WO2019107373A1 - 非水系電解質二次電池用正極活物質前駆体 - Google Patents

非水系電解質二次電池用正極活物質前駆体 Download PDF

Info

Publication number
WO2019107373A1
WO2019107373A1 PCT/JP2018/043643 JP2018043643W WO2019107373A1 WO 2019107373 A1 WO2019107373 A1 WO 2019107373A1 JP 2018043643 W JP2018043643 W JP 2018043643W WO 2019107373 A1 WO2019107373 A1 WO 2019107373A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
particles
nickel composite
Prior art date
Application number
PCT/JP2018/043643
Other languages
English (en)
French (fr)
Inventor
賢次 田代
健太郎 曽我部
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP18882985.7A priority Critical patent/EP3719887A4/en
Priority to CN201880076067.XA priority patent/CN111386620B/zh
Priority to US16/766,392 priority patent/US11855284B2/en
Priority to JP2019557248A priority patent/JP7167939B2/ja
Publication of WO2019107373A1 publication Critical patent/WO2019107373A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material precursor for a non-aqueous electrolyte secondary battery.
  • the lithium ion secondary battery is composed of, for example, a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of releasing and inserting lithium is used as an active material of the negative electrode and the positive electrode.
  • a lithium ion secondary battery using a lithium composite oxide, particularly a lithium cobalt composite oxide which is relatively easy to synthesize, as a positive electrode material is expected as a battery having a high energy density since a high voltage of 4 V is obtained.
  • Practical application is in progress.
  • a battery using a lithium cobalt composite oxide many developments have been conducted to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.
  • lithium cobalt composite oxide uses an expensive cobalt compound as a raw material, the unit cost per capacity of a battery using this lithium cobalt composite oxide is much higher than that of a nickel hydrogen battery, and the applicable application is considerable. It is limited.
  • lithium nickel complex oxide using nickel cheaper than cobalt can be mentioned.
  • the lithium nickel composite oxide exhibits a lower electrochemical potential than the lithium cobalt composite oxide, so decomposition by the oxidation of the electrolytic solution is less likely to be a problem, higher capacity can be expected, and battery voltage as high as cobalt type. Development is actively conducted.
  • lithium-ion secondary battery when a lithium-ion secondary battery is manufactured using a lithium-nickel composite oxide synthesized purely with only nickel as a positive electrode material, the cycle characteristics are inferior to cobalt-based batteries, and by use or storage under a high temperature environment, It has the disadvantage that it is relatively easy to impair the battery performance. For this reason, lithium nickel composite oxides in which a part of nickel is replaced with cobalt or aluminum are generally known.
  • a positive electrode active material for nonaqueous electrolyte secondary batteries such as lithium cobalt composite oxide and lithium nickel composite oxide.
  • a method of manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery which comprises mixing a lithium compound with a positive electrode active material precursor for a non-aqueous electrolyte secondary battery such as nickel composite hydroxide and calcining the obtained mixture Proposed.
  • Patent Document 1 an alkaline solution is added to a mixed aqueous solution of Ni salt and M salt, hydroxides of Ni and M are coprecipitated, the obtained precipitate is filtered, washed with water, dried, and nickel composite A crystallization step to obtain hydroxide: Ni x M 1-x (OH) 2 ; Obtained nickel composite hydroxide: Ni x M 1 -x (OH) 2 and lithium compound, the molar ratio of Li to the total of Ni and M: Li / (Ni + M) is 1.00 to 1.15 And baking the mixture at a temperature of 700 ° C. or more and 1000 ° C. or less to obtain the lithium-nickel composite oxide.
  • a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising the steps of: washing with water the obtained lithium nickel composite oxide.
  • the lithium nickel composite oxide which is a positive electrode active material for a non-aqueous electrolyte secondary battery, is also required to suppress the reaction resistance in order to sufficiently increase the output voltage in the case of a non-aqueous electrolyte secondary battery, for example. It is done.
  • the cross section of the nickel composite hydroxide particles contains a void
  • the cross section of the nickel composite hydroxide particle is divided into a plurality of regions by boundaries arranged in a lattice shape such that one region to be divided is 2 ⁇ m square
  • the average value of the ratio of the area of the void occupied in each area divided by the boundary line is 0.5% or more and 5.0% or less
  • the positive electrode active material precursor for a non-aqueous electrolyte secondary battery is provided, wherein the standard deviation of the ratio of the area of the void occupied in each region divided by the boundary line is 1.0 or less.
  • a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery capable of suppressing reaction resistance in the case of a non-aqueous electrolyte secondary battery.
  • the positive electrode active material precursor for a non-aqueous electrolyte secondary battery of the present embodiment can include nickel composite hydroxide particles. Also, the nickel composite hydroxide particles can include voids in the particle cross section.
  • the cross section of the nickel composite hydroxide particle is divided into a plurality of areas by the boundary line arranged in a lattice shape such that one area to be divided is 2 ⁇ m square, the following requirements are satisfied. It is preferable to do.
  • the average value of the percentage of the area of the void occupied in each area divided by the boundary line is 0.5% or more and 5.0% or less.
  • the standard deviation of the ratio of the area of the void occupied in each area divided by the boundary line is 1.0 or less.
  • the inventors of the present invention also describe a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery capable of suppressing the reaction resistance in the non-aqueous electrolyte secondary battery (hereinafter, also simply referred to as "positive electrode active material precursor" To study).
  • a positive electrode active material prepared from the positive electrode active material precursor is obtained by using a positive electrode active material precursor including a void in the inside of the particle and the distribution of the void satisfying the predetermined requirements.
  • a non-aqueous electrolyte secondary battery using a substance it has been found that the reaction resistance at the positive electrode can be suppressed, and the present invention has been completed.
  • the positive electrode active material precursor of the present embodiment can include nickel composite hydroxide particles.
  • the positive electrode active material precursor of this embodiment can also be comprised from nickel composite hydroxide particle.
  • the nickel composite hydroxide particles contained in the positive electrode active material precursor of the present embodiment can include voids in the particle cross section.
  • the air gap will be described with reference to FIG.
  • a plurality of boundary lines (division lines) 111 and 112 are arranged on the particle cross section of the nickel composite hydroxide particle 10 contained in the positive electrode active material precursor of the present embodiment, and the particles The cross section can be divided into a plurality of regions 12.
  • the boundary can be arranged such that one area 12 divided by the boundary is 2 ⁇ m square and the boundary is in a lattice shape.
  • boundary lines 111 and 112 are numbered, but as shown in FIG. 1, a plurality of divisions in parallel with the boundary lines 111 and 112 are made so that the area divided into the entire cross section of the particle expands. You can place boundaries. At this time, boundaries parallel to each other can be arranged such that the distance between adjacent boundaries is 2 ⁇ m.
  • the boundary lines 111 and 112 are virtually arranged to evaluate the distribution of the following voids in the nickel composite hydroxide particles.
  • each area 12 divided by the boundary lines 111 and 112 and surrounded by the boundary lines 111 and 112 is a square with L1 and L2 of 2 ⁇ m.
  • each square area surrounded by the boundary lines 111 and 112 is the area 12 divided by the boundary lines 111 and 112.
  • the average value of the ratio of the area of the void in each region 12 in the nickel composite hydroxide particles is 0.5% or more. This is because, when the nickel composite hydroxide particles 10 are reacted with the lithium compound by setting the average value of the ratio of the area of the void occupied in each region 12 to 0.5% or more, the lithium component is accommodated. It means that the air gap is sufficient for the The inside of the positive electrode active material prepared using the positive electrode active material precursor containing the nickel composite hydroxide particles, because the nickel composite hydroxide particles have a sufficient space to accommodate the lithium component. Can hold a sufficient amount of lithium component.
  • the reaction resistance at the positive electrode of the non-aqueous electrolyte secondary battery using the positive electrode active material can be suppressed.
  • the charge and discharge capacity can be increased.
  • the average value is more preferably 1.5% or more, further preferably 1.6% or more.
  • the ratio of the area of the void occupied in each region is too high, there is a possibility that the diffusion of the lithium component into the void does not proceed uniformly when reacting with the lithium compound. For this reason, it is preferable that it is 5.0% or less, and, as for the average value of the ratio of the area of the space
  • the standard deviation of the ratio of the area of the void occupied in each area divided by the boundary line is preferably 1.0 or less, and more preferably 0.8 or less.
  • the positive electrode active material when the positive electrode active material is prepared using the positive electrode active material precursor of the present embodiment by setting the standard deviation to 1.0 or less, the particles are uniformly distributed in the particles of the nickel composite hydroxide.
  • the voids allow the lithium component to be contained and uniformly dispersed. Therefore, in the positive electrode active material, transfer of lithium ions is facilitated, and in the non-aqueous electrolyte secondary battery using the positive electrode active material, the reaction resistance at the positive electrode can be suppressed. Furthermore, charge and discharge capacity can be increased.
  • segmented by the said boundary line can be made into 0 or more.
  • the particle diameter of the nickel composite hydroxide particles contained in the positive electrode active material precursor of the present embodiment is not particularly limited, but is preferably 5 ⁇ m or more and 30 ⁇ m or less, and more preferably 9 ⁇ m or more and 15 ⁇ m or less.
  • the positive electrode active material precursor of the present embodiment includes a plurality of nickel composite hydroxide particles, nickel composite hydroxide particles in the vicinity of the average particle diameter, specifically, for example, within the average particle diameter ⁇ 1 ⁇ m
  • the boundary line described above is arranged in the particle cross section, it is preferable that the average value of the ratio of the area of the void occupied in each region and the standard deviation satisfy the range described above.
  • the positive electrode active material of the present embodiment contains a plurality of nickel composite hydroxide particles, among the nickel composite hydroxide particles, particles having a percentage by number of 50% or more and 100% or less have the boundaries described in the particle cross section. It is more preferable that the average value of the ratio of the area of the void occupied in each region and the standard deviation satisfy the ranges described above when is arranged.
  • the positive electrode active material of the present embodiment includes a plurality of nickel composite hydroxide particles
  • a plurality of particles for evaluation are selected from the plurality of nickel composite hydroxide particles, already among the plurality of particles for evaluation. It is preferable that the number ratio of the particles for evaluation which satisfies the above-mentioned requirements is a fixed value or more.
  • the particles for evaluation satisfying the following requirements
  • the ratio of the number of particles to the plurality of particles for evaluation used for evaluation is preferably 50% or more, and more preferably 70% or more.
  • the average value of the percentage of the area of the void occupied in each area divided by the boundary line is 0.5% or more and 5.0% or less.
  • the standard deviation of the ratio of the area of the void occupied in each area divided by the boundary line is 1.0 or less.
  • the average value of the ratio of the area of the void occupied in each area divided by the boundary line is more preferably 1.5% or more, and still more preferably 1.6% or more . Moreover, it is more preferable that the average value of the ratio of the area of the void which occupies in each area
  • segmented by the boundary line is 0.8 or less among the said requirements.
  • the standard deviation of the ratio of the area of the void occupied in each area divided by the boundary can be 0 or more.
  • the conditions for selecting particles for evaluation from a plurality of nickel composite hydroxide particles are not particularly limited, but for evaluation of particles having a particle diameter within an average particle diameter of ⁇ 1 ⁇ m of the plurality of nickel composite hydroxide particles. Multiple particles can be selected. That is, particles having an average particle diameter of 1 ⁇ m or more of nickel composite hydroxide particles and an average particle diameter of 1 ⁇ m or less of nickel composite hydroxide particles can be selected as the particles for evaluation.
  • the particle size of each nickel composite hydroxide particle can be an average value of the long side and the short side in the cross section, and can be calculated from the observation result by SEM or the like.
  • the number of particles for evaluation selected at the time of evaluation is not particularly limited, for example, it is preferable to select five or more nickel composite hydroxide particles as the particles for evaluation. In particular, it is more preferable to select 10 or more nickel composite hydroxide particles as particles for evaluation. However, from the viewpoint of productivity, it is preferable to select 20 or less nickel composite hydroxide particles as the particles for evaluation.
  • the positive electrode active material precursor of the present embodiment can include a plurality of nickel composite hydroxide particles having a void in the particle cross section described above. That is, the positive electrode active material precursor of the present embodiment can also contain a nickel composite hydroxide powder. In addition, the positive electrode active material precursor of this embodiment can also be comprised from nickel composite hydroxide powder.
  • the average value of the ratio of the area of the void in the cross section of the plurality of nickel composite hydroxide particles is 0.5% or more and 5.0% or less.
  • the plurality of nickel composite hydroxide particles accommodates the lithium component by setting the average value of the ratio of the area of the voids to 0.5% or more. It means that the air gap is sufficient to At a positive electrode of a non-aqueous electrolyte secondary battery using a positive electrode active material prepared using a positive electrode active material precursor containing a plurality of nickel composite hydroxide particles by having a sufficient space to accommodate a lithium component
  • the reaction resistance can be particularly suppressed.
  • the charge and discharge capacity can be particularly increased.
  • the average value is more preferably 1.5% or more, further preferably 2.5% or more.
  • the average value of the ratio of the area of the voids is preferably 5.0% or less, and more preferably 4.0% or less.
  • a ratio of the area of the void in the cross section of each nickel composite hydroxide particle which is used when calculating the average value of the ratio of the area of the void in the cross sections of the plurality of nickel composite hydroxide particles, for example It is also possible to use the average value of the ratio of the area of the void occupied in each region divided by the boundary line in the particle cross section of the nickel composite hydroxide particles described above.
  • the ratio of the area of the void occupied in each area divided by the boundary line arranges the boundary line on the entire surface of the particle cross section of the nickel composite hydroxide particles, and calculates the porosity of each area Therefore, the ratio of the area of the void in the cross section of the nickel composite hydroxide particle is approximately equal.
  • the standard deviation of the ratio of the area of the void in the cross section of the plurality of nickel composite hydroxide particles is 1.0 or less.
  • the ratio of the area of the void in the particle cross section is a plurality of nickel composite hydroxides It shows that the particles are substantially uniform among the particles of the object particles. Therefore, when the positive electrode active material is prepared using the positive electrode active material precursor of the present embodiment by setting the standard deviation to 1.0 or less, the lithium component is uniformly dispersed in the positive electrode active material. Can facilitate the migration of lithium ions. Therefore, in the non-aqueous electrolyte secondary battery using the positive electrode active material, the reaction resistance at the positive electrode can be suppressed. Furthermore, charge and discharge capacity can be increased.
  • the standard deviation of the ratio of the area of the voids in the cross section of the plurality of nickel composite hydroxide particles can be 0 or more.
  • the average particle diameter of the nickel composite hydroxide particles is not particularly limited, but is preferably 5 ⁇ m to 30 ⁇ m, for example. More preferably, it is 9 ⁇ m or more and 15 ⁇ m or less.
  • the average particle diameter as referred to herein means a particle diameter at an integrated value of 50% in a particle size distribution determined by a laser diffraction / scattering method.
  • the average particle size herein has the same meaning.
  • gap in the cross section of the nickel composite hydroxide particle which the positive electrode active material of this embodiment contains is not specifically limited, It can calculate by arbitrary methods.
  • the nickel composite hydroxide particles contained in the positive electrode active material of the present embodiment are embedded in a resin, and the surface is polished to prepare a sample in which the cross section is exposed.
  • the area of the void in the cross section of the particle is calculated. Since the void is a recess, in a normal SEM image, the void is black and the other parts are white. For this reason, although the specific means for calculating the area of the void is not particularly limited, for example, the binarizing process is performed on the SEM image, and from the obtained image, the area of the black portion corresponding to the void and the area of the other region The area of the white part which is
  • the binarization process requires a threshold for dividing a plurality of gray values into binary values, and there are generally p-tile method, modal method, discriminant analysis method, etc. as a method for determining the threshold value. .
  • a large amount of software for binarizing images has been provided, and image binarization can be performed relatively easily, including a method of determining a threshold.
  • the threshold value is determined by discriminant analysis, and the SEM image can be easily binarized.
  • the boundary line is arranged on the cross section of the nickel composite hydroxide particles, and the evaluation is performed when calculating the area of the void and other areas for each area divided by the boundary line.
  • a boundary can be set in advance in the cross-sectional SEM image of the particle. Then, for each of the regions divided by the boundary line, it is possible to calculate the area of the void and the other region.
  • the positive electrode active material precursor of this embodiment is a plurality of nickels.
  • the composite hydroxide particles it is preferable to select and observe particles in the vicinity of the average particle diameter, ie, in the range of 5 ⁇ m to 30 ⁇ m, for example, to calculate the area such as voids.
  • particles to be evaluated can be selected with the average value of the long side and the short side in the cross section as the particle size of the particles.
  • the number of particles to be evaluated is not particularly limited when evaluating the standard deviation and the average value of the ratio of the area of voids occupying the cross section of a plurality of nickel composite hydroxide particles, but for example, 5 or more It is preferable to evaluate about nickel compound hydroxide particles. In particular, it is more preferable to evaluate about 10 or more nickel composite hydroxide particles. However, from the viewpoint of productivity, it is preferable to evaluate 20 or less nickel composite hydroxide particles.
  • particles to be evaluated such that particles having a particle diameter of at least a plurality of nickel composite hydroxide particles are specifically included, specifically, for example, a particle diameter of ⁇ 1 ⁇ m. .
  • particles to be evaluated can be selected with the average value of the long side and the short side in the cross section as the particle size of the particles.
  • the composition is not particularly limited as long as the nickel composite hydroxide particles contained in the positive electrode active material precursor of the present embodiment can be mixed with a lithium compound to form a lithium nickel composite oxide.
  • the nickel composite hydroxide particles are preferably particles of a nickel composite hydroxide containing nickel and cobalt.
  • lithium-nickel-cobalt composite oxide is being studied to enhance battery characteristics by adding an additional element in addition to lithium, nickel and cobalt.
  • the nickel composite hydroxide particles are further selected from the elements M (M is Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, Sr, and W as an additional element. It is preferable that it is the particle
