WO2019112052A1 - 金属粉末製造装置並びにそのガス噴射器及びるつぼ器 - Google Patents

金属粉末製造装置並びにそのガス噴射器及びるつぼ器 Download PDF

Info

Publication number
WO2019112052A1
WO2019112052A1 PCT/JP2018/045159 JP2018045159W WO2019112052A1 WO 2019112052 A1 WO2019112052 A1 WO 2019112052A1 JP 2018045159 W JP2018045159 W JP 2018045159W WO 2019112052 A1 WO2019112052 A1 WO 2019112052A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
nozzle
molten metal
injection
spray
Prior art date
Application number
PCT/JP2018/045159
Other languages
English (en)
French (fr)
Inventor
隆史 芝山
滋信 江口
玉艇 王
今野 晋也
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to AU2018379291A priority Critical patent/AU2018379291B2/en
Priority to KR1020197036913A priority patent/KR102262760B1/ko
Priority to CA3067702A priority patent/CA3067702C/en
Priority to US16/624,658 priority patent/US11602789B2/en
Priority to EP18885297.4A priority patent/EP3722029A4/en
Priority to JP2019558305A priority patent/JP6906631B2/ja
Priority to CN201880078393.4A priority patent/CN111432963B/zh
Publication of WO2019112052A1 publication Critical patent/WO2019112052A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0888Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting construction of the melt process, apparatus, intermediate reservoir, e.g. tundish, devices for temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a metal powder production apparatus for producing fine particle metal (metal powder) by colliding a high pressure gas fluid with molten metal flowing down from a molten metal nozzle, and a gas injector and a crucible thereof.
  • atomizing methods including gas atomizing method and water atomizing method as a method of manufacturing particulate metal (metal powder) from molten metal.
  • the gas atomizing method the molten metal is caused to flow down from the molten metal nozzle at the lower part of the dissolving tank storing the molten metal, and the inert gas is blown to the molten metal from a plurality of gas injection nozzles arranged around the molten metal nozzle.
  • the flow of molten metal from the molten metal nozzle is divided by the inert gas flow from the gas injection nozzle, becomes a large number of fine metal droplets, falls within the spray tank, and solidifies while being spheroidized by surface tension.
  • spherical metal powder is collected in the collection hopper at the bottom of the spray tank.
  • Japanese Patent Application Laid-Open No. 2016-211027 discloses a crucible provided at the top of a spray chamber (spray tank) and holding a molten metal, and connected to the bottom of the crucible to blow the inert gas while blowing the inert metal
  • An apparatus for producing metal powder having an inlet is disclosed.
  • An object of the present invention is to provide a metal powder production apparatus capable of efficiently producing a fine metal powder without changing the shape of a spray tank, and a gas injector and a crucible thereof.
  • the present application includes a plurality of means for solving the above problems, and an example thereof includes a spray tank and a plurality of spray nozzles for liquid-spraying molten metal in the spray tank, the plurality of spray nozzles Each has a molten metal nozzle for flowing the molten metal down into the spray tank, and a plurality of gas injection holes disposed around the molten metal nozzle and causing the gas fluid to collide with the molten metal flowing down from the molten metal nozzle. It has a gas injection nozzle.
  • fine metal powder can be efficiently produced without changing the type of spray tank.
  • the whole block diagram of the gas atomizing apparatus which is a metal powder manufacturing apparatus. Sectional drawing of the periphery of the metal spraying apparatus 200 of the gas atomizing apparatus which concerns on 1st Embodiment. BRIEF DESCRIPTION OF THE DRAWINGS The perspective view of the metal spraying apparatus 200 of 1st Embodiment. The relationship figure of the gas injection direction of the several injection hole 9 which comprises 1st gas injection nozzle 2A, and the flow-down area
  • the perspective view of the metal spraying apparatus 200 of 4th Embodiment The schematic cross section of metal spray device 200 by the perpendicular surface containing central axis Cg0 of metal spray device 200, and two points Tc1 and Tc2 mentioned below.
  • Sectional drawing of the periphery of an example of the metal spray apparatus of the gas atomizing apparatus which concerns on 5th Embodiment Sectional drawing of the periphery of an example of the metal spray apparatus of the gas atomizing apparatus which concerns on 5th Embodiment. Sectional drawing of the periphery of an example of the metal spray apparatus of the gas atomizing apparatus which concerns on 5th Embodiment. Sectional drawing of the periphery of an example of the metal spray apparatus of the gas atomizing apparatus which concerns on 5th Embodiment. Sectional drawing of the periphery of an example of the metal spray apparatus of the gas atomizing apparatus which concerns on 5th Embodiment. The expansion of the molten metal nozzle in an example of the metal spraying apparatus of the gas atomizing apparatus which concerns on 5th Embodiment.
  • FIG. 1 is a whole block diagram of the gas atomizing apparatus which is a metal powder manufacturing apparatus based on this invention.
  • the gas atomizing apparatus shown in FIG. 1 includes a dissolving tank (also referred to as a tundish or a crucible) 1 as a container in which molten metal (molten metal) which is a liquid metal is stored, and a dissolving tank 1 through a molten metal nozzle (described later) 11.
  • a high-pressure gas is supplied to the metal spray apparatus 200, which sprays a high-pressure gas (gas fluid) onto a molten metal that flows into fine particles and breaks it into a large number of particles and sprays the molten metal.
  • the inside of the dissolution tank 1 is preferably maintained in an inert gas atmosphere.
  • the spray tank 4 is a cylindrical container having the same diameter in the upper part and the middle part, but from the viewpoint of easiness of recovery of the metal powder by the collection hopper 5, the diameter decreases in the lower part as it approaches the collection hopper 5. It is shaped. An inert gas is appropriately discharged as exhaust gas 6 from the collection hopper 5.
  • FIG. 2 is a cross-sectional view of the vicinity of the metal spray device 200 of the gas atomizing device according to the first embodiment
  • FIG. 3 is a perspective view of the metal spray device 200 of the first embodiment.
  • illustration of 1st, 2nd molten metal nozzle 11A, 11B mentioned later is abbreviate
  • the metal spray device 200 is provided with a plurality of molten metal nozzles 11A and 11B for causing the molten metal to flow down into the spray tank 4 and a plurality of gas jet nozzles 2A and 2B disposed below the dissolution tank (crucible portion) 1 And a gas injector 70 to be injected.
  • the metal spray device 200 has a plurality of spray nozzles 20A and 20B for liquid-spraying molten metal in the spray tank 4 on the bottom surface of the gas injector 70 facing the spray tank 4.
  • the gas atomizing device of the present embodiment includes two spray nozzles, a first spray nozzle 20A and a second spray nozzle 20B.
  • the first and second spray nozzles 20A and 20B respectively include molten metal nozzles 11A and 11B that cause the molten metal to flow down into the spray tank 4, and gas injection nozzles 2A and 2B that are disposed around the molten metal nozzles 11A and 11B.
  • each spray nozzle 20 has the molten metal nozzle 11 and the gas injection nozzle 2 in a pair.
  • the first molten metal nozzle 11 A and the second molten metal nozzle 11 B that make the molten metal in the dissolution tank 1 flow down into the spray tank 4 respectively It projects vertically downward from the bottom of the.
  • the first molten metal nozzle 11A and the second molten metal nozzle 11B have the same shape, and have vertically elongated holes extending in the vertical direction in which the molten metal flows down. The vertically elongated holes form a molten metal flow path in which the molten metal flows downward from the bottom of the melting tank (crucible portion) 1 vertically downward.
  • a first cylindrical through hole having an axis (Cm1, Cm2) parallel to the axis (Cg0) of the cylinder is used.
  • a melt nozzle insertion hole 12A and a second melt nozzle insertion hole 12B are provided.
  • the first melt nozzle 11A and the second melt nozzle 11B are inserted into the first melt nozzle insertion hole 12A and the second melt nozzle insertion hole 12B, respectively.
  • the dissolution vessel 1 is supported by a gas injector 70.
  • illustration is abbreviate
  • the centers of the first molten metal nozzle insertion hole 12A and the second molten metal nozzle insertion hole 12B can be arranged on the same straight line as the center of the cylindrical gas injector 70, and the center of the gas injector 70
  • the distances from the axis Cg0 to the central axes Cm1 and Cm2 of the first molten metal nozzle insertion hole 12A and the second molten metal nozzle insertion hole 12B can be equal to each other.
  • central axes Cm1 and Cm2 of the first melt nozzle insertion hole 12A and the second melt nozzle insertion hole 12B can be made to coincide with the central axes of the holes of the first melt nozzle 11A and the second melt nozzle 11B.
  • the open ends 21A and 21B located at the lower ends of the first molten metal nozzle 11A and the second molten metal nozzle 11B are disposed so as to protrude from the bottom surface of the gas injector 70 and to face a cavity in the spray tank 4.
  • Molten metal in the melting tank 1 flows down through the holes in the first and second molten metal nozzles 11A and 11B as the molten metal flow 8 and is discharged (flowing down) into the spray tank 4 through the opening ends 21A and 21B. .
  • the minimum inner diameters of the first molten metal nozzle 11A and the second molten metal nozzle 11B that contribute to the size of the diameter of the molten metal introduced into the spray tank 4 are, for example, smaller than before You can choose 1-2mm.
  • the gas injector 70 has a hollow cylindrical outer shape filled with inert high-pressure gas, and the inside thereof forms a gas flow around each of the plurality of molten metal nozzle insertion holes 12A and 12B.
  • the flow path 50 is formed.
  • the gas flow path 50 receives high-pressure gas supply from the injection gas supply pipe 3 connected to a gas suction hole (not shown) provided on the side surface of the cylinder of the gas injector 70.
  • the gas injector 70 injects the high pressure gas supplied to the gas flow path 50 as a directional injection gas jet (gas jet) 10 through a plurality of injection holes 9 provided on the bottom surface of the gas injector 70. Do.
  • the plurality of injection holes 9 are arranged in a circle around the periphery of the spray tank side opening end of the first molten metal nozzle insertion hole 12A and the periphery of the spray tank side opening end of the second molten metal nozzle insertion hole 12B, respectively.
  • a plurality of injection holes 9 surrounding the spray tank side opening end of the molten metal nozzle insertion hole 12A are respectively the first gas injection nozzle (first gas injection part) 2A and the spray tank side opening end of the second molten metal nozzle insertion hole 12B
  • the plurality of surrounding injection holes 9 respectively constitute a second gas injection nozzle (second gas injection unit) 2B.
  • the gas injection nozzles 2A and 2B are provided for each of the plurality of melt nozzle insertion holes 12A and 12B, and the inside of the gas flow path 50 is directed toward the outside of the gas injector 70 from the open end of the melt nozzle insertion holes 12A and 12B. To inject the gas.
  • FIG. 4 is a relationship diagram of the gas injection direction of the plurality of injection holes 9 constituting each first gas injection nozzle (first gas injection part) 2A and the flow-down region 27 of the molten metal of the first molten metal nozzle 11A.
  • the gas injection directions of the plurality of injection holes 9 constituting the plurality of first gas injection nozzles (first gas injection parts) 2A are shown by straight lines 25 in FIG. 4, and each injection hole 9 coincides with the corresponding straight line 25.
  • the gas injector 70 is formed by drilling a through hole having a central axis on the bottom surface of the gas injector 70.
  • the plurality of injection holes 9 are arranged at equal intervals concentrically with the central axis Cm1 of the first molten metal nozzle insertion hole 12A on the bottom surface of the gas injector 70.
  • the circle formed by the plurality of injection holes 9 is a circle 90.
  • the gas injection directions (straight lines 25) of all the injection holes 9 constituting the plurality of first gas injection nozzles 2A pass through the common focus (first focus) 26. That is, the gas injection directions of all the injection holes 9 are concentrated at one point (focal point 26).
  • the focal point 26 is located within a substantially cylindrical flowing area 27 defined by the outer shape of the molten metal flowing down from the first molten metal nozzle 11A (not shown in FIG. 4).
  • the diameter of the flow-down area 27 is smaller than the diameter of the first molten metal nozzle insertion hole 12A, and can be appropriately adjusted according to the minimum inner diameter of the hole constituting the first molten metal nozzle 11A.
  • the diameter of the flow-down region 27 may be set to, for example, a value equal to or less than the diameter of the open end 21A of the first molten metal nozzle 11A.
  • several injection hole 9 which comprises several 2nd gas injection nozzle 2B is formed similarly to several injection hole 9 which comprises several 1st gas injection nozzle 2A.
  • the focal points 26 associated with the plurality of injection holes 9 constituting the plurality of second gas injection nozzles 2B may be referred to as a second focal point.
  • the molten metal flow 8 has an inverted conical shape (a first inverted conical shape, a second inverse shape) formed by high-pressure gas in the vicinity of the two focal points 26 related to the first gas injection nozzle 2A and the second gas injection nozzle 2B. It collides with a fluid film (conical shape) and is broken into a large number of particles 15.
  • the metal that has become liquid fine particles (fine particles 15) by the injection gas from the first and second gas injection nozzles 2A and 2B is rapidly cooled and solidified while falling in the spray tank 4 to form a large number of metal powders. Collected in the collecting hopper 5.
  • a value (for example, 1 to 2 mm) smaller than before (for example, about 5 mm) is selected as the minimum inner diameter of the holes constituting the first molten metal nozzle 11A and the second molten metal nozzle 11B. Even if gas is injected from 2A and 2B at the same pressure as before, metal particles with smaller diameter than before can be easily obtained. In addition, when the gas is injected at the same pressure as before, the flight distance of the metal particles in the spray tank 4 is also suppressed, so that it is necessary to replace the spray tank 4 with a large diameter from the viewpoint of preventing deformation of the metal particles There is no need to expand the installation space of the tank 4.
  • the flow rate of the molten metal flow 8 per hour is lower than before when looking at each of the molten metal nozzles 11A and 11B, and the yield is lowered. Since two molten metal nozzles 11A and 11B (that is, two spray nozzles 20A and 20B) are provided for the spray tank 4, the yield per time can be doubled.
  • two focal points 26 are respectively set at the center of the molten metal flowing area 27, and the injection hole 9 is concentric with the central axes Cm1 and Cm2 of the first and second molten metal nozzle insertion holes 12A and 12B.
  • the high pressure gas from the injection holes 9 is uniformly injected 360 degrees to the molten metal flow 8 because they are evenly arranged on the top. Thereby, the particle diameter of the particles 15 can be made uniform.
  • fine metal powder can be efficiently produced without changing the shape of the spray tank 4.
  • the two spray nozzles 20A and 20B of the present embodiment each have the molten metal nozzle 11 and the gas injection nozzle 2 in a pair.
  • the spray nozzle 20 is comprised by one set of the molten metal nozzle 11 and the injection nozzle 2, the spray nozzle which provided the several molten metal nozzle 11 and arrange
  • the particle size distribution of the metal powder can be made to be a desired distribution between fine particles and coarse particles by changing the spray conditions of the respective nozzles.
  • the gas injector 70 includes a plurality of melt nozzle insertion holes 12A and 12B, and a gas flow passage 50 forming a gas flow around each of the plurality of melt nozzle insertion holes 12A and 12B.
  • the gas flow in the gas flow passage 50 has a function of cooling the molten metal nozzles 11A and 11B in the molten metal flow by heat exchange before being injected from the injection holes 9.
  • the gas flow path 50 is formed around each of the plurality of molten metal nozzles 11A and 11B, and the molten metal nozzle is exchanged by heat exchange with the gas flow in the flow path 50. 11A and 11B are cooled from their surroundings.
  • the gas injector 70 of the present embodiment since the molten metal nozzle insertion holes 12A and 12B, the injection holes 9, and the gas flow path 50 are symmetrically provided on the basis of the central axis Cg0, they are orthogonal to the central axis Cg0. A merit is that the temperature distribution of the gas injector 70 and the molten metal nozzles 11A and 11B on the surface can be made uniform.
  • the molten metal nozzles 11A and 11B that form the molten metal flow path may be collectively referred to as a "crucible".
  • Second Embodiment In the first embodiment described above, since two spray nozzles 20A and 20B are provided in the spray tank 4 having the same diameter as before, the fine particles 15 sprayed from the spray nozzles 20A and 20B collide in the spray tank 4 before solidification. May be deformed.
  • the present embodiment is one of the embodiments that attempts to solve this problem.
  • FIG. 5 is a perspective view of the metal spray device 200 of the second embodiment. As in FIG. 3, the first and second molten metal nozzles 11A and 11B are not shown. The other parts are the same as in the first embodiment, and the description is omitted.
  • the bottom of the gas injector 70 of FIG. 5 is disposed linearly at a predetermined distance between two adjacent spray nozzles 20A and 20B (in other words, two molten metal nozzle insertion holes 12A and 12B).
