然而,增加距离意味着端子区面积的增加,屏占比下降,大板利用率降低,从而造成生产成本的上升。
发明内容
本发明的目的在于提供一种异方性导电胶膜,应用于元器件贴合制程 时不会出现溢胶现象。
为实现上述目的,本发明提供一种异方性导电胶膜,包括第一结构层及位于第一结构层上的第二结构层,所述第一结构层与第二结构层的材料均包括绝缘胶材及分散于绝缘胶材中的导电粒子,所述第一结构层为表面平坦的实心膜体,所述第二结构层的表面具有凹槽结构。
所述第一结构层与第二结构层采用同种材料一体成型制得;所述第一结构层的形状为矩形,所述第二结构层中的凹槽结构连通至第一结构层的长边。
所述第二结构层包括依次排列且相互平行的数个第一条形凸起、位于数个第一条形凸起之间的数个第一条形凹槽,所述数个第一条形凸起与数个第一条形凹槽的横截面均为三角形;所述数个第一条形凸起与数个第一条形凹槽的延伸方向均平行于第一结构层的短边,且所述数个第一条形凹槽的两端均与第一结构层的长边平齐。
所述第二结构层包括第一区域及分别位于第一区域两侧的第二区域与第三区域;
所述第一区域包括长方体凸起;所述长方体凸起的两短边与第一结构层的两短边平齐;
所述第二区域与第三区域均包括依次排列且相互平行的数个第二条形凸起、位于数个第二条形凸起之间的数个第二条形凹槽,所述数个第二条形凸起与数个第二条形凹槽的横截面均为三角形;所述数个第二条形凸起与数个第二条形凹槽的延伸方向均平行于第一结构层的短边,且所述数个第二条形凹槽远离所述第一区域的一端均与第一结构层的长边平齐。
所述第二结构层包括间隔设置且呈阵列排布的数个第三凸起、位于数个第三凸起之间及外围的第三凹槽;所述数个第三凸起的形状包括立方体、棱锥体、棱台体中的一种或多种。
所述数个第三凸起的形状均为四棱台体,所述四棱台体的底面与顶面均为正方形;所述数个第三凸起排列为两行;或者,
所述数个第三凸起的形状均为四棱台体,所述四棱台体的底面与顶面均为长方形,所述长方形的长边平行于第一结构层的短边;所述数个第三凸起排列为一行。
本发明还提供一种异方性导电胶膜,包括第一材料层及位于第一材料层一侧的第二材料层,所述第一材料层的材料包括绝缘胶材及分散于绝缘胶材中的导电粒子,所述第二材料层的材料包括绝缘胶材,所述第一材料层为表面平坦的实心膜体,所述第二材料层的表面具有凹槽结构。
所述第一材料层的形状为矩形,所述第二材料层中的凹槽结构连通至第一材料层的长边;所述第二材料层的厚度大于所述第一材料层的厚度。
所述第二材料层包括间隔设置且呈阵列排布的数个第四凸起、位于数个第四凸起之间及外围的第四凹槽;所述数个第四凸起的形状包括立方体、棱锥体、棱台体中的一种或多种。
所述异方性导电胶膜还包括位于第一材料层另一侧的第三材料层,所述第三材料层的材料包括绝缘胶材,所述第三材料层的表面具有凹槽结构;所述第三材料层中的凹槽结构连通至第一材料层的长边;所述第三材料层的厚度大于所述第一材料层的厚度;
所述第三材料层包括间隔设置且呈阵列排布的数个第五凸起、位于数个第五凸起之间及外围的第五凹槽;所述数个第五凸起的形状包括立方体、棱锥体、棱台体中的一种或多种。
本发明还提供一种异方性导电胶膜,包括第一结构层及位于第一结构层上的第二结构层,所述第一结构层与第二结构层的材料均包括绝缘胶材及分散于绝缘胶材中的导电粒子,所述第一结构层为表面平坦的实心膜体,所述第二结构层的表面具有凹槽结构;
其中,所述第一结构层与第二结构层采用同种材料一体成型制得;所述第一结构层的形状为矩形,所述第二结构层中的凹槽结构连通至第一结构层的长边;