  • Nickel composite hydroxide particles having a positive electrode active material precursor of the present embodiment specifically, for example, the general formula: Ni composite hydroxide represented by Ni 1-x-y Co x M y (OH) 2 + A It can be particles of things. In the above general formula, 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, and 0 ⁇ A ⁇ 0.5.
  • the element M can be one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, Sr, and W.
  • the positive electrode active material precursor of the present embodiment contains the nickel composite hydroxide particles as described above, and can be used for production of a positive electrode active material by mixing with a lithium compound. Further, the positive electrode active material precursor of the present embodiment is roasted, and a part or all of the nickel composite hydroxide particles are made into particles of the nickel composite oxide, and then mixed with a lithium compound to obtain a positive electrode active material. It can also be used for manufacturing.
  • the cathode active material prepared from the cathode active material precursor after roasting was used.
  • the reaction resistance at the positive electrode can be suppressed.
  • the charge and discharge capacity can be increased.
  • the method for producing the positive electrode active material precursor of the present embodiment is not particularly limited, and the positive electrode active material precursor can be produced by any method so that the contained nickel composite hydroxide particles have the voids described above.
  • the manufacturing method of the positive electrode active material precursor of the present embodiment can have a crystallization step of coprecipitating a contained metal such as nickel, cobalt, and an optional additional element M.
  • a mixed aqueous solution (a) (hereinafter, also simply described as a “mixed aqueous solution (a)”) containing a salt of a metal constituting the positive electrode active material precursor in the reaction solution while stirring the reaction solution And supplying an aqueous solution (b) containing an ammonium ion donor, and reacting by supplying an aqueous caustic aqueous solution (c), solid-liquid separating particles of the crystallized positive electrode active material precursor, washing with water, and drying By doing this, a positive electrode active material precursor can be obtained.
  • the mixed aqueous solution (a), the aqueous solution (b) containing an ammonium ion donor, and the caustic aqueous solution (c) may be combined and described as a raw material solution.
  • an initial aqueous solution can be prepared by mixing water, an aqueous solution (b) containing an ammonium ion donor and a caustic aqueous solution (c) in the reaction tank.
  • the initial aqueous solution is prepared by adding an aqueous solution (b) containing an ammonium donor and an aqueous caustic aqueous solution (c) such that the ammonium ion concentration, pH value and temperature fall within the preferred ranges for the reaction solution described later. It is preferable to adjust the temperature.
  • the reaction solution is formed by adding the mixed aqueous solution (a), the aqueous solution (b) containing an ammonium ion donor and the aqueous caustic aqueous solution (c) to the initial aqueous solution as described above. Ru.
  • Mixed aqueous solution (a) is a supply source of the metal which comprises a positive electrode active material precursor.
  • the positive electrode active material precursor contains nickel and cobalt, it can contain a nickel salt and a cobalt salt.
  • metal salts of the element M can also be contained.
  • the metal salt of the metal constituting the positive electrode active material precursor is divided according to metal species to prepare an aqueous solution for supplying a plurality of metal components, and a positive electrode active material precursor is constituted by the aqueous solution for supplying a plurality of metal components. It can also be configured to supply metal.
  • the aqueous solution (b) containing an ammonium ion donor plays a role of controlling the particle size and shape of particles of the positive electrode active material precursor to be produced as a complexing agent.
  • ammonium ions are not incorporated into particles of the positive electrode active material precursor to be generated, and are thus preferable complexing agents in order to obtain particles of the positive electrode active material precursor of high purity.
  • Caustic aqueous solution (c) is a pH adjuster for neutralization reaction.
  • the metal salt concentration of the metal salt constituting the positive electrode active material precursor in the mixed aqueous solution (a) is not particularly limited, but is preferably 0.5 mol / L or more and 2.2 mol / L or less. By setting it as 0.5 mol / L or more, the liquid volume in each process can be suppressed and productivity can be improved. Further, by setting the concentration to 2.2 mol / L or less, recrystallization of the metal salt in the mixed aqueous solution (a) can be suppressed even when, for example, the air temperature decreases.
  • the metal salt concentration in the entire plurality of aqueous solutions supplying metal salts of metals constituting the positive electrode active material is It is preferable to satisfy the above range.
  • the pH of the reaction solution is not particularly limited, but is preferably maintained at 11.0 or more and 13.0 or less on the basis of 50 ° C., and more preferably maintained at 11.0 or more and 12.5 or less.
  • the pH of the reaction solution is set to 11.0 or more and 13.0 or less, initial nucleation can be promoted in the reaction system, and particle growth can be promoted based on the nucleus. For this reason, particles of the positive electrode active material precursor grown to a sufficient size can be obtained.
  • the temperature of the reaction solution is preferably maintained at 20 ° C. or more and 70 ° C. or less, more preferably 40 ° C. or more and 70 ° C. or less.
  • the temperature of the reaction solution is preferably maintained at 20 ° C. or more and 70 ° C. or less, more preferably 40 ° C. or more and 70 ° C. or less.
  • the ammonium ion concentration in the reaction solution is preferably maintained at 10 g / L or more and 25 g / L or less during the crystallization step, and more preferably 15 g / L or more and 20 g / L or less.
  • the ammonium ion concentration in the reaction solution is preferably maintained at 10 g / L or more and 25 g / L or less during the crystallization step, and more preferably 15 g / L or more and 20 g / L or less.
  • the concentration of the metal component constituting the positive electrode active material precursor in the reaction solution can be made particularly uniform, and the composition deviation in the positive electrode active material precursor is particularly suppressed it can.
  • the metal salt of the metal which comprises a positive electrode active material is at least 1 sort (s) of a sulfate, nitrate, or a chloride, and the sulfate which does not have contamination by a halogen is more preferable.
  • s 1 sort
  • cobalt sulfate, nickel sulfate or the like can be used.
  • the positive electrode active material precursor is one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, Sr, and W as the element M.
  • the element M can be added.
  • the element M can be added as a compound of the element M to the mixed aqueous solution (a).
  • the compound of the element M is not particularly limited, and for example, magnesium sulfate, calcium nitrate, strontium nitrate, titanium sulfate, ammonium molybdate, sodium tungstate, ammonium tungstate and the like can be used.
  • the compound of the element M is not limited to the above-mentioned example, and various kinds of sulfates, nitrates, chlorides, etc containing the target element M Compounds can be used.
  • the concentration of the mixed aqueous solution (a) is preferably maintained under the conditions described above. Further, the addition amount of the element M is adjusted so that the atomic ratio of the metal ions present in the mixed aqueous solution (a) matches the atomic ratio of the metal elements in the target positive electrode active material precursor.
  • the additive element M is not necessarily added to the mixed aqueous solution (a) to be coprecipitated, and for example, the surface of the coprecipitate obtained by coprecipitation in the state where the additive element M is not added.
  • a compound such as a hydroxide or an oxide of an M element may be precipitated by a wet neutralization method.
  • a target positive electrode active material precursor may be obtained by combining the above addition methods.
  • the metal salt is such that the atomic ratio of the metal ions present in the mixed aqueous solution matches the atomic ratio of the metal element in the target positive electrode active material precursor As such, it is preferable to adjust.
  • the aqueous solution (b) containing the above ammonium ion donor is not particularly limited, but is preferably an aqueous solution of ammonia water, ammonium sulfate or ammonium chloride, and one kind selected from ammonia water without contamination by halogen and an aqueous solution of ammonium sulfate The above is more preferable. Further, the concentration of the ammonium ion donor is not particularly limited, and may be adjusted in a range in which the concentration of ammonium ion in each step can be maintained.
  • the caustic aqueous solution (c) is not particularly limited, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide can be used, for example.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide
  • the mixed aqueous solution (a) and the aqueous solution (b) containing an ammonium ion donor are quantitatively and continuously supplied, and the caustic aqueous solution (c) is
  • the reaction is carried out while maintaining the reaction solution at a predetermined pH by adjusting the addition amount, and the reaction solution containing the precursor particles is allowed to continuously overflow from the reaction vessel, and the positive electrode is activated.
  • Preferred is a method of recovering the substance precursor.
  • the reaction vessel used in the crystallization step is not particularly limited, but it is preferable to use a container provided with a stirrer, an overflow port, and temperature control means.
  • a positive electrode active material precursor having a predetermined particle void ratio for example, in the crystallization step, it is preferable to adjust the supply amount of the raw material solution with respect to the volume of the reaction tank.
  • the inside of the reaction vessel is constantly stirred, and the raw material solution immediately after being fed and the raw material solution fed before are overflowed and discharged from the reaction vessel while being continuously mixed. For this reason, if the amount of the feed solution per unit time increases excessively with respect to the volume (actual liquid volume) of the reaction vessel substantially to the overflow port, the particles which are overflowed and discharged through sufficient growth crystallization.
  • the proportion of non-particulate particles increases, and depending on the crystallization conditions, the particle size decreases and the void ratio of particles increases.
  • the preferable range of the amount of supplied liquid per unit time to the substantial volume up to the overflow port of the reaction tank to be used varies depending on the supply ratio, the concentration, and the like of each aqueous solution constituting the supplied raw material solution. For this reason, it is preferable to conduct a preliminary test, select a suitable supply liquid amount ratio from the relationship between the void ratio of the obtained positive electrode active material precursor and the crystallization conditions, and carry out the crystallization step.
  • the ratio of the amount of supplied liquid per minute of the raw material solution to the volume (actual liquid amount) of the actual reaction tank up to the overflow port of the reaction tank is 0. It is preferable to adjust so as to be 25% or more and less than 0.40%.
  • the atmosphere in the reaction vessel is not particularly limited during the crystallization step, but may be, for example, an air atmosphere, that is, air (approximately 21% by volume of oxygen concentration).
  • the obtained positive electrode active material precursor can also be used as a raw material of the positive electrode active material as it is.
  • the positive electrode active material precursor may be roasted, and part or all of the nickel composite hydroxide particles contained therein can be used as the raw material of the positive electrode active material after being made into nickel composite oxide particles.
  • the positive electrode active material precursor obtained in the crystallization step is removed after completion of the crystallization step of the method of manufacturing a positive electrode active material precursor of the present embodiment.
  • a roasting step can be further performed.
  • the conditions for roasting the positive electrode active material precursor obtained in the crystallization step are not particularly limited, and the roasting conditions are selected according to the required degree of conversion to the oxide, etc. be able to.
  • the positive electrode active material precursor obtained in the crystallization step can be fired at 500 ° C. or more and 700 ° C. or less.
  • the atmosphere for roasting the positive electrode active material precursor is not particularly limited, as long as it is a non-reducing atmosphere, but it is preferable to carry out in a simple air stream.
  • the equipment used for roasting is not particularly limited, as long as it can heat the positive electrode active material precursor in a non-reducing atmosphere, preferably in an air stream, and an electric furnace or the like without gas generation is preferable Used for
  • the roasting step can also be performed, for example, before the mixing step in the method of manufacturing the positive electrode active material described later.
  • Method of producing positive electrode active material The method for producing the positive electrode active material of the present embodiment is not particularly limited.
  • the method for producing a positive electrode active material of the present embodiment can have, for example, the following steps.
  • the positive electrode active material precursor and the lithium compound can be mixed to obtain a mixture (mixed powder).
  • the ratio at the time of mixing the positive electrode active material precursor and the lithium compound is not particularly limited, and can be selected according to the composition of the positive electrode active material to be produced.
  • Li / Me in the mixture to be subjected to the baking step becomes substantially the same as Li / Me in the obtained positive electrode active material. For this reason, it is preferable to mix so that Li / Me in the mixture prepared at a mixing process becomes the same as Li / Me in the positive electrode active material to be obtained.
  • the ratio (Li / Me) of the number of atoms of metal other than lithium (Me) in the mixture to the number of atoms of lithium (Li) is 1.00 or more and 1.08 or less
  • it is mixed with It is more preferable to mix so that ratio (Li / Me) of the number of atoms of lithium in the said mixture and the number of atoms of metals other than lithium may become 1.025 or more and 1.045 or less especially.
  • the lithium compound to be subjected to the mixing step is not particularly limited, and for example, one or more selected from lithium hydroxide, lithium carbonate and the like can be preferably used.
  • a general mixer can be used as a mixing means for mixing the positive electrode active material precursor and the lithium compound, and for example, a shaker mixer, a lodige mixer, a Julia mixer, a V blender, etc. can be used. Just do it.
  • the roasting step is carried out in advance, and in the mixing step, a positive electrode active material precursor and a lithium compound in which a part or all of the nickel composite hydroxide particles are made into nickel composite oxide particles. It can also be a mixing step to prepare a mixture.
  • the firing step is a step of firing the mixture obtained in the mixing step to obtain a positive electrode active material. When the mixture is fired in the firing step, lithium in the lithium compound is diffused into the positive electrode active material precursor, and a positive electrode active material is formed.
  • the firing temperature at which the mixture is fired is not particularly limited, but is preferably 600 ° C. or more and 950 ° C. or less, and more preferably 700 ° C. or more and 900 ° C. or less.
  • the firing temperature By setting the firing temperature to 600 ° C. or more, the diffusion of lithium into the positive electrode active material precursor can be sufficiently advanced, and the crystal structure of the obtained positive electrode active material can be made uniform. Therefore, when the product is used as a positive electrode active material, the battery characteristics can be particularly enhanced, which is preferable. In addition, since the reaction can be sufficiently advanced, it is possible to suppress the remaining of excess lithium and the remaining of unreacted particles.
  • the firing temperature By setting the firing temperature to 950 ° C. or less, it is possible to suppress the progress of sintering among particles of the positive electrode active material to be generated. In addition, occurrence of abnormal grain growth can be suppressed, and coarsening of particles of the obtained positive electrode active material can be suppressed.
  • the temperature in the process of raising the temperature to the firing temperature, the temperature can be maintained at a temperature near the melting point of the lithium compound for about 1 hour to 5 hours. In this case, the reaction can be more uniformly performed, which is preferable.
  • the holding time at a predetermined temperature is not particularly limited, but is preferably 2 hours or more, more preferably 4 hours or more. This is because by setting the holding time at the firing temperature to 2 hours or more, the formation of the positive electrode active material can be sufficiently promoted, and the unreacted material can be more reliably prevented from remaining.
  • the upper limit value of the holding time at the firing temperature is not particularly limited, but is preferably 24 hours or less in consideration of productivity and the like.
  • the atmosphere at the time of baking is not particularly limited, it is preferable to use an oxidizing atmosphere.
  • an oxygen-containing gas atmosphere can be preferably used, and for example, an atmosphere having an oxygen concentration of 18% by volume to 100% by volume is more preferable.
  • the crystallinity of the positive electrode active material can be particularly enhanced by setting the oxygen concentration in the atmosphere at the time of firing to 18% by volume or more.
  • an oxygen-containing gas atmosphere for example, air, oxygen, a mixed gas of oxygen and an inert gas, or the like can be used as a gas constituting the atmosphere.
  • the oxygen concentration in the mixed gas preferably satisfies the above range.
  • the firing step is preferably carried out in an oxygen-containing gas stream, more preferably in the air or in an oxygen stream.
  • an oxygen stream in consideration of the battery characteristics, it is preferable to carry out in an oxygen stream.
  • the furnace used for the firing is not particularly limited as long as the mixture can be fired in an oxygen-containing gas atmosphere, but from the viewpoint of keeping the atmosphere in the furnace uniform, an electric furnace without gas generation Is preferred, and either a batch or continuous furnace can be used.
  • the positive electrode active material obtained by the firing step may have aggregation or slight sintering. In this case, it may be crushed.
  • crushing means that mechanical energy is applied to an aggregate composed of a plurality of secondary particles generated by sintering necking between secondary particles at the time of firing to almost destroy the secondary particles themselves. It is an operation to separate secondary particles and to loosen aggregates.
  • the temporary firing temperature is not particularly limited, but may be lower than the firing temperature in the firing step.
  • the pre-baking temperature is, for example, preferably 250 ° C. or more and 600 ° C. or less, and more preferably 350 ° C. or more and 550 ° C. or less.
  • the temporary firing time that is, the holding time at the temporary firing temperature is preferably, for example, about 1 hour to 10 hours, and more preferably, 3 hours to 6 hours.
  • the atmosphere at the time of implementing temporary baking is not specifically limited, For example, it can be set as the same atmosphere as a baking process.
  • the diffusion of lithium to the positive electrode active material precursor is sufficiently performed, and in particular, a uniform positive electrode active material can be obtained.
  • the method for producing a positive electrode active material of the present embodiment can further have an optional step.
  • a water washing step can also be carried out.
  • the positive electrode active material obtained in the baking step may be introduced into pure water to form a slurry, and after stirring for a predetermined time, it may be separated from water, filtered and dried.
  • the method of manufacturing the positive electrode active material of the present embodiment since the above-described positive electrode active material precursor is used, nickel composite hydroxide particles or nickel composite oxide particles contained in the positive electrode active material precursor A sufficient amount of lithium component can be contained and uniformly distributed in the void. For this reason, a sufficient amount of lithium components can be uniformly distributed in the particles of the positive electrode active material obtained by the method of manufacturing a positive electrode active material of the present embodiment, and lithium ions can be easily moved. Reaction resistance can be suppressed. Furthermore, charge and discharge capacity can be increased. [Non-aqueous electrolyte secondary battery] Next, one structural example of the non-aqueous electrolyte secondary battery of the present embodiment will be described.
  • the non-aqueous electrolyte secondary battery of the present embodiment can have a positive electrode using the positive electrode active material described above as a positive electrode material.