  • a seal gas jet nozzle 30A is provided by the plurality of injection holes 31.
  • a straight line on which the plurality of injection holes 31 are disposed intersects the central axis Cg 0 of the gas injector 70 and passes through the center of the bottom surface of the gas injector 70.
  • Each injection hole 31 is formed by drilling a through hole having a central axis extending substantially in the vertical direction on the bottom surface of the gas injector 70.
  • the high pressure gas can be supplied to each injection hole 31 from the injection gas supply pipe 3 similarly to the injection hole 9, and the high pressure gas is injected in the vertically downward direction which is the axial direction of each injection hole 31.
  • a film-like jet (air curtain, seal gas jet) 35 is formed which divides at least the upper region (space) of the spray tank 4 into two.
  • the film-like jet 35 formed in this manner functions as an air curtain, and the fine particles 15 sprayed from the first spray nozzle 20A (molten metal flowing down from the molten metal nozzle 11A) and the fine particles 15 sprayed from the second spray nozzle 20B. (A molten metal flowing down from the molten metal nozzle 11B) is prevented from colliding. As a result, the generation of deformed metal particles can be prevented, and the production efficiency of the metal powder can be improved more than in the first embodiment. Further, for example, even when the spray tank 4 having the same diameter as before is used, the collision of the fine particles 15 can be prevented, so that the replacement cost and the installation space of the spray tank 4 can be prevented.
  • the plurality of injection holes 31 are preferably arranged to cross the bottom of the gas injector 70 as shown in FIG. 5 from the viewpoint of preventing collision of particles, but collision of particles often occurs.
  • the arrangement may be concentrated only on the portion expected to be (for example, around the central axis Cg0), and the arrangement to the other portions may be omitted.
  • the plurality of injection holes 31 are arranged in a straight line, but may be arranged in a curved line.
  • the inside of the gas injector 70 may be partitioned, and the injection holes 31 may be able to be supplied with gas of a pressure or type different from that of the injection holes 9.
  • the present embodiment is a modification of the second embodiment, and even if the metal spray device 200 (gas injector 70) is configured as described below, the collision of the particles 15 with each other can be prevented by the film-like jet 35.
  • FIG. 6 is a perspective view of the metal spray device 200 of the third embodiment.
  • illustration of 1st, 2nd molten metal nozzle 11A, 11B is abbreviate
  • the other parts are the same as in the first embodiment, and the description is omitted.
  • the bottom of the gas injector 70 of FIG. 6 is provided with a slit 32 which is an elongated gap extending linearly between two adjacent spray nozzles 20A and 20B as a seal gas jet nozzle 30B.
  • the slit 32 intersects the central axis Cg 0 of the gas injector 70 and passes through the center of the bottom surface of the gas injector 70.
  • the slits 32 are formed by forming through holes in the bottom of the gas injector 70.
  • the high pressure gas can be supplied to the slit 32 from the injection gas supply pipe 3 similarly to the injection hole 9, and the high pressure gas is injected from the slit 32 vertically downward.
  • a membrane-like jet (air curtain) 35 is formed which divides at least the upper region of the spray tank 4 into two.
  • the film-like jet 35 formed in this way prevents the collision of the fine particles 15 sprayed from the first spray nozzle 20A and the fine particles 15 sprayed from the second spray nozzle 20B, so that generation of deformed metal particles occurs. It is prevented and the manufacturing efficiency of metal powder can be improved rather than a 1st embodiment.
  • the slits 32 are preferably arranged to cross the bottom of the gas injector 70 as shown in FIG. 6 from the viewpoint of preventing collisions between particles, but it is predicted that collisions between particles will occur frequently. (E.g., in the vicinity of the central axis Cg0) may be concentrated, and the arrangement to the other parts may be omitted.
  • the inside of the gas injector 70 may be partitioned, and the slit 32 may be able to supply gas of a pressure or type different from that of the injection holes 9.
  • This embodiment is one of the embodiments in which the same problem as the second and third embodiments described above (collision / deformation of the fine particles 15 before solidification sprayed from the two adjacent spray nozzles 20A and 20B) is attempted. This corresponds to one obtained by tilting the plurality of gas injection nozzles 2A and 2B of the first embodiment by a predetermined angle ⁇ .
  • FIG. 7 is a perspective view of the metal spray device 200 of the fourth embodiment
  • FIG. 8 is a schematic cross-sectional view of the gas injector 70 in a vertical plane including the central axis Cg0 of the gas injector 70 and two points Tc1 and Tc2 described later. It is.
  • illustration of 1st, 2nd molten metal nozzle 11A, 11B is abbreviate
  • the plurality of first gas injection nozzles 2A have the same center as the circle 90 in which all the injection holes 9 constituting the plurality of first gas injection nozzles (first gas injection parts) 2A of the first embodiment are disposed.
  • the first circular surface 45A (see FIG. 3) having a diameter in which all the injection holes 9 constituting the nozzle are included is set.
  • the first circular surfaces 46A of the plurality of first gas injection nozzles 2A according to the fourth embodiment shown in FIG. 7 have a central axis Cg0 on the circumference of the first circular surface 45A.
  • the first circular surface 45A is tilted upward by a predetermined angle ⁇ centering on a point (tilt center) Tc1 set to the point closest to the center point.
  • second circular surfaces 45B (not shown) are set for the plurality of second gas injection nozzles (second gas injection parts) 2B
  • the second circular surfaces 46B of the plurality of second gas injection nozzles 2B of FIG. Corresponds to a point obtained by tilting the second circular surface 45B by a predetermined angle ⁇ upward about a point (tilt center) Tc2 set at a point closest to the central axis Cg0 on the circumference of the second circular surface 45B.
  • the plurality of injection holes 9 constituting the plurality of first gas injection nozzles (first gas injection portion) 2A and the plurality of second gas injection nozzles (second gas injection portions) 2B have a first circular surface.
  • the points 46A and 46B are arranged at equal intervals on a circle 90 of the same diameter centered on two points Pg1 and Pg2 which are points on the second circular surface 46B and equidistant from the central axis Cg0.
  • the two points Pg1 and Pg2 are center points of the bottom surfaces of the first and second inverted conical shapes related to the fluid film formed by the injection gas of the plurality of first and second gas injection nozzles 2A and 2B.
  • the center point Pg1 of the bottom surface of the inverted cone is separated from the center axis Cm1 of the first molten metal nozzle insertion hole 12A, and is located inside the circle 90 formed by the plurality of injection holes 9.
  • the center point Pg2 is also away from the center axis Cm2 of the second molten metal nozzle insertion hole 12B, and is located inside the circle 90 formed by the plurality of injection holes 9.
  • the central axis Cm1 is located radially outside the bottom surface of the gas injector 70 (that is, the inner surface side of the spray tank 4) than the central point Pg1.
  • a central axis Cm2 is located radially outward (inside surface side of the spray tank 4).
  • the center point Pg2 of the bottom surface of the second inverted conical shape (that is, the circle 90 (not shown)) and its vertex (second focal point 26) of the fluid film formed by the plurality of second gas injection nozzles 2B Define a connecting straight line 41B.
  • the direction from the central points Pg1 and Pg2 toward the first and second focal points 26 is defined as a focal direction, and the direction is indicated by an arrow in FIG.
  • the gas injection direction 25 ie, the axial direction of the injection hole (through hole) 9 is adjusted as shown in FIG.
  • the gas injections of the plurality of holes 9 constituting the plurality of first gas injection nozzles 2A and the plurality of second gas injection nozzles 2B are arranged such that the straight lines 41A and 41B are disposed on the same plane passing through the central axis Cg0. It is preferable to adjust the directions 25 respectively.
  • FIG. 9 is a relationship diagram of the gas injection direction of the plurality of injection holes 9 constituting the plurality of first gas injection nozzles 2A of FIG. 7 and the flow area 27 of the molten metal of the first molten metal nozzle 11A.
  • the first molten metal nozzle 11A is not shown.
  • a plurality of injection holes 9 constituting a plurality of first gas injection nozzles (first gas injection parts) 2A in this figure respectively have through holes having central axes coinciding with straight lines 25 shown in the figure. It is formed by piercing on the bottom. That is, in the present embodiment, the central axes of all the injection holes 9 related to the plurality of first gas injection nozzles 2A are also tilted by ⁇ from the state of FIG. 4 (the state of the first embodiment) Only the inner surface of the spray tank 4 is inclined.
  • the first focal point 26 is located in a substantially cylindrical flowing area 27 defined by the outer shape of the molten metal flowing down from the first molten metal nozzle 11A (not shown in FIG. 9).
  • the first focal point 26 is located radially outside the bottom surface of the gas injector 70 with respect to the center point Pg1 of the bottom surface of the inverted cone.
  • the center point Pg1 of the bottom surface of the inverted cone related to the plurality of second gas injection nozzles 2B and the second focal point 26 that is the apex thereof are also the center point Pg1 of the first gas injection nozzle 2A and the first focus It is arrange
  • a fluid film having an inverted conical shape (first inverted conical shape, second inverted conical shape) whose bottom surface is a circle in which the plurality of injection holes 9 are arranged is formed.
  • the inverted cone is tilted by a predetermined angle ⁇ , but as in the first embodiment, straight lines 41A and 41B connecting the centers Pg1 and Pg2 of the conical bottom and the apexes become straight cones orthogonal to the conical bottom.
  • the molten metal flow 8 flowing down through the first molten metal nozzle 11A and the second molten metal nozzle 11B is a high pressure gas in the vicinity of the two focal points 26 related to the plurality of first gas injection nozzles 2A and the second gas injection nozzles 2B. It collides with the fluid film which is in the form of a tilted inverted cone (right cone) and is broken into a large number of fine particles 15. At this time, the fine particles 15 are given a velocity toward the radially outer side (inner side surface of the spray tank 4) of the spray tank 4 by the plurality of first gas jet nozzles 2A and the plurality of second gas jet nozzles 2B which are tilted. As shown in FIG.
  • the production efficiency of the metal powder can be improved more than in the first embodiment.
  • the gas injection direction of the plurality of injection holes 9 (central axis in the configuration of the first embodiment) To give fine particles 15 a velocity toward the inner side of the spray tank 4 even if the fluid film formed by the plurality of gas injection nozzles 2A and 2B is changed from the right cone to the right As a result, it is possible to prevent the particles 15 from colliding with one another.
  • the scattering directions in the horizontal direction of the particles 15 sprayed from the first spray nozzle 20A and the particles 15 sprayed from the second spray nozzle 20B opposite.
  • the tilt angles of the gas injection nozzles 2A and 2B related to the two spray nozzles 20A and 20B are made to coincide to simplify the description, but the tilt angles of both may be different.
  • the particle size distribution (also referred to as “particle size distribution”) of the metal powder produced by one gas atomizing device (metal powder producing device) is differentiated by changing the spraying conditions of the plurality of spray nozzles 20A and 20B. It is characterized in that it can be controlled.
  • the particle size distribution of the manufactured metal powder is prescribed according to the spray conditions. Distribution with the average particle diameter (average diameter) as the peak. That is, if the spraying conditions are the same, the particle size of the produced metal powder tends to concentrate on one peak value.
  • the particle sizes desired by various users do not always coincide with the peak value, and the particle size deviates from the peak value (e.g., ⁇ (average) ⁇ ⁇ (standard deviation)) out of the range (1 ⁇ section)
  • the peak value e.g., ⁇ (average) ⁇ ⁇ (standard deviation)
  • the gas atomization device in which the particle size distribution of the metal powder has a normal distribution with one peak that is, the gas atomization device with the same spray conditions for each spray nozzle) collects the metal powder. The rate may decrease.
  • the spray conditions of the plurality of spray nozzles 20A and 20B are made different. Specifically, as spray conditions that can be changed, for example, (1) injection pressure of gas fluid injected from a plurality of gas injection nozzles 2, (2) an angle of injection hole 9 in a plurality of gas injection nozzles 2, (3 ) The diameter of the injection holes 9 in the plurality of gas injection nozzles 2, (4) the number of the injection holes 9 in the plurality of gas injection nozzles 2, (5) the minimum hole diameter (orifice diameter) of the molten metal nozzle 11, (6) the molten metal nozzle 11 There is a tip shape of Next, a structure for realizing these spraying conditions will be described with reference to FIGS.
  • FIG. 11 is a cross section around the metal spray device 210 capable of making the injection pressure of the gas fluid (high pressure gas) injected from the gas injection nozzle 2A related to the spray nozzle 20A and the gas injection nozzle 2B related to the spray nozzle 20B different.
  • the metal spray device 210 of this figure is different from the first embodiment in which two gas injection nozzles 2A and 2B use a common gas flow passage 50, and is independent of being connected to a gas supply source (not shown) of different pressure.
  • Internal flow paths 50A, 50B Gas fluid is supplied to the internal flow paths 50A and 50B from gas supply sources having different pressures via different injection gas supply pipes 3A and 3B, and gas fluids having different injection pressures are supplied from the gas injection nozzles 2A and 2B. It is injected.
  • the molten metal flowing down from the second molten metal nozzle 11B is a gas injection nozzle Since the high-pressure gas injected from 2B is finely ground than the molten metal flowing down from the first molten metal nozzle 11A, the particle size of the metal sprayed from the spray nozzle 20B is finer than that sprayed from the spray nozzle 20A. Be That is, as the injection pressure of the gas fluid injected from the gas injection nozzle 2 is increased, the metal powder tends to be finer.
  • FIG. 16 shows the above spray condition (1)-(for the spray nozzle as the reference (in the figure, it is written as “comparative example” and, for example, any of the spray nozzles 20A and 20B of the first embodiment). It is the figure which put together the tendency of the particle size of the metal powder obtained from six Examples which changed any of 6) in the table type.
  • the angle of the injection hole 9 is, as shown in the figure, the central axis 25 of the injection hole 9 (injection hole 9a) and the central axis Cm2 of the second molten metal nozzle insertion hole 12B (first molten metal nozzle insertion hole It can be defined by an angle ⁇ 9 ( ⁇ 9a) formed by the central axis Cm1) of 12A (provided that ⁇ 9 and ⁇ 9a are less than 90 degrees).
  • the metal powder tends to be coarsened as the angle of the injection holes 9, 9a is reduced (in other words, the metal powder becomes finer as the angle of the injection holes 9, 9a is increased (closer to horizontal)
  • Tend to be As a result, the particle size distribution of the metal sprayed from the two spray nozzles 20A and 20B having different angles of the injection holes 9 and 9a becomes different. For example, as shown in FIG. The diameters ⁇ 1 and ⁇ 2 appear. Assuming that the average particle diameter of the metal powder sprayed from the spray nozzle 20A is ⁇ 1 in FIG. 17, the average particle diameter of the metal powder sprayed from the spray nozzle 20B is ⁇ 2 smaller than ⁇ 1.
  • FIG. 13 is a cross-sectional view around the metal spray device 230 in which the diameters of the injection holes 9 of the gas injection nozzle 2A related to the spray nozzle 20A and the injection holes 9 of the gas injection nozzle 2B related to the spray nozzle 20B are different.
  • the metal spray device 230 of this figure differs from the first embodiment in which the diameter of the injection hole 9 shared by the two gas injection nozzles 2A and 2B is used, and the diameters of the plurality of injection holes 9 belonging to the gas injection nozzle 2A;
  • the diameters of the plurality of injection holes 9r belonging to the gas injection nozzle 2B are made different. Specifically, the diameters of the plurality of injection holes 9r belonging to the gas injection nozzle 2B are set larger than the diameters of the plurality of injection holes 9 belonging to the gas injection nozzle 2A.
  • the particle size distribution of the metal sprayed from the two spray nozzles 20A and 20B having different diameters of the injection holes 9 and 9r becomes different.
  • the diameters ⁇ 1 and ⁇ 2 appear.
  • the average particle diameter of the metal powder sprayed from the spray nozzle 20A is ⁇ 1 in FIG. 17
  • the average particle diameter of the metal powder sprayed from the spray nozzle 20B is ⁇ 2 smaller than ⁇ 1. That is, as in the above case where the spraying condition (1) is changed, metal powders having a wider range of particle sizes are manufactured at one time as compared with the case where the spraying conditions of the spray nozzles 20A and 20B are the same (see FIG. 10). be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Nozzles (AREA)
  • Powder Metallurgy (AREA)

