WO2019112052A1 - 金属粉末製造装置並びにそのガス噴射器及びるつぼ器 - Google Patents
金属粉末製造装置並びにそのガス噴射器及びるつぼ器 Download PDFInfo
- Publication number
- WO2019112052A1 WO2019112052A1 PCT/JP2018/045159 JP2018045159W WO2019112052A1 WO 2019112052 A1 WO2019112052 A1 WO 2019112052A1 JP 2018045159 W JP2018045159 W JP 2018045159W WO 2019112052 A1 WO2019112052 A1 WO 2019112052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- nozzle
- molten metal
- injection
- spray
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details peculiar to crucible or pot furnaces
- F27B14/10—Crucibles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0824—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0848—Melting process before atomisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/088—Fluid nozzles, e.g. angle, distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0888—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting construction of the melt process, apparatus, intermediate reservoir, e.g. tundish, devices for temperature control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a metal powder production apparatus for producing fine particle metal (metal powder) by colliding a high pressure gas fluid with molten metal flowing down from a molten metal nozzle, and a gas injector and a crucible thereof.
- atomizing methods including gas atomizing method and water atomizing method as a method of manufacturing particulate metal (metal powder) from molten metal.
- the gas atomizing method the molten metal is caused to flow down from the molten metal nozzle at the lower part of the dissolving tank storing the molten metal, and the inert gas is blown to the molten metal from a plurality of gas injection nozzles arranged around the molten metal nozzle.
- the flow of molten metal from the molten metal nozzle is divided by the inert gas flow from the gas injection nozzle, becomes a large number of fine metal droplets, falls within the spray tank, and solidifies while being spheroidized by surface tension.
- spherical metal powder is collected in the collection hopper at the bottom of the spray tank.
- Japanese Patent Application Laid-Open No. 2016-211027 discloses a crucible provided at the top of a spray chamber (spray tank) and holding a molten metal, and connected to the bottom of the crucible to blow the inert gas while blowing the inert metal
- An apparatus for producing metal powder having an inlet is disclosed.
- An object of the present invention is to provide a metal powder production apparatus capable of efficiently producing a fine metal powder without changing the shape of a spray tank, and a gas injector and a crucible thereof.
- the present application includes a plurality of means for solving the above problems, and an example thereof includes a spray tank and a plurality of spray nozzles for liquid-spraying molten metal in the spray tank, the plurality of spray nozzles Each has a molten metal nozzle for flowing the molten metal down into the spray tank, and a plurality of gas injection holes disposed around the molten metal nozzle and causing the gas fluid to collide with the molten metal flowing down from the molten metal nozzle. It has a gas injection nozzle.
- fine metal powder can be efficiently produced without changing the type of spray tank.
- the whole block diagram of the gas atomizing apparatus which is a metal powder manufacturing apparatus. Sectional drawing of the periphery of the metal spraying apparatus 200 of the gas atomizing apparatus which concerns on 1st Embodiment. BRIEF DESCRIPTION OF THE DRAWINGS The perspective view of the metal spraying apparatus 200 of 1st Embodiment. The relationship figure of the gas injection direction of the several injection hole 9 which comprises 1st gas injection nozzle 2A, and the flow-down area
- the perspective view of the metal spraying apparatus 200 of 4th Embodiment The schematic cross section of metal spray device 200 by the perpendicular surface containing central axis Cg0 of metal spray device 200, and two points Tc1 and Tc2 mentioned below.
- Sectional drawing of the periphery of an example of the metal spray apparatus of the gas atomizing apparatus which concerns on 5th Embodiment Sectional drawing of the periphery of an example of the metal spray apparatus of the gas atomizing apparatus which concerns on 5th Embodiment. Sectional drawing of the periphery of an example of the metal spray apparatus of the gas atomizing apparatus which concerns on 5th Embodiment. Sectional drawing of the periphery of an example of the metal spray apparatus of the gas atomizing apparatus which concerns on 5th Embodiment. Sectional drawing of the periphery of an example of the metal spray apparatus of the gas atomizing apparatus which concerns on 5th Embodiment. The expansion of the molten metal nozzle in an example of the metal spraying apparatus of the gas atomizing apparatus which concerns on 5th Embodiment.
- FIG. 1 is a whole block diagram of the gas atomizing apparatus which is a metal powder manufacturing apparatus based on this invention.
- the gas atomizing apparatus shown in FIG. 1 includes a dissolving tank (also referred to as a tundish or a crucible) 1 as a container in which molten metal (molten metal) which is a liquid metal is stored, and a dissolving tank 1 through a molten metal nozzle (described later) 11.
- a high-pressure gas is supplied to the metal spray apparatus 200, which sprays a high-pressure gas (gas fluid) onto a molten metal that flows into fine particles and breaks it into a large number of particles and sprays the molten metal.
- the inside of the dissolution tank 1 is preferably maintained in an inert gas atmosphere.
- the spray tank 4 is a cylindrical container having the same diameter in the upper part and the middle part, but from the viewpoint of easiness of recovery of the metal powder by the collection hopper 5, the diameter decreases in the lower part as it approaches the collection hopper 5. It is shaped. An inert gas is appropriately discharged as exhaust gas 6 from the collection hopper 5.
- FIG. 2 is a cross-sectional view of the vicinity of the metal spray device 200 of the gas atomizing device according to the first embodiment
- FIG. 3 is a perspective view of the metal spray device 200 of the first embodiment.
- illustration of 1st, 2nd molten metal nozzle 11A, 11B mentioned later is abbreviate
- the metal spray device 200 is provided with a plurality of molten metal nozzles 11A and 11B for causing the molten metal to flow down into the spray tank 4 and a plurality of gas jet nozzles 2A and 2B disposed below the dissolution tank (crucible portion) 1 And a gas injector 70 to be injected.
- the metal spray device 200 has a plurality of spray nozzles 20A and 20B for liquid-spraying molten metal in the spray tank 4 on the bottom surface of the gas injector 70 facing the spray tank 4.
- the gas atomizing device of the present embodiment includes two spray nozzles, a first spray nozzle 20A and a second spray nozzle 20B.
- the first and second spray nozzles 20A and 20B respectively include molten metal nozzles 11A and 11B that cause the molten metal to flow down into the spray tank 4, and gas injection nozzles 2A and 2B that are disposed around the molten metal nozzles 11A and 11B.
- each spray nozzle 20 has the molten metal nozzle 11 and the gas injection nozzle 2 in a pair.
- the first molten metal nozzle 11 A and the second molten metal nozzle 11 B that make the molten metal in the dissolution tank 1 flow down into the spray tank 4 respectively It projects vertically downward from the bottom of the.
- the first molten metal nozzle 11A and the second molten metal nozzle 11B have the same shape, and have vertically elongated holes extending in the vertical direction in which the molten metal flows down. The vertically elongated holes form a molten metal flow path in which the molten metal flows downward from the bottom of the melting tank (crucible portion) 1 vertically downward.
- a first cylindrical through hole having an axis (Cm1, Cm2) parallel to the axis (Cg0) of the cylinder is used.
- a melt nozzle insertion hole 12A and a second melt nozzle insertion hole 12B are provided.
- the first melt nozzle 11A and the second melt nozzle 11B are inserted into the first melt nozzle insertion hole 12A and the second melt nozzle insertion hole 12B, respectively.
- the dissolution vessel 1 is supported by a gas injector 70.
- illustration is abbreviate
- the centers of the first molten metal nozzle insertion hole 12A and the second molten metal nozzle insertion hole 12B can be arranged on the same straight line as the center of the cylindrical gas injector 70, and the center of the gas injector 70
- the distances from the axis Cg0 to the central axes Cm1 and Cm2 of the first molten metal nozzle insertion hole 12A and the second molten metal nozzle insertion hole 12B can be equal to each other.
- central axes Cm1 and Cm2 of the first melt nozzle insertion hole 12A and the second melt nozzle insertion hole 12B can be made to coincide with the central axes of the holes of the first melt nozzle 11A and the second melt nozzle 11B.