  • the non-aqueous electrolyte secondary battery of the present embodiment can have substantially the same structure as a general non-aqueous electrolyte secondary battery except that the positive electrode active material described above is used as the positive electrode material.
  • the non-aqueous electrolyte secondary battery of the present embodiment can have a structure including, for example, a case, and a positive electrode, a negative electrode, an electrolytic solution, and a separator housed in the case.
  • the positive electrode and the negative electrode can be stacked via a separator to form an electrode assembly, and the obtained electrode assembly can be impregnated with an electrolytic solution. Then, connect between the positive electrode current collector of the positive electrode and the positive electrode terminal leading to the outside, and between the negative electrode current collector of the negative electrode and the negative electrode terminal leading to the outside using the current collection lead etc. It can have a sealed structure.
  • the structure of the non-aqueous electrolyte secondary battery of the present embodiment is not limited to the above example, and the outer shape thereof may adopt various shapes such as a cylindrical shape or a laminated shape.
  • the positive electrode is a sheet-like member, and can be formed, for example, by applying and drying a positive electrode mixture paste containing the positive electrode active material described above on the surface of a current collector made of an aluminum foil.
  • a positive electrode is suitably processed according to the battery to be used. For example, a cutting process may be performed to form an appropriate size according to the target battery, or a pressure compression process using a roll press may be performed to increase the electrode density.
  • the above-mentioned positive electrode mixture paste can be formed by adding a solvent to the positive electrode mixture and kneading it.
  • the positive electrode mixture can be formed by mixing the above-described positive electrode active material in powder form, a conductive material, and a binder.
  • the conductive material is added to provide the electrode with appropriate conductivity.
  • the material of the conductive material is not particularly limited, for example, graphite such as natural graphite, artificial graphite and expanded graphite, and carbon black based materials such as acetylene black and ketjen black (registered trademark) can be used.
  • the binder plays a role of holding the positive electrode active material.
  • the binder used for the positive electrode mixture is not particularly limited, and examples thereof include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylene propylene diene rubber, styrene butadiene, cellulose resin, and polyacryl.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluororubber fluororubber
  • ethylene propylene diene rubber ethylene propylene diene rubber
  • styrene butadiene styrene butadiene
  • cellulose resin and polyacryl.
  • One or more selected from acids and the like can be used.
  • activated carbon etc. can also be added to positive electrode compound material.
  • the electric double layer capacity of the positive electrode can be increased by adding activated carbon or the like to the positive electrode mixture.
  • the solvent has a function of dissolving the binder and dispersing the positive electrode active material, the conductive material, the activated carbon and the like in the binder.
  • the solvent is not particularly limited, and for example, an organic solvent such as N-methyl-2-pyrrolidone can be used.
  • the mixing ratio of each substance in the positive electrode mixture paste is not particularly limited, and can be made similar to, for example, the positive electrode of a general non-aqueous electrolyte secondary battery.
  • the content of the positive electrode active material is 60 parts by mass to 95 parts by mass
  • the content of the conductive material is 1 parts by mass to 20 parts by mass
  • the content of the binder can be 1 part by mass or more and 20 parts by mass or less.
  • a positive electrode is not limited to the said method, For example, after press-molding positive mix and positive mix paste, it can also manufacture by drying etc. in a vacuum atmosphere.
  • the negative electrode is a sheet-like member, and for example, metal lithium, a lithium alloy or the like can be used for the negative electrode.
  • a negative electrode mixture paste may be applied to the surface of a metal foil current collector such as copper and dried to form a negative electrode.
  • the negative electrode is formed by substantially the same method as the above positive electrode although the components constituting the negative electrode mixture paste and the composition thereof, the material of the current collector, etc. are different, and various treatments may be carried out as necessary as the positive electrode. To be done.
  • the negative electrode mixture paste can be made into a paste by adding an appropriate solvent to a negative electrode mixture obtained by mixing a negative electrode active material and a binder.
  • the negative electrode active material for example, a lithium-containing substance such as metal lithium or lithium alloy, or an occlusion substance capable of inserting and extracting lithium ions can be adopted.
  • the occluding substance is not particularly limited, and for example, one or more kinds selected from organic graphite such as natural graphite, artificial graphite, phenol resin and the like, and powder of carbon substance such as coke can be used.
  • a fluorine-containing resin such as PVDF can be used as the binder as with the positive electrode, and as a solvent for dispersing the negative electrode active material in the binder, Organic solvents such as N-methyl-2-pyrrolidone can be used.
  • the separator is disposed between the positive electrode and the negative electrode, and has a function of separating the positive electrode and the negative electrode and holding an electrolytic solution.
  • the material of the separator is, for example, a thin film such as polyethylene or polypropylene, and a film having a large number of fine pores can be used, but it is not particularly limited as long as it has the above-mentioned function.
  • the electrolytic solution is one in which a lithium salt as a support salt is dissolved in an organic solvent.
  • organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate; linear carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and dipropyl carbonate; and further tetrahydrofuran, 2- Ether compounds such as methyltetrahydrofuran and dimethoxyethane; sulfur compounds such as ethyl methyl sulfone and butanesultone; phosphorus compounds such as triethyl phosphate and trioctyl phosphate alone or a mixture of two or more selected be able to.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate
  • linear carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and dipropyl carbonate
  • 2- Ether compounds such as methyltetrahydrofur
  • LiPF 6 LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used.
  • the electrolytic solution may contain a radical scavenger, a surfactant, a flame retardant, and the like to improve battery characteristics.
  • the non-aqueous electrolyte secondary battery of the present embodiment has been described by way of example using an electrolytic solution (non-aqueous electrolytic solution) as the electrolyte, but the non-aqueous electrolyte secondary battery of the present embodiment It is not limited.
  • a solid electrolyte may be used as the electrolyte (non-aqueous electrolyte).
  • Solid electrolytes have the property of being able to withstand high voltages. As solid electrolytes, inorganic solid electrolytes and organic solid electrolytes can be mentioned.
  • inorganic solid electrolytes examples include oxide-based solid electrolytes and sulfide-based solid electrolytes.
  • the oxide-based solid electrolyte is not particularly limited, and for example, one containing oxygen (O) and having lithium ion conductivity and electronic insulation can be suitably used.
  • an oxide system solid electrolyte for example, lithium phosphate (Li 3 PO 4 ), Li 3 PO 4 N x , LiBO 2 N x , LiNbO 3 , LiTaO 3 , Li 2 SiO 3 , Li 4 SiO 4 -Li 3 PO 4 , Li 4 SiO 4 -Li 3 VO 4 , Li 2 O-B 2 O 3 -P 2 O 5 , Li 2 O-SiO 2 , Li 2 O-B 2 O 3 -ZnO, Li 1 + X Al X Ti 2-X (PO 4) 3 (0 ⁇ X ⁇ 1), Li 1 + X Al X Ge 2-X (PO 4) 3 (0 ⁇ X ⁇ 1), LiTi 2 (PO 4) 3, Li 3X La 2 / 3-X TiO 3 (0 ⁇ X ⁇ 2/3
  • the sulfide-based solid electrolyte is not particularly limited, and for example, one containing sulfur (S) and having lithium ion conductivity and electronic insulation can be suitably used.
  • S sulfur
  • As the sulfide-based solid electrolyte for example, Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S-B 2 S 3 , Li 3 PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2 , LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S can be used one or more selected from 5 or the like.
  • the inorganic solid electrolyte one other than the above may be used, and for example, Li 3 N, LiI, Li 3 N-LiI-LiOH, etc. may be used.
  • the organic solid electrolyte is not particularly limited as long as it is a polymer compound exhibiting ion conductivity.
  • polyethylene oxide, polypropylene oxide, copolymers of these, and the like can be used.
  • the organic solid electrolyte may also contain a support salt (lithium salt).
  • the configuration other than the positive electrode active material can be changed from the configuration described above as needed.
  • the positive electrode active material precursor was produced in Experimental Examples 1 to 16 and evaluated. Experimental Examples 1 to 10 are Examples, and Experimental Examples 11 to 16 are Comparative Examples. [Experimental Example 1] (Production of positive electrode active material precursor) The crystallization step was carried out according to the following procedure to prepare Ni 0.88 Co 0.12 (OH) 2 as a positive electrode active material precursor.
  • a crystallizer equipped with a reaction vessel (stirred vessel) having a cylindrical shape inside was prepared.
  • a stirring blade is provided in the reaction tank, and the initial aqueous solution or reaction solution in the reaction tank can be stirred by the stirring blade.
  • the reaction vessel is provided with an overflow port, and is configured to be able to recover the positive electrode active material precursor which is generated by continuously overflowing.
  • the inside of the reaction vessel is in the air atmosphere, that is, an air atmosphere having an oxygen concentration of about 21% by volume.
  • reaction vessel having an internal volume of 6000 L was prepared.
  • the volume of the liquid that can be accommodated in the range up to the overflow port, that is, the actual liquid amount is 5730 L.
  • a caustic aqueous solution (c) a 24% by mass sodium hydroxide aqueous solution was added to the water in the reaction tank to adjust the pH to 11.4, and an initial aqueous solution was prepared.
  • the nickel salt used and the mixed aqueous solution (a) containing a cobalt salt contain nickel sulfate as the nickel salt and cobalt sulfate as the cobalt salt. Then, each metal salt was added and mixed so that the mass ratio of nickel to cobalt in the mixed aqueous solution (a) was 88:12 and the metal salt concentration was 2.1 mol / L.
  • aqueous solution (b) containing an ammonium ion donor and the caustic aqueous solution (c) the same aqueous solution as that used in preparing the initial aqueous solution was used.
  • the mixed aqueous solution (a) containing nickel salt and cobalt salt has a supply rate of 9.65 L / min
  • the aqueous solution (b) containing an ammonium ion donor has a supply rate of 1.03 L / min.
  • the aqueous caustic solution (c) was fed to the initial aqueous solution, the reaction solution, at a feed rate of 4.80 L / min.
  • the ratio of the amount of supplied liquid per minute to the actual amount is 0.27%.
  • the reaction solution is maintained at a solution temperature of 49 ° C., a pH of 11.1 to 11.7 based on 50 ° C., and an ammonium ion concentration of 14.5 g / L. Was confirmed.
  • the recovered crystallized product was washed with water, filtered and dried to obtain nickel composite hydroxide particles as a positive electrode active material precursor.
  • the average particle diameter of the obtained positive electrode active material precursor composed of a plurality of nickel composite hydroxide particles was measured using a laser diffraction / scattering particle size distribution analyzer (Microtrac HRA, manufactured by Nikkiso Co., Ltd.) 12. It was 5 ⁇ m.
  • a plurality of the obtained nickel composite hydroxide particles are embedded in a resin, and after cross-section polishing processing enables cross-sectional observation of the particles to be possible, a SEM (scanning electron microscope S, manufactured by Hitachi High-Technologies Corporation) Observation was performed according to -4700).
  • 10 particles (particles 1 to 10) were selected in which the average value of the long side and the short side is within the average particle diameter ⁇ 1 ⁇ m of the positive electrode active material precursor.
  • the boundary was arranged in a grid shape over the entire cross section of the selected particles (particles for evaluation). At this time, the boundary is arranged such that one area divided by the boundary is 2 ⁇ m square.
  • the threshold value was determined by the discriminant analysis method in the case of binarization processing.
  • the average value and the standard deviation of the ratio of the area of the void in the cross section were calculated.
  • the obtained positive electrode active material precursor is roasted at 700 ° C. for 6 hours in a stream of air (oxygen: 21% by volume), and all is converted to a nickel composite oxide (sintering step) positive electrode active material Subjected to the manufacturing process of (Production of positive electrode active material)
  • a mixture of a lithium compound and the nickel composite oxide obtained after the above-described roasting step was prepared by the following procedure (mixing step).
  • lithium hydroxide monohydrate LiOH ⁇ H 2 O
  • anodization treatment by vacuum drying, and the obtained anhydrous lithium hydroxide was used.
  • a lithium compound and a nickel composite oxide were weighed and mixed so that the ratio of the number of atoms in the mixture was 1.035, and Li / Me was prepared.
  • Me means the total number of atoms of metals other than Li, which is the sum of Ni and Co.
  • the mixture obtained in the mixing step is charged into a baking vessel having an inner size of 280 mm (L) ⁇ 280 mm (W) ⁇ 90 mm (H), and this is fed into oxygen using a roller hearth kiln which is a continuous baking furnace. Firing was performed at a maximum temperature (firing temperature) of 770 ° C. in an atmosphere of a concentration of 80% by volume, with the remainder being an inert gas (firing step). Further, the obtained baked product was poured into pure water to be a slurry so as to have a weight ratio of 1.5 to 1 of water, and stirred for 30 minutes, followed by filtration and drying to obtain a positive electrode active material ( Washing process). (Manufacture of non-aqueous electrolyte secondary battery) Using the obtained lithium nickel composite oxide as a positive electrode active material, a 2032 coin-type battery was produced and evaluated.
  • FIG. 2 schematically shows a cross-sectional view of the coin battery.
  • the coin-type battery 20 is composed of a case 21 and an electrode 22 housed in the case 21.
  • the case 21 has a hollow positive electrode can 211 open at one end, and a negative electrode can 212 disposed at the opening of the positive electrode can 211.
  • a negative electrode can 212 disposed at the opening of the positive electrode can 211.
  • a space for housing the electrode 22 is formed between the negative electrode can 212 and the positive electrode can 211.
  • the electrode 22 includes a positive electrode 221, a separator 222, and a negative electrode 223, and is stacked in this order so that the positive electrode 221 contacts the inner surface of the positive electrode can 211 and the negative electrode 223 contacts the inner surface of the negative electrode can 212 Is housed in a case 21.
  • the case 21 is provided with a gasket 213, and the gasket 213 fixes the positive electrode can 211 and the negative electrode can 212 so as to maintain an electrically insulated state.
  • the gasket 213 also has a function of sealing the gap between the positive electrode can 211 and the negative electrode can 212 to shut off the inside of the case 21 from the outside in an airtight and liquid-tight manner.
  • the coin battery 20 was manufactured as follows. First, 52.5 mg of the obtained lithium nickel composite oxide particles, 15 mg of acetylene black, and 7.5 mg of polytetrafluoroethylene (PTFE) resin are mixed with N-methyl-2-pyrrolidone as a solvent, and the pressure is 100 MPa.
  • the positive electrode 221 was manufactured by press-molding to a diameter of 11 mm and a thickness of 100 ⁇ m. The produced positive electrode 221 was dried at 120 ° C. for 12 hours in a vacuum dryer. Using the positive electrode 221, the negative electrode 223, the separator 222, and the electrolytic solution, a coin battery 20 was produced in a glove box under an Ar atmosphere with a dew point controlled to -80.degree.
  • the negative electrode 223 is a negative electrode material mixture paste prepared by mixing graphite powder having an average particle diameter of about 20 ⁇ m punched into a disc shape having a diameter of 14 mm and polyvinylidene fluoride together with N-methyl-2-pyrrolidone as a solvent.
  • the negative electrode sheet apply
  • the separator 222 a polyethylene porous film with a film thickness of 25 ⁇ m was used.
  • an electrolyte solution an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (made by Toyama Pharmaceutical Co., Ltd.) using 1 M LiClO 4 as a supporting electrolyte was used.
  • the resulting coin-cell battery is charged at a charge potential of 4.1 V and measured by an AC impedance method using a frequency response analyzer and a potentiogalvanostat (manufactured by Solartron, 1255B).
  • the Nyquist plot shown in FIG. 3A is obtained. . Since this Nyquist plot is expressed as the sum of the solution resistance, the negative electrode resistance and its capacity, and the positive electrode resistance and its characteristic curve showing the capacity, a fitting calculation is performed using the equivalent circuit shown in FIG. 3B based on this Nyquist plot. To calculate the value of the reaction resistance.
  • the results of the present experimental example are used as reference values in the following other experimental examples, and are shown in Table 1 as the reaction resistance ratio.
  • a positive electrode active material precursor, a positive electrode active material, and a non-aqueous electrolyte secondary battery were produced and evaluated in the same manner as in Experimental Example 1 except for the above points. The evaluation results are shown in Table 1.
  • Each metal salt was added to water and mixed so that the metal salt concentration was 2.1 mol / L, and each aqueous solution was prepared.
  • nickel sulfate as a nickel salt and cobalt sulfate as a cobalt salt are added.
  • sodium aluminate was added to the aqueous solution (d) containing the element M as an aluminum salt.
  • a positive electrode active material precursor, a positive electrode active material, and a non-aqueous electrolyte secondary battery were produced and evaluated in the same manner as in Experimental Example 1 except for the above points.
  • Me of Li / Me in the mixing process at the time of manufacturing a positive electrode active material becomes the number of atoms of the sum total of Ni, Co, and Al in the case of this experiment example.
  • the evaluation results are shown in Table 2.
  • an aqueous solution (d) containing an element M was added in the crystallization step.
  • Each metal salt was added to water and mixed so that the metal salt concentration was 2.1 mol / L, and each aqueous solution was prepared.
  • nickel sulfate as a nickel salt and cobalt sulfate as a cobalt salt are added.
  • sodium aluminate was added to the aqueous solution (d) containing the element M as an aluminum salt.
  • Ni 0.91 Co 0.045 Al 0.045 (OH) 2 was manufactured as a positive electrode active material precursor.
  • a positive electrode active material precursor, a positive electrode active material, and a non-aqueous electrolyte secondary battery were produced and evaluated in the same manner as in Experimental Example 1 except for the above points.
  • Me of Li / Me in the mixing process at the time of manufacturing a positive electrode active material becomes the number of atoms of the sum total of Ni, Co, and Al in the case of this experiment example.
  • the evaluation results are shown in Table 2.
  • Example 14 When producing a positive electrode active material precursor, in the crystallization step, the reaction vessel volume and the actual liquid volume are the same as those shown in Table 1, using the reaction vessel, the supply rate of each solution, and the initial aqueous solution and reaction solution A positive electrode active material precursor, a positive electrode active material, and a non-aqueous electrolyte secondary battery were produced and evaluated in the same manner as in Experimental Example 8 except that the ammonium ion concentration was adjusted to the values shown in Table 3. . The evaluation results are shown in Table 3.
  • Example 15 When manufacturing the positive electrode active material precursor, in the crystallization step, the reaction tank volume and the actual liquid volume use the reaction tank with the values shown in Table 3, the supply rate of each solution, and the initial aqueous solution and reaction solution A positive electrode active material precursor, a positive electrode active material, and a non-aqueous electrolyte secondary battery were produced and evaluated in the same manner as in Experimental Example 9 except that the ammonium ion concentration was adjusted to the values shown in Table 3. . The evaluation results are shown in Table 3.
  • Example 16 When manufacturing the positive electrode active material precursor, in the crystallization step, the reaction tank volume and the actual liquid volume use the reaction tank with the values shown in Table 3, the supply rate of each solution, and the initial aqueous solution and reaction solution A positive electrode active material precursor, a positive electrode active material, and a non-aqueous electrolyte secondary battery were produced in the same manner as in Example 10 except that the ammonium ion concentration was adjusted to the values shown in Table 3 and evaluated. . The evaluation results are shown in Table 3.