Abstract

金属粉末製造装置は、噴霧槽(4)と、噴霧槽(4)内に溶融金属を液体噴霧する複数の噴霧ノズル(20A,20B)とを備える。複数の噴霧ノズル(20A,20B)はそれぞれ、噴霧槽(4)内に向かって溶融金属を流下させる溶湯ノズル(11A,11B)と、溶湯ノズルの周囲に複数配置され溶湯ノズルから流下する溶融金属にガス流体を衝突させるためのガス噴射孔を有するガス噴射ノズル(2A,2B)とを有する。

Description

金属粉末製造装置並びにそのガス噴射器及びるつぼ器
 本発明は溶湯ノズルから流下する溶融金属に高圧ガス流体を衝突させることで微粒子状の金属(金属粉末)を製造する金属粉末製造装置並びにそのガス噴射器及びるつぼ器に関する。
 溶融金属から微粒子状の金属(金属粉末)を製造する方法にガスアトマイズ法や水アトマイズ法を含むアトマイズ法がある。ガスアトマイズ法は、溶融金属を貯留する溶解槽の下部の溶湯ノズルから溶湯を流下させ、溶湯ノズルの周囲に配置された複数のガス噴射ノズルから不活性ガスを溶湯に吹きつける。溶湯ノズルからの溶融金属の流れは、ガス噴射ノズルからの不活性ガス流によって分断され微細な多数の金属液滴となって噴霧槽内を落下し、表面張力によって球状化しながら凝固する。これにより噴霧槽底部の採集ホッパで球状の金属粉末が回収される。
 例えば特開2016-211027号公報には、噴霧チャンバ(噴霧槽)上部に設けられ金属溶湯を保持するるつぼと、前記るつぼの底部に接続して前記不活性ガスを吹きつけながら前記金属溶湯を前記噴霧チャンバ内に落下させるアトマイズノズルと、前記噴霧チャンバ内をガス置換させるガス導入口及びガス排出口と、前記噴霧チャンバ内を酸化雰囲気及び/又は窒化雰囲気とするためのガスを与える第2のガス導入口とを有する金属粉末の製造装置が開示されている。
特開2016-211027号公報
 大量の金属粒子を積層して所望の形状の金属を造形する金属3次元プリンターの材料等をはじめとして、アトマイズ法に従前求められていた金属粉末よりも粒径の小さいもののニーズが近年高まっている。粉末冶金や溶接等に用いられる従前からの金属粉末の粒径は例えば70-100μm程度であったが、3次元プリンターに用いられる金属粉末の粒径は例えば20-50μm程度と非常に細かい。
 このように従前より微細な金属粒子を短時間に大量生産する方策の1つとして溶湯ノズルの径を拡大する方法があるが、所望の粒径を有する金属粉末の収率の低下が懸念される。収率向上のために噴射ノズルから噴射されるガス圧を増強して金属粒子の粒径の微細化と均一化を図ることが考えられるが、ガス圧増強で加速した金属粒子が凝固前に噴霧槽の壁面に衝突して変形し易くなり、収率の増加が見込めない懸念がある。金属粒子と噴霧槽の衝突を回避するために噴霧槽の径を巨大化することも考えられるが、噴霧槽の取りかえに伴う費用増加や設置スペースが確保できない等の問題が生じる。
 本発明の目的は、噴霧槽の体型を変えずに微細な金属粉末を効率良く製造できる金属粉末製造装置並びにそのガス噴射器及びるつぼ器を提供することにある。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、噴霧槽と、前記噴霧槽内に溶融金属を液体噴霧する複数の噴霧ノズルとを備え、前記複数の噴霧ノズルはそれぞれ、前記噴霧槽内に向かって溶融金属を流下させる溶湯ノズルと、前記溶湯ノズルの周囲に複数配置され前記溶湯ノズルから流下した溶融金属にガス流体を衝突させるためのガス噴射孔を有する、ガス噴射ノズルとを有することとする。
 本発明によれば噴霧槽の体型を変えずに微細な金属粉末を効率良く製造できる。
金属粉末製造装置であるガスアトマイズ装置の全体構成図。 第1実施形態に係るガスアトマイズ装置の金属噴霧装置200の周辺の断面図。 第1実施形態の金属噴霧装置200の斜視図。 第1ガス噴射ノズル2Aを構成する複数の噴射孔9のガス噴射方向と第1溶湯ノズル11Aの溶湯の流下領域27の関係図。 第2実施形態の金属噴霧装置200の斜視図。 第3実施形態の金属噴霧装置200の斜視図。 第4実施形態の金属噴霧装置200の斜視図。 金属噴霧装置200の中心軸Cg0と後述の2点Tc1,Tc2を含む垂直面による金属噴霧装置200の模式断面図。 図7の第1ガス噴射ノズル2Aを構成する複数の噴射孔9のガス噴射方向と第1溶湯ノズル11Aの溶湯の流下領域27の関係図。 各噴霧ノズルの噴霧条件が同一のガスアトマイズ装置により製造される金属粉末の粒度分布図。 第5実施形態に係るガスアトマイズ装置の金属噴霧装置の一例の周辺の断面図。 第5実施形態に係るガスアトマイズ装置の金属噴霧装置の一例の周辺の断面図。 第5実施形態に係るガスアトマイズ装置の金属噴霧装置の一例の周辺の断面図。 第5実施形態に係るガスアトマイズ装置の金属噴霧装置の一例の周辺の断面図。 第5実施形態に係るガスアトマイズ装置の金属噴霧装置の一例の周辺の断面図。 第5実施形態に係るガスアトマイズ装置の金属噴霧装置の一例における溶湯ノズルの拡大。 基準となる噴霧ノズルから得られる金属粉末の粒度に対する、6つの噴霧条件(1)-(6)のいずれかを変更した6つの実施例から得られる金属粉末の粒度の傾向を表形式でまとめた図 各噴霧ノズルの噴霧条件が異なるガスアトマイズ装置の一例により製造される金属粉末の粒度分布図。 各噴霧ノズルの噴霧条件が異なるガスアトマイズ装置の一例により製造される金属粉末の粒度分布図。
 以下、本発明の実施の形態について図面を用いて説明する。
 図1は本発明に係る金属粉末製造装置であるガスアトマイズ装置の全体構成図である。図1のガスアトマイズ装置は、液体状の金属である溶融金属(溶湯)が蓄えられる容器である溶解槽(タンディッシュやるつぼ部とも称する)1と、溶解槽1から溶湯ノズル(後述)11を介して細粒となって流下する溶湯に対して高圧ガス(ガス流体)を吹き付けて多数の微粒子に粉砕して溶融金属を液体噴霧する金属噴霧装置200と、金属噴霧装置200に高圧ガスを供給するための噴射ガス供給管(噴射流体供給管)3と、不活性ガス雰囲気に保持された容器であって金属噴霧装置200から噴霧された微粒子状の液体金属が落下中に急冷凝固される噴霧槽4と、噴霧槽4の底部に設けられ噴霧槽4での落下中に凝固した粉末状の固体金属を回収する採集ホッパ5とを備えている。
 溶解槽1内は不活性ガス雰囲気に保持することが好ましい。噴霧槽4は、上部及び中部では同一の径を有する円筒状の容器であるが、採集ホッパ5による金属粉末の回収し易さの観点から、下部では採集ホッパ5に近づくほど径が小さくなるテーパ形状になっている。採集ホッパ5からは不活性ガスが適宜排気6として排出されている。
 <第1実施形態>
 図2は第1実施形態に係るガスアトマイズ装置の金属噴霧装置200周辺の断面図であり、図3は第1実施形態の金属噴霧装置200の斜視図である。なお、図3では後述する第1,第2溶湯ノズル11A,11Bの図示を省略している。
 -噴霧ノズル20A,20B-
 金属噴霧装置200は、噴霧槽4内に向かって溶融金属を流下させる複数の溶湯ノズル11A,11Bと、溶解槽(るつぼ部)1の下方に設置され複数のガス噴射ノズル2A,2Bからガスを噴射するガス噴射器70とを備えている。金属噴霧装置200は、ガス噴射器70の噴霧槽4内に臨む底面に、噴霧槽4内に溶融金属を液体噴霧する複数の噴霧ノズル20A,20Bを構成している。本実施形態のガスアトマイズ装置は第1噴霧ノズル20Aと第2噴霧ノズル20Bの2つの噴霧ノズルを備えている。第1,第2噴霧ノズル20A,20Bは、それぞれ、噴霧槽4内に溶融金属を流下させる溶湯ノズル11A,11Bと、溶湯ノズル11A,11Bの周囲に複数配置されたガス噴射ノズル2A,2Bを有している。すなわち各噴霧ノズル20は溶湯ノズル11とガス噴射ノズル2とを一対で有している。
 -溶湯ノズル11A,11B-
 図2に示すように、溶解槽(るつぼ部)1の底部には、溶解槽1内の溶融金属を噴霧槽4内にそれぞれ流下させる第1溶湯ノズル11Aと第2溶湯ノズル11Bが溶解槽1の底面から鉛直下方に向かって突出して設けられている。第1溶湯ノズル11Aと第2溶湯ノズル11Bは、同一の形状を有しており、それぞれの内部に溶湯が流下する鉛直方向に延びた縦長の孔を有している。この縦長の孔は、溶解槽(るつぼ部)1の底部から鉛直下方に向かって溶融金属が流下する溶湯流路となる。
 図3に示すように略円柱状の外形を有するガス噴射器70には、当該円柱の軸(Cg0)と平行の軸(Cm1,Cm2)を有する2本の円柱状の貫通孔である第1溶湯ノズル挿入孔12Aと第2溶湯ノズル挿入孔12Bが設けられている。第1溶湯ノズル11Aと第2溶湯ノズル11Bは、第1溶湯ノズル挿入孔12Aと第2溶湯ノズル挿入孔12Bのそれぞれに挿入されている。溶解槽1はガス噴射器70により支持される。なお、図示は省略するが、溶解槽1とガス噴射器70の間には、溶解槽1からの熱伝導を防止する観点から断熱材を挿入することが好ましい。
 図3に示すように第1溶湯ノズル挿入孔12Aと第2溶湯ノズル挿入孔12Bの中心は円筒状のガス噴射器70の中心と同一直線上に配置することができ、ガス噴射器70の中心軸Cg0から第1溶湯ノズル挿入孔12Aと第2溶湯ノズル挿入孔12Bの中心軸Cm1,Cm2までの距離はそれぞれ同一になるように配置することができる。また第1溶湯ノズル挿入孔12Aと第2溶湯ノズル挿入孔12Bの中心軸Cm1,Cm2は第1溶湯ノズル11Aと第2溶湯ノズル11Bの孔の中心軸に一致させることができる。
 第1溶湯ノズル11Aと第2溶湯ノズル11Bの下端に位置する開口端21A,21Bは、ガス噴射器70の底面から突出して噴霧槽4内の空洞に臨むようにそれぞれ配置されている。溶解槽1内の溶融金属は第1,第2溶湯ノズル11A,11Bの内部の孔を溶湯流8となって流下し開口端21A,21Bを介して噴霧槽4内に放出(流下)される。噴霧槽4内に導入される溶湯の径の大きさ(後述する流下領域27の径の大きさ)に寄与する第1溶湯ノズル11Aと第2溶湯ノズル11Bの最小内径としては、例えば従前より小さい1-2mmが選択できる。
 -ガス噴射ノズル2A,2B-
 ガス噴射器70は、不活性の高圧ガスで満たされる中空構造の円柱形状の外形を有しており、その内部は複数の溶湯ノズル挿入孔12A,12Bのそれぞれの周囲にガス流を形成するガス流路50となっている。ガス流路50は、ガス噴射器70の円柱の側面に設けられたガス吸入孔(図示せず)に接続される噴射ガス供給管3から高圧ガスの供給を受ける。ガス噴射器70は、ガス流路50に供給されたその高圧ガスをガス噴射器70の底面に設けられた複数の噴射孔9を介して指向性のある噴射ガスジェット(ガス噴流)10として噴射する。複数の噴射孔9は第1溶湯ノズル挿入孔12Aの噴霧槽側開口端の周囲と第2溶湯ノズル挿入孔12Bの噴霧槽側開口端の周囲にそれぞれ円を描くように配置されており、第1溶湯ノズル挿入孔12Aの噴霧槽側開口端を取り囲む複数の噴射孔9はそれぞれ第1ガス噴射ノズル(第1ガス噴射部)2Aを、第2溶湯ノズル挿入孔12Bの噴霧槽側開口端を取り囲む複数の噴射孔9はそれぞれ第2ガス噴射ノズル(第2ガス噴射部)2Bを構成している。ガス噴射ノズル2A,2Bは、複数の溶湯ノズル挿入孔12A,12Bごとに設けられており、溶湯ノズル挿入孔の12A,12Bの開口端よりガス噴射器70の外側に向かってガス流路50内のガスを噴射する。
 図4は各第1ガス噴射ノズル(第1ガス噴射部)2Aを構成する複数の噴射孔9のガス噴射方向と第1溶湯ノズル11Aの溶湯の流下領域27の関係図である。
 図4には複数の第1ガス噴射ノズル(第1ガス噴射部)2Aを構成する複数の噴射孔9のガス噴射方向を直線25で示しており、各噴射孔9は対応する直線25と一致する中心軸を有する貫通孔をガス噴射器70の底面に穿つことで形成されている。この複数の噴射孔9はガス噴射器70の底面において第1溶湯ノズル挿入孔12Aの中心軸Cm1と同心円上に等間隔で配置されている。図4では複数の噴射孔9が形成するこの円を円90としている。複数の第1ガス噴射ノズル2Aを構成する全ての噴射孔9のガス噴射方向(直線25)は共通の焦点(第1焦点)26を通過している。すなわち全ての噴射孔9のガス噴射方向は一点(焦点26)に集中している。焦点26は第1溶湯ノズル11A(図4には図示せず)から流下する溶融金属の外形によって規定される略円柱状の流下領域27内に位置している。流下領域27の径は、第1溶湯ノズル挿入孔12Aの径より小さく、第1溶湯ノズル11Aを構成する孔の最小内径に応じて適宜調整できる。流下領域27の径は例えば第1溶湯ノズル11Aの開口端21Aの径以下の値にすることもできる。