其中,所述第二结构层包括依次排列且相互平行的数个第一条形凸起、位于数个第一条形凸起之间的数个第一条形凹槽,所述数个第一条形凸起与数个第一条形凹槽的横截面均为三角形;所述数个第一条形凸起与数个第一条形凹槽的延伸方向均平行于第一结构层的短边,且所述数个第一条形凹槽的两端均与第一结构层的长边平齐。
本发明的有益效果:本发明提供一种异方性导电胶膜,在整个膜体的一侧或者两侧表面设置凹槽结构,在元器件贴合制程中,所述异方性导电胶膜被热压熔化成流动的胶体,所述凹槽结构能够在一定程度上蓄积流动的胶体,减少胶体的排出量,防止异方性导电胶膜出现溢胶现象,解决了激光扫描时玻璃基板与PI基板分离困难的问题,同时可以缩小面板的端子区宽度,提升屏幕面占比以及大板面取数(从大板中取出的显示屏个数)。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为现有的柔性贴合制程中出现溢胶现象的示意图;
图2为异方性导电胶膜溢胶导致玻璃基板与PI基板分离困难的示意图;
图3为增加面板端子到面板边缘的距离以解决溢胶问题的示意图;
图4A为本发明的第一种异方性导电胶膜的第一实施例的正视图;
图4B为本发明的第一种异方性导电胶膜的第一实施例的俯视图;
图4C为本发明的第一种异方性导电胶膜的第一实施例的侧视图;
图5A为本发明的第一种异方性导电胶膜的第二实施例的正视图;
图5B为本发明的第一种异方性导电胶膜的第二实施例的俯视图;
图5C为本发明的第一种异方性导电胶膜的第二实施例的侧视图;
图6A为本发明的第一种异方性导电胶膜的第三实施例的正视图;
图6B为本发明的第一种异方性导电胶膜的第三实施例的俯视图;
图6C为本发明的第一种异方性导电胶膜的第三实施例的侧视图;
图7A为本发明的第一种异方性导电胶膜的第四实施例的正视图;
图7B为本发明的第一种异方性导电胶膜的第四实施例的俯视图;
图7C为本发明的第一种异方性导电胶膜的第四实施例的侧视图;
图8A为本发明的第二种异方性导电胶膜的第一实施例的正视图;
图8B为本发明的第二种异方性导电胶膜的第一实施例的俯视图;
图8C为本发明的第二种异方性导电胶膜的第一实施例的侧视图;
图9A为本发明的第二种异方性导电胶膜的第二实施例的正视图;
图9B为本发明的第二种异方性导电胶膜的第二实施例的俯视图;
图9C为本发明的第二种异方性导电胶膜的第二实施例的侧视图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图4A至图7C,本发明提供第一种异方性导电胶膜,包括第一结构层10及位于第一结构层10上的第二结构层20,所述第一结构层10与第二结构层20的材料均包括绝缘胶材及分散于绝缘胶材中的导电粒子,所述第一结构层10为表面平坦的实心膜体,所述第二结构层20的表面具有凹槽结构。
当所述异方性导电胶膜应用于贴合制程并被热压时,所述第二结构层20中的凹槽结构具有一定的蓄积胶体的能力,能够减少胶体的排出量,从而避免出现溢胶现象,提升贴合效果。
现有的异方性导电胶膜通常为表面平坦的实心膜体,因此在受到热压时胶体大量向外排出容易出现溢胶现象。
具体的,所述第一结构层10与第二结构层20采用相同材料一体成型制得。
具体的,所述第一结构层10的形状为矩形,所述第二结构层20中的凹槽结构连通至第一结构层10的长边;当所述异方性导电胶膜被压合于元器件与面板之间时,这样的结构设计有利于使凹槽结构内的空气向外排出,避免贴合制程完成之后异方性导电胶膜内产生气泡。
具体的,所述第二结构层20的凹槽结构利用光罩通过黄光制程实现。