Abstract

ニッケル複合水酸化物粒子を含み、 前記ニッケル複合水酸化物粒子の断面は空隙を含んでおり、 分割される1つの領域が2μm角となるように、格子状に配置された境界線により、前記ニッケル複合水酸化物粒子の断面を複数の領域に分割した場合に、 前記境界線により分割された各領域に占める、前記空隙の面積の割合の平均値が0.5%以上5.0%以下であり、 前記境界線により分割された各領域に占める、前記空隙の面積の割合の標準偏差が1.0以下である非水系電解質二次電池用正極活物質前駆体を提供する。

Description

非水系電解質二次電池用正極活物質前駆体
 本発明は、非水系電解質二次電池用正極活物質前駆体に関する。
 近年、携帯電話、ノート型パーソナルコンピュータなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が要求されている。また、ハイブリット自動車を始めとする電気自動車用の電池として、高出力の二次電池の開発も要求されている。このような要求を満たす非水系電解質二次電池として、リチウムイオン二次電池がある。
 リチウムイオン二次電池は、例えば負極、正極、電解液などで構成され、負極および正極の活物質には、リチウムを脱離および挿入することが可能な材料が用いられている。
 リチウム複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として期待され、実用化が進んでいる。リチウムコバルト複合酸化物を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。
 しかしながら、リチウムコバルト複合酸化物は、原料に高価なコバルト化合物を用いるため、このリチウムコバルト複合酸化物を用いる電池の容量あたりの単価は、ニッケル水素電池より大幅に高くなり、適用可能な用途はかなり限定されている。
 このため、携帯機器用の小型二次電池や、電力貯蔵用や電気自動車用などの大型二次電池について、正極材料のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることに対する期待は大きく、その実現は、工業的に大きな意義があるといえる。
 リチウムイオン二次電池用活物質の新たなる材料としては、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物を挙げることができる。このリチウムニッケル複合酸化物は、リチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示すため、電解液の酸化による分解が問題になりにくく、より高容量が期待でき、コバルト系と同様に高い電池電圧を示すことから、開発が盛んに行われている。
 しかし、純粋にニッケルのみで合成したリチウムニッケル複合酸化物を正極材料としてリチウムイオン二次電池を作製した場合、コバルト系に比ベてサイクル特性が劣り、また高温環境下での使用や保存により、比較的電池性能を損ないやすいという欠点を有している。このため、ニッケルの一部をコバルトやアルミニウムで置換したリチウムニッケル複合酸化物が一般的に知られている。
 リチウムコバルト複合酸化物や、リチウムニッケル複合酸化物等の非水系電解質二次電池用正極活物質の製造方法については従来から各種方法が提案されている。例えばニッケル複合水酸化物等の非水系電解質二次電池用正極活物質前駆体と、リチウム化合物とを混合し、得られた混合物を焼成する非水系電解質二次電池用正極活物質の製造方法が提案されている。
 例えば特許文献1には、Ni塩とM塩の混合水溶液にアルカリ溶液を加えて、NiとMの水酸化物を共沈させ、得られた沈殿物を濾過、水洗、乾燥して、ニッケル複合水酸化物:Ni1-x(OH)を得る晶析工程と、
 得られたニッケル複合水酸化物:Ni1-x(OH)とリチウム化合物とを、NiとMとの合計に対するLiのモル比:Li/(Ni+M)が1.00~1.15となるように混合し、さらに該混合物を、700℃以上1000℃以下の温度で焼成して、前記リチウムニッケル複合酸化物を得る焼成工程と、
 得られたリチウムニッケル複合酸化物を水洗処理する水洗工程と、を有することを特徴とする非水系電解質二次電池用正極活物質の製造方法が開示されている。
日本国特開2012-119093号公報
 しかしながら、近年ではリチウムイオン電池の更なる性能向上が求められている。このため、非水系電解質二次電池用正極活物質であるリチウムニッケル複合酸化物についても、例えば非水系電解質二次電池とした場合の出力電圧を十分に高めるため、反応抵抗を抑制することが求められている。
 そこで上記従来技術が有する問題に鑑み、本発明の一側面では、非水系電解質二次電池とした場合に反応抵抗を抑制することが可能な非水系電解質二次電池用正極活物質の前駆体を提供することを目的とする。
 上記課題を解決するため本発明の一態様によれば、
 ニッケル複合水酸化物粒子を含み、
 前記ニッケル複合水酸化物粒子の断面は空隙を含んでおり、
 分割される1つの領域が2μm角となるように、格子状に配置された境界線により、前記ニッケル複合水酸化物粒子の断面を複数の領域に分割した場合に、
 前記境界線により分割された各領域に占める、前記空隙の面積の割合の平均値が0.5%以上5.0%以下であり、
 前記境界線により分割された各領域に占める、前記空隙の面積の割合の標準偏差が1.0以下である非水系電解質二次電池用正極活物質前駆体を提供する。
 本発明の一態様によれば、非水系電解質二次電池とした場合に反応抵抗を抑制することが可能な非水系電解質二次電池用正極活物質の前駆体を提供することができる。
本発明の実施形態に係るニッケル複合水酸化物粒子の断面での境界線の説明図。 実験例において作製したコイン型電池の断面構成の説明図。 インピーダンス評価の測定例。 解析に使用した等価回路の概略説明図。
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
[非水系電解質二次電池用正極活物質前駆体]
 まず、本実施形態の非水系電解質二次電池用正極活物質前駆体の一構成例について説明する。
 本実施形態の非水系電解質二次電池用正極活物質前駆体は、ニッケル複合水酸化物粒子を含むことができる。また、該ニッケル複合水酸化物粒子は、粒子断面に空隙を含むことができる。
 そして、分割される1つの領域が2μm角となるように、かつ格子状に配置された境界線により、ニッケル複合水酸化物粒子の断面を複数の領域に分割した場合に、以下の要件を充足することが好ましい。
 境界線により分割された各領域に占める、空隙の面積の割合の平均値が0.5%以上5.0%以下であること。 
 境界線により分割された各領域に占める、空隙の面積の割合の標準偏差が1.0以下であること。
 本発明の発明者らは、非水系電解質二次電池における反応抵抗を抑制することが可能な非水系電解質二次電池用正極活物質の前駆体(以下、単に「正極活物質前駆体」とも記載する)について鋭意検討を行った。
 その結果、粒子の内部に空隙を含み、該空隙の分布が所定の要件を満たすニッケル複合水酸化物粒子を含む正極活物質前駆体とすることで、該正極活物質前駆体から調製した正極活物質を用いた非水系電解質二次電池において、正極での反応抵抗を抑制できることを見出し、本発明を完成させた。
 以下、本実施形態の正極活物質前駆体について具体的に説明する。
 本実施形態の正極活物質前駆体は、ニッケル複合水酸化物粒子を含むことができる。なお、本実施形態の正極活物質前駆体は、ニッケル複合水酸化物粒子から構成することもできる。
 本実施形態の正極活物質前駆体が含むニッケル複合水酸化物粒子は、粒子断面に空隙を含むことができる。該空隙について図1を用いて説明する。
 図1に示すように、本実施形態の正極活物質前駆体が含むニッケル複合水酸化物粒子10の粒子断面に、複数の境界線(分割線)111、112を配置し、該境界線により粒子断面を複数の領域12に分割できる。この際、境界線は、境界線により分割される1つの領域12が2μm角となるように、かつ境界線が格子状となるように配置できる。
 図1では一部の境界線にのみ番号を付しているが、図1に示すように、粒子の断面全体に分割された領域が拡がるように、境界線111、112それぞれと平行に複数の境界線を配置できる。この際、互いに平行な境界線は隣接する境界線の間隔が2μmとなるように配置できる。
 なお、境界線111、112はニッケル複合水酸化物粒子における、以下の空隙の分布状況を評価するために仮想的に配置するものである。
 上述のように、境界線111、112により分割され、境界線111、112に囲まれた各領域12は、L1、L2が2μmの正方形となる。図1においては各領域12についても一部のみに番号を付しているが、境界線111、112で囲まれた各四角形の領域が境界線111、112により分割された領域12となる。
 そして、本発明の発明者らによると、ニッケル複合水酸化物粒子における、各領域12に占める、空隙の面積の割合の平均値は0.5%以上であることが好ましい。これは、各領域12に占める空隙の面積の割合の平均値を0.5%以上とすることで、該ニッケル複合水酸化物粒子10をリチウム化合物と反応させる場合に、リチウム成分を収容するために十分な空隙を有していることを意味するからである。ニッケル複合水酸化物粒子が、リチウム成分を収容するために十分な空隙を有することで、該ニッケル複合水酸化物粒子を含む正極活物質前駆体を用いて調製した正極活物質において、その粒子内部に十分な量のリチウム成分を保持することができる。このため、該正極活物質を用いた非水系電解質二次電池の正極での反応抵抗を抑制できる。また、充放電容量を高めることができる。特に該平均値は1.5%以上であることがより好ましく、1.6%以上であることがさらに好ましい。
 ただし、各領域に占める空隙の面積の割合が高すぎると、リチウム化合物と反応させた際に、該空隙へのリチウム成分の拡散が均一に進行しない恐れがある。このため、各領域12に占める、空隙の面積の割合の平均値は、5.0%以下であることが好ましく、4.0%以下であることがより好ましい。
 また、境界線により分割された各領域に占める、空隙の面積の割合の標準偏差は、1.0以下であることが好ましく、0.8以下であることがより好ましい。
 これは、境界線により分割された各領域に占める空隙の面積の割合の標準偏差を1.0以下とすることで、各領域に占める空隙の面積の割合が略均一であることを示している。そして、図1を用いて説明したように各領域はニッケル複合水酸化物粒子の断面全体に配置していることから、上記標準偏差を1.0以下とすることで、空隙がニッケル複合水酸化物の粒子断面に略均一に分布していることになる。
 このため、上記標準偏差を1.0以下とすることで、本実施形態の正極活物質前駆体を用いて正極活物質を調製する場合に、ニッケル複合水酸化物の粒子内に均一に分布する空隙により、リチウム成分を収容し、均一に分散させることができる。従って、該正極活物質において、リチウムイオンの移動が容易になり、該正極活物質を用いた非水系電解質二次電池において、正極での反応抵抗を抑制できる。さらには充放電容量を高めることができる。なお、上記境界線により分割された各領域に占める、空隙の面積の割合の標準偏差は0以上とすることができる。
 本実施形態の正極活物質前駆体が有するニッケル複合水酸化物粒子の粒径は特に限定されないが、例えば5μm以上30μm以下であることが好ましく、9μm以上15μm以下であることがより好ましい。
 なお、本実施形態の正極活物質前駆体が複数のニッケル複合水酸化物粒子を含む場合、平均粒径近傍、具体的には例えば平均粒径±1μm以内の粒径のニッケル複合水酸化物粒子を選択し、粒子断面に既述の境界線を配置した場合に、各領域に占める空隙の面積の割合の平均値、及び標準偏差が既述の範囲を満たすことが好ましい。
 本実施形態の正極活物質が複数のニッケル複合水酸化物粒子を含む場合、該ニッケル複合水酸化物粒子の内、個数割合で50%以上100%以下の粒子が粒子断面に既述の境界線を配置した場合に、各領域に占める空隙の面積の割合の平均値、及び標準偏差が既述の範囲を満たすことがより好ましい。
 本実施形態の正極活物質が複数のニッケル複合水酸化物粒子を含む場合、該複数のニッケル複合水酸化物粒子から、評価用粒子を複数選択した場合に、複数の評価用粒子の内、既述の要件を充足する評価用粒子の個数割合が一定値以上であることが好ましい。
 すなわち、分割される1つの領域が2μm角となるように、格子状に配置された境界線により、評価用粒子の断面を複数の領域に分割した場合に、以下の要件を充足する評価用粒子が、評価に供した複数の評価用粒子に占める個数の割合が50%以上であることが好ましく、70%以上であることがより好ましい。
 境界線により分割された各領域に占める、空隙の面積の割合の平均値が0.5%以上5.0%以下であること。
 境界線により分割された各領域に占める、空隙の面積の割合の標準偏差が1.0以下であること。
 なお、上記要件のうち、境界線により分割された各領域に占める、空隙の面積の割合の平均値は1.5%以上であることがより好ましく、1.6%以上であることがさらに好ましい。また、境界線により分割された各領域に占める、空隙の面積の割合の平均値は4.0%以下であることがより好ましい。
 また、上記要件のうち、境界線により分割された各領域に占める、空隙の面積の割合の標準偏差は、0.8以下であることがより好ましい。境界線により分割された各領域に占める、空隙の面積の割合の標準偏差は0以上とすることができる。
 複数のニッケル複合水酸化物粒子から評価用粒子を選択する際の条件は特に限定されないが、粒径が、係る複数のニッケル複合水酸化物粒子の平均粒径±1μm以内にある粒子を評価用粒子として複数選択することができる。すなわち、粒径がニッケル複合水酸化物粒子の平均粒径-1μm以上ニッケル複合水酸化物粒子の平均粒径+1μm以下を満たす粒子を評価用粒子として選択することができる。個々のニッケル複合水酸化物粒子の粒径は、断面における長辺と、短辺との平均値とすることができ、SEM等による観察結果から算出することができる。
 評価する際に選択する評価用粒子の数は特に限定されないが、例えば5個以上のニッケル複合水酸化物粒子を評価用粒子として選択することが好ましい。特に、10個以上のニッケル複合水酸化物粒子を評価用粒子として選択することがより好ましい。ただし、生産性の観点から、20個以下のニッケル複合水酸化物粒子を評価用粒子として選択することが好ましい。
 また、本実施形態の正極活物質前駆体は、既述の粒子断面に空隙を有するニッケル複合水酸化物粒子を複数含むことができる。すなわち、本実施形態の正極活物質前駆体は、ニッケル複合水酸化物粉末を含むこともできる。なお、本実施形態の正極活物質前駆体は、ニッケル複合水酸化物粉末から構成することもできる。
 この場合、複数のニッケル複合水酸化物粒子の断面に占める、空隙の面積の割合の平均値は0.5%以上5.0%以下であることが好ましい。
 これは、複数のニッケル複合水酸化物粒子の粒子断面において、空隙の面積の割合の平均値を0.5%以上とすることで、該複数のニッケル複合水酸化物粒子がリチウム成分を収容するために十分な空隙を有していることを意味するからである。リチウム成分を収容するために十分な空隙を有することで、複数のニッケル複合水酸化物粒子を含む正極活物質前駆体用いて調製した正極活物質を用いた非水系電解質二次電池の正極での反応抵抗を特に抑制できる。また、充放電容量を特に高めることができる。該平均値は1.5%以上であることがより好ましく、2.5%以上であることがさらに好ましい。
 ただし、複数のニッケル複合水酸化物粒子の粒子断面において、空隙の割合が高すぎると、リチウム化合物と反応させた際に、該空隙へのリチウム成分の拡散が均一に進行しない恐れがある。このため、複数のニッケル複合水酸化物粒子の断面において、空隙の面積の割合の平均値は、5.0%以下であることが好ましく、4.0%以下であることがより好ましい。
 なお、複数のニッケル複合水酸化物粒子の断面に占める、空隙の面積の割合の平均値を算出する際に用いる、各ニッケル複合水酸化物粒子の断面における空隙の面積の割合として、例えば、既述のニッケル複合水酸化物粒子の粒子断面における、境界線により分割された各領域に占める、空隙の面積の割合の平均値を用いることもできる。これは、境界線により分割された各領域に占める、空隙の面積の割合の平均値は、ニッケル複合水酸化物粒子の粒子断面の全面に境界線を配置し、各領域の空隙率を算出しているため、ニッケル複合水酸化物粒子の断面における空隙の面積の割合と略等しくなるためである。
 また、複数のニッケル複合水酸化物粒子において、複数のニッケル複合水酸化物粒子の断面に占める、空隙の面積の割合の標準偏差は1.0以下であることが好ましい。
 これは、複数のニッケル複合水酸化物粒子の断面において、空隙の面積の割合の標準偏差を1.0以下とすることで、粒子断面での空隙の面積の割合が、複数のニッケル複合水酸化物粒子の粒子間で略均一であることを示している。このため、上記標準偏差を1.0以下とすることで、本実施形態の正極活物質前駆体を用いて正極活物質を調製した場合に、該正極活物質内に均一にリチウム成分を分散させることができ、リチウムイオンの移動が容易になる。従って、該正極活物質を用いた非水系電解質二次電池において、正極での反応抵抗を抑制できる。さらには充放電容量を高めることができる。
 なお、複数のニッケル複合水酸化物粒子において、複数のニッケル複合水酸化物粒子の断面に占める、空隙の面積の割合の標準偏差は0以上とすることができる。
 なお、本実施形態の正極活物質が複数のニッケル複合水酸化物粒子を含む場合、該ニッケル複合水酸化物粒子の平均粒径は特に限定されないが、例えば5μm以上30μm以下であることが好ましく、9μm以上15μm以下であることがより好ましい。
 ここでいう平均粒径は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。本明細書における平均粒径は同様の意味を有する。
 本実施形態の正極活物質が含むニッケル複合水酸化物粒子の断面における空隙の面積の算出方法は特に限定されるものではなく、任意の方法により算出することができる。
 例えば、以下の手順により、評価することができる。
 本実施形態の正極活物質が含むニッケル複合水酸化物粒子を樹脂に埋め込み、表面を研磨することで、断面を露出させた試料を作製する。
 そして、得られた試料について走査型電子顕微鏡(SEM)により観察を行う。
 次いで、SEM画像から、該粒子の断面における空隙の面積を算出する。空隙は凹部となっているため、通常のSEM画像において、空隙部は黒色、その他の部分は白色となっている。このため、空隙の面積を算出する具体的手段は特に限定されないが、例えばSEM画像について二値化処理を行い、得られた画像から空隙部に対応する黒色部の面積と、その他の領域の面積である白色部の面積とを算出できる。
 二値化処理には、複数の濃淡値を二値に分けるための閾値が必要で、閾値を決定するための方法として、一般的に、p-タイル法、モード法、判別分析法などがある。近年では画像を二値化処理するためのソフトウェアが多数提供されており、閾値の決定方法含め、比較的容易に画像の二値化処理が可能である。例えば、無償提供(フリーソフトウェア)されるソフトウェア「ImageJ」を用いた場合、閾値は、判別分析法にて決定され、SEM画像を容易に二値化することができる。
 既述のようにニッケル複合水酸化物粒子の断面に境界線を配置し、該境界線で分割された各領域について、空隙と、それ以外の領域の面積を算出する場合には、評価を行う粒子の断面SEM画像に予め境界線を設定しておくことができる。そして、境界線で分割された各領域について空隙と、それ以外の領域の面積を算出できる。
 なお、上述のように、ニッケル複合水酸化物粒子の断面に境界線を配置して、境界線で分割した領域毎に評価を行う場合において、本実施形態の正極活物質前駆体が複数のニッケル複合水酸化物粒子を含む場合、粒径が平均粒径近傍、すなわち例えば粒径が5μm以上30μm以下の範囲の近傍の粒子を選択して観察し、空隙等の面積を算出することが好ましい。特に、粒径が9μm以上15μm以下の範囲の近傍粒子を選択して観察し、空隙等の面積を算出することがより好ましい。具体的には例えば、粒径が平均粒径±1μmの粒径の粒子を選択して観察し、空隙等の面積を算出することが好ましい。なお、粒子は通常不定形形状を有することから、断面における長辺と、短辺との平均値を該粒子の粒径として、評価を行う粒子を選択することができる。
 また、複数のニッケル複合水酸化物粒子について、その断面に占める空隙の面積の割合の平均値や、標準偏差を評価する場合に、評価する粒子の数は特に限定されないが、例えば5個以上のニッケル複合水酸化物粒子について評価することが好ましい。特に、10個以上のニッケル複合水酸化物粒子について評価することがより好ましい。ただし、生産性の観点から、20個以下のニッケル複合水酸化物粒子について評価を行うことが好ましい。
 この場合、少なくとも複数のニッケル複合水酸化物粒子の平均粒径近傍、具体的には例えば平均粒径±1μmの粒径を有する粒子が含まれるように、評価を行う粒子を選択することが好ましい。なお、上述のように粒子は通常不定形形状を有することから、断面における長辺と、短辺との平均値を該粒子の粒径として、評価を行う粒子を選択することができる。
 本実施形態の正極活物質前駆体が有するニッケル複合水酸化物粒子は、リチウム化合物と混合し、リチウムニッケル複合酸化物を形成できるものであれば、その組成は特に限定されるものではない。
 ただし、非水系電解質二次電池用正極活物質として、リチウムニッケルコバルト複合酸化物が有用であり、該リチウムニッケルコバルト複合酸化物を製造するための正極活物質前駆体が求められている。このため、ニッケル複合水酸化物粒子は、ニッケルとコバルトとを含むニッケル複合水酸化物の粒子であることが好ましい。