 なお、説明は省略するが、複数の第2ガス噴射ノズル2Bを構成する複数の噴射孔9も複数の第1ガス噴射ノズル2Aを構成する複数の噴射孔9と同様に形成されている。複数の第2ガス噴射ノズル2Bを構成する複数の噴射孔9に係る焦点26は第2焦点と称することがある。
 -動作・効果-
 上記のように構成される金属粉末製造装置において、噴射ガス供給管3から高圧ガスを供給すると、金属噴霧装置200における複数の第1ガス噴射ノズル2A及び第2ガス噴射ノズル2Bを構成する全ての噴射孔9から噴霧槽4の内部に向かって噴射孔9ごとに予め定められた噴射方向(直線25)に従って同じ圧力の高圧ガスが噴射される。このとき、第1ガス噴射ノズル2A及び第2ガス噴射ノズル2Bでは、それぞれの焦点(第1焦点、第2焦点)26に対してガスが集中噴射され、図4に示すような焦点26を頂点とし複数の噴射孔9が配置された円90を底面とする逆円錐状(第1の逆円錐形状,第2の逆円錐形状)の流体膜が形成される。
 一方、溶解槽1に溶融金属を投入すると、溶解槽1の底面に設けられた第1溶湯ノズル11Aと第2溶湯ノズル11Bを介して噴霧槽4の内部に対して2本の溶湯流8が流下領域27内に流下される。そして、その溶湯流8は、第1ガス噴射ノズル2A及び第2ガス噴射ノズル2Bに係る2つの焦点26の近傍で高圧ガスが形成する逆円錐状(第1の逆円錐形状,第2の逆円錐形状)の流体膜と衝突して多数の微粒子15に粉砕される。第1,第2ガス噴射ノズル2A,2Bからの噴射ガスによって液体状の微粒子(微粒子15)となった金属は、噴霧槽4内の落下中に急速冷却されて凝固して多数の金属粉として採集ホッパ5で回収される。
 本実施形態では第1溶湯ノズル11Aと第2溶湯ノズル11Bを構成する孔の最小内径として従前(例えば5mm程度)よりも小さな値(例えば1-2mm)を選択しているため、例えばガス噴射ノズル2A,2Bから従前と同じ圧力でガスを噴射しても従前よりも径の細かな金属粒子を容易に得られる。また、従前と同じ圧力でガスを噴射した場合には噴霧槽4内での金属粒子の飛距離も抑えられるので、金属粒子の変形防止の観点から径の大きな噴霧槽4への取り替える必要や噴霧槽4の設置スペースを拡大する必要もない。一方、従前よりも最小内径を縮小しているため、溶湯ノズル11A,11Bごとでみれば時間あたりの溶湯流8の流量が従前より低下して収率が低下するものの、本実施形態では1つの噴霧槽4に対して2本の溶湯ノズル11A,11B(すなわち2つの噴霧ノズル20A,20B)を有するため、時間あたりの収率を2倍にすることができる。
 また、本実施形態では2つの焦点26を溶湯流下領域27の中心にそれぞれ設定しており、かつ、噴射孔9は第1,第2溶湯ノズル挿入孔12A,12Bの中心軸Cm1,Cm2と同心円上に均等に配置されているため、噴射孔9からの高圧ガスは溶湯流8に対して360度均等に噴射される。これにより微粒子15の粒径の均一化を図ることができる。
 すなわち、本実施形態によれば噴霧槽4の体型を変えずに微細な金属粉末を効率良く製造できる。
 また、本実施形態の2つの噴霧ノズル20A,20Bはそれぞれ溶湯ノズル11とガス噴射ノズル2とを一対で有している。このように噴霧ノズル20を1組の溶湯ノズル11と噴射ノズル2で構成すると、例えば複数の溶湯ノズル11を設けてその全ての溶湯ノズル11を取り囲むように複数の噴射孔9を配置した噴霧ノズルに比して、各噴霧ノズル20から噴霧される液体金属の粒径を細やかに制御することが可能となる。例えば、後述する第5実施形態のように各ノズルの噴霧条件を変更することで金属粉末の粒度分布を細粒から粗粒の間で所望の分布とすることも可能となる。
 さらに、本実施形態に係るガス噴射器70は、複数の溶湯ノズル挿入孔12A,12Bと、その複数の溶湯ノズル挿入孔12A,12Bのそれぞれの周囲にガス流を形成するガス流路50とを有している。ガス流路50内のガス流は、噴射孔9から噴射される前に、溶湯流下中の溶湯ノズル11A,11Bを熱交換により冷却する機能を有する。本実施形態のガス噴射器70では複数の溶湯ノズル11A,11Bのそれぞれの周囲にガス流路50が形成される構造となっており、その流路50内のガス流との熱交換により溶湯ノズル11A,11Bはそれぞれの周囲から冷却される。これにより溶湯ノズル11A,11Bに局所的な温度上昇、すなわち不均一な温度分布が生じることを防止でき、不均一な温度分布が原因で溶湯ノズル11A,11Bが損傷する可能性を低減できる。特に本実施形態のガス噴射器70では、その中心軸Cg0を基準として対称に溶湯ノズル挿入孔12A,12B、噴射孔9、及びガス流路50が設けられているため、中心軸Cg0に直交する面におけるガス噴射器70及び溶湯ノズル11A,11Bの温度分布を均一化できる点がメリットとなる。
 なお、上記実施形態で説明した、溶融金属が蓄えられるるつぼ部(溶解槽)1と、るつぼ部1の底部から下方に向かって設けられ、るつぼ部1の底部から下方に向かって溶融金属が流下する溶湯流路を形成する溶湯ノズル11A,11Bと、を「るつぼ器」と総称することがある。
 <第2実施形態>
 上記の第1実施形態では従前と同径の噴霧槽4に2つの噴霧ノズル20A,20Bを設けたため、各噴霧ノズル20A,20Bから噴霧される微粒子15が噴霧槽4内で凝固前に衝突して変形するおそれがある。本実施形態はこの課題の解決を試みる実施形態の1つである。
 図5は第2実施形態の金属噴霧装置200の斜視図である。なお、図3同様、第1,第2溶湯ノズル11A,11Bの図示を省略している。他の部分については第1実施形態と同じ構成とし説明は省略する。
 図5のガス噴射器70の底面には、隣接する2つの噴霧ノズル20A,20B(言い代えると、2つの溶湯ノズル挿入孔12A,12B)の間に直線状に所定の間隔を介して配置された複数の噴射孔31によってシールガス噴流ノズル30Aが設けられている。複数の噴射孔31が配置される直線はガス噴射器70の中心軸Cg0と交差しており、ガス噴射器70の底面の中心を通過している。各噴射孔31は略鉛直方向に延びる中心軸を有する貫通孔をガス噴射器70の底面に穿つことで形成されている。各噴射孔31には噴射孔9と同様に噴射ガス供給管3から高圧ガスが供給可能に構成されており、各噴射孔31の軸方向である鉛直下方向に高圧ガスを噴射する。これにより噴霧槽4の少なくとも上方の領域(空間)を2つに区画する膜状噴流(エアカーテン,シールガス噴流)35が形成される。
 このように形成した膜状噴流35はエアカーテンとして機能し、第1噴霧ノズル20Aから噴霧された微粒子15(溶湯ノズル11Aから流下される溶融金属)と第2噴霧ノズル20Bから噴霧された微粒子15(溶湯ノズル11Bから流下される溶融金属)が衝突することを防止する。その結果、変形した金属粒子の発生が防止され、第1実施形態よりも金属粉末の製造効率を向上できる。また、例えば従前と同径の噴霧槽4を利用した場合であっても微粒子15の衝突を防止できるので、噴霧槽4の取り替えコストや設置スペースの増大を防止することもできる。
 なお、複数の噴射孔31は、粒子同士の衝突防止の観点からは図5に示すようにガス噴射器70の底面を横断するように配置することが好ましいが、粒子同士の衝突が頻繁に起こると予測される部分(例えば、中心軸Cg0付近)にだけ集中して配置し他の部分への配置は省略しても良い。上記の例では複数の噴射孔31を直線状に配置したが曲線状に配置しても良い。また、ガス噴射器70の内部を区画し、噴射孔31には噴射孔9とは異なる圧力や種類のガスの供給を可能にしても良い。
 <第3実施形態>
 本実施形態は第2実施形態の変形例であり、次に説明するように金属噴霧装置200(ガス噴射器70)を構成しても膜状噴流35によって微粒子15同士の衝突を防止できる。
 図6は第3実施形態の金属噴霧装置200の斜視図である。なお、図3等と同様、第1,第2溶湯ノズル11A,11Bの図示を省略している。他の部分については第1実施形態と同じ構成とし説明は省略する。
 図6のガス噴射器70の底面には、シールガス噴流ノズル30Bとして、隣接する2つの噴霧ノズル20A,20Bの間に直線状に延びる細長い隙間であるスリット32が設けられている。スリット32はガス噴射器70の中心軸Cg0と交差しており、ガス噴射器70の底面の中心を通過している。スリット32は貫通孔をガス噴射器70の底面に穿つことで形成されている。スリット32には噴射孔9と同様に噴射ガス供給管3から高圧ガスが供給可能に構成されており、スリット32から鉛直下方向に高圧ガスを噴射する。これにより噴霧槽4の少なくとも上方の領域を2つに区画する膜状噴流(エアカーテン)35が形成される。
 このように形成した膜状噴流35は、第1噴霧ノズル20Aから噴霧された微粒子15と第2噴霧ノズル20Bから噴霧された微粒子15が衝突することを防止するので、変形した金属粒子の発生が防止され、第1実施形態よりも金属粉末の製造効率を向上できる。
 なお、スリット32は、粒子同士の衝突防止の観点からは図6に示すようにガス噴射器70の底面を横断するように配置することが好ましいが、粒子同士の衝突が頻繁に起こると予測される部分(例えば、中心軸Cg0付近)にだけ集中して配置し他の部分への配置は省略しても良い。また、ガス噴射器70の内部を区画し、スリット32には噴射孔9とは異なる圧力や種類のガスの供給を可能にしても良い。
 <第4実施形態>
 本実施形態は、上記の第2,第3実施形態と同じ課題(隣接する2つの噴霧ノズル20A,20Bから噴霧される凝固前の微粒子15の衝突・変形)の解決を試みる実施形態の1つであり、第1実施形態の複数のガス噴射ノズル2A,2Bを所定角度θだけチルトしたものに相当する。
 図7は第4実施形態の金属噴霧装置200の斜視図であり,図8はガス噴射器70の中心軸Cg0と後述の2点Tc1,Tc2を含む垂直面によるガス噴射器70の模式断面図である。なお、図7では第1,第2溶湯ノズル11A,11Bの図示を省略しており、図8ではガス噴射器70の外形の断面形状のみを示している。先の実施形態と同じ部分の説明は適宜省略する。
 まず第1実施形態の複数の第1ガス噴射ノズル(第1ガス噴射部)2Aを構成する全ての噴射孔9が配置される円90と同じ中心を有し、複数の第1ガス噴射ノズル2Aを構成する全ての噴射孔9がその内部に含まれる径を有する第1円形面45A(図3参照)を設定する。このとき、図7に示した第4実施形態に係る複数の第1ガス噴射ノズル2Aにおける第1円形面46Aは、図8に示すように、第1円形面45Aの円周上で中心軸Cg0に最も近い点に設定される点(チルト中心)Tc1を中心に上方に当該第1円形面45Aを所定角度θだけチルトしたものに相当する。複数の第2ガス噴射ノズル(第2ガス噴射部)2Bについても同様に第2円形面45B(図示せず)を設定すると、図7の複数の第2ガス噴射ノズル2Bにおける第2円形面46Bは第2円形面45Bの円周上で中心軸Cg0に最も近い点に設定される点(チルト中心)Tc2を中心に上方に当該第2円形面45Bを所定角度θだけチルトしたものに相当する。
 また、図7において、複数の第1ガス噴射ノズル(第1ガス噴射部)2Aと複数の第2ガス噴射ノズル(第2ガス噴射部)2Bを構成する複数の噴射孔9は第1円形面46Aと第2円形面46B上の点であって中心軸Cg0から等距離にある2点Pg1,Pg2を中心とする同一の径の円90の円周上にそれぞれ等間隔で配置されている。2点Pg1,Pg2は複数の第1,第2ガス噴射ノズル2A,2Bの噴射ガスが形成する流体膜に係る第1,第2の逆円錐形状の底面の中心点である。
 第1実施形態と異なり、逆円錐の底面の中心点Pg1は第1溶湯ノズル挿入孔12Aの中心軸Cm1から離れており、複数の噴射孔9が構成する円90の内部に位置している。同様に中心点Pg2も第2溶湯ノズル挿入孔12Bの中心軸Cm2から離れており、複数の噴射孔9が構成する円90の内部に位置している。より具体的には、第1溶湯ノズル挿入孔12Aの開口端と噴射孔9の開口端が重ならない範囲で(つまり、第1溶湯ノズル11Aとそれに対応する複数のガス噴射ノズル2Aが重ならない範囲で)、中心点Pg1よりもガス噴射器70の底面の径方向外側(すなわち噴霧槽4の内側面側)に中心軸Cm1が位置しており、同様に、第2溶湯ノズル挿入孔12Bの開口端と噴射孔9の開口端が重ならない範囲で(つまり、第2溶湯ノズル11Bとそれに対応する複数のガス噴射ノズル2Bが重ならない範囲で)、中心点Pg2よりもガス噴射器70の底面の径方向外側(噴霧槽4の内側面側)に中心軸Cm2が位置している。