图4A、图4B、图4C分别为本发明的第一种异方性导电胶膜的第一实施例的正视图、俯视图、侧视图;如图4A至图4C所示,该第一实施例中,所述第二结构层20包括依次排列且相互平行的数个第一条形凸起201、位于数个第一条形凸起201之间的数个第一条形凹槽202,所述数个第一条形凸起201与数个第一条形凹槽202的横截面均为三角形;所述数个第一条形凸起201与数个第一条形凹槽202的延伸方向均平行于第一结构层10的短边,且所述数个第一条形凹槽202的两端均与第一结构层10的长边平齐。
图5A、图5B、图5C分别为本发明的第一种异方性导电胶膜的第二实施例的正视图、俯视图、侧视图;如图5A至图5C所示,该第二实施例中,所述第二结构层20包括第一区域21及分别位于第一区域21两侧的第二区域22与第三区域23;
所述第一区域21包括长方体凸起211;所述长方体凸起211的两短边与第一结构层10的两短边平齐;
所述第二区域22与第三区域23均包括依次排列且相互平行的数个第二条形凸起221、位于数个第二条形凸起221之间的数个第二条形凹槽222,所述数个第二条形凸起221与数个第二条形凹槽222的横截面均为三角形;所述数个第二条形凸起221与数个第二条形凹槽222的延伸方向均平行于第一结构层10的短边,且所述数个第二条形凹槽222远离所述第一区域21的一端均与第一结构层10的长边平齐。
所述第二条形凸起221的顶端与长方体凸起211的上表面平齐。
图6A、图6B、图6C分别为本发明的第一种异方性导电胶膜的第三实施例的正视图、俯视图、侧视图;如图6A至图6C所示,该第三实施例中, 所述第二结构层20包括间隔设置且呈阵列排布的数个第三凸起231、位于数个第三凸起231之间及外围的第三凹槽232;所述数个第三凸起231的形状可以包括立方体、棱锥体、棱台体中的一种或多种。
优选的,如图6A至图6C所示,所述数个第三凸起231的形状均为四棱台体,所述四棱台体的底面与顶面均为正方形;所述数个第三凸起231排列为两行。
图7A、图7B、图7C分别为本发明的第一种异方性导电胶膜的第四实施例的正视图、俯视图、侧视图;如图7A至图7C所示,该第四实施例中,所述第二结构层20包括间隔设置且呈阵列排布的数个第三凸起231、位于数个第三凸起231之间及外围的第三凹槽232;所述数个第三凸起231的形状可以包括立方体、棱锥体、棱台体中的一种或多种。
优选的,如图7A至图7C所示,所述数个第三凸起231的形状均为四棱台体,所述四棱台体的底面与顶面均为长方形,所述长方形的长边平行于第一结构层10的短边;所述数个第三凸起231排列为一行。
本发明提供的第一种异方性导电胶膜在整个膜体的一侧表面设置凹槽结构,在元器件贴合制程中,所述异方性导电胶膜被热压熔化成流动的胶体,所述凹槽结构能够在一定程度上蓄积流动的胶体,减少胶体的排出量,防止异方性导电胶膜出现溢胶现象。
请参阅图8A至图9C,本发明提供第二种异方性导电胶膜,包括第一材料层30及位于第一材料层30一侧的第二材料层40,所述第一材料层30的材料包括绝缘胶材及分散于绝缘胶材中的导电粒子,所述第二材料层40的材料包括绝缘胶材,所述第一材料层30为表面平坦的实心膜体,所述第二材料层40的表面具有凹槽结构。
当所述异方性导电胶膜应用于贴合制程并被热压时,所述第二材料层40中的凹槽结构具有一定的蓄积胶体的能力,能够减少胶体的排出量,从而避免出现溢胶现象,提升贴合效果。
具体的,所述第一材料层30的形状为矩形,所述第二材料层40中的凹槽结构连通至第一材料层30的长边;当所述异方性导电胶膜被压合于元器件与面板之间时,这样的结构设计有利于使凹槽结构内的空气向外排出,避免贴合制程完成之后异方性导电胶膜内产生气泡。