 また、リチウムニッケルコバルト複合酸化物は、リチウム、ニッケル、コバルト以外にさらに添加元素を添加することで、電池特性を高めることが検討されている。
 このため、ニッケル複合水酸化物粒子は、添加元素として、さらに元素M(MはMg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Sr及びWから選択される1種以上)を含むニッケル複合水酸化物の粒子であることが好ましい。
 本実施形態の正極活物質前駆体が有するニッケル複合水酸化物粒子は、具体的には例えば、一般式:Ni1-x-yCo(OH)2+Aで表されるニッケル複合水酸化物の粒子とすることができる。なお、上記一般式中、0≦x≦0.35、0≦y≦0.35、0≦A≦0.5とすることができる。また、元素Mとしては、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Sr及びWから選択される1種類以上の元素とすることができる。
 本実施形態の正極活物質前駆体は、既述のようにニッケル複合水酸化物粒子を含んでおり、リチウム化合物と混合し、正極活物質の製造に用いることができる。また、本実施形態の正極活物質前駆体は、焙焼を行い、ニッケル複合水酸化物粒子の一部、または全部をニッケル複合酸化物の粒子としてから、リチウム化合物と混合し、正極活物質の製造に用いることもできる。
 そして、本発明の発明者らの検討によれば、本実施形態の正極活物質前駆体について焙焼を行った場合でも、焙焼後の正極活物質前駆体から調製した正極活物質を用いた非水系電解質二次電池において、正極での反応抵抗を抑制できる。また、充放電容量を高めることができる。
 これは、ニッケル複合酸化物粒子とした場合でも、粒子の断面において、ニッケル複合水酸化物粒子の場合と同様に、空隙を均一かつ十分に有しているためと考えられる。
[正極活物質前駆体の製造方法]
 本実施形態の正極活物質前駆体の製造方法は特に限定されるものではなく、含有するニッケル複合水酸化物粒子が既述の空隙を有するように任意の方法により製造することができる。
 ここでは、本実施形態の正極活物質前駆体の製造方法の一構成例について説明する。
 本実施形態の正極活物質前駆体の製造方法は、含有する金属、例えばニッケルと、コバルトと、任意の添加元素Mとを共沈させる晶析工程を有することができる。
 晶析工程の構成例について以下に説明する。
 晶析工程では、反応溶液を撹拌しながら、該反応溶液に正極活物質前駆体を構成する金属の塩を含む混合水溶液(a)(以下、単に「混合水溶液(a)」とも記載する)と、アンモニウムイオン供給体を含む水溶液(b)とを供給するとともに、苛性アルカリ水溶液(c)を供給して反応させ、晶析した正極活物質前駆体の粒子を固液分離し、水洗し、乾燥することにより、正極活物質前駆体を得ることができる。上記混合水溶液(a)、アンモニウムイオン供給体を含む水溶液(b)、及び苛性アルカリ水溶液(c)をあわせて原料溶液と記載する場合もある。
 なお、晶析工程を開始する際、反応槽内に水と、アンモニウムイオン供給体を含む水溶液(b)と、苛性アルカリ水溶液(c)とを混合した初期水溶液を用意しておくことができる。初期水溶液は、そのアンモニウムイオン濃度、pH値、及び温度が後述する反応溶液での好ましい範囲内となるように、アンモニウム供給体を含む水溶液(b)と、苛性アルカリ水溶液(c)とを添加し、温度を調整することが好ましい。そして、晶析工程開始後、初期水溶液に、上述のように混合水溶液(a)、アンモニウムイオン供給体を含む水溶液(b)、及び苛性アルカリ水溶液(c)を添加することで反応溶液が形成される。
 混合水溶液(a)は、正極活物質前駆体を構成する金属の供給源である。例えば正極活物質前駆体がニッケル、及びコバルトを含有する場合は、ニッケル塩、およびコバルト塩を含有することができる。既述のようにさらに元素Mの金属塩を含有することもできる。なお、混合水溶液(a)に正極活物質前駆体を構成する全ての金属の金属塩を添加しておく必要はない。例えば正極活物質前駆体を構成する金属の金属塩を金属種毎に分けて複数の金属成分供給用の水溶液を調製し、該複数の金属成分供給用の水溶液により正極活物質前駆体を構成する金属を供給するように構成することもできる。
 アンモニウムイオン供給体を含む水溶液(b)は、錯形成剤として、生成する正極活物質前駆体の粒子の粒径と形状を制御する役割を担う。しかも、アンモニウムイオンは、生成する正極活物質前駆体の粒子内に取り込まれないので、高純度の正極活物質前駆体の粒子を得るために、好ましい錯形成剤である。
 苛性アルカリ水溶液(c)は、中和反応のpH調整剤である。
 混合水溶液(a)中の正極活物質前駆体を構成する金属塩の金属塩濃度は、特に限定されるものではないが、0.5mol/L以上2.2mol/L以下とすることが好ましい。0.5mol/L以上とすることで、各工程における液量を抑制し、生産性を高めることができる。また、2.2mol/L以下とすることで、例えば気温が低下した場合でも、混合水溶液(a)中で金属塩が再結晶化することを抑制できるからである。なお、正極活物質を構成する金属の金属塩を複数の水溶液に分けて添加、供給する場合には、正極活物質を構成する金属の金属塩を供給する複数の水溶液全体において、金属塩濃度が上記範囲を充足することが好ましい。
 晶析工程において、反応溶液のpHは特に限定されないが、50℃基準で11.0以上13.0以下に保持することが好ましく、11.0以上12.5以下に保持することがより好ましい。反応溶液のpHを11.0以上13.0以下とすることで、反応系内で初期の核生成を促進することができ、該核を基に粒子の成長を促進することができる。このため、十分なサイズに成長した正極活物質前駆体の粒子を得ることができる。
 晶析工程の間、反応溶液の温度は、20℃以上70℃以下に保持することが好ましく、40℃以上70℃以下に保持することがより好ましい。反応溶液の温度を20℃以上とすることで、微粒子の発生を抑制できる。また、チラー等を用いなくても温度制御を行うことができ、設備コストを低減できる。そして、70℃以下とすることで、アンモニアの揮発を抑制し、反応系内のアンモニウムイオン濃度の制御を特に容易に行うことが可能になる。
 さらに、反応溶液中のアンモニウムイオン濃度は、晶析工程の間、10g/L以上25g/L以下に保持することが好ましく、15g/L以上20g/L以下に保持することがより好ましい。アンモニウムイオン濃度を10g/L以上とすることで、正極活物質を構成する金属の溶解度等によらず、微粒子の発生を抑制し、得られる正極活物質前駆体の粒径を特に大きくすることができる。また、粒子が成長する際に、粒子内部まで正極活物質前駆体を構成する金属の塩を供給することができ、高密度のニッケル複合水酸化物粒子を得ることができる。このため、該正極活物質前駆体から調製した正極活物質の密度も高めることができ、体積当たりのエネルギー密度を高めることができる。
 アンモニウムイオン濃度を25g/L以下とすることで、反応溶液中の正極活物質前駆体を構成する金属成分の濃度を特に均一にすることができ、正極活物質前駆体における組成のずれを特に抑制できる。
 正極活物質を構成する金属の金属塩は、硫酸塩、硝酸塩または塩化物の少なくとも1種であることが好ましく、ハロゲンによる汚染のない硫酸塩がより好ましい。例えば、硫酸コバルト、硫酸ニッケル等を用いることができる。
 また、既述のように正極活物質前駆体は、元素Mとして、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Sr及びWから選択される1種以上の元素を添加することができる。元素Mを添加する場合、混合水溶液(a)中に、元素Mの化合物として、添加することができる。該元素Mの化合物としては、特に限定されるものではないが、例えば硫酸マグネシウム、硝酸カルシウム、硝酸ストロンチウム、硫酸チタン、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウム等を用いることができる。なお、ここでは元素Mの化合物として一例を挙げたが、元素Mの化合物としては上述の例に限定されるものではなく、目的とする元素Mを含む硫酸塩や、硝酸塩、塩化物等の各種化合物を用いることができる。
 元素Mの化合物を混合水溶液(a)中に添加する場合であっても、混合水溶液(a)の濃度は、既述の条件に維持されることが好ましい。また、M元素の添加量は、混合水溶液(a)中に存在する金属イオンの原子数比で目的とする正極活物質前駆体中の金属元素の原子数比と一致するように調整される。
 なお、添加元素Mは、必ずしも混合水溶液(a)中に添加して、共沈させる必要はなく、例えば、添加元素Mを添加していない状態で共沈させ、得られた共沈物の表面に、M元素の水酸化物あるいは酸化物等の化合物を、湿式中和法により析出させてもよい。さらに、複数の種類のM元素を添加する場合、上記添加方法を組み合わせることにより、目的とする正極活物質前駆体を得てもよい。
 また、混合水溶液(a)を調整する際に、金属塩は、混合水溶液中に存在する金属イオンの原子数比が、目的とする正極活物質前駆体中の金属元素の原子数比と一致するように、調整することが好ましい。
 上記アンモニウムイオン供給体を含む水溶液(b)は、特に限定されるものではないが、アンモニア水、硫酸アンモニウム又は塩化アンモニウムの水溶液が好ましく、ハロゲンによる汚染のないアンモニア水、硫酸アンモニウム水溶液から選択された1種類以上がより好ましい。また、アンモニウムイオン供給体の濃度は、特に限定されるものではなく、各工程におけるアンモニウムイオンの濃度が維持可能な範囲で調整すればよい。
 上記苛性アルカリ水溶液(c)は、特に限定されるものではなく、例えば、水酸化ナトリウムまたは水酸化カリウムなどのアルカリ金属水酸化物の水溶液を用いることができる。アルカリ金属水酸化物の場合、pH値制御の容易さから、水溶液として各工程の反応系に添加することが好ましい。
 晶析工程においては、特に限定されるものではないが、混合水溶液(a)と、アンモニウムイオン供給体を含む水溶液(b)とをそれぞれ定量的に連続的に供給して、苛性アルカリ水溶液(c)は、添加量を調整して供給することによって、該反応溶液を所定のpHに保持しながら反応を行い、反応槽から前駆体粒子を含む反応溶液を、連続的にオーバーフローさせて、正極活物質前駆体を回収する方法が好ましい。
 晶析工程において用いる反応槽は、特に限定されるものではないが、撹拌機、オーバーフロー口、及び温度制御手段を備える容器を用いることが好ましい。
 なお、所定の粒子空隙割合を有する正極活物質前駆体が得られるように、例えば晶析工程において、反応槽の容積に対する原料溶液の供給量を調整することが好ましい。反応槽内は、常時撹拌され、供給直後の原料溶液とそれ以前に供給した原料溶液が連続的に混合されながら、反応槽からオーバーフローして排出される。このため、オーバーフロー口までの実質的な反応槽の容積(実液量)に対し、単位時間当たりの原料溶液の供給液量が過度に多くなるとオーバーフロー排出される粒子は十分な成長晶析を経ていない粒子割合が多くなり、晶析条件によっては、粒子径が小さくなったり、粒子空隙割合が大きくなる。しかし、単位時間当たりの原料溶液の供給液量が少なすぎると生産性が低下する。使用する反応槽のオーバーフロー口までの実質的な容積に対する単位時間当たりの供給液量の好適な範囲については、供給される原料溶液を構成する各水溶液の供給割合や濃度等により変化する。このため、予備試験を行い、得られる正極活物質前駆体の空隙割合と、晶析条件の関係から、好適な供給液量割合を選択し、晶析工程を実施することが好ましい。本発明の発明者らの検討によれば、例えば反応槽のオーバーフロー口までの実質的な反応槽の容積(実液量)に対する、原料溶液の1分あたりの供給液量の割合が、0.25%以上0.40%未満となるように調整することが好ましい。
 晶析工程の間、反応槽内の雰囲気は特に限定されないが、例えば大気雰囲気、すなわち空気(酸素濃度約21容量%)とすることができる。
 晶析工程終了後、得られた正極活物質前駆体は、そのまま正極活物質の原料として用いることもできる。
 また、正極活物質前駆体を焙焼し、含有するニッケル複合水酸化物粒子の一部または全部をニッケル複合酸化物粒子としてから、正極活物質の原料として用いることもできる。このように、正極活物質前駆体を焙焼する場合には、本実施形態の正極活物質前駆体の製造方法の晶析工程終了後、晶析工程で得られた正極活物質前駆体を焙焼する焙焼工程をさらに実施することができる。
 晶析工程で得られた正極活物質前駆体を焙焼する際の条件については特に限定されるものではなく、要求される酸化物への転化の程度等に応じて、焙焼条件を選択することができる。
 焙焼工程では例えば、晶析工程により得られた正極活物質前駆体を500℃以上700℃以下で焼成することができる。
 焙焼工程において、正極活物質前駆体を焙焼する際の雰囲気は特に制限されるものではなく、非還元性雰囲気であればよいが、簡易的に行える空気気流中において行うことが好ましい。
 焙焼に用いる設備は、特に限定されるものではなく、正極活物質前駆体を非還元性雰囲気中、好ましくは空気気流中で加熱できるものであればよく、ガス発生がない電気炉などが好適に用いられる。
 なお、焙焼工程は、後述する正極活物質の製造方法の中で、例えば混合工程の前に実施することもできる。
[正極活物質の製造方法]
 本実施形態の正極活物質の製造方法は、特に限定されるものではない。本実施形態の正極活物質の製造方法は、例えば以下の工程を有することができる。
 既述の正極活物質前駆体と、リチウム化合物との混合物を調製する混合工程。 
 上記混合物を焼成する焼成工程。
 以下、各工程について説明する。
(混合工程)
 混合工程では、正極活物質前駆体と、リチウム化合物とを混合して、混合物(混合粉)を得ることができる。
 正極活物質前駆体と、リチウム化合物とを混合する際の比は特に限定されるものではなく、製造する正極活物質の組成に応じて選択することができる。
 後述する焼成工程の前後でLi/Meはほとんど変化しないので、焼成工程に供する混合物中のLi/Meが、得られる正極活物質におけるLi/Meとほぼ同じになる。このため、混合工程で調製する混合物におけるLi/Meが、得ようとする正極活物質におけるLi/Meと同じになるように混合することが好ましい。
 例えば、混合工程においては、混合物中のリチウム以外の金属の原子数(Me)と、リチウムの原子数(Li)との比(Li/Me)が、1.00以上1.08以下となるように混合することが好ましい。特に、上記混合物中のリチウムの原子数と、リチウム以外の金属の原子数との比(Li/Me)が1.025以上1.045以下となるように混合することがより好ましい。
 混合工程に供するリチウム化合物としては特に限定されないが、例えば水酸化リチウム、炭酸リチウム等から選択された1種以上を好ましく用いることができる。
 混合工程において、正極活物質前駆体とリチウム化合物とを混合する際の混合手段としては、一般的な混合機を使用することができ、例えば、シェーカーミキサ、レーディゲミキサ、ジュリアミキサ、Vブレンダなどを用いればよい。
 なお、既述のように、予め焙焼工程を実施し、混合工程では、ニッケル複合水酸化物粒子の一部または全部をニッケル複合酸化物粒子とした正極活物質前駆体と、リチウム化合物との混合物を調製する混合工程とすることもできる。
(焼成工程)
 焼成工程は、上記混合工程で得られた混合物を焼成して、正極活物質とする工程である。焼成工程において混合物を焼成すると、正極活物質前駆体に、リチウム化合物中のリチウムが拡散し、正極活物質が形成される。
 焼成工程において、混合物を焼成する焼成温度は特に限定されないが、例えば600℃以上950℃で以下であることが好ましく、700℃以上900℃以下であることがより好ましい。
 焼成温度を600℃以上とすることで、正極活物質前駆体中へのリチウムの拡散を十分に進行させることができ、得られる正極活物質の結晶構造を均一にすることができる。このため、生成物を正極活物質として用いた場合に電池特性を特に高めることができるため好ましいからである。また、反応を十分に進行させることができるため、余剰のリチウムの残留や、未反応の粒子が残留することを抑制できるからである。
 焼成温度を950℃以下とすることで、生成する正極活物質の粒子間で焼結が進行することを抑制することができる。また、異常粒成長の発生を抑制し、得られる正極活物質の粒子が粗大化することを抑制することができる。
 また、焼成温度まで昇温する過程で、リチウム化合物の融点付近の温度にて1時間以上5時間以下程度保持することもでき、この場合、より反応を均一に行わせることができ、好ましい。
 焼成工程における焼成時間のうち、所定温度、すなわち上述の焼成温度での保持時間は特に限定されないが、2時間以上とすることが好ましく、より好ましくは4時間以上である。これは焼成温度での保持時間を2時間以上とすることで、正極活物質の生成を十分に促進し、未反応物が残留することをより確実に防止することができるからである。
 焼成温度での保持時間の上限値は特に限定されないが、生産性等を考慮して24時間以下であることが好ましい。
 焼成時の雰囲気は特に限定されないが、酸化性雰囲気とすることが好ましい。酸化性雰囲気としては、酸素含有ガス雰囲気を好ましく用いることができ、例えば酸素濃度が18容量%以上100容量%以下の雰囲気とすることがより好ましい。
 これは焼成時の雰囲気中の酸素濃度を18容量%以上とすることで、正極活物質の結晶性を特に高めることができるからである。
 酸素含有ガス雰囲気とする場合、該雰囲気を構成する気体としては、例えば大気や、酸素、酸素と不活性ガスとの混合気体等を用いることができる。
 なお、酸素含有ガス雰囲気を構成する気体として、例えば上述のように酸素と不活性ガスとの混合気体を用いる場合、該混合気体中の酸素濃度は上述の範囲を満たすことが好ましい。
 特に、焼成工程においては、酸素含有ガス気流中で実施することが好ましく、大気、または酸素気流中で行うことがより好ましい。特に電池特性を考慮すると、酸素気流中で行うことが好ましい。
 なお、焼成に用いられる炉は、特に限定されるものではなく、酸素含有ガス雰囲気で混合物を焼成できるものであればよいが、炉内の雰囲気を均一に保つ観点から、ガス発生がない電気炉が好ましく、バッチ式あるいは連続式の炉をいずれも用いることができる。
 焼成工程によって得られた正極活物質は、凝集もしくは軽度の焼結が生じている場合がある。この場合には、解砕してもよい。
 ここで、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギーを投入して、二次粒子自体をほとんど破壊することなく二次粒子を分離させて、凝集体をほぐす操作のことである。
 また、焼成工程の前に、仮焼成を実施することが好ましい。
 仮焼成を実施する場合、仮焼成温度は特に限定されないが、焼成工程における焼成温度より低い温度とすることができる。仮焼成温度は、例えば250℃以上600℃以下とすることが好ましく、350℃以上550℃以下とすることがより好ましい。
 仮焼成時間、すなわち上記仮焼成温度での保持時間は、例えば1時間以上10時間以下程度とすることが好ましく、3時間以上6時間以下とすることがより好ましい。
 仮焼成後は、一旦冷却した後焼成工程に供することもできるが、仮焼成温度から、焼成温度まで昇温して連続して焼成工程を実施することもできる。
 なお、仮焼成を実施する際の雰囲気は特に限定されないが、例えば焼成工程と同様の雰囲気とすることができる。
 仮焼成を実施することにより、正極活物質前駆体へのリチウムの拡散が十分に行われ、特に均一な正極活物質を得ることができる。
 本実施形態の正極活物質の製造方法はさらに任意の工程を有することもできる。
 例えば得られた正極活物質の表面に付着した余剰のリチウム化合物を除去するため、水洗工程を実施することもできる。
 水洗工程では、例えば焼成工程で得られた正極活物質を純水に投入してスラリーとし、所定時間撹拌した後、水と分離、濾過、乾燥することができる。
 本実施形態の正極活物質の製造方法によれば、既述の正極活物質前駆体を用いているため、正極活物質前駆体に含まれるニッケル複合水酸化物粒子、もしくはニッケル複合酸化物粒子の空隙内に十分な量のリチウム成分を収容し、均一に分布させることができる。このため、本実施形態の正極活物質の製造方法により得られる正極活物質の粒子内に十分な量のリチウム成分を均一に分布させることができ、リチウムイオンの移動を容易にさせ、正極での反応抵抗を抑制できる。さらには充放電容量を高めることができる。
[非水系電解質二次電池]
 次に、本実施形態の非水系電解質二次電池の一構成例について説明する。
 本実施形態の非水系電解質二次電池は、既述の正極活物質を正極材料として用いた正極を有することができる。
 まず、本実施形態の非水系電解質二次電池の構造の構成例を説明する。
 本実施形態の非水系電解質二次電池は、正極材料に既述の正極活物質を用いたこと以外は、一般的な非水系電解質二次電池と実質的に同様の構造を備えることができる。
 具体的には、本実施形態の非水系電解質二次電池は、例えばケースと、このケース内に収容された正極、負極、電解液およびセパレータを備えた構造を有することができる。
 より具体的にいえば、セパレータを介して正極と負極とを積層させて電極体とし、得られた電極体に電解液を含浸させることができる。そして、正極の正極集電体と外部に通ずる正極端子との間、および負極の負極集電体と外部に通ずる負極端子との間を、それぞれ集電用リードなどを用いて接続し、ケースに密閉した構造を有することができる。
 なお、本実施形態の非水系電解質二次電池の構造は、上記例に限定されないのはいうまでもなく、またその外形も筒形や積層形など、種々の形状を採用することができる。
 各部材の構成例について以下に説明する。