 複数の第1ガス噴射ノズル2Aの噴射ガスが形成する流体膜に係る第1の逆円錐形状の底面(すなわち円90)の中心点Pg1とその頂点(第1焦点26)を結ぶ直線41Aと、同様に複数の第2ガス噴射ノズル2Bが形成する流体膜に係る第2の逆円錐形状の底面(すなわち円90(ただし図示せず))の中心点Pg2とその頂点(第2焦点26)を結ぶ直線41Bとを定義する。そして、2つの直線41A,41Bにおいて中心点Pg1,Pg2から第1,第2焦点26に向かう方向を焦点方向と定義し、図7中ではその方向を矢印で示した。
 本実施形態では、直線41Aと直線41Bとが図7に示すように逆V字を描くように、複数の第1ガス噴射ノズル2Aと複数の第2ガス噴射ノズル2Bにおけるそれぞれの複数の孔9のガス噴射方向25(すなわち噴射孔(貫通孔)9の軸方向)が図9に示すように調整されている。ただし、直線41Aと直線41Bは中心軸Cg0を通過する同一平面上に配置されるように複数の第1ガス噴射ノズル2Aと複数の第2ガス噴射ノズル2Bを構成する複数の孔9のガス噴射方向25をそれぞれ調整することが好ましい。
 図9は図7の複数の第1ガス噴射ノズル2Aを構成する複数の噴射孔9のガス噴射方向と第1溶湯ノズル11Aの溶湯の流下領域27の関係図である。なお、図9では第1溶湯ノズル11Aの図示を省略している。
 この図の複数の第1ガス噴射ノズル(第1ガス噴射部)2Aを構成する複数の噴射孔9はそれぞれ図中に示した直線25と一致する中心軸を有する貫通孔をガス噴射器70の底面に穿つことで形成されている。すなわち本実施形態では複数の第1ガス噴射ノズル2Aに係る全ての噴射孔9の中心軸も図4の状態(第1実施形態の状態)からθだけチルトしており、焦点26の方向がθだけ噴霧槽4の内側面に向かって傾いている。
 また、図9において、第1焦点26は第1溶湯ノズル11A(図9には図示せず)から流下する溶融金属の外形によって規定される略円柱状の流下領域27内に位置している。そして、逆円錐の底面の中心点Pg1よりもガス噴射器70の底面の径方向外側に第1焦点26が位置している。なお、説明は省略するが、複数の第2ガス噴射ノズル2Bに係る逆円錐の底面の中心点Pg1とその頂点である第2焦点26も第1ガス噴射ノズル2Aの中心点Pg1と第1焦点26と同様の位置関係で配置されている。
 -動作・効果-
 上記のように構成される金属粉末製造装置において、噴射ガス供給管3から高圧ガスを供給すると、複数の第1ガス噴射ノズル2A及び第2ガス噴射ノズル2Bを構成する全ての噴射孔9から予め定められた噴射方向(直線25)に従って同じ圧力の高圧ガスが噴射される。このとき、第1ガス噴射ノズル2A及び第2ガス噴射ノズル2Bでは、それぞれの焦点(第1焦点、第2焦点)26に対してガスが集中噴射され、図9に示すような焦点26を頂点とし複数の噴射孔9が配置された円を底面とする逆円錐状(第1の逆円錐形状,第2の逆円錐形状)の流体膜が形成される。このときの逆円錐は所定角度θだけチルトしているが、第1実施形態と同様に円錐底面の中心Pg1,Pg2と頂点を結ぶ直線41A,41Bが円錐底面と直交する直円錐となる。
 一方、第1溶湯ノズル11Aと第2溶湯ノズル11Bを介して流下する溶湯流8は、複数の第1ガス噴射ノズル2A及び第2ガス噴射ノズル2Bに係る2つの焦点26の近傍で高圧ガスが形成するチルトした逆円錐状(直円錐状)の流体膜と衝突して多数の微粒子15に粉砕される。その際、微粒子15はチルトした複数の第1ガス噴射ノズル2Aと複数の第2ガス噴射ノズル2Bによって噴霧槽4の径方向外側(噴霧槽4の内側面側)に向かう速度を付与されて図7に示すように噴霧槽4の内側面に向かって飛散する。すなわち第1噴霧ノズル20Aから噴霧される微粒子15と第2噴霧ノズル20Bから噴霧される微粒子15は異なる方向に向かって飛散するので、噴霧槽4内の落下中に衝突して変形することが防止できる。したがって、本実施形態によれば、第1実施形態よりも金属粉末の製造効率を向上できる。
 なお、第4実施形態として説明したものよりも所望の粒径の金属粉の収率は低下する可能性もあるが、第1実施形態の構成において複数の噴射孔9のガス噴射方向(中心軸の方向)を適宜変更して複数のガス噴射ノズル2A,2Bがガスで形成する流体膜を直円錐から斜円錐に代えても噴霧槽4の内側面側に向かう速度を微粒子15に付与することができるので、微粒子15同士が衝突することを防止できる。
 なお、微粒子15同士の衝突回避の観点からは、第1噴霧ノズル20Aから噴霧される微粒子15と第2噴霧ノズル20Bから噴霧される微粒子15の水平方向における飛散方向を正反対にすることが好ましく、そのためには中心軸Cg0と2つの中心点Pg1,Pg2が同一平面に位置するように複数の第1ガス噴射ノズル2Aと複数の第2ガス噴射ノズル2Bを設けることが好ましい。
 また、上記では説明を簡略化するため2つの噴霧ノズル20A,20Bに係るガス噴射ノズル2A,2Bのチルト角を一致させたが、両者のチルト角は異ならせても良い。
 <第5実施形態>
 本実施形態では複数の噴霧ノズル20A,20Bの噴霧条件をそれぞれ異ならせることにより1基のガスアトマイズ装置(金属粉末製造装置)で製造される金属粉末の粒径分布(「粒度分布」とも称する)を制御可能としている点に特徴がある。
 上記第1-第4実施形態のように複数の噴霧ノズル20A,20Bで噴霧条件を同一にすると、通常、図10に示すように、製造される金属粉末の粒径分布はその噴霧条件によって規定される平均粒径(平均直径)をピークとする正規分布となる。すなわち噴霧条件を同一にすると、製造される金属粉末の粒径は1つのピーク値に集中する傾向がある。しかしながら種々のユーザの希望する粒径が常に当該ピーク値に一致するとは限らず、当該ピーク値から外れた粒径(例えばμ(平均)±σ(標準偏差)の範囲(1σ区間)を外れた粒径)の粉末や、比較的広範囲(例えば1σ区間よりも広い区間)の粒径の粉末を希望するユーザも存在し得る。したがって、このようなニーズがあった場合には、金属粉末の粒度分布が1つのピークを有する正規分布となるガスアトマイズ装置(すなわち、各噴霧ノズルの噴霧条件が同一のガスアトマイズ装置)では金属粉末の収率が低下する可能性がある。
 そこで本実施形態では複数の噴霧ノズル20A,20Bのそれぞれの噴霧条件を異ならせることとした。具体的に変更可能な噴霧条件としては、例えば、(1)複数のガス噴射ノズル2から噴射されるガス流体の噴射圧、(2)複数のガス噴射ノズル2における噴射孔9の角度、(3)複数のガス噴射ノズル2における噴射孔9の径、(4)複数のガス噴射ノズル2における噴射孔9の数、(5)溶湯ノズル11の最小孔径(オリフィス径)、(6)溶湯ノズル11の先端形状がある。次にこれらの噴霧条件を実現するための構造について図11-図15を用いて説明する。
 噴霧条件(1):複数のガス噴射ノズル2から噴射されるガス流体の噴射圧 
 図11は噴霧ノズル20Aに係るガス噴射ノズル2Aと噴霧ノズル20Bに係るガス噴射ノズル2Bから噴射されるガス流体(高圧ガス)の噴射圧をそれぞれ異ならせることが可能な金属噴霧装置210周辺の断面図である。この図の金属噴霧装置210は、2つのガス噴射ノズル2A,2Bで共通のガス流路50を利用した第1実施形態と異なり、圧力の異なるガス供給源(図示せず)に接続された独立した内部流路50A,50Bを備えている。各内部流路50A,50Bには異なる噴射ガス供給管3A,3Bを介して圧力の異なるガス供給源からガス流体が供給されており、ガス噴射ノズル2A,2Bからは噴射圧の異なるガス流体が噴射される。
 例えば、内部流路50Bに相対的に高圧なガスを導入し、ガス噴射ノズル2Bからガス噴射ノズル2Aよりも高圧のガス流体を噴射すると、第2溶湯ノズル11Bから流下する溶融金属はガス噴射ノズル2Bから噴射される高圧ガスによって第1溶湯ノズル11Aから流下する溶融金属よりも細かく粉砕されるので、噴霧ノズル20Bから噴霧される金属の粒度は噴霧ノズル20Aから噴霧されるものに比べて細粒化される。すなわちガス噴射ノズル2から噴射されるガス流体の噴射圧を増加するほど金属粉末は細粒化される傾向がある。これによりガス噴射圧の異なる2つの噴霧ノズル20A,20Bから噴霧される金属の粒度分布が異なることとなり、例えば図17に示すように金属粉末の粒度分布に2つのピーク(平均粒径μ1,μ2)が現れる。図17において仮に噴霧ノズル20Aから噴霧された金属粉末の平均粒径をμ1とすると、噴霧ノズル20Bから噴霧された金属粉末の平均粒径はμ1に比して小さいμ2となる。これにより、この場合の金属粉末の粒径分布は、2つの噴霧ノズル20A,20Bの噴霧条件によって規定される平均粒径μ1,μ2の異なる2つの正規分布を合成した分布となる。したがって、噴霧ノズル20A,20Bの噴霧条件が同一だった場合(図10参照)に比べて広範囲の粒度を有する金属粉末を一度に製造することができる。
 図16は、基準となる噴霧ノズル(図中では「比較例」と表記しており、例えば第1実施形態の噴霧ノズル20A,20Bのいずれか)に対して、上記噴霧条件(1)-(6)のいずれかを変更した6つの実施例から得られる金属粉末の粒度の傾向を表形式でまとめた図である。
 図16の実施例1は、比較例(ここでは第1実施形態の噴霧ノズル20A)に対して上記の噴霧条件(1)を変更した図11の噴霧ノズル20Bに相当し、ガス流路(内部流路50A,50B)の独立化によりガス噴射ノズル2の噴射ガス圧の値を比較例の1.5倍としたものである。この場合、実施例1の噴霧ノズルによる金属粉末の粒度は比較例に比して細粒となる。
 噴霧条件(2):複数のガス噴射ノズル2における噴射孔9の角度 
 図12は噴霧ノズル20Aに係るガス噴射ノズル2Aの噴射孔9aと噴霧ノズル20Bに係るガス噴射ノズル2Bの噴射孔9の角度(傾斜角度)をそれぞれ異ならせた金属噴霧装置220周辺の断面図である。噴射孔9(噴射孔9a)の角度は、図中に示すように、噴射孔9(噴射孔9a)の中心軸25と第2溶湯ノズル挿入孔12Bの中心軸Cm2(第1溶湯ノズル挿入孔12Aの中心軸Cm1)のなす角θ9(θ9a)で定義することができる(但し、θ9とθ9aは90度未満とする)。この図の金属噴霧装置220は、2つのガス噴射ノズル2A,2Bで共通した噴射孔9の角度を利用した第1実施形態と異なり、ガス噴射ノズル2Aに属する複数の噴射孔9aの角度θ9aと、ガス噴射ノズル2Bに属する複数の噴射孔9の角度θ9とを異ならせている。具体的には、ガス噴射ノズル2Aに属する複数の噴射孔9aの角度θ9aは、ガス噴射ノズル2Bに属する複数の噴射孔9の角度θ9よりも小さく設定されている。
 図12に示すようにガス噴射ノズル2B(噴霧ノズル20B)に属する複数の噴射孔9の角度θ9よりもガス噴射ノズル2A(噴霧ノズル20A)に属する複数の噴射孔9aの角度θ9aを小さくすると、噴霧ノズル20Aから噴霧される金属の粒度は噴霧ノズル20Bから噴霧されるものに比べて粗粒化される。すなわち噴射孔9,9aの角度を低減するほど金属粉末は粗粒化される傾向がある(換言すると、噴射孔9,9aの角度を増加するほど(水平に近づけるほど)金属粉末は細粒化される傾向がある)。これにより噴射孔9,9aの角度の異なる2つの噴霧ノズル20A,20Bから噴霧される金属の粒度分布が異なることとなり、例えば図17に示すように金属粉末の粒度分布に2つのピーク(平均粒径μ1,μ2)が現れる。図17において仮に噴霧ノズル20Aから噴霧された金属粉末の平均粒径をμ1とすると、噴霧ノズル20Bから噴霧された金属粉末の平均粒径はμ1に比して小さいμ2となる。すなわち、噴霧条件(1)を変更した上記の場合と同様に、噴霧ノズル20A,20Bの噴霧条件が同一だった場合(図10参照)に比べて広範囲の粒度を有する金属粉末を一度に製造することができる。
 図16の実施例2は、比較例(ここでは第1実施形態の噴霧ノズル20B)に対して上記の噴霧条件(2)を変更した図12の噴霧ノズル20Aに相当し、噴射孔9aの角度θ9aを比較例の角度θ9から10度低減した値としたものである。この場合、実施例2の噴霧ノズル20Aによる金属粉末の粒度は比較例に比して粗粒となる。