- the open ends 21A and 21B located at the lower ends of the first molten metal nozzle 11A and the second molten metal nozzle 11B are disposed so as to protrude from the bottom surface of the gas injector 70 and to face a cavity in the spray tank 4.
- Molten metal in the melting tank 1 flows down through the holes in the first and second molten metal nozzles 11A and 11B as the molten metal flow 8 and is discharged (flowing down) into the spray tank 4 through the opening ends 21A and 21B. .
- the minimum inner diameters of the first molten metal nozzle 11A and the second molten metal nozzle 11B that contribute to the size of the diameter of the molten metal introduced into the spray tank 4 are, for example, smaller than before You can choose 1-2mm.
- the gas injector 70 has a hollow cylindrical outer shape filled with inert high-pressure gas, and the inside thereof forms a gas flow around each of the plurality of molten metal nozzle insertion holes 12A and 12B.
- the flow path 50 is formed.
- the gas flow path 50 receives high-pressure gas supply from the injection gas supply pipe 3 connected to a gas suction hole (not shown) provided on the side surface of the cylinder of the gas injector 70.
- the gas injector 70 injects the high pressure gas supplied to the gas flow path 50 as a directional injection gas jet (gas jet) 10 through a plurality of injection holes 9 provided on the bottom surface of the gas injector 70. Do.
- the plurality of injection holes 9 are arranged in a circle around the periphery of the spray tank side opening end of the first molten metal nozzle insertion hole 12A and the periphery of the spray tank side opening end of the second molten metal nozzle insertion hole 12B, respectively.
- a plurality of injection holes 9 surrounding the spray tank side opening end of the molten metal nozzle insertion hole 12A are respectively the first gas injection nozzle (first gas injection part) 2A and the spray tank side opening end of the second molten metal nozzle insertion hole 12B
- the plurality of surrounding injection holes 9 respectively constitute a second gas injection nozzle (second gas injection unit) 2B.
- the gas injection nozzles 2A and 2B are provided for each of the plurality of melt nozzle insertion holes 12A and 12B, and the inside of the gas flow path 50 is directed toward the outside of the gas injector 70 from the open end of the melt nozzle insertion holes 12A and 12B. To inject the gas.
- FIG. 4 is a relationship diagram of the gas injection direction of the plurality of injection holes 9 constituting each first gas injection nozzle (first gas injection part) 2A and the flow-down region 27 of the molten metal of the first molten metal nozzle 11A.
- the gas injection directions of the plurality of injection holes 9 constituting the plurality of first gas injection nozzles (first gas injection parts) 2A are shown by straight lines 25 in FIG. 4, and each injection hole 9 coincides with the corresponding straight line 25.
- the gas injector 70 is formed by drilling a through hole having a central axis on the bottom surface of the gas injector 70.
- the plurality of injection holes 9 are arranged at equal intervals concentrically with the central axis Cm1 of the first molten metal nozzle insertion hole 12A on the bottom surface of the gas injector 70.
- the circle formed by the plurality of injection holes 9 is a circle 90.
- the gas injection directions (straight lines 25) of all the injection holes 9 constituting the plurality of first gas injection nozzles 2A pass through the common focus (first focus) 26. That is, the gas injection directions of all the injection holes 9 are concentrated at one point (focal point 26).
- the focal point 26 is located within a substantially cylindrical flowing area 27 defined by the outer shape of the molten metal flowing down from the first molten metal nozzle 11A (not shown in FIG. 4).
- the diameter of the flow-down area 27 is smaller than the diameter of the first molten metal nozzle insertion hole 12A, and can be appropriately adjusted according to the minimum inner diameter of the hole constituting the first molten metal nozzle 11A.
- the diameter of the flow-down region 27 may be set to, for example, a value equal to or less than the diameter of the open end 21A of the first molten metal nozzle 11A.
- several injection hole 9 which comprises several 2nd gas injection nozzle 2B is formed similarly to several injection hole 9 which comprises several 1st gas injection nozzle 2A.
- the focal points 26 associated with the plurality of injection holes 9 constituting the plurality of second gas injection nozzles 2B may be referred to as a second focal point.
- the molten metal flow 8 has an inverted conical shape (a first inverted conical shape, a second inverse shape) formed by high-pressure gas in the vicinity of the two focal points 26 related to the first gas injection nozzle 2A and the second gas injection nozzle 2B. It collides with a fluid film (conical shape) and is broken into a large number of particles 15.
- the metal that has become liquid fine particles (fine particles 15) by the injection gas from the first and second gas injection nozzles 2A and 2B is rapidly cooled and solidified while falling in the spray tank 4 to form a large number of metal powders. Collected in the collecting hopper 5.
- a value (for example, 1 to 2 mm) smaller than before (for example, about 5 mm) is selected as the minimum inner diameter of the holes constituting the first molten metal nozzle 11A and the second molten metal nozzle 11B. Even if gas is injected from 2A and 2B at the same pressure as before, metal particles with smaller diameter than before can be easily obtained. In addition, when the gas is injected at the same pressure as before, the flight distance of the metal particles in the spray tank 4 is also suppressed, so that it is necessary to replace the spray tank 4 with a large diameter from the viewpoint of preventing deformation of the metal particles There is no need to expand the installation space of the tank 4.
- the flow rate of the molten metal flow 8 per hour is lower than before when looking at each of the molten metal nozzles 11A and 11B, and the yield is lowered. Since two molten metal nozzles 11A and 11B (that is, two spray nozzles 20A and 20B) are provided for the spray tank 4, the yield per time can be doubled.
- two focal points 26 are respectively set at the center of the molten metal flowing area 27, and the injection hole 9 is concentric with the central axes Cm1 and Cm2 of the first and second molten metal nozzle insertion holes 12A and 12B.
- the high pressure gas from the injection holes 9 is uniformly injected 360 degrees to the molten metal flow 8 because they are evenly arranged on the top. Thereby, the particle diameter of the particles 15 can be made uniform.
- fine metal powder can be efficiently produced without changing the shape of the spray tank 4.
- the two spray nozzles 20A and 20B of the present embodiment each have the molten metal nozzle 11 and the gas injection nozzle 2 in a pair.
- the spray nozzle 20 is comprised by one set of the molten metal nozzle 11 and the injection nozzle 2, the spray nozzle which provided the several molten metal nozzle 11 and arrange
- the particle size distribution of the metal powder can be made to be a desired distribution between fine particles and coarse particles by changing the spray conditions of the respective nozzles.
- the gas injector 70 includes a plurality of melt nozzle insertion holes 12A and 12B, and a gas flow passage 50 forming a gas flow around each of the plurality of melt nozzle insertion holes 12A and 12B.
- the gas flow in the gas flow passage 50 has a function of cooling the molten metal nozzles 11A and 11B in the molten metal flow by heat exchange before being injected from the injection holes 9.
- the gas flow path 50 is formed around each of the plurality of molten metal nozzles 11A and 11B, and the molten metal nozzle is exchanged by heat exchange with the gas flow in the flow path 50. 11A and 11B are cooled from their surroundings.
- the gas injector 70 of the present embodiment since the molten metal nozzle insertion holes 12A and 12B, the injection holes 9, and the gas flow path 50 are symmetrically provided on the basis of the central axis Cg0, they are orthogonal to the central axis Cg0. A merit is that the temperature distribution of the gas injector 70 and the molten metal nozzles 11A and 11B on the surface can be made uniform.
- the molten metal nozzles 11A and 11B that form the molten metal flow path may be collectively referred to as a "crucible".
- Second Embodiment In the first embodiment described above, since two spray nozzles 20A and 20B are provided in the spray tank 4 having the same diameter as before, the fine particles 15 sprayed from the spray nozzles 20A and 20B collide in the spray tank 4 before solidification. May be deformed.
- the present embodiment is one of the embodiments that attempts to solve this problem.
- FIG. 5 is a perspective view of the metal spray device 200 of the second embodiment. As in FIG. 3, the first and second molten metal nozzles 11A and 11B are not shown. The other parts are the same as in the first embodiment, and the description is omitted.
- the bottom of the gas injector 70 of FIG. 5 is disposed linearly at a predetermined distance between two adjacent spray nozzles 20A and 20B (in other words, two molten metal nozzle insertion holes 12A and 12B).