(正極)
 まず正極について説明する。
 正極は、シート状の部材であり、例えば、既述の正極活物質を含有する正極合材ペーストを、アルミニウム箔製の集電体の表面に塗布乾燥して形成できる。なお、正極は、使用する電池にあわせて適宜処理される。たとえば、目的とする電池に応じて適当な大きさに形成する裁断処理や、電極密度を高めるためにロールプレスなどによる加圧圧縮処理等を行うこともできる。
 上述の正極合材ペーストは、正極合材に、溶剤を添加して混練して形成することができる。そして、正極合材は、粉末状になっている既述の正極活物質と、導電材と、結着剤とを混合して形成できる。
 導電材は、電極に適当な導電性を与えるために添加されるものである。導電材の材料は特に限定されないが、例えば天然黒鉛、人造黒鉛および膨張黒鉛などの黒鉛や、アセチレンブラック、ケッチェンブラック(登録商標)等のカーボンブラック系材料を用いることができる。
 結着剤は、正極活物質をつなぎ止める役割を果たすものである。係る正極合材に使用される結着剤は特に限定されないが、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸等から選択された1種以上を用いることができる。
 なお、正極合材には活性炭などを添加することもできる。正極合材に活性炭などを添加することによって、正極の電気二重層容量を増加させることができる。
 溶剤は、結着剤を溶解して正極活物質、導電材、および活性炭等を結着剤中に分散させる働きを有する。溶剤は特に限定されないが、例えばN-メチル-2-ピロリドン等の有機溶剤を用いることができる。
 また、正極合材ペースト中における各物質の混合比は特に限定されるものではなく、例えば一般の非水系電解質二次電池の正極の場合と同様にすることができる。例えば、溶剤を除いた正極合材の固形分を100質量部とした場合、正極活物質の含有量を60質量部以上95質量部以下、導電材の含有量を1質量部以上20質量部以下、結着剤の含有量を1質量部以上20質量部以下とすることができる。
 なお、正極の製造方法は上記方法に限定されるものではなく、例えば正極合材や正極合材ペーストをプレス成型した後、真空雰囲気下で乾燥すること等で製造することもできる。
(負極)
 負極はシート状の部材であり、例えば負極には、金属リチウム、リチウム合金等を用いることができる。また、銅などの金属箔集電体の表面に、負極合材ペーストを塗布し、乾燥して負極を形成することもできる。
 負極は、負極合材ペーストを構成する成分やその配合、集電体の素材等は異なるものの、実質的に上述の正極と同様の方法によって形成され、正極と同様に必要に応じて各種処理が行われる。
 負極合材ペーストは、負極活物質と結着剤とを混合した負極合材に、適当な溶剤を加えてペースト状にすることができる。
 負極活物質としては例えば、金属リチウムやリチウム合金などのリチウムを含有する物質や、リチウムイオンを吸蔵および脱離できる吸蔵物質を採用することができる。
 吸蔵物質は特に限定されないが、例えば天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、およびコークスなどの炭素物質の粉状体等から選択された1種以上を用いることができる。
 係る吸蔵物質を負極活物質に採用した場合には、正極同様に、結着剤として、PVDF等の含フッ素樹脂を用いることができ、負極活物質を結着剤中に分散させる溶剤としては、N-メチル-2-ピロリドン等の有機溶剤を用いることができる。
(セパレータ)
 セパレータは、正極と負極との間に挟み込んで配置されるものであり、正極と負極とを分離し、電解液を保持する機能を有している。
 セパレータの材料としては、例えばポリエチレンや、ポリプロピレンなどの薄い膜で、微細な孔を多数有する膜を用いることができるが、上記機能を有するものであれば、特に限定されない。
(電解液)
 電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート;また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート;さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物;エチルメチルスルホンやブタンスルトンなどの硫黄化合物;リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
 支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO22、およびそれらの複合塩などを用いることができる。
 なお、電解液は、電池特性改善のため、ラジカル捕捉剤、界面活性剤、難燃剤などを含んでいてもよい。
 ここまで、本実施形態の非水系電解質二次電池について、電解質として電解液(非水系電解液)を用いる形態を例に説明したが、本実施形態の非水系電解質二次電池は、係る形態に限定されるものではない。例えば電解質(非水系電解質)として、固体電解質を用いてもよい。固体電解質は、高電圧に耐えうる性質を有する。固体電解質としては、無機固体電解質、有機固体電解質が挙げられる。
 無機固体電解質としては、酸化物系固体電解質、硫化物系固体電解質等が挙げられる。
 酸化物系固体電解質としては、特に限定されず、例えば酸素(O)を含有し、かつリチウムイオン伝導性と電子絶縁性とを有するものを好適に用いることができる。酸化物系固体電解質としては、例えば、リン酸リチウム(LiPO)、LiPO、LiBO、LiNbO、LiTaO、LiSiO、LiSiO-LiPO、LiSiO-LiVO、LiO-B-P、LiO-SiO、LiO-B-ZnO、Li1+XAlTi2-X(PO(0≦X≦1)、Li1+XAlGe2-X(PO(0≦X≦1)、LiTi(PO、Li3XLa2/3-XTiO(0≦X≦2/3)、LiLaTa12、LiLaZr12、LiBaLaTa12、Li3.6Si0.60.4等から選択された1種類以上を用いることができる。
 硫化物系固体電解質としては、特に限定されず、例えば硫黄(S)を含有し、かつリチウムイオン伝導性と電子絶縁性とを有するものを好適に用いることができる。硫化物系固体電解質としては、例えば、LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-B、LiPO-LiS-SiS、LiPO-LiS-SiS、LiPO-LiS-SiS、LiI-LiS-P、LiI-LiPO-P等から選択された1種類以上を用いることができる。
 なお、無機固体電解質としては、上記以外のものを用いてよく、例えば、LiN、LiI、LiN-LiI-LiOH等を用いてもよい。
 有機固体電解質としては、イオン伝導性を示す高分子化合物であれば、特に限定されず、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、これらの共重合体などを用いることができる。また、有機固体電解質は、支持塩(リチウム塩)を含んでいてもよい。
 上述のように電解質として固体電解質を用いた非水系電解質二次電池、すなわち全固体電池とする場合、正極活物質以外の構成は既述の構成から必要に応じて変更することができる。
 以下、実施例を参照しながら本発明をより具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
 実験例1~16において正極活物質前駆体を製造し、その評価を行った。実験例1~実験例10が実施例であり、実験例11~16が比較例となる。
[実験例1]
(正極活物質前駆体の製造)
 以下の手順により晶析工程を実施し、正極活物質前駆体としてNi0.88Co0.12(OH)を製造した。
 内部が円筒形状を有する反応槽(撹拌槽)を備えた晶析装置を用意した。
 反応槽内には、撹拌翼が設置されており、反応槽内の初期水溶液もしくは反応溶液を、撹拌翼により撹拌できるように構成されている。また、反応槽にはオーバーフロー口が備えられており、連続的にオーバーフローさせて生成した正極活物質前駆体を回収できるように構成されている。なお、晶析工程の間、反応槽内は大気雰囲気、すなわち酸素濃度が約21容量%の空気雰囲気となっている。
 本実験例では内部の容積が6000Lの反応槽を用意した。なお、オーバーフロー口までの範囲に収容可能な液体の容積、すなわち実液量は5730Lとなる。
 そして、反応槽内に純水を5400Lの量まで入れて、槽内温度を49℃に設定した。晶析工程が完了するまで初期水溶液、および反応溶液の液温は49℃に維持した。
 次いで、初期水溶液のアンモニウムイオン濃度が14.5g/Lとなるように、反応槽内の水に、アンモニウムイオン供給体を含む水溶液(b)として、25質量%のアンモニア水を加えた。
 更に苛性アルカリ水溶液(c)として、24質量%の水酸化ナトリウム水溶液を反応槽内の水に添加し、pHを11.4に調整し、初期水溶液とした。
 そして、撹拌翼により、初期水溶液を撹拌しながら、ニッケル塩、およびコバルト塩を含む混合水溶液(a)と、アンモニウムイオン供給体を含む水溶液(b)と、苛性アルカリ水溶液(c)とを初期水溶液の液中に連続的に供給して反応溶液を形成し、正極活物質の晶析を行った。
 用いたニッケル塩、およびコバルト塩を含む混合水溶液(a)はニッケル塩として硫酸ニッケルを、コバルト塩として硫酸コバルトを含有している。そして、該混合水溶液(a)中のニッケルとコバルトとの物質量比が88:12、金属塩濃度が2.1mol/Lとなるように各金属塩を添加、混合して調製した。
 アンモニウムイオン供給体を含む水溶液(b)、及び苛性アルカリ水溶液(c)としては、それぞれ初期水溶液を調製する際に用いたものと同じ水溶液を用いた。
 晶析工程の間、ニッケル塩、およびコバルト塩を含む混合水溶液(a)は、9.65L/minの供給速度で、アンモニウムイオン供給体を含む水溶液(b)は1.03L/minの供給速度で、苛性アルカリ水溶液(c)は4.80L/minの供給速度で初期水溶液、反応溶液に供給した。なお、実液量に対する1分当たりの供給液量割合は0.27%となる。
 晶析工程の間、反応溶液は、液温は49℃に、pHは50℃基準で11.1以上11.7以下の範囲に、アンモニウムイオン濃度は14.5g/Lに維持されていることが確認できた。
 回収した晶析物は水洗、濾過し、乾燥を行い、正極活物質前駆体であるニッケル複合水酸化物粒子を得た。
 得られた、複数のニッケル複合水酸化物粒子からなる正極活物質前駆体の平均粒径をレーザー回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)を用いて測定したところ12.5μmであった。
 また、得られた複数のニッケル複合水酸化物粒子を樹脂に埋め込み、クロスセクションポリッシャ加工により該粒子の断面観察が可能な状態としてから、SEM(株式会社日立ハイテクノロジース製、走査型電子顕微鏡S-4700)により観察を行った。
 得られた断面SEM像の粒子について、長辺と短辺との平均値が上記正極活物質前駆体の平均粒径±1μm以内の範囲にある粒子を10個(粒子1~粒子10)選択し、選択した粒子(評価用粒子)の断面全体に、格子状に境界線を配置した。なお、この際、該境界線により分割される1つの領域が2μm角となるように境界線を配置している。
 そして、該粒子の断面について、画像解析ソフト(アメリカ国立衛生研究所の開発ソフト、ImageJ)を用いて二値化処理を行った後、境界線で分割された各領域について、各領域に占める空隙の面積の割合を算出した。なお、二値化処理の際には判別分析法により閾値を決定した。
 次いで、評価を行ったニッケル複合水酸化物粒子について、境界線で分割された各領域に占める空隙の面積の平均値、及び標準偏差を算出した。結果を表1に示す。
 また、上記選択した10個のニッケル複合水酸化物粒子(粒子1~粒子10)について、その断面に占める空隙の面積の割合の平均値、及び標準偏差を算出した。
 結果を表1に示す。
 得られた正極活物質前駆体については、空気(酸素:21容量%)気流中にて、700℃で6時間焙焼を行い、全てをニッケル複合酸化物としてから(焙焼工程)正極活物質の製造工程に供した。
(正極活物質の製造)
 以下の手順により、リチウム化合物と、上述の焙焼工程後に得られたニッケル複合酸化物との混合物を調製した(混合工程)。
 リチウム化合物としては、水酸化リチウム一水和物(LiOH・HO)を真空乾燥による無水化処理に供し、得られた無水水酸化リチウムを用いた。
 混合工程では、リチウム化合物と、ニッケル複合酸化物とを、混合物中の原子数の比がLi/Meが1.035となるように秤量、混合して混合物を調製した。なお、ここでのMeはLi以外の金属の合計の原子数を意味しており、Niと、Coとの合計となる。
 混合工程で得られた混合物を内寸が280mm(L)×280mm(W)×90mm(H)の焼成容器に装入し、これを連続式の焼成炉であるローラーハースキルンを用いて、酸素濃度80容量%、残部が不活性ガスの雰囲気中で、最高温度(焼成温度)を770℃として焼成を行った(焼成工程)。さらに得られた焼成物を、質量比で水1に対し1.5となるように、純水に投入してスラリーとし、30分間の撹拌後、濾過、乾燥して正極活物質を得た(水洗工程)。
(非水系電解質二次電池の製造)
 得られたリチウムニッケル複合酸化物を正極活物質として用いて、2032型コイン型電池を作製し、評価した。
 図2を用いて、作製したコイン型電池の構成について説明する。図2はコイン型電池の断面構成図を模式的に示している。
 図2に示す様に、このコイン型電池20は、ケース21と、このケース21内に収容された電極22とから構成されている。
 ケース21は、中空かつ一端が開口された正極缶211と、この正極缶211の開口部に配置される負極缶212とを有しており、負極缶212を正極缶211の開口部に配置すると、負極缶212と正極缶211との間に電極22を収容する空間が形成されるように構成されている。
 電極22は、正極221、セパレータ222および負極223からなり、この順で並ぶように積層されており、正極221が正極缶211の内面に接触し、負極223が負極缶212の内面に接触するようにケース21に収容されている。
 なお、ケース21は、ガスケット213を備えており、このガスケット213によって、正極缶211と負極缶212との間が電気的に絶縁状態を維持するように固定されている。また、ガスケット213は、正極缶211と負極缶212との隙間を密封して、ケース21内と外部との間を気密、液密に遮断する機能も有している。
 このコイン型電池20を、以下のようにして作製した。まず、得られたリチウムニッケル複合酸化物粒子52.5mg、アセチレンブラック15mg、およびポリテトラフルオロエチレン(PTFE)樹脂7.5mgを溶剤であるN-メチル-2-ピロリドンと共に混合し、100MPaの圧力で直径11mm、厚さ100μmにプレス成型して、正極221を作製した。作製した正極221を、真空乾燥機中、120℃で12時間乾燥した。この正極221、負極223、セパレータ222および電解液を用いて、コイン型電池20を、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。
 なお、負極223には、直径14mmの円盤状に打ち抜かれた、平均粒径20μm程度の黒鉛粉末と、ポリフッ化ビニリデンとを溶剤であるN-メチル-2-ピロリドンと共に混合した負極合材ペーストを銅箔に塗布、乾燥した負極シートを用いた。また、セパレータ222には、膜厚25μmのポリエチレン多孔膜を用いた。電解液には、1MのLiClO4を支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。
 [電池評価]
 得られたコイン型電池を充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製、1255B)を使用して交流インピーダンス法により測定すると、図3Aに示すナイキストプロットが得られる。このナイキストプロットは、溶液抵抗、負極抵抗とその容量、および、正極抵抗とその容量を示す特性曲線の和として表しているため、このナイキストプロットに基づき図3Bに示した等価回路を用いてフィッティング計算を行い、反応抵抗の値を算出した。反応抵抗については、本実験例の結果を以下の他の実験例における基準値とし、反応抵抗比として表1に示している。
 評価結果を表1に示す。
[実験例2~実験例7]
 正極活物質前駆体を製造する際、晶析工程において、反応槽容積、及び実液量が表1に示した値となる反応槽を用い、各溶液の供給速度、及び初期水溶液、反応溶液におけるアンモニウムイオン濃度を表1に示した値となるようにした点以外は実験例1と同様にして正極活物質前駆体、及び正極活物質、非水系電解質二次電池を作製し、評価を行った。
 評価結果を表1に示す。
[実験例8]
 正極活物質前駆体を製造する際、晶析工程において、反応槽容積、及び実液量が表1に示した値となる反応槽を用い、各溶液の供給速度、及び初期水溶液、反応溶液におけるアンモニウムイオン濃度を表1に示した値となるようにし、正極活物質前駆体としてNi0.91Co0.09(OH)を製造した。このため、ニッケル塩、コバルト塩を含む混合水溶液(a)としては、ニッケルとコバルトとの物質量比がNi:Co=91:9、金属塩濃度が2.1mol/Lとなるように各金属塩を添加、混合したものを用いた。以上の点以外は実験例1と同様にして正極活物質前駆体、及び正極活物質、非水系電解質二次電池を作製し、評価を行った。評価結果を表1に示す。
[実験例9]
 正極活物質前駆体を製造する際、晶析工程において、さらに元素Mを含有する水溶液(d)を添加した。そして、ニッケル塩、およびコバルト塩を含む混合水溶液(a)と、元素Mを含有する水溶液(d)とで、ニッケルとコバルトとアルミニウムの物質量比がNi:Co:Al=88:8.5:3.5、金属塩濃度が2.1mol/Lとなるように、各金属塩を水に添加、混合して各水溶液を調製した。なお、ニッケル塩、およびコバルト塩を含む混合水溶液(a)には、ニッケル塩として硫酸ニッケルを、コバルト塩として硫酸コバルト塩を添加している。また、元素Mを含有する水溶液(d)には、アルミニウム塩としてアルミン酸ナトリウムを添加した。
 そして、反応槽容積、及び実液量が表2に示した値となる反応槽を用い、各溶液の供給速度、及び初期水溶液、反応溶液におけるアンモニウムイオン濃度を表2に示した値となるようにし、正極活物質前駆体としてNi0.88Co0.085Al0.035(OH)を製造した。
 以上の点以外は実験例1と同様にして正極活物質前駆体、及び正極活物質、非水系電解質二次電池を作製し、評価を行った。なお、正極活物質を製造する際の混合工程におけるLi/MeのMeは、本実験例の場合、Niと、Coと、Alとの合計の原子数になる。評価結果を表2に示す。
[実験例10]
 正極活物質前駆体を製造する際、晶析工程において、さらに元素Mを含有する水溶液(d)を添加した。そして、ニッケル塩、およびコバルト塩を含む混合水溶液(a)と、元素Mを含有する水溶液(d)とで、ニッケルとコバルトとアルミニウムの物質量比がNi:Co:Al=91:4.5:4.5、金属塩濃度が2.1mol/Lとなるように、各金属塩を水に添加、混合して各水溶液を調製した。なお、ニッケル塩、およびコバルト塩を含む混合水溶液(a)には、ニッケル塩として硫酸ニッケルを、コバルト塩として硫酸コバルト塩を添加している。また、元素Mを含有する水溶液(d)には、アルミニウム塩としてアルミン酸ナトリウムを添加した。
 そして、反応槽容積、及び実液量が表2に示した値となる反応槽を用い、各溶液の供給速度、及び初期水溶液、反応溶液におけるアンモニウムイオン濃度を表2に示した値となるようにし、正極活物質前駆体としてNi0.91Co0.045Al0.045(OH)を製造した。
 以上の点以外は実験例1と同様にして正極活物質前駆体、及び正極活物質、非水系電解質二次電池を作製し、評価を行った。なお、正極活物質を製造する際の混合工程におけるLi/MeのMeは、本実験例の場合、Niと、Coと、Alとの合計の原子数になる。評価結果を表2に示す。
[実験例11~13]
 正極活物質前駆体を製造する際、晶析工程において、反応槽容積、及び実液量が表3に示した値となる反応槽を用い、各溶液の供給速度、及び初期水溶液、反応溶液におけるアンモニウムイオン濃度を表3に示した値となるようにした点以外は実験例1と同様にして正極活物質前駆体、及び正極活物質、非水系電解質二次電池を作製し、評価を行った。評価結果を表3に示す。
[実験例14]
 正極活物質前駆体を製造する際、晶析工程において、反応槽容積、及び実液量が表1に示した値となる反応槽を用い、各溶液の供給速度、及び初期水溶液、反応溶液におけるアンモニウムイオン濃度を表3に示した値となるようにした点以外は実験例8と同様にして正極活物質前駆体、及び正極活物質、非水系電解質二次電池を作製し、評価を行った。評価結果を表3に示す。
[実験例15]
 正極活物質前駆体を製造する際、晶析工程において、反応槽容積、及び実液量が表3に示した値となる反応槽を用い、各溶液の供給速度、及び初期水溶液、反応溶液におけるアンモニウムイオン濃度を表3に示した値となるようにした点以外は実験例9と同様にして正極活物質前駆体、及び正極活物質、非水系電解質二次電池を作製し、評価を行った。評価結果を表3に示す。
[実験例16]
 正極活物質前駆体を製造する際、晶析工程において、反応槽容積、及び実液量が表3に示した値となる反応槽を用い、各溶液の供給速度、及び初期水溶液、反応溶液におけるアンモニウムイオン濃度を表3に示した値となるようにした点以外は実験例10と同様にして正極活物質前駆体、及び正極活物質、非水系電解質二次電池を作製し、評価を行った。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