 噴霧条件(3):複数のガス噴射ノズル2における噴射孔9の径 
 図13は噴霧ノズル20Aに係るガス噴射ノズル2Aの噴射孔9と噴霧ノズル20Bに係るガス噴射ノズル2Bの噴射孔9の径をそれぞれ異ならせた金属噴霧装置230周辺の断面図である。この図の金属噴霧装置230は、2つのガス噴射ノズル2A,2Bで共通した噴射孔9の径を利用した第1実施形態と異なり、ガス噴射ノズル2Aに属する複数の噴射孔9の径と、ガス噴射ノズル2Bに属する複数の噴射孔9rの径とを異ならせている。具体的には、ガス噴射ノズル2Bに属する複数の噴射孔9rの径は、ガス噴射ノズル2Aに属する複数の噴射孔9の径よりも大きく設定されている。
 図13に示すようにガス噴射ノズル2A(噴霧ノズル20A)に属する複数の噴射孔9の径よりもガス噴射ノズル2B(噴霧ノズル20B)に属する複数の噴射孔9rの径を大きくするとガス噴射ノズル2Bのガス量が増加し、噴霧ノズル20Bから噴霧される金属の粒度は噴霧ノズル20Aから噴霧されるものに比べて細粒化される。すなわち噴射孔9,9rの径を増加するほど金属粉末は細粒化される傾向がある(換言すると、噴射孔9,9rの径を低減するほど金属粉末は粗粒化される傾向がある)。これにより噴射孔9,9rの径の異なる2つの噴霧ノズル20A,20Bから噴霧される金属の粒度分布が異なることとなり、例えば図17に示すように金属粉末の粒度分布に2つのピーク(平均粒径μ1,μ2)が現れる。図17において仮に噴霧ノズル20Aから噴霧された金属粉末の平均粒径をμ1とすると、噴霧ノズル20Bから噴霧された金属粉末の平均粒径はμ1に比して小さいμ2となる。すなわち、噴霧条件(1)を変更した上記の場合と同様に、噴霧ノズル20A,20Bの噴霧条件が同一だった場合(図10参照)に比べて広範囲の粒度を有する金属粉末を一度に製造することができる。
 図16の実施例3は、比較例(ここでは第1実施形態の噴霧ノズル20A)に対して上記の噴霧条件(3)を変更した図13の噴霧ノズル20Bに相当し、噴射孔9rの径を比較例の噴射孔9の径の2倍に増大した値としたものである。この場合、実施例3の噴霧ノズル20Bによる金属粉末の粒度は比較例に比して細粒となる。
 噴霧条件(4):複数のガス噴射ノズル2における噴射孔9の数 
 この噴霧条件(4)に係る金属噴霧装置(図示せず)は、2つのガス噴射ノズル2A,2Bで共通した噴射孔9の数を利用した第1実施形態と異なり、ガス噴射ノズル2Aに属する複数の噴射孔9の数と、ガス噴射ノズル2Bに属する複数の噴射孔9rの数とを異ならせている。例えば、ガス噴射ノズル2Bに属する複数の噴射孔9の数を、ガス噴射ノズル2Aに属する複数の噴射孔9の数よりも多く設定した金属噴霧装置がある。このようにガス噴射ノズル2A(噴霧ノズル20A)に属する複数の噴射孔9の数よりもガス噴射ノズル2B(噴霧ノズル20B)に属する複数の噴射孔9の数を多く設けるとガス噴射ノズル2Bのガス量が増加し、噴霧ノズル20Bから噴霧される金属の粒度は噴霧ノズル20Aから噴霧されるものに比べて細粒化される。すなわち噴射孔9の数を増加するほど金属粉末は細粒化される傾向がある(換言すると、噴射孔9の数を低減するほど金属粉末は粗粒化される傾向がある)。これにより噴射孔9の数の異なる2つの噴霧ノズル20A,20Bから噴霧される金属の粒度分布が異なることとなり、例えば図17に示すように金属粉末の粒度分布に2つのピーク(平均粒径μ1,μ2)が現れる。図17において仮に噴霧ノズル20Aから噴霧された金属粉末の平均粒径をμ1とすると、噴霧ノズル20Bから噴霧された金属粉末の平均粒径はμ1に比して小さいμ2となる。すなわち、噴霧条件(1)を変更した上記の場合と同様に、噴霧ノズル20A,20Bの噴霧条件が同一だった場合(図10参照)に比べて広範囲の粒度を有する金属粉末を一度に製造することができる。
 図16の実施例4は、比較例(ここでは第1実施形態の噴霧ノズル20A)に対して上記の噴霧条件(4)を変更した上記例における噴霧ノズル20Bに相当し、噴射孔9の数を比較例の噴射孔9の数の2倍に増大した値としたものである。この場合、実施例4の噴霧ノズル20Bによる金属粉末の粒度は比較例に比して細粒となる。
 噴霧条件(5):溶湯ノズル11の最小孔径(オリフィス径) 
 図14は噴霧ノズル20Aに第1溶湯ノズル11Aの最小孔径60aと噴霧ノズル20Bに係る第2溶湯ノズル11Bの最小孔径60bをそれぞれ異ならせた金属噴霧装置240周辺の断面図である。この図の金属噴霧装置240は、2つの第1溶湯ノズル11A,11Bで共通した最小孔径を利用した第1実施形態と異なり、第1溶湯ノズル11Aの最小孔径60aと、第2溶湯ノズル11Bの最小孔径60bとを異ならせている。具体的には、第1溶湯ノズル11Aの最小孔径60aは、第2溶湯ノズル11Bの最小孔径60bよりも大きく設定されている。なお、図14の2つの溶湯ノズル11A,11Bの孔径は軸方向に沿って一定だが、孔内に他の部分よりも径の小さいオリフィスを設けることで溶湯ノズル11A,11Bの最小孔径を設定しても良く、この場合の最小孔径はオリフィス径に一致する。
 図14に示すように第2溶湯ノズル11B(噴霧ノズル20B)の最小孔径60bよりも第1溶湯ノズル11A(噴霧ノズル20A)の最小孔径60aを大きくして単位時間あたりの出湯量を増加すると、噴霧ノズル20Aから噴霧される金属の粒度は噴霧ノズル20Bから噴霧されるものに比べて粗粒化される。すなわち最小孔径60a,60bを増加するほど金属粉末は粗粒化される傾向がある(換言すると、最小孔径60a,60bを低減するほど金属粉末は細粒化される傾向がある)。これにより最小孔径60a,60bの異なる2つの噴霧ノズル20A,20Bから噴霧される金属の粒度分布が異なることとなり、例えば図17に示すように金属粉末の粒度分布に2つのピーク(平均粒径μ1,μ2)が現れる。図17において仮に噴霧ノズル20Aから噴霧された金属粉末の平均粒径をμ1とすると、噴霧ノズル20Bから噴霧された金属粉末の平均粒径はμ1に比して小さいμ2となる。すなわち、噴霧条件(1)を変更した上記の場合と同様に、噴霧ノズル20A,20Bの噴霧条件が同一だった場合(図10参照)に比べて広範囲の粒度を有する金属粉末を一度に製造することができる。
 図16の実施例5は、比較例(ここでは第1実施形態の噴霧ノズル20B)に対して上記の噴霧条件(5)を変更した図14の噴霧ノズル20Aに相当し、最小孔径60a(オリフィス径)を比較例の値の1.5倍に増大した値としたものである。この場合、実施例5の噴霧ノズル20Aによる金属粉末の粒度は比較例に比して粗粒となる。
 噴霧条件(6):溶湯ノズル11の先端形状 
 図15Aは噴霧ノズル20Aに係る第1溶湯ノズル11Aの先端形状65aと噴霧ノズル20Bに係る第2溶湯ノズル11Bの先端形状65bをそれぞれ異ならせた金属噴霧装置250周辺の断面図であり、図15Bは第1,第2溶湯ノズル11A,11Bの先端部の拡大図である。これらの図の金属噴霧装置250は、2つの第1溶湯ノズル11A,11Bで共通した先端形状を利用した第1実施形態と異なり、第1溶湯ノズル11Aの先端形状65aと、第2溶湯ノズル11Bの先端形状65bとを異ならせている。図15Aおよび図15Bの例では先端形状として溶湯ノズル11A,11Bの先端角度θ65a,θ65bを異ならせている。図15Bに示すように、溶湯ノズル11A,11Bの先端角度θ65a,θ65bは、溶湯ノズル11A,11Bの先端部の軸方向断面における外形形状が溶湯ノズル11A,11Bの中心軸(溶湯ノズル挿入孔12A,12Bの中心軸Cm1,Cm2)となす角θ65a,θ65bで規定できる。図15Aおよび図15Bの例では、第1溶湯ノズル11Aの先端角度θ65aは略90度であり、第2溶湯ノズル11Bの先端角度θ65bよりも大きく設定されている。
 図15Aに示すように第2溶湯ノズル11B(噴霧ノズル20B)の先端角度θ65bよりも第1溶湯ノズル11A(噴霧ノズル20A)の先端角度θ65aを大きくすると、噴霧ノズル20Aから噴霧される金属の粒度は噴霧ノズル20Bから噴霧されるものに比べて粗粒化される。すなわち先端角度θ65a,θ65bを増加するほど金属粉末は粗粒化される傾向がある(換言すると、先端角度θ65a,θ65bを低減するほど金属粉末は細粒化される傾向がある)。これにより先端角度θ65a,θ65bの異なる2つの噴霧ノズル20A,20Bから噴霧される金属の粒度分布が異なることとなり、例えば図17に示すように金属粉末の粒度分布に2つのピーク(平均粒径μ1,μ2)が現れる。図17において仮に噴霧ノズル20Aから噴霧された金属粉末の平均粒径をμ1とすると、噴霧ノズル20Bから噴霧された金属粉末の平均粒径はμ1に比して小さいμ2となる。すなわち、噴霧条件(1)を変更した上記の場合と同様に、噴霧ノズル20A,20Bの噴霧条件が同一だった場合(図10参照)に比べて広範囲の粒度を有する金属粉末を一度に製造することができる。
 図16の実施例6は、比較例(ここでは第1実施形態の噴霧ノズル20B)に対して上記の噴霧条件(6)を変更した図15Aおよび図15Bの噴霧ノズル20Aに相当し、先端角度θ65aを比較例の値から20度増加した値としたものである。この場合、実施例6の噴霧ノズル20Aによる金属粉末の粒度は比較例に比して粗粒となる。
 以上のように、本実施形態では、複数の噴霧ノズル20A,20Bの噴霧条件を異ならせることにより、1基のガスアトマイズ装置で製造される金属粉末の粒度分布をニーズに合わせて適宜調節することができる。すなわち、上記のように構成した本実施形態によれば、粒度分布に複数のピークを出現させることができ、一度に広範な粒度分布の金属粉末を製造できるので、幅広い顧客ニーズに柔軟に対応できる。
 なお、上記の例では、2つの噴霧ノズル20A,20Bを備えるガスアトマイズ装置を例に挙げて説明したが、3つ以上の噴霧ノズルを備えるガスアトマイズ装置においても噴霧条件を適宜変更することで粒度分布が調整可能になることはいうまでもない。例えば、噴霧ノズルを3つ以上備えるガスアトマイズ装置において各噴霧ノズルで異なる平均粒径の金属粉末を製造可能なように噴霧条件を設定すれば、図18に示すように複数のピークが連続的に重なることで粒度分布の偏りが抑制されたフラットな分布に調節することも可能である。
 また、上記では例示した6通りの噴霧条件(1)-(6)を1つずつ変更する場合について説明したが、6通りの噴霧条件(1)-(6)のうち2つ以上を適宜組み合わせたものを1つの噴霧ノズル20の噴霧条件としても良い。すなわち、複数の噴霧ノズル20における噴霧条件は、上記(1)-(6)の噴霧条件の少なくとも1つによって異ならせることができる。すなわち、複数の溶湯ノズル11には、最小孔径及び先端形状のうち少なくとも一方が他の溶湯ノズル11と異なっている溶湯ノズル11が含まれていることがあり,複数のガス噴射ノズル2には、ガス流体の噴射圧、噴射孔の角度、噴射孔の径、及び噴射孔の数のうち少なくとも1つが他のガス噴射ノズル2と異なっているガス噴射ノズル2が含まれていることがある。
 <その他>
 本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。
 上記の実施形態では1つ噴霧槽につき2つの噴霧ノズル20A,20Bを備える場合について説明したが、噴霧ノズル20A,20Bの数は3以上に増加しても構わない。
 また、ガス噴射ノズル2A,2Bから気体(ガス流体)を噴射する場合について説明したが水などの液体を噴射しても構わない。すなわち流体を噴射するノズルであれば本発明は適用できる可能性がある。
 Cg0…金属噴霧装置200の中心軸、Cm1,Cm2…溶湯ノズル挿入孔の中心軸、Pg1,Pg2…逆円錐底面の中心点、Tc1,Tc2…チルト中心、1…溶解槽、2A,2B…ガス噴射ノズル、3…噴射ガス供給管、4…噴霧槽、5…採集ホッパ、6…排気、7…溶融金属(溶湯)、8…溶湯流、9…噴射孔、10…噴射ガスジェット、11A,11B…溶湯ノズル、12…溶湯ノズル挿入孔、15…微粒子、20A,20B…噴霧ノズル、21…溶湯ノズルの開口端、25…ガス噴射方向(噴射孔中心軸)、26…焦点、27…溶湯流下領域、30A,30B…シールガス噴流ノズル、31…噴射孔、32…スリット、35…膜状噴流(エアカーテン)、41…直線(焦点方向)、45…円形面、46…円形面、50…ガス流路、70…ガス噴射器、90…噴射孔9が形成する円、200…金属噴霧装置