- a seal gas jet nozzle 30A is provided by the plurality of injection holes 31.
- a straight line on which the plurality of injection holes 31 are disposed intersects the central axis Cg 0 of the gas injector 70 and passes through the center of the bottom surface of the gas injector 70.
- Each injection hole 31 is formed by drilling a through hole having a central axis extending substantially in the vertical direction on the bottom surface of the gas injector 70.
- the high pressure gas can be supplied to each injection hole 31 from the injection gas supply pipe 3 similarly to the injection hole 9, and the high pressure gas is injected in the vertically downward direction which is the axial direction of each injection hole 31.
- a film-like jet (air curtain, seal gas jet) 35 is formed which divides at least the upper region (space) of the spray tank 4 into two.
- the film-like jet 35 formed in this manner functions as an air curtain, and the fine particles 15 sprayed from the first spray nozzle 20A (molten metal flowing down from the molten metal nozzle 11A) and the fine particles 15 sprayed from the second spray nozzle 20B. (A molten metal flowing down from the molten metal nozzle 11B) is prevented from colliding. As a result, the generation of deformed metal particles can be prevented, and the production efficiency of the metal powder can be improved more than in the first embodiment. Further, for example, even when the spray tank 4 having the same diameter as before is used, the collision of the fine particles 15 can be prevented, so that the replacement cost and the installation space of the spray tank 4 can be prevented.
- the plurality of injection holes 31 are preferably arranged to cross the bottom of the gas injector 70 as shown in FIG. 5 from the viewpoint of preventing collision of particles, but collision of particles often occurs.
- the arrangement may be concentrated only on the portion expected to be (for example, around the central axis Cg0), and the arrangement to the other portions may be omitted.
- the plurality of injection holes 31 are arranged in a straight line, but may be arranged in a curved line.
- the inside of the gas injector 70 may be partitioned, and the injection holes 31 may be able to be supplied with gas of a pressure or type different from that of the injection holes 9.
- the present embodiment is a modification of the second embodiment, and even if the metal spray device 200 (gas injector 70) is configured as described below, the collision of the particles 15 with each other can be prevented by the film-like jet 35.
- FIG. 6 is a perspective view of the metal spray device 200 of the third embodiment.
- illustration of 1st, 2nd molten metal nozzle 11A, 11B is abbreviate
- the other parts are the same as in the first embodiment, and the description is omitted.
- the bottom of the gas injector 70 of FIG. 6 is provided with a slit 32 which is an elongated gap extending linearly between two adjacent spray nozzles 20A and 20B as a seal gas jet nozzle 30B.
- the slit 32 intersects the central axis Cg 0 of the gas injector 70 and passes through the center of the bottom surface of the gas injector 70.
- the slits 32 are formed by forming through holes in the bottom of the gas injector 70.
- the high pressure gas can be supplied to the slit 32 from the injection gas supply pipe 3 similarly to the injection hole 9, and the high pressure gas is injected from the slit 32 vertically downward.
- a membrane-like jet (air curtain) 35 is formed which divides at least the upper region of the spray tank 4 into two.
- the film-like jet 35 formed in this way prevents the collision of the fine particles 15 sprayed from the first spray nozzle 20A and the fine particles 15 sprayed from the second spray nozzle 20B, so that generation of deformed metal particles occurs. It is prevented and the manufacturing efficiency of metal powder can be improved rather than a 1st embodiment.
- the slits 32 are preferably arranged to cross the bottom of the gas injector 70 as shown in FIG. 6 from the viewpoint of preventing collisions between particles, but it is predicted that collisions between particles will occur frequently. (E.g., in the vicinity of the central axis Cg0) may be concentrated, and the arrangement to the other parts may be omitted.
- the inside of the gas injector 70 may be partitioned, and the slit 32 may be able to supply gas of a pressure or type different from that of the injection holes 9.
- This embodiment is one of the embodiments in which the same problem as the second and third embodiments described above (collision / deformation of the fine particles 15 before solidification sprayed from the two adjacent spray nozzles 20A and 20B) is attempted. This corresponds to one obtained by tilting the plurality of gas injection nozzles 2A and 2B of the first embodiment by a predetermined angle ⁇ .
- FIG. 7 is a perspective view of the metal spray device 200 of the fourth embodiment
- FIG. 8 is a schematic cross-sectional view of the gas injector 70 in a vertical plane including the central axis Cg0 of the gas injector 70 and two points Tc1 and Tc2 described later. It is.
- illustration of 1st, 2nd molten metal nozzle 11A, 11B is abbreviate
- the plurality of first gas injection nozzles 2A have the same center as the circle 90 in which all the injection holes 9 constituting the plurality of first gas injection nozzles (first gas injection parts) 2A of the first embodiment are disposed.
- the first circular surface 45A (see FIG. 3) having a diameter in which all the injection holes 9 constituting the nozzle are included is set.
- the first circular surfaces 46A of the plurality of first gas injection nozzles 2A according to the fourth embodiment shown in FIG. 7 have a central axis Cg0 on the circumference of the first circular surface 45A.
- the first circular surface 45A is tilted upward by a predetermined angle ⁇ centering on a point (tilt center) Tc1 set to the point closest to the center point.
- second circular surfaces 45B (not shown) are set for the plurality of second gas injection nozzles (second gas injection parts) 2B
- the second circular surfaces 46B of the plurality of second gas injection nozzles 2B of FIG. Corresponds to a point obtained by tilting the second circular surface 45B by a predetermined angle ⁇ upward about a point (tilt center) Tc2 set at a point closest to the central axis Cg0 on the circumference of the second circular surface 45B.
- the plurality of injection holes 9 constituting the plurality of first gas injection nozzles (first gas injection portion) 2A and the plurality of second gas injection nozzles (second gas injection portions) 2B have a first circular surface.
- the points 46A and 46B are arranged at equal intervals on a circle 90 of the same diameter centered on two points Pg1 and Pg2 which are points on the second circular surface 46B and equidistant from the central axis Cg0.
- the two points Pg1 and Pg2 are center points of the bottom surfaces of the first and second inverted conical shapes related to the fluid film formed by the injection gas of the plurality of first and second gas injection nozzles 2A and 2B.
- the center point Pg1 of the bottom surface of the inverted cone is separated from the center axis Cm1 of the first molten metal nozzle insertion hole 12A, and is located inside the circle 90 formed by the plurality of injection holes 9.
- the center point Pg2 is also away from the center axis Cm2 of the second molten metal nozzle insertion hole 12B, and is located inside the circle 90 formed by the plurality of injection holes 9.
- the central axis Cm1 is located radially outside the bottom surface of the gas injector 70 (that is, the inner surface side of the spray tank 4) than the central point Pg1.
- a central axis Cm2 is located radially outward (inside surface side of the spray tank 4).
- the center point Pg2 of the bottom surface of the second inverted conical shape (that is, the circle 90 (not shown)) and its vertex (second focal point 26) of the fluid film formed by the plurality of second gas injection nozzles 2B Define a connecting straight line 41B.
- the direction from the central points Pg1 and Pg2 toward the first and second focal points 26 is defined as a focal direction, and the direction is indicated by an arrow in FIG.
- the gas injection direction 25 ie, the axial direction of the injection hole (through hole) 9 is adjusted as shown in FIG.
- the gas injections of the plurality of holes 9 constituting the plurality of first gas injection nozzles 2A and the plurality of second gas injection nozzles 2B are arranged such that the straight lines 41A and 41B are disposed on the same plane passing through the central axis Cg0. It is preferable to adjust the directions 25 respectively.
- FIG. 9 is a relationship diagram of the gas injection direction of the plurality of injection holes 9 constituting the plurality of first gas injection nozzles 2A of FIG. 7 and the flow area 27 of the molten metal of the first molten metal nozzle 11A.
- the first molten metal nozzle 11A is not shown.