 表1~表3に示した結果によると、ニッケル複合水酸化物粒子の断面を所定の境界線により複数の領域に分割した場合に、境界線により分割された各領域に占める空隙の面積の割合の平均値が0.5%以上5.0%以下であり、かつ境界線により分割された各領域に占める、空隙の面積の割合の標準偏差が1.0以下である粒子を含む実験例1~実験例10の正極活物質では、反応抵抗比が1.1以下と小さくなることを確認できた。
 なお、実験例1~6、8~10では評価用粒子である粒子1~粒子10が全て上記規定を充足することが確認できた。ただし、評価用粒子である粒子1~粒子10のうち、1個でも上記要件を充足していれば反応抵抗比を十分に抑制でき、表1に示した実験例7においても反応抵抗比が十分に抑制できていることを確認できた。なお、表1から明らかなように、評価用粒子のうち個数割合で実験例7では80%が上記要件を満たしている。
 一方、上記空隙の分布の規定を充足しない粒子1~粒子10を含む実験例11~実験例16の正極活物質では、反応抵抗比が1.1を超え、高くなることを確認できた。
 また、実験例1~実験例10においては、粒子1~粒子10について、断面に占める空隙の面積の割合の平均値が0.5%以上5.0%以下であり、かつ粒子1~粒子10の断面に占める、空隙の面積の割合の標準偏差が1.0以下となることも確認できた。
 以上に非水系電解質二次電池用正極活物質前駆体を、実施形態および実施例等で説明したが、本発明は上記実施形態および実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。
 本出願は、2017年11月28日に日本国特許庁に出願された特願2017-228253号に基づく優先権を主張するものであり、特願2017-228253号の全内容を本国際出願に援用する。