具体的,所述第一材料层30具有较小的厚度,通常为略大于或等于导电粒子的粒径。所述第二材料层40的厚度大于所述第一材料层30的厚度。
所述第一材料层30由于含有导电粒子,因此加热熔化后流动性较差,不容易出现溢胶现象;所述第二材料层40不含导电粒子,加热熔化后流动 性较好,因此将凹槽结构设置于所述第二材料层40中能够充分发挥其蓄积胶体的作用,有效避免溢胶现象。
具体的,所述第二材料层40的凹槽结构利用光罩通过黄光制程实现。
图8A、图8B、图8C分别为本发明的第二种异方性导电胶膜的第一实施例的正视图、俯视图、侧视图;如图8A至图8C所示,该第一实施例中,所述第二材料层40包括间隔设置且呈阵列排布的数个第四凸起41、位于数个第四凸起41之间及外围的第四凹槽42;所述数个第四凸起41的形状可以包括立方体、棱锥体、棱台体中的一种或多种。
优选的,如图8A至图8C所示,所述数个第四凸起41的形状均为四棱台体,所述四棱台体的底面与顶面均为长方形,所述长方形的长边平行于第一材料层30的短边;所述数个第四凸起41排列为一行。
图9A、图9B、图9C分别为本发明的第二种异方性导电胶膜的第二实施例的正视图、俯视图、侧视图;与图8A至图8C所示的第一实施例相比,该第二实施例中,所述异方性导电胶膜还包括位于第一材料层30另一侧的第三材料层50,所述第三材料层50的材料包括绝缘胶材,所述第三材料层50的表面具有凹槽结构;所述第三材料层50中的凹槽结构连通至第一材料层30的长边。
当所述异方性导电胶膜应用于贴合制程并被热压时,所述第三材料层50中的凹槽结构也具有一定的蓄积胶体的能力,能够与所述第二材料层40中的凹槽结构共同作用,避免所述异方性导电胶膜出现溢胶现象,提升贴合效果。
具体的,所述第三材料层50的厚度大于所述第一材料层30的厚度。
具体的,所述第三材料层50的厚度等于所述第二材料层40的厚度。
所述第三材料层50不含导电粒子,加热熔化后流动性较好,因此将凹槽结构设置于所述第三材料层50中能够充分发挥其蓄积胶体的作用,有效避免溢胶现象。
具体的,所述第三材料层50的凹槽结构利用光罩通过黄光制程实现。
具体的,如图9A至图9C所示,所述第三材料层50包括间隔设置且呈阵列排布的数个第五凸起51、位于数个第五凸起51之间及外围的第五凹槽52;所述数个第五凸起51的形状可以包括立方体、棱锥体、棱台体中的一种或多种。
优选的,如图9A至图9C所示,所述数个第五凸起51的形状均为四棱台体,所述四棱台体的底面与顶面均为长方形,所述长方形的长边平行于第一材料层30的短边;所述数个第五凸起51排列为一行。
本发明提供的第二种异方性导电胶膜在整个膜体的一侧或者两侧表面设置凹槽结构,在元器件贴合制程中,所述异方性导电胶膜被热压熔化成流动的胶体,所述凹槽结构能够在一定程度上蓄积流动的胶体,减少胶体的排出量,防止异方性导电胶膜出现溢胶现象。
综上所述,本发明提供一种异方性导电胶膜,在整个膜体的一侧或者两侧表面设置凹槽结构,在元器件贴合制程中,所述异方性导电胶膜被热压熔化成流动的胶体,所述凹槽结构能够在一定程度上蓄积流动的胶体,减少胶体的排出量,防止异方性导电胶膜出现溢胶现象,解决了激光扫描时玻璃基板与PI基板分离困难的问题,同时可以缩小面板的端子区宽度,提升屏幕面占比以及大板面取数(从大板中取出的显示屏个数)。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (18)