- a plurality of injection holes 9 constituting a plurality of first gas injection nozzles (first gas injection parts) 2A in this figure respectively have through holes having central axes coinciding with straight lines 25 shown in the figure. It is formed by piercing on the bottom. That is, in the present embodiment, the central axes of all the injection holes 9 related to the plurality of first gas injection nozzles 2A are also tilted by ⁇ from the state of FIG. 4 (the state of the first embodiment) Only the inner surface of the spray tank 4 is inclined.
- the first focal point 26 is located in a substantially cylindrical flowing area 27 defined by the outer shape of the molten metal flowing down from the first molten metal nozzle 11A (not shown in FIG. 9).
- the first focal point 26 is located radially outside the bottom surface of the gas injector 70 with respect to the center point Pg1 of the bottom surface of the inverted cone.
- the center point Pg1 of the bottom surface of the inverted cone related to the plurality of second gas injection nozzles 2B and the second focal point 26 that is the apex thereof are also the center point Pg1 of the first gas injection nozzle 2A and the first focus It is arrange
- a fluid film having an inverted conical shape (first inverted conical shape, second inverted conical shape) whose bottom surface is a circle in which the plurality of injection holes 9 are arranged is formed.
- the inverted cone is tilted by a predetermined angle ⁇ , but as in the first embodiment, straight lines 41A and 41B connecting the centers Pg1 and Pg2 of the conical bottom and the apexes become straight cones orthogonal to the conical bottom.
- the molten metal flow 8 flowing down through the first molten metal nozzle 11A and the second molten metal nozzle 11B is a high pressure gas in the vicinity of the two focal points 26 related to the plurality of first gas injection nozzles 2A and the second gas injection nozzles 2B. It collides with the fluid film which is in the form of a tilted inverted cone (right cone) and is broken into a large number of fine particles 15. At this time, the fine particles 15 are given a velocity toward the radially outer side (inner side surface of the spray tank 4) of the spray tank 4 by the plurality of first gas jet nozzles 2A and the plurality of second gas jet nozzles 2B which are tilted. As shown in FIG.
- the production efficiency of the metal powder can be improved more than in the first embodiment.
- the gas injection direction of the plurality of injection holes 9 (central axis in the configuration of the first embodiment) To give fine particles 15 a velocity toward the inner side of the spray tank 4 even if the fluid film formed by the plurality of gas injection nozzles 2A and 2B is changed from the right cone to the right As a result, it is possible to prevent the particles 15 from colliding with one another.
- the scattering directions in the horizontal direction of the particles 15 sprayed from the first spray nozzle 20A and the particles 15 sprayed from the second spray nozzle 20B opposite.
- the tilt angles of the gas injection nozzles 2A and 2B related to the two spray nozzles 20A and 20B are made to coincide to simplify the description, but the tilt angles of both may be different.
- the particle size distribution (also referred to as “particle size distribution”) of the metal powder produced by one gas atomizing device (metal powder producing device) is differentiated by changing the spraying conditions of the plurality of spray nozzles 20A and 20B. It is characterized in that it can be controlled.
- the particle size distribution of the manufactured metal powder is prescribed according to the spray conditions. Distribution with the average particle diameter (average diameter) as the peak. That is, if the spraying conditions are the same, the particle size of the produced metal powder tends to concentrate on one peak value.
- the particle sizes desired by various users do not always coincide with the peak value, and the particle size deviates from the peak value (e.g., ⁇ (average) ⁇ ⁇ (standard deviation)) out of the range (1 ⁇ section)
- the peak value e.g., ⁇ (average) ⁇ ⁇ (standard deviation)
- the gas atomization device in which the particle size distribution of the metal powder has a normal distribution with one peak that is, the gas atomization device with the same spray conditions for each spray nozzle) collects the metal powder. The rate may decrease.
- the spray conditions of the plurality of spray nozzles 20A and 20B are made different. Specifically, as spray conditions that can be changed, for example, (1) injection pressure of gas fluid injected from a plurality of gas injection nozzles 2, (2) an angle of injection hole 9 in a plurality of gas injection nozzles 2, (3 ) The diameter of the injection holes 9 in the plurality of gas injection nozzles 2, (4) the number of the injection holes 9 in the plurality of gas injection nozzles 2, (5) the minimum hole diameter (orifice diameter) of the molten metal nozzle 11, (6) the molten metal nozzle 11 There is a tip shape of Next, a structure for realizing these spraying conditions will be described with reference to FIGS.
- FIG. 11 is a cross section around the metal spray device 210 capable of making the injection pressure of the gas fluid (high pressure gas) injected from the gas injection nozzle 2A related to the spray nozzle 20A and the gas injection nozzle 2B related to the spray nozzle 20B different.
- the metal spray device 210 of this figure is different from the first embodiment in which two gas injection nozzles 2A and 2B use a common gas flow passage 50, and is independent of being connected to a gas supply source (not shown) of different pressure.
- Internal flow paths 50A, 50B Gas fluid is supplied to the internal flow paths 50A and 50B from gas supply sources having different pressures via different injection gas supply pipes 3A and 3B, and gas fluids having different injection pressures are supplied from the gas injection nozzles 2A and 2B. It is injected.
- the molten metal flowing down from the second molten metal nozzle 11B is a gas injection nozzle Since the high-pressure gas injected from 2B is finely ground than the molten metal flowing down from the first molten metal nozzle 11A, the particle size of the metal sprayed from the spray nozzle 20B is finer than that sprayed from the spray nozzle 20A. Be That is, as the injection pressure of the gas fluid injected from the gas injection nozzle 2 is increased, the metal powder tends to be finer.
- FIG. 16 shows the above spray condition (1)-(for the spray nozzle as the reference (in the figure, it is written as “comparative example” and, for example, any of the spray nozzles 20A and 20B of the first embodiment). It is the figure which put together the tendency of the particle size of the metal powder obtained from six Examples which changed any of 6) in the table type.
- the angle of the injection hole 9 is, as shown in the figure, the central axis 25 of the injection hole 9 (injection hole 9a) and the central axis Cm2 of the second molten metal nozzle insertion hole 12B (first molten metal nozzle insertion hole It can be defined by an angle ⁇ 9 ( ⁇ 9a) formed by the central axis Cm1) of 12A (provided that ⁇ 9 and ⁇ 9a are less than 90 degrees).
- the metal powder tends to be coarsened as the angle of the injection holes 9, 9a is reduced (in other words, the metal powder becomes finer as the angle of the injection holes 9, 9a is increased (closer to horizontal)
- Tend to be As a result, the particle size distribution of the metal sprayed from the two spray nozzles 20A and 20B having different angles of the injection holes 9 and 9a becomes different. For example, as shown in FIG. The diameters ⁇ 1 and ⁇ 2 appear. Assuming that the average particle diameter of the metal powder sprayed from the spray nozzle 20A is ⁇ 1 in FIG. 17, the average particle diameter of the metal powder sprayed from the spray nozzle 20B is ⁇ 2 smaller than ⁇ 1.
- FIG. 13 is a cross-sectional view around the metal spray device 230 in which the diameters of the injection holes 9 of the gas injection nozzle 2A related to the spray nozzle 20A and the injection holes 9 of the gas injection nozzle 2B related to the spray nozzle 20B are different.
- the metal spray device 230 of this figure differs from the first embodiment in which the diameter of the injection hole 9 shared by the two gas injection nozzles 2A and 2B is used, and the diameters of the plurality of injection holes 9 belonging to the gas injection nozzle 2A;
- the diameters of the plurality of injection holes 9r belonging to the gas injection nozzle 2B are made different. Specifically, the diameters of the plurality of injection holes 9r belonging to the gas injection nozzle 2B are set larger than the diameters of the plurality of injection holes 9 belonging to the gas injection nozzle 2A.
- the particle size distribution of the metal sprayed from the two spray nozzles 20A and 20B having different diameters of the injection holes 9 and 9r becomes different.
- the diameters ⁇ 1 and ⁇ 2 appear.