Claims (12)

  1.  噴霧槽と、
     前記噴霧槽内に溶融金属を液体噴霧する複数の噴霧ノズルとを備え、
     前記複数の噴霧ノズルはそれぞれ、前記噴霧槽内に向かって溶融金属を流下させる溶湯ノズルと、前記溶湯ノズルの周囲に複数配置され前記溶湯ノズルから流下した溶融金属にガス流体を衝突させるための噴射孔を有する、ガス噴射ノズルとを有することを特徴とする金属粉末製造装置。
  2.  請求項1の金属粉末製造装置において、
     溶融金属が蓄えられるるつぼ部と、該るつぼ部下方に設置されるガス噴射器とを備え、
     前記溶湯ノズルは、前記るつぼ部底部から下方に向かって設けられ、
     前記ガス噴射器は、複数の溶湯ノズル挿入孔と、該複数の溶湯ノズル挿入孔それぞれの周囲にガス流を形成するガス流路とを有し、
     前記噴射孔は、前記ガス噴射器の底面かつ前記複数の溶湯ノズル挿入孔それぞれの開口端の周囲に形成されていることを特徴とする金属粉末製造装置。
  3.  請求項1の金属粉末製造装置において、
     前記複数の噴霧ノズルのうち隣接する2つの噴霧ノズルの間に設けられ、ガス流体を噴射して前記2つの噴霧ノズルから噴霧された溶融金属同士の衝突を抑制するための噴流を形成するシールガス噴流ノズルをさらに備えることを特徴とする金属粉末製造装置。
  4.  請求項3の金属粉末製造装置において、
     前記シールガス噴流ノズルは、ガス流体をそれぞれ噴射する複数の孔であり、
     前記複数の孔は、前記2つの噴霧ノズルの間に線状に配置されることを特徴とする金属粉末製造装置。
  5.  請求項3の金属粉末製造装置において、
     前記シールガス噴流ノズルは、ガス流体をそれぞれ噴射するスリットであり、
     前記スリットは、前記2つの噴霧ノズルの間に配置されることを特徴とする金属粉末製造装置。
  6.  請求項1から5のいずれか1つの金属粉末製造装置において、
     前記複数の噴霧ノズルにおける少なくとも1つの噴霧ノズルでは、前記複数のガス噴射ノズルから噴射されるガス流体の焦点が前記溶湯ノズルから流下される溶融金属の流下領域内に位置し、前記溶湯ノズルの中心軸が、前記溶湯ノズルと前記複数のガス噴射ノズルが重ならない範囲で、前記複数のガス噴射ノズルの噴射孔が形成する円の中心より前記噴霧槽の内側面側に位置することを特徴とする金属粉末製造装置。
  7.  請求項1の金属粉末製造装置において、
     前記複数の噴霧ノズルにおける噴霧条件はそれぞれ異なっていること特徴とする金属粉末製造装置。
  8.  請求項7の金属粉末製造装置において、
     前記複数の噴霧ノズルにおける噴霧条件は、前記複数のガス噴射ノズルから噴射されるガス流体の噴射圧、前記複数のガス噴射ノズルにおける噴射孔の角度、前記複数のガス噴射ノズルにおける噴射孔の径、前記複数のガス噴射ノズルにおける噴射孔の数、前記溶湯ノズルの最小孔径、及び前記溶湯ノズルの先端形状の少なくとも1つによって異なっていることを特徴とする金属粉末製造装置。
  9.  金属粉末製造装置のガス噴射器であって、
     溶融金属が流下する溶湯ノズルが挿入される溶湯ノズル挿入孔を複数有し、
     該複数の溶湯ノズル挿入孔それぞれの周囲にガス流を形成するガス流路と、
     前記複数の溶湯ノズル挿入孔ごとに設けられ、前記溶湯ノズル挿入孔の開口端より前記ガス噴射器の外側に向かって前記ガス流路内のガスを噴射するガス噴射ノズルとを備え、
     前記ガス噴射ノズルは、前記ガス噴射器の底面かつ前記溶湯ノズル挿入孔の開口端の周囲に複数形成された噴射孔からなることを特徴とするガス噴射器。
  10.  金属粉末製造装置のるつぼ器であって、
     溶融金属が蓄えられるるつぼ部と、
     前記るつぼ部底部から下方に向かって設けられ、前記るつぼ部底部から下方に向かって前記溶融金属が流下する溶湯流路を形成する、複数の溶湯ノズルとを備え、
     前記溶湯ノズルは請求項9のガス噴射器の前記溶湯ノズル挿入孔に挿入される、ことを特徴とするるつぼ器。
  11.  請求項9のガス噴射器において、
     前記複数の溶湯ノズル挿入孔ごとに設けられたガス噴射ノズルには、ガス流体の噴射圧、噴射孔の角度、噴射孔の径、及び噴射孔の数のうち少なくとも1つが他のガス噴射ノズルと異なっているガス噴射ノズルが含まれていることを特徴とするガス噴射器。
  12.  請求項9のガス噴射器において、
     前記複数の溶湯ノズル挿入孔のうち隣接する2つの溶湯ノズル挿入孔の間に設けられ、ガス流体を噴射して前記複数の溶湯ノズルから流下される溶融金属同士の衝突を抑制するための噴流を形成するシールガス噴流ノズルを前記ガス噴射器の底面に備えることを特徴とするガス噴射器。
PCT/JP2018/045159 2017-12-07 2018-12-07 金属粉末製造装置並びにそのガス噴射器及びるつぼ器 WO2019112052A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2018379291A AU2018379291B2 (en) 2017-12-07 2018-12-07 Metal powder manufacturing device, gas injector for same, and crucible
KR1020197036913A KR102262760B1 (ko) 2017-12-07 2018-12-07 금속 분말 제조 장치, 그리고 그 가스 분사기 및 도가니
CA3067702A CA3067702C (en) 2017-12-07 2018-12-07 Metal-powder manufacturing apparatus, and gas jet device and crucible container thereof
US16/624,658 US11602789B2 (en) 2017-12-07 2018-12-07 Metal-powder producing apparatus, and gas jet device and crucible container thereof
EP18885297.4A EP3722029A4 (en) 2017-12-07 2018-12-07 METAL POWDER MANUFACTURING DEVICE, ASSOCIATED GAS INJECTOR, AND CRUCIBLE
JP2019558305A JP6906631B2 (ja) 2017-12-07 2018-12-07 金属粉末製造装置並びにそのガス噴射器及びるつぼ器
CN201880078393.4A CN111432963B (zh) 2017-12-07 2018-12-07 金属粉末制造装置及其气体喷射器以及罐器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017235314 2017-12-07
JP2017-235314 2017-12-07