  1. 一种异方性导电胶膜,包括第一结构层及位于第一结构层上的第二结构层,所述第一结构层与第二结构层的材料均包括绝缘胶材及分散于绝缘胶材中的导电粒子,所述第一结构层为表面平坦的实心膜体,所述第二结构层的表面具有凹槽结构。
  2. 如权利要求1所述的异方性导电胶膜,其中,所述第一结构层与第二结构层采用同种材料一体成型制得。
  3. 如权利要求1所述的异方性导电胶膜,其中,所述第一结构层的形状为矩形,所述第二结构层中的凹槽结构连通至第一结构层的长边。
  4. 如权利要求3所述的异方性导电胶膜,其中,所述第二结构层包括依次排列且相互平行的数个第一条形凸起、位于数个第一条形凸起之间的数个第一条形凹槽,所述数个第一条形凸起与数个第一条形凹槽的横截面均为三角形;所述数个第一条形凸起与数个第一条形凹槽的延伸方向均平行于第一结构层的短边,且所述数个第一条形凹槽的两端均与第一结构层的长边平齐。
  5. 如权利要求3所述的异方性导电胶膜,其中,所述第二结构层包括第一区域及分别位于第一区域两侧的第二区域与第三区域;
    所述第一区域包括长方体凸起;所述长方体凸起的两短边与第一结构层的两短边平齐;
    所述第二区域与第三区域均包括依次排列且相互平行的数个第二条形凸起、位于数个第二条形凸起之间的数个第二条形凹槽,所述数个第二条形凸起与数个第二条形凹槽的横截面均为三角形;所述数个第二条形凸起与数个第二条形凹槽的延伸方向均平行于第一结构层的短边,且所述数个第二条形凹槽远离所述第一区域的一端均与第一结构层的长边平齐。
  6. 如权利要求3所述的异方性导电胶膜,其中,所述第二结构层包括间隔设置且呈阵列排布的数个第三凸起、位于数个第三凸起之间及外围的第三凹槽。
  7. 如权利要求6所述的异方性导电胶膜,其中,所述数个第三凸起的形状包括立方体、棱锥体、棱台体中的一种或多种。
  8. 如权利要求7所述的异方性导电胶膜,其中,所述数个第三凸起的形状均为四棱台体,所述四棱台体的底面与顶面均为正方形;所述数个第三凸起排列为两行;或者,
    所述数个第三凸起的形状均为四棱台体,所述四棱台体的底面与顶面均为长方形,所述长方形的长边平行于第一结构层的短边;所述数个第三凸起排列为一行。
  9. 一种异方性导电胶膜,包括第一材料层及位于第一材料层一侧的第二材料层,所述第一材料层的材料包括绝缘胶材及分散于绝缘胶材中的导电粒子,所述第二材料层的材料包括绝缘胶材,所述第一材料层为表面平坦的实心膜体,所述第二材料层的表面具有凹槽结构。
  10. 如权利要求9所述的异方性导电胶膜,其中,所述第一材料层的形状为矩形,所述第二材料层中的凹槽结构连通至第一材料层的长边。
  11. 如权利要求10所述的异方性导电胶膜,其中,所述第二材料层的厚度大于所述第一材料层的厚度。
  12. 如权利要求10所述的异方性导电胶膜,其中,所述第二材料层包括间隔设置且呈阵列排布的数个第四凸起、位于数个第四凸起之间及外围的第四凹槽。
  13. 如权利要求12所述的异方性导电胶膜,其中,所述数个第四凸起的形状包括立方体、棱锥体、棱台体中的一种或多种。
  14. 如权利要求10所述的异方性导电胶膜,还包括位于第一材料层另一侧的第三材料层,所述第三材料层的材料包括绝缘胶材,所述第三材料层的表面具有凹槽结构;所述第三材料层中的凹槽结构连通至第一材料层的长边。
  15. 如权利要求14所述的异方性导电胶膜,其中,所述第三材料层的厚度大于所述第一材料层的厚度。
  16. 如权利要求14所述的异方性导电胶膜,其中,所述第三材料层包括间隔设置且呈阵列排布的数个第五凸起、位于数个第五凸起之间及外围的第五凹槽。
  17. 如权利要求16所述的异方性导电胶膜,其中,所述数个第五凸起的形状包括立方体、棱锥体、棱台体中的一种或多种。
  18. 一种异方性导电胶膜,包括第一结构层及位于第一结构层上的第二结构层,所述第一结构层与第二结构层的材料均包括绝缘胶材及分散于绝缘胶材中的导电粒子,所述第一结构层为表面平坦的实心膜体,所述第二结构层的表面具有凹槽结构;
    其中,所述第一结构层与第二结构层采用同种材料一体成型制得;所述第一结构层的形状为矩形,所述第二结构层中的凹槽结构连通至第一结构层的长边;
    其中,所述第二结构层包括依次排列且相互平行的数个第一条形凸起、位于数个第一条形凸起之间的数个第一条形凹槽,所述数个第一条形凸起与数个第一条形凹槽的横截面均为三角形;所述数个第一条形凸起与数个第一条形凹槽的延伸方向均平行于第一结构层的短边,且所述数个第一条形凹槽的两端均与第一结构层的长边平齐。
PCT/CN2018/072235 2017-12-12 2018-01-11 异方性导电胶膜 WO2019114077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711321642.1A CN108102562B (zh) 2017-12-12 2017-12-12 异方性导电胶膜
CN201711321642.1 2017-12-12