- the average particle diameter of the metal powder sprayed from the spray nozzle 20A is ⁇ 1 in FIG. 17
- the average particle diameter of the metal powder sprayed from the spray nozzle 20B is ⁇ 2 smaller than ⁇ 1. That is, as in the above case where the spraying condition (1) is changed, metal powders having a wider range of particle sizes are manufactured at one time as compared with the case where the spraying conditions of the spray nozzles 20A and 20B are the same (see FIG. 10). be able to.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Nozzles (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
図2は第1実施形態に係るガスアトマイズ装置の金属噴霧装置200周辺の断面図であり、図3は第1実施形態の金属噴霧装置200の斜視図である。なお、図3では後述する第1,第2溶湯ノズル11A,11Bの図示を省略している。
金属噴霧装置200は、噴霧槽4内に向かって溶融金属を流下させる複数の溶湯ノズル11A,11Bと、溶解槽(るつぼ部)1の下方に設置され複数のガス噴射ノズル2A,2Bからガスを噴射するガス噴射器70とを備えている。金属噴霧装置200は、ガス噴射器70の噴霧槽4内に臨む底面に、噴霧槽4内に溶融金属を液体噴霧する複数の噴霧ノズル20A,20Bを構成している。本実施形態のガスアトマイズ装置は第1噴霧ノズル20Aと第2噴霧ノズル20Bの2つの噴霧ノズルを備えている。第1,第2噴霧ノズル20A,20Bは、それぞれ、噴霧槽4内に溶融金属を流下させる溶湯ノズル11A,11Bと、溶湯ノズル11A,11Bの周囲に複数配置されたガス噴射ノズル2A,2Bを有している。すなわち各噴霧ノズル20は溶湯ノズル11とガス噴射ノズル2とを一対で有している。
図2に示すように、溶解槽(るつぼ部)1の底部には、溶解槽1内の溶融金属を噴霧槽4内にそれぞれ流下させる第1溶湯ノズル11Aと第2溶湯ノズル11Bが溶解槽1の底面から鉛直下方に向かって突出して設けられている。第1溶湯ノズル11Aと第2溶湯ノズル11Bは、同一の形状を有しており、それぞれの内部に溶湯が流下する鉛直方向に延びた縦長の孔を有している。この縦長の孔は、溶解槽(るつぼ部)1の底部から鉛直下方に向かって溶融金属が流下する溶湯流路となる。
ガス噴射器70は、不活性の高圧ガスで満たされる中空構造の円柱形状の外形を有しており、その内部は複数の溶湯ノズル挿入孔12A,12Bのそれぞれの周囲にガス流を形成するガス流路50となっている。ガス流路50は、ガス噴射器70の円柱の側面に設けられたガス吸入孔(図示せず)に接続される噴射ガス供給管3から高圧ガスの供給を受ける。ガス噴射器70は、ガス流路50に供給されたその高圧ガスをガス噴射器70の底面に設けられた複数の噴射孔9を介して指向性のある噴射ガスジェット(ガス噴流)10として噴射する。複数の噴射孔9は第1溶湯ノズル挿入孔12Aの噴霧槽側開口端の周囲と第2溶湯ノズル挿入孔12Bの噴霧槽側開口端の周囲にそれぞれ円を描くように配置されており、第1溶湯ノズル挿入孔12Aの噴霧槽側開口端を取り囲む複数の噴射孔9はそれぞれ第1ガス噴射ノズル(第1ガス噴射部)2Aを、第2溶湯ノズル挿入孔12Bの噴霧槽側開口端を取り囲む複数の噴射孔9はそれぞれ第2ガス噴射ノズル(第2ガス噴射部)2Bを構成している。ガス噴射ノズル2A,2Bは、複数の溶湯ノズル挿入孔12A,12Bごとに設けられており、溶湯ノズル挿入孔の12A,12Bの開口端よりガス噴射器70の外側に向かってガス流路50内のガスを噴射する。
上記のように構成される金属粉末製造装置において、噴射ガス供給管3から高圧ガスを供給すると、金属噴霧装置200における複数の第1ガス噴射ノズル2A及び第2ガス噴射ノズル2Bを構成する全ての噴射孔9から噴霧槽4の内部に向かって噴射孔9ごとに予め定められた噴射方向(直線25)に従って同じ圧力の高圧ガスが噴射される。このとき、第1ガス噴射ノズル2A及び第2ガス噴射ノズル2Bでは、それぞれの焦点(第1焦点、第2焦点)26に対してガスが集中噴射され、図4に示すような焦点26を頂点とし複数の噴射孔9が配置された円90を底面とする逆円錐状(第1の逆円錐形状,第2の逆円錐形状)の流体膜が形成される。
上記の第1実施形態では従前と同径の噴霧槽4に2つの噴霧ノズル20A,20Bを設けたため、各噴霧ノズル20A,20Bから噴霧される微粒子15が噴霧槽4内で凝固前に衝突して変形するおそれがある。本実施形態はこの課題の解決を試みる実施形態の1つである。
本実施形態は第2実施形態の変形例であり、次に説明するように金属噴霧装置200(ガス噴射器70)を構成しても膜状噴流35によって微粒子15同士の衝突を防止できる。
本実施形態は、上記の第2,第3実施形態と同じ課題(隣接する2つの噴霧ノズル20A,20Bから噴霧される凝固前の微粒子15の衝突・変形)の解決を試みる実施形態の1つであり、第1実施形態の複数のガス噴射ノズル2A,2Bを所定角度θだけチルトしたものに相当する。
上記のように構成される金属粉末製造装置において、噴射ガス供給管3から高圧ガスを供給すると、複数の第1ガス噴射ノズル2A及び第2ガス噴射ノズル2Bを構成する全ての噴射孔9から予め定められた噴射方向(直線25)に従って同じ圧力の高圧ガスが噴射される。このとき、第1ガス噴射ノズル2A及び第2ガス噴射ノズル2Bでは、それぞれの焦点(第1焦点、第2焦点)26に対してガスが集中噴射され、図9に示すような焦点26を頂点とし複数の噴射孔9が配置された円を底面とする逆円錐状(第1の逆円錐形状,第2の逆円錐形状)の流体膜が形成される。このときの逆円錐は所定角度θだけチルトしているが、第1実施形態と同様に円錐底面の中心Pg1,Pg2と頂点を結ぶ直線41A,41Bが円錐底面と直交する直円錐となる。
本実施形態では複数の噴霧ノズル20A,20Bの噴霧条件をそれぞれ異ならせることにより1基のガスアトマイズ装置(金属粉末製造装置)で製造される金属粉末の粒径分布(「粒度分布」とも称する)を制御可能としている点に特徴がある。
図11は噴霧ノズル20Aに係るガス噴射ノズル2Aと噴霧ノズル20Bに係るガス噴射ノズル2Bから噴射されるガス流体(高圧ガス)の噴射圧をそれぞれ異ならせることが可能な金属噴霧装置210周辺の断面図である。この図の金属噴霧装置210は、2つのガス噴射ノズル2A,2Bで共通のガス流路50を利用した第1実施形態と異なり、圧力の異なるガス供給源(図示せず)に接続された独立した内部流路50A,50Bを備えている。各内部流路50A,50Bには異なる噴射ガス供給管3A,3Bを介して圧力の異なるガス供給源からガス流体が供給されており、ガス噴射ノズル2A,2Bからは噴射圧の異なるガス流体が噴射される。
図12は噴霧ノズル20Aに係るガス噴射ノズル2Aの噴射孔9aと噴霧ノズル20Bに係るガス噴射ノズル2Bの噴射孔9の角度(傾斜角度)をそれぞれ異ならせた金属噴霧装置220周辺の断面図である。噴射孔9(噴射孔9a)の角度は、図中に示すように、噴射孔9(噴射孔9a)の中心軸25と第2溶湯ノズル挿入孔12Bの中心軸Cm2(第1溶湯ノズル挿入孔12Aの中心軸Cm1)のなす角θ9(θ9a)で定義することができる(但し、θ9とθ9aは90度未満とする)。この図の金属噴霧装置220は、2つのガス噴射ノズル2A,2Bで共通した噴射孔9の角度を利用した第1実施形態と異なり、ガス噴射ノズル2Aに属する複数の噴射孔9aの角度θ9aと、ガス噴射ノズル2Bに属する複数の噴射孔9の角度θ9とを異ならせている。具体的には、ガス噴射ノズル2Aに属する複数の噴射孔9aの角度θ9aは、ガス噴射ノズル2Bに属する複数の噴射孔9の角度θ9よりも小さく設定されている。
図13は噴霧ノズル20Aに係るガス噴射ノズル2Aの噴射孔9と噴霧ノズル20Bに係るガス噴射ノズル2Bの噴射孔9の径をそれぞれ異ならせた金属噴霧装置230周辺の断面図である。この図の金属噴霧装置230は、2つのガス噴射ノズル2A,2Bで共通した噴射孔9の径を利用した第1実施形態と異なり、ガス噴射ノズル2Aに属する複数の噴射孔9の径と、ガス噴射ノズル2Bに属する複数の噴射孔9rの径とを異ならせている。具体的には、ガス噴射ノズル2Bに属する複数の噴射孔9rの径は、ガス噴射ノズル2Aに属する複数の噴射孔9の径よりも大きく設定されている。
この噴霧条件(4)に係る金属噴霧装置(図示せず)は、2つのガス噴射ノズル2A,2Bで共通した噴射孔9の数を利用した第1実施形態と異なり、ガス噴射ノズル2Aに属する複数の噴射孔9の数と、ガス噴射ノズル2Bに属する複数の噴射孔9rの数とを異ならせている。例えば、ガス噴射ノズル2Bに属する複数の噴射孔9の数を、ガス噴射ノズル2Aに属する複数の噴射孔9の数よりも多く設定した金属噴霧装置がある。このようにガス噴射ノズル2A(噴霧ノズル20A)に属する複数の噴射孔9の数よりもガス噴射ノズル2B(噴霧ノズル20B)に属する複数の噴射孔9の数を多く設けるとガス噴射ノズル2Bのガス量が増加し、噴霧ノズル20Bから噴霧される金属の粒度は噴霧ノズル20Aから噴霧されるものに比べて細粒化される。すなわち噴射孔9の数を増加するほど金属粉末は細粒化される傾向がある(換言すると、噴射孔9の数を低減するほど金属粉末は粗粒化される傾向がある)。これにより噴射孔9の数の異なる2つの噴霧ノズル20A,20Bから噴霧される金属の粒度分布が異なることとなり、例えば図17に示すように金属粉末の粒度分布に2つのピーク(平均粒径μ1,μ2)が現れる。図17において仮に噴霧ノズル20Aから噴霧された金属粉末の平均粒径をμ1とすると、噴霧ノズル20Bから噴霧された金属粉末の平均粒径はμ1に比して小さいμ2となる。すなわち、噴霧条件(1)を変更した上記の場合と同様に、噴霧ノズル20A,20Bの噴霧条件が同一だった場合(図10参照)に比べて広範囲の粒度を有する金属粉末を一度に製造することができる。