Publications (1)

Publication Number Publication Date
WO2019112052A1 true WO2019112052A1 (ja) 2019-06-13

Family

ID=66750464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045159 WO2019112052A1 (ja) 2017-12-07 2018-12-07 金属粉末製造装置並びにそのガス噴射器及びるつぼ器

Country Status (8)

Country Link
US (1) US11602789B2 (ja)
EP (1) EP3722029A4 (ja)
JP (2) JP6906631B2 (ja)
KR (1) KR102262760B1 (ja)
CN (1) CN111432963B (ja)
AU (1) AU2018379291B2 (ja)
CA (1) CA3067702C (ja)
WO (1) WO2019112052A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3967425A1 (en) 2020-09-11 2022-03-16 Mitsubishi Power, Ltd. Metal powder producing apparatus and gas jet device therefor
CN114850481A (zh) * 2021-02-03 2022-08-05 三菱重工业株式会社 金属粉末制造装置
USD982628S1 (en) 2020-08-12 2023-04-04 Mitsubishi Heavy Industries, Ltd. Gas injector for metal powder manufacturing equipment
USD982627S1 (en) 2021-02-10 2023-04-04 Mitsubishi Heavy Industries, Ltd. Gas injector for metal powder manufacturing equipment
EP4219046A1 (en) 2022-01-31 2023-08-02 Mitsubishi Heavy Industries, Ltd. Metal powder manufacturing apparatus and control method thereof
CN116984618A (zh) * 2023-09-28 2023-11-03 季华实验室 一种气雾化设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111804925B (zh) * 2020-09-11 2020-12-11 陕西斯瑞新材料股份有限公司 一种基于VIGA工艺制备GRCop-42球形粉的方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190502A (ja) * 1984-03-12 1985-09-28 Sumitomo Light Metal Ind Ltd 急冷凝固金属粉末の製造方法
JPH05202404A (ja) * 1992-01-24 1993-08-10 Teikoku Piston Ring Co Ltd 溶湯ガスアトマイズ用ノズル
JPH0649512A (ja) * 1992-08-03 1994-02-22 Hitachi Metals Ltd ガス噴霧金属粉末製造装置
JPH0873905A (ja) * 1994-09-09 1996-03-19 Sumitomo Metal Ind Ltd 金属微粉末の製造装置
JPH08506382A (ja) * 1993-02-06 1996-07-09 オスプリ メタルズ リミテッド 粉体の製法
JP2009035801A (ja) * 2007-08-03 2009-02-19 Dowa Metals & Mining Co Ltd 銅の製造方法
JP2013527311A (ja) * 2010-03-29 2013-06-27 グリレム アドバンスド マテリアルズ カンパニー リミティッド 高速冷却合金の製造方法及び機器
JP2016211027A (ja) 2015-05-01 2016-12-15 大同特殊鋼株式会社 金属粉末の製造方法及び製造装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3009205A (en) * 1958-04-28 1961-11-21 American Metal Climax Inc Method of making metal powder
GB1272229A (en) * 1968-11-27 1972-04-26 British Iron Steel Research Improvements in and relating to the treatment of molten material
US4272463A (en) 1974-12-18 1981-06-09 The International Nickel Co., Inc. Process for producing metal powder
JPS63169308A (ja) * 1987-01-05 1988-07-13 Kobe Steel Ltd 粉末冶金用金属微粉末の製造方法
JP2580616B2 (ja) * 1987-09-09 1997-02-12 大同特殊鋼株式会社 球状金属粉末の製造方法
JPH01246305A (ja) * 1988-03-28 1989-10-02 Sumitomo Metal Ind Ltd 見掛密度の低い微粉末の製造方法
JP2993029B2 (ja) * 1990-02-08 1999-12-20 大同特殊鋼株式会社 金属粉末の製造方法
JP2721576B2 (ja) * 1990-04-27 1998-03-04 株式会社神戸製鋼所 アトマイズ用溶湯ノズル
CA2040968A1 (en) * 1991-04-23 1992-10-24 Gordon R. Dunstan Oscillating spray apparatus
WO2001087491A1 (en) * 2000-05-16 2001-11-22 Regents Of The University Of Minnesota High mass throughput particle generation using multiple nozzle spraying
JP2002105514A (ja) 2000-10-03 2002-04-10 Sumitomo Metal Ind Ltd 金属粉末の製造装置および製造方法
JP5209248B2 (ja) * 2007-08-03 2013-06-12 Dowaメタルマイン株式会社 銅電解液原料の製造方法及びこれを用いた銅の製造方法
JP2010090421A (ja) * 2008-10-06 2010-04-22 Seiko Epson Corp 金属粉末製造装置
JP2012000592A (ja) 2010-06-18 2012-01-05 Kobe Steel Ltd 高温溶湯のガスアトマイザー
KR101803925B1 (ko) * 2011-03-04 2017-12-04 주식회사 다함이엔씨 금속분말 제조장치 및 금속분말 제조방법
WO2013146624A1 (ja) * 2012-03-28 2013-10-03 藤崎電機株式会社 液体噴射装置及び液体噴射方法
CN105903975B (zh) 2016-06-06 2018-06-29 江苏威拉里新材料科技有限公司 一种用于雾化金属粉末生产方法的设备
JP6982015B2 (ja) * 2019-02-04 2021-12-17 三菱パワー株式会社 金属粉末製造装置及びそのガス噴射器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190502A (ja) * 1984-03-12 1985-09-28 Sumitomo Light Metal Ind Ltd 急冷凝固金属粉末の製造方法
JPH05202404A (ja) * 1992-01-24 1993-08-10 Teikoku Piston Ring Co Ltd 溶湯ガスアトマイズ用ノズル
JPH0649512A (ja) * 1992-08-03 1994-02-22 Hitachi Metals Ltd ガス噴霧金属粉末製造装置
JPH08506382A (ja) * 1993-02-06 1996-07-09 オスプリ メタルズ リミテッド 粉体の製法
JPH0873905A (ja) * 1994-09-09 1996-03-19 Sumitomo Metal Ind Ltd 金属微粉末の製造装置
JP2009035801A (ja) * 2007-08-03 2009-02-19 Dowa Metals & Mining Co Ltd 銅の製造方法
JP2013527311A (ja) * 2010-03-29 2013-06-27 グリレム アドバンスド マテリアルズ カンパニー リミティッド 高速冷却合金の製造方法及び機器
JP2016211027A (ja) 2015-05-01 2016-12-15 大同特殊鋼株式会社 金属粉末の製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.M. GERMAN: "Powder metallurgy science", 25 June 1996, UCHIDA ROKAKUHO PUBLISHING CO. LTD., Tokyo, ISBN: 4-7536-5091-X, article R. M. GERMAN: "Passage, Powder metallurgy science", pages: 102 - 111, XP009517921 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD982628S1 (en) 2020-08-12 2023-04-04 Mitsubishi Heavy Industries, Ltd. Gas injector for metal powder manufacturing equipment
JP7218335B2 (ja) 2020-09-11 2023-02-06 三菱重工業株式会社 金属粉末製造装置及びそのガス噴射器
US20220080503A1 (en) * 2020-09-11 2022-03-17 Mitsubishi Power, Ltd. Metal powder producing apparatus and gas jet device therefor
KR20220034671A (ko) 2020-09-11 2022-03-18 미츠비시 파워 가부시키가이샤 금속 분말 제조 장치 및 그 가스 분사기
JP2022046880A (ja) * 2020-09-11 2022-03-24 三菱重工業株式会社 金属粉末製造装置及びそのガス噴射器
EP3967425A1 (en) 2020-09-11 2022-03-16 Mitsubishi Power, Ltd. Metal powder producing apparatus and gas jet device therefor
CN114850481A (zh) * 2021-02-03 2022-08-05 三菱重工业株式会社 金属粉末制造装置
EP4039393A1 (en) 2021-02-03 2022-08-10 Mitsubishi Heavy Industries, Ltd. Metal powder production apparatus
KR20220112187A (ko) 2021-02-03 2022-08-10 미츠비시 파워 가부시키가이샤 금속 분말 제조 장치
CN114850481B (zh) * 2021-02-03 2023-12-01 三菱重工业株式会社 金属粉末制造装置
TWI836332B (zh) * 2021-02-03 2024-03-21 日商三菱重工業股份有限公司 金屬粉末製造裝置
USD982627S1 (en) 2021-02-10 2023-04-04 Mitsubishi Heavy Industries, Ltd. Gas injector for metal powder manufacturing equipment
EP4219046A1 (en) 2022-01-31 2023-08-02 Mitsubishi Heavy Industries, Ltd. Metal powder manufacturing apparatus and control method thereof
KR20230117514A (ko) 2022-01-31 2023-08-08 미츠비시 파워 가부시키가이샤 금속 분말 제조 장치 및 그 제어 방법
CN116984618A (zh) * 2023-09-28 2023-11-03 季华实验室 一种气雾化设备
CN116984618B (zh) * 2023-09-28 2023-12-15 季华实验室 一种气雾化设备

Also Published As

Publication number Publication date
CA3067702C (en) 2023-08-15
AU2018379291A1 (en) 2020-05-21
CA3067702A1 (en) 2019-06-13
KR102262760B1 (ko) 2021-06-09
CN111432963B (zh) 2022-11-25
KR20200007911A (ko) 2020-01-22
JP2020109212A (ja) 2020-07-16
JPWO2019112052A1 (ja) 2020-04-23
EP3722029A4 (en) 2021-09-01
CN111432963A (zh) 2020-07-17
JP6906631B2 (ja) 2021-07-21
AU2018379291B2 (en) 2021-12-23
US20200215615A1 (en) 2020-07-09
US11602789B2 (en) 2023-03-14
EP3722029A1 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
WO2019112052A1 (ja) 金属粉末製造装置並びにそのガス噴射器及びるつぼ器
KR102266202B1 (ko) 금속 분말 제조 장치 및 그 가스 분사기
JP2010090421A (ja) 金属粉末製造装置
US20220080503A1 (en) Metal powder producing apparatus and gas jet device therefor
JP2010090411A (ja) 金属粉末製造装置
JP7296998B2 (ja) 金属粉末製造装置
KR20230129084A (ko) 금속 및 합금 분말 제조용 가스분사장치 및 이를 이용한 가스분사 금속분말 제조장치
JPH04173906A (ja) アトマイズノズル装置
CN117733160A (zh) 一种用于金属粉末制备的雾化成型设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558305

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197036913

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3067702

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018379291

Country of ref document: AU

Date of ref document: 20181207

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885297

Country of ref document: EP

Effective date: 20200707