Publications (1)

Publication Number Publication Date
WO2019114077A1 true WO2019114077A1 (zh) 2019-06-20

Family

ID=62216716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072235 WO2019114077A1 (zh) 2017-12-12 2018-01-11 异方性导电胶膜

Country Status (2)

Country Link
CN (1) CN108102562B (zh)
WO (1) WO2019114077A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109943253B (zh) * 2019-03-29 2020-08-18 京东方科技集团股份有限公司 一种异方性导电胶及制备方法、显示装置
CN110825268B (zh) * 2019-11-12 2022-12-02 业成科技(成都)有限公司 触控模组、触控显示装置及电子设备
CN115035814B (zh) * 2022-06-21 2024-01-19 昆山国显光电有限公司 支撑组件、显示模组及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131154A (en) * 1976-04-26 1977-11-02 Suwa Seikosha Kk Electrically conductive rubber
JP2002075063A (ja) * 2000-08-23 2002-03-15 Jsr Corp 異方導電性シート
JP2005116291A (ja) * 2003-10-07 2005-04-28 Sumitomo Electric Ind Ltd 異方性導電膜及びその製造方法
CN102533144A (zh) * 2010-12-29 2012-07-04 第一毛织株式会社 各向异性导电膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713604B2 (en) * 2002-06-17 2010-05-11 3M Innovative Properties Company Curable adhesive articles having topographical features therein
KR101666214B1 (ko) * 2009-11-05 2016-10-14 삼성디스플레이 주식회사 이방성 도전 필름, 이의 제조 방법 및 이를 포함하는 표시 장치
CN103258585A (zh) * 2012-02-17 2013-08-21 鸿富锦精密工业(深圳)有限公司 各向异性导电膜、其制作装置及制作方法
TWI482585B (zh) * 2012-12-21 2015-04-21 Ind Tech Res Inst 屏蔽複合膜片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131154A (en) * 1976-04-26 1977-11-02 Suwa Seikosha Kk Electrically conductive rubber
JP2002075063A (ja) * 2000-08-23 2002-03-15 Jsr Corp 異方導電性シート
JP2005116291A (ja) * 2003-10-07 2005-04-28 Sumitomo Electric Ind Ltd 異方性導電膜及びその製造方法
CN102533144A (zh) * 2010-12-29 2012-07-04 第一毛织株式会社 各向异性导电膜

Also Published As

Publication number Publication date
CN108102562B (zh) 2020-06-30
CN108102562A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
TWI478327B (zh) 顯示裝置
TWI464845B (zh) 接合結構
WO2017140055A1 (zh) 基板、覆晶薄膜及电子设备
US20200210041A1 (en) Touch display panel and bonding method thereof
WO2019114077A1 (zh) 异方性导电胶膜
US10971465B2 (en) Driving chip, display substrate, display device and method for manufacturing display device
WO2021031074A1 (zh) 柔性显示装置及其制作方法
TWI691977B (zh) 異向導電性膜及連接構造體
US8491986B2 (en) Panel module and manufacturing method thereof
CN203086846U (zh) 一种柔性线路板及包括该柔性线路板的液晶显示装置
CN110444110A (zh) 电子元件及显示装置
US10622330B2 (en) Flexible display panel and preparation method thereof, flexible display device
TW201635648A (zh) 異向導電性膜及連接結構體
WO2016070493A1 (zh) 一种用于防止acf胶溢出到显示区的引线结构及方法
WO2017063426A1 (zh) 液晶显示器及其制造方法
CN108183095A (zh) 柔性显示面板及其覆晶薄膜结构
CN102543894A (zh) 电性连接垫结构及包含有多个电性连接垫结构的集成电路
JP2002252249A (ja) 金属バンプ
CN105467677A (zh) 背光源胶铁组件及其制备方法、背光源
WO2019114089A1 (zh) 柔性显示器及其驱动元件
CN107283989B (zh) 压合装置及在显示面板上压合胶体的方法
CN102087431A (zh) 一种接合结构及其方法
JP3573760B2 (ja) 隣接するタイル・アレイの電気的ワイヤレス接続
CN203337962U (zh) 显示面板及具有该显示面板的显示装置
WO2019007021A1 (zh) 触控显示装置及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887301

Country of ref document: EP

Kind code of ref document: A1