図14は噴霧ノズル20Aに第1溶湯ノズル11Aの最小孔径60aと噴霧ノズル20Bに係る第2溶湯ノズル11Bの最小孔径60bをそれぞれ異ならせた金属噴霧装置240周辺の断面図である。この図の金属噴霧装置240は、2つの第1溶湯ノズル11A,11Bで共通した最小孔径を利用した第1実施形態と異なり、第1溶湯ノズル11Aの最小孔径60aと、第2溶湯ノズル11Bの最小孔径60bとを異ならせている。具体的には、第1溶湯ノズル11Aの最小孔径60aは、第2溶湯ノズル11Bの最小孔径60bよりも大きく設定されている。なお、図14の2つの溶湯ノズル11A,11Bの孔径は軸方向に沿って一定だが、孔内に他の部分よりも径の小さいオリフィスを設けることで溶湯ノズル11A,11Bの最小孔径を設定しても良く、この場合の最小孔径はオリフィス径に一致する。
図15Aは噴霧ノズル20Aに係る第1溶湯ノズル11Aの先端形状65aと噴霧ノズル20Bに係る第2溶湯ノズル11Bの先端形状65bをそれぞれ異ならせた金属噴霧装置250周辺の断面図であり、図15Bは第1,第2溶湯ノズル11A,11Bの先端部の拡大図である。これらの図の金属噴霧装置250は、2つの第1溶湯ノズル11A,11Bで共通した先端形状を利用した第1実施形態と異なり、第1溶湯ノズル11Aの先端形状65aと、第2溶湯ノズル11Bの先端形状65bとを異ならせている。図15Aおよび図15Bの例では先端形状として溶湯ノズル11A,11Bの先端角度θ65a,θ65bを異ならせている。図15Bに示すように、溶湯ノズル11A,11Bの先端角度θ65a,θ65bは、溶湯ノズル11A,11Bの先端部の軸方向断面における外形形状が溶湯ノズル11A,11Bの中心軸(溶湯ノズル挿入孔12A,12Bの中心軸Cm1,Cm2)となす角θ65a,θ65bで規定できる。図15Aおよび図15Bの例では、第1溶湯ノズル11Aの先端角度θ65aは略90度であり、第2溶湯ノズル11Bの先端角度θ65bよりも大きく設定されている。
本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。
Claims (12)
- 噴霧槽と、
前記噴霧槽内に溶融金属を液体噴霧する複数の噴霧ノズルとを備え、
前記複数の噴霧ノズルはそれぞれ、前記噴霧槽内に向かって溶融金属を流下させる溶湯ノズルと、前記溶湯ノズルの周囲に複数配置され前記溶湯ノズルから流下した溶融金属にガス流体を衝突させるための噴射孔を有する、ガス噴射ノズルとを有することを特徴とする金属粉末製造装置。 - 請求項1の金属粉末製造装置において、
溶融金属が蓄えられるるつぼ部と、該るつぼ部下方に設置されるガス噴射器とを備え、
前記溶湯ノズルは、前記るつぼ部底部から下方に向かって設けられ、
前記ガス噴射器は、複数の溶湯ノズル挿入孔と、該複数の溶湯ノズル挿入孔それぞれの周囲にガス流を形成するガス流路とを有し、
前記噴射孔は、前記ガス噴射器の底面かつ前記複数の溶湯ノズル挿入孔それぞれの開口端の周囲に形成されていることを特徴とする金属粉末製造装置。 - 請求項1の金属粉末製造装置において、
前記複数の噴霧ノズルのうち隣接する2つの噴霧ノズルの間に設けられ、ガス流体を噴射して前記2つの噴霧ノズルから噴霧された溶融金属同士の衝突を抑制するための噴流を形成するシールガス噴流ノズルをさらに備えることを特徴とする金属粉末製造装置。 - 請求項3の金属粉末製造装置において、
前記シールガス噴流ノズルは、ガス流体をそれぞれ噴射する複数の孔であり、
前記複数の孔は、前記2つの噴霧ノズルの間に線状に配置されることを特徴とする金属粉末製造装置。 - 請求項3の金属粉末製造装置において、
前記シールガス噴流ノズルは、ガス流体をそれぞれ噴射するスリットであり、
前記スリットは、前記2つの噴霧ノズルの間に配置されることを特徴とする金属粉末製造装置。 - 請求項1から5のいずれか1つの金属粉末製造装置において、
前記複数の噴霧ノズルにおける少なくとも1つの噴霧ノズルでは、前記複数のガス噴射ノズルから噴射されるガス流体の焦点が前記溶湯ノズルから流下される溶融金属の流下領域内に位置し、前記溶湯ノズルの中心軸が、前記溶湯ノズルと前記複数のガス噴射ノズルが重ならない範囲で、前記複数のガス噴射ノズルの噴射孔が形成する円の中心より前記噴霧槽の内側面側に位置することを特徴とする金属粉末製造装置。 - 請求項1の金属粉末製造装置において、
前記複数の噴霧ノズルにおける噴霧条件はそれぞれ異なっていること特徴とする金属粉末製造装置。 - 請求項7の金属粉末製造装置において、
前記複数の噴霧ノズルにおける噴霧条件は、前記複数のガス噴射ノズルから噴射されるガス流体の噴射圧、前記複数のガス噴射ノズルにおける噴射孔の角度、前記複数のガス噴射ノズルにおける噴射孔の径、前記複数のガス噴射ノズルにおける噴射孔の数、前記溶湯ノズルの最小孔径、及び前記溶湯ノズルの先端形状の少なくとも1つによって異なっていることを特徴とする金属粉末製造装置。 - 金属粉末製造装置のガス噴射器であって、
溶融金属が流下する溶湯ノズルが挿入される溶湯ノズル挿入孔を複数有し、
該複数の溶湯ノズル挿入孔それぞれの周囲にガス流を形成するガス流路と、
前記複数の溶湯ノズル挿入孔ごとに設けられ、前記溶湯ノズル挿入孔の開口端より前記ガス噴射器の外側に向かって前記ガス流路内のガスを噴射するガス噴射ノズルとを備え、
前記ガス噴射ノズルは、前記ガス噴射器の底面かつ前記溶湯ノズル挿入孔の開口端の周囲に複数形成された噴射孔からなることを特徴とするガス噴射器。 - 金属粉末製造装置のるつぼ器であって、
溶融金属が蓄えられるるつぼ部と、
前記るつぼ部底部から下方に向かって設けられ、前記るつぼ部底部から下方に向かって前記溶融金属が流下する溶湯流路を形成する、複数の溶湯ノズルとを備え、
前記溶湯ノズルは請求項9のガス噴射器の前記溶湯ノズル挿入孔に挿入される、ことを特徴とするるつぼ器。 - 請求項9のガス噴射器において、
前記複数の溶湯ノズル挿入孔ごとに設けられたガス噴射ノズルには、ガス流体の噴射圧、噴射孔の角度、噴射孔の径、及び噴射孔の数のうち少なくとも1つが他のガス噴射ノズルと異なっているガス噴射ノズルが含まれていることを特徴とするガス噴射器。 - 請求項9のガス噴射器において、
前記複数の溶湯ノズル挿入孔のうち隣接する2つの溶湯ノズル挿入孔の間に設けられ、ガス流体を噴射して前記複数の溶湯ノズルから流下される溶融金属同士の衝突を抑制するための噴流を形成するシールガス噴流ノズルを前記ガス噴射器の底面に備えることを特徴とするガス噴射器。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019558305A JP6906631B2 (ja) | 2017-12-07 | 2018-12-07 | 金属粉末製造装置並びにそのガス噴射器及びるつぼ器 |
US16/624,658 US11602789B2 (en) | 2017-12-07 | 2018-12-07 | Metal-powder producing apparatus, and gas jet device and crucible container thereof |
CN201880078393.4A CN111432963B (zh) | 2017-12-07 | 2018-12-07 | 金属粉末制造装置及其气体喷射器以及罐器 |
KR1020197036913A KR102262760B1 (ko) | 2017-12-07 | 2018-12-07 | 금속 분말 제조 장치, 그리고 그 가스 분사기 및 도가니 |
EP18885297.4A EP3722029A4 (en) | 2017-12-07 | 2018-12-07 | METAL POWDER MANUFACTURING DEVICE, ASSOCIATED GAS INJECTOR, AND CRUCIBLE |
CA3067702A CA3067702C (en) | 2017-12-07 | 2018-12-07 | Metal-powder manufacturing apparatus, and gas jet device and crucible container thereof |
AU2018379291A AU2018379291B2 (en) | 2017-12-07 | 2018-12-07 | Metal powder manufacturing device, gas injector for same, and crucible |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-235314 | 2017-12-07 | ||
JP2017235314 | 2017-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019112052A1 true WO2019112052A1 (ja) | 2019-06-13 |
Family
ID=66750464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/045159 WO2019112052A1 (ja) | 2017-12-07 | 2018-12-07 | 金属粉末製造装置並びにそのガス噴射器及びるつぼ器 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11602789B2 (ja) |
EP (1) | EP3722029A4 (ja) |
JP (2) | JP6906631B2 (ja) |
KR (1) | KR102262760B1 (ja) |
CN (1) | CN111432963B (ja) |
AU (1) | AU2018379291B2 (ja) |
CA (1) | CA3067702C (ja) |
WO (1) | WO2019112052A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3967425A1 (en) | 2020-09-11 | 2022-03-16 | Mitsubishi Power, Ltd. | Metal powder producing apparatus and gas jet device therefor |
US20220241856A1 (en) * | 2021-02-03 | 2022-08-04 | Mitsubishi Heavy Industries, Ltd. | Metal powder production apparatus |
USD982627S1 (en) | 2021-02-10 | 2023-04-04 | Mitsubishi Heavy Industries, Ltd. | Gas injector for metal powder manufacturing equipment |
USD982628S1 (en) | 2020-08-12 | 2023-04-04 | Mitsubishi Heavy Industries, Ltd. | Gas injector for metal powder manufacturing equipment |
EP4219046A1 (en) | 2022-01-31 | 2023-08-02 | Mitsubishi Heavy Industries, Ltd. | Metal powder manufacturing apparatus and control method thereof |
CN116984618A (zh) * | 2023-09-28 | 2023-11-03 | 季华实验室 | 一种气雾化设备 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111804925B (zh) * | 2020-09-11 | 2020-12-11 | 陕西斯瑞新材料股份有限公司 | 一种基于VIGA工艺制备GRCop-42球形粉的方法及装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60190502A (ja) * | 1984-03-12 | 1985-09-28 | Sumitomo Light Metal Ind Ltd | 急冷凝固金属粉末の製造方法 |
JPH05202404A (ja) * | 1992-01-24 | 1993-08-10 | Teikoku Piston Ring Co Ltd | 溶湯ガスアトマイズ用ノズル |
JPH0649512A (ja) * | 1992-08-03 | 1994-02-22 | Hitachi Metals Ltd | ガス噴霧金属粉末製造装置 |
JPH0873905A (ja) * | 1994-09-09 | 1996-03-19 | Sumitomo Metal Ind Ltd | 金属微粉末の製造装置 |
JPH08506382A (ja) * | 1993-02-06 | 1996-07-09 | オスプリ メタルズ リミテッド | 粉体の製法 |
JP2009035801A (ja) * | 2007-08-03 | 2009-02-19 | Dowa Metals & Mining Co Ltd | 銅の製造方法 |
JP2013527311A (ja) * | 2010-03-29 | 2013-06-27 | グリレム アドバンスド マテリアルズ カンパニー リミティッド | 高速冷却合金の製造方法及び機器 |
JP2016211027A (ja) | 2015-05-01 | 2016-12-15 | 大同特殊鋼株式会社 | 金属粉末の製造方法及び製造装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3009205A (en) * | 1958-04-28 | 1961-11-21 | American Metal Climax Inc | Method of making metal powder |
GB1272229A (en) * | 1968-11-27 | 1972-04-26 | British Iron Steel Research | Improvements in and relating to the treatment of molten material |
US4272463A (en) | 1974-12-18 | 1981-06-09 | The International Nickel Co., Inc. | Process for producing metal powder |
JPS63169308A (ja) * | 1987-01-05 | 1988-07-13 | Kobe Steel Ltd | 粉末冶金用金属微粉末の製造方法 |
JP2580616B2 (ja) * | 1987-09-09 | 1997-02-12 | 大同特殊鋼株式会社 | 球状金属粉末の製造方法 |
JPH01246305A (ja) * | 1988-03-28 | 1989-10-02 | Sumitomo Metal Ind Ltd | 見掛密度の低い微粉末の製造方法 |
JP2993029B2 (ja) * | 1990-02-08 | 1999-12-20 | 大同特殊鋼株式会社 | 金属粉末の製造方法 |
JP2721576B2 (ja) * | 1990-04-27 | 1998-03-04 | 株式会社神戸製鋼所 | アトマイズ用溶湯ノズル |
CA2040968A1 (en) * | 1991-04-23 | 1992-10-24 | Gordon R. Dunstan | Oscillating spray apparatus |
AU6162501A (en) * | 2000-05-16 | 2001-11-26 | Univ Minnesota | High mass throughput particle generation using multiple nozzle spraying |
JP2002105514A (ja) | 2000-10-03 | 2002-04-10 | Sumitomo Metal Ind Ltd | 金属粉末の製造装置および製造方法 |
JP5209248B2 (ja) * | 2007-08-03 | 2013-06-12 | Dowaメタルマイン株式会社 | 銅電解液原料の製造方法及びこれを用いた銅の製造方法 |
JP2010090421A (ja) * | 2008-10-06 | 2010-04-22 | Seiko Epson Corp | 金属粉末製造装置 |
JP2012000592A (ja) * | 2010-06-18 | 2012-01-05 | Kobe Steel Ltd | 高温溶湯のガスアトマイザー |
KR101803925B1 (ko) * | 2011-03-04 | 2017-12-04 | 주식회사 다함이엔씨 | 금속분말 제조장치 및 금속분말 제조방법 |
EP2832451A4 (en) * | 2012-03-28 | 2015-12-23 | Fujisaki Electric Co Ltd | LIQUID EJECTION APPARATUS AND LIQUID EJECTION METHOD |
CN105903975B (zh) | 2016-06-06 | 2018-06-29 | 江苏威拉里新材料科技有限公司 | 一种用于雾化金属粉末生产方法的设备 |
JP6982015B2 (ja) * | 2019-02-04 | 2021-12-17 | 三菱パワー株式会社 | 金属粉末製造装置及びそのガス噴射器 |
-
2018
- 2018-12-07 EP EP18885297.4A patent/EP3722029A4/en active Pending
- 2018-12-07 CN CN201880078393.4A patent/CN111432963B/zh active Active
- 2018-12-07 KR KR1020197036913A patent/KR102262760B1/ko active IP Right Grant
- 2018-12-07 AU AU2018379291A patent/AU2018379291B2/en active Active
- 2018-12-07 WO PCT/JP2018/045159 patent/WO2019112052A1/ja unknown
- 2018-12-07 US US16/624,658 patent/US11602789B2/en active Active
- 2018-12-07 CA CA3067702A patent/CA3067702C/en active Active
- 2018-12-07 JP JP2019558305A patent/JP6906631B2/ja active Active
-
2020
- 2020-03-25 JP JP2020054803A patent/JP2020109212A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60190502A (ja) * | 1984-03-12 | 1985-09-28 | Sumitomo Light Metal Ind Ltd | 急冷凝固金属粉末の製造方法 |
JPH05202404A (ja) * | 1992-01-24 | 1993-08-10 | Teikoku Piston Ring Co Ltd | 溶湯ガスアトマイズ用ノズル |
JPH0649512A (ja) * | 1992-08-03 | 1994-02-22 | Hitachi Metals Ltd | ガス噴霧金属粉末製造装置 |
JPH08506382A (ja) * | 1993-02-06 | 1996-07-09 | オスプリ メタルズ リミテッド | 粉体の製法 |
JPH0873905A (ja) * | 1994-09-09 | 1996-03-19 | Sumitomo Metal Ind Ltd | 金属微粉末の製造装置 |
JP2009035801A (ja) * | 2007-08-03 | 2009-02-19 | Dowa Metals & Mining Co Ltd | 銅の製造方法 |
JP2013527311A (ja) * | 2010-03-29 | 2013-06-27 | グリレム アドバンスド マテリアルズ カンパニー リミティッド | 高速冷却合金の製造方法及び機器 |
JP2016211027A (ja) | 2015-05-01 | 2016-12-15 | 大同特殊鋼株式会社 | 金属粉末の製造方法及び製造装置 |
Non-Patent Citations (1)
Title |
---|
R.M. GERMAN: "Powder metallurgy science", 25 June 1996, UCHIDA ROKAKUHO PUBLISHING CO. LTD., Tokyo, ISBN: 4-7536-5091-X, article R. M. GERMAN: "Passage, Powder metallurgy science", pages: 102 - 111, XP009517921 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD982628S1 (en) | 2020-08-12 | 2023-04-04 | Mitsubishi Heavy Industries, Ltd. | Gas injector for metal powder manufacturing equipment |
JP7218335B2 (ja) | 2020-09-11 | 2023-02-06 | 三菱重工業株式会社 | 金属粉末製造装置及びそのガス噴射器 |
US20220080503A1 (en) * | 2020-09-11 | 2022-03-17 | Mitsubishi Power, Ltd. | Metal powder producing apparatus and gas jet device therefor |
KR20220034671A (ko) | 2020-09-11 | 2022-03-18 | 미츠비시 파워 가부시키가이샤 | 금속 분말 제조 장치 및 그 가스 분사기 |
JP2022046880A (ja) * | 2020-09-11 | 2022-03-24 | 三菱重工業株式会社 | 金属粉末製造装置及びそのガス噴射器 |
EP3967425A1 (en) | 2020-09-11 | 2022-03-16 | Mitsubishi Power, Ltd. | Metal powder producing apparatus and gas jet device therefor |
US20220241856A1 (en) * | 2021-02-03 | 2022-08-04 | Mitsubishi Heavy Industries, Ltd. | Metal powder production apparatus |
KR20220112187A (ko) | 2021-02-03 | 2022-08-10 | 미츠비시 파워 가부시키가이샤 | 금속 분말 제조 장치 |
EP4039393A1 (en) | 2021-02-03 | 2022-08-10 | Mitsubishi Heavy Industries, Ltd. | Metal powder production apparatus |
CN114850481A (zh) * | 2021-02-03 | 2022-08-05 | 三菱重工业株式会社 | 金属粉末制造装置 |
CN114850481B (zh) * | 2021-02-03 | 2023-12-01 | 三菱重工业株式会社 | 金属粉末制造装置 |
TWI836332B (zh) * | 2021-02-03 | 2024-03-21 | 日商三菱重工業股份有限公司 | 金屬粉末製造裝置 |
USD982627S1 (en) | 2021-02-10 | 2023-04-04 | Mitsubishi Heavy Industries, Ltd. | Gas injector for metal powder manufacturing equipment |
EP4219046A1 (en) | 2022-01-31 | 2023-08-02 | Mitsubishi Heavy Industries, Ltd. | Metal powder manufacturing apparatus and control method thereof |
KR20230117514A (ko) | 2022-01-31 | 2023-08-08 | 미츠비시 파워 가부시키가이샤 | 금속 분말 제조 장치 및 그 제어 방법 |
CN116984618A (zh) * | 2023-09-28 | 2023-11-03 | 季华实验室 | 一种气雾化设备 |
CN116984618B (zh) * | 2023-09-28 | 2023-12-15 | 季华实验室 | 一种气雾化设备 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019112052A1 (ja) | 2020-04-23 |
US20200215615A1 (en) | 2020-07-09 |
AU2018379291B2 (en) | 2021-12-23 |
US11602789B2 (en) | 2023-03-14 |
CA3067702A1 (en) | 2019-06-13 |
JP6906631B2 (ja) | 2021-07-21 |
CN111432963B (zh) | 2022-11-25 |
EP3722029A1 (en) | 2020-10-14 |
CA3067702C (en) | 2023-08-15 |
KR102262760B1 (ko) | 2021-06-09 |
JP2020109212A (ja) | 2020-07-16 |
CN111432963A (zh) | 2020-07-17 |
AU2018379291A1 (en) | 2020-05-21 |
KR20200007911A (ko) | 2020-01-22 |
EP3722029A4 (en) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019112052A1 (ja) | 金属粉末製造装置並びにそのガス噴射器及びるつぼ器 | |
KR102266202B1 (ko) | 금속 분말 제조 장치 및 그 가스 분사기 | |
JP2010090421A (ja) | 金属粉末製造装置 | |
US20220080503A1 (en) | Metal powder producing apparatus and gas jet device therefor | |
JP2010090411A (ja) | 金属粉末製造装置 | |
JP7296998B2 (ja) | 金属粉末製造装置 | |
KR20230129084A (ko) | 금속 및 합금 분말 제조용 가스분사장치 및 이를 이용한 가스분사 금속분말 제조장치 | |
CN117733160A (zh) | 一种用于金属粉末制备的雾化成型设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18885297 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019558305 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197036913 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3067702 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2018379291 Country of ref document: AU Date of ref document: 20181207 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018885297 Country of ref document: EP Effective date: 20200707 |