Claims (3)

  1.  ニッケル複合水酸化物粒子を含み、
     前記ニッケル複合水酸化物粒子の断面は空隙を含んでおり、
     分割される1つの領域が2μm角となるように、格子状に配置された境界線により、前記ニッケル複合水酸化物粒子の断面を複数の領域に分割した場合に、
     前記境界線により分割された各領域に占める、前記空隙の面積の割合の平均値が0.5%以上5.0%以下であり、
     前記境界線により分割された各領域に占める、前記空隙の面積の割合の標準偏差が1.0以下である非水系電解質二次電池用正極活物質前駆体。
  2.  複数のニッケル複合水酸化物粒子を含み、
     前記複数のニッケル複合水酸化物粒子から、粒径が、前記複数のニッケル複合水酸化物粒子の平均粒径±1μm以内である評価用粒子を複数選択し、
     分割される1つの領域が2μm角となるように、格子状に配置された境界線により、前記評価用粒子の断面を複数の領域に分割した場合に、
     前記境界線により分割された各領域に占める、空隙の面積の割合の平均値が0.5%以上5.0%以下であり、かつ前記境界線により分割された各領域に占める、前記空隙の面積の割合の標準偏差が1.0以下となる評価用粒子が、複数の前記評価用粒子に占める個数の割合が50%以上である請求項1に記載の非水系電解質二次電池用正極活物質前駆体。
  3.  複数のニッケル複合水酸化物粒子を含み、
     前記複数のニッケル複合水酸化物粒子の断面に占める、前記空隙の面積の割合の平均値が0.5%以上5.0%以下であり、
     前記複数のニッケル複合水酸化物粒子の断面に占める、前記空隙の面積の割合の標準偏差が1.0以下である請求項1または請求項2に記載の非水系電解質二次電池用正極活物質前駆体。
PCT/JP2018/043643 2017-11-28 2018-11-27 非水系電解質二次電池用正極活物質前駆体 WO2019107373A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18882985.7A EP3719887A4 (en) 2017-11-28 2018-11-27 NON AQUEOUS ELECTROLYTE SECONDARY BATTERY POSITIVE ELECTRODE ACTIVE MATERIAL PRECURSOR
CN201880076067.XA CN111386620B (zh) 2017-11-28 2018-11-27 非水类电解质二次电池用正极活性物质前体
US16/766,392 US11855284B2 (en) 2017-11-28 2018-11-27 Positive electrode active material precursor for non-aqueous electrolyte secondary battery
JP2019557248A JP7167939B2 (ja) 2017-11-28 2018-11-27 非水系電解質二次電池用正極活物質前駆体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-228253 2017-11-28
JP2017228253 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019107373A1 true WO2019107373A1 (ja) 2019-06-06

Family

ID=66664909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043643 WO2019107373A1 (ja) 2017-11-28 2018-11-27 非水系電解質二次電池用正極活物質前駆体

Country Status (5)

Country Link
US (1) US11855284B2 (ja)
EP (1) EP3719887A4 (ja)
JP (1) JP7167939B2 (ja)
CN (1) CN111386620B (ja)
WO (1) WO2019107373A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299494A (zh) * 2020-10-29 2021-02-02 格林爱科(荆门)新能源材料有限公司 一种镍钴氢氧化物材料的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057518A (ja) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法
JP2012119093A (ja) 2010-11-29 2012-06-21 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池
WO2013183711A1 (ja) * 2012-06-06 2013-12-12 住友金属鉱山株式会社 ニッケル複合水酸化物、非水系電解質二次電池用正極活物質、非水系電解質二次電池、およびこれらの製造方法
JP2015227263A (ja) * 2014-05-30 2015-12-17 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物とその製造方法
JP2016138024A (ja) * 2015-01-28 2016-08-04 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法および非水系電解質二次電池
JP2017054583A (ja) * 2015-09-07 2017-03-16 三菱化学株式会社 炭素材、及び、非水系二次電池
JP2017065975A (ja) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 ニッケルマンガン含有複合水酸化物およびその製造方法
JP2017084628A (ja) * 2015-10-28 2017-05-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
JP2017228253A (ja) 2016-06-24 2017-12-28 シャープ株式会社 端末装置、端末装置のプログラム、通信サーバ、及び通信方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614334B2 (ja) * 2010-03-02 2014-10-29 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物およびその製造方法、ならびに該複合水酸化物を用いて得られる非水系電解質二次電池用正極活物質
EP2720305B1 (en) * 2011-06-07 2019-02-20 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
JP5851801B2 (ja) * 2011-11-01 2016-02-03 日立マクセル株式会社 リチウム二次電池
JP6358077B2 (ja) * 2014-01-31 2018-07-18 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池
JP6233175B2 (ja) * 2014-02-05 2017-11-22 住友金属鉱山株式会社 水酸化コバルト粒子及びその製造方法、並びに正極活物質及びその製造方法
JP6344007B2 (ja) * 2014-03-28 2018-06-20 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の前駆体の製造方法、及び非水電解質二次電池用正極活物質の製造方法
JP2016012500A (ja) * 2014-06-30 2016-01-21 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP6377983B2 (ja) * 2014-07-23 2018-08-22 住友化学株式会社 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
CN105580160B (zh) * 2014-08-29 2018-10-02 住友化学株式会社 多孔层、层叠多孔层而成的间隔件、及包含多孔层或间隔件的非水电解液二次电池
JP2016054101A (ja) * 2014-09-04 2016-04-14 株式会社日立製作所 リチウムイオン二次電池
JP2015038878A (ja) * 2014-09-30 2015-02-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質及び非水系電解質二次電池
JP6398899B2 (ja) * 2015-07-24 2018-10-03 住友金属鉱山株式会社 断面観察用粉体試料の作製方法、断面観察用粉体試料の断面観察方法、および粉体試料の空隙率の測定方法
JP2017117700A (ja) * 2015-12-25 2017-06-29 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057518A (ja) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法
JP2012119093A (ja) 2010-11-29 2012-06-21 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池
WO2013183711A1 (ja) * 2012-06-06 2013-12-12 住友金属鉱山株式会社 ニッケル複合水酸化物、非水系電解質二次電池用正極活物質、非水系電解質二次電池、およびこれらの製造方法
JP2015227263A (ja) * 2014-05-30 2015-12-17 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物とその製造方法
JP2016138024A (ja) * 2015-01-28 2016-08-04 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法および非水系電解質二次電池
JP2017054583A (ja) * 2015-09-07 2017-03-16 三菱化学株式会社 炭素材、及び、非水系二次電池
JP2017065975A (ja) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 ニッケルマンガン含有複合水酸化物およびその製造方法
JP2017084628A (ja) * 2015-10-28 2017-05-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
JP2017228253A (ja) 2016-06-24 2017-12-28 シャープ株式会社 端末装置、端末装置のプログラム、通信サーバ、及び通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719887A4

Also Published As

Publication number Publication date
EP3719887A4 (en) 2021-01-27
EP3719887A1 (en) 2020-10-07
US20200350578A1 (en) 2020-11-05
JPWO2019107373A1 (ja) 2020-12-17
CN111386620B (zh) 2023-12-22
CN111386620A (zh) 2020-07-07
US11855284B2 (en) 2023-12-26
JP7167939B2 (ja) 2022-11-09

Similar Documents

Publication Publication Date Title
JP6241349B2 (ja) 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質とその製造方法
KR101644252B1 (ko) 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
JP5590337B2 (ja) マンガン複合水酸化物粒子、非水系電解質二次電池用正極活物質、および非水系電解質二次電池と、それらの製造方法
WO2012131881A1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP7224754B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
CN108463911A (zh) 非水类电解质二次电池用正极活性物质前驱体、非水类电解质二次电池用正极活性物质、非水类电解质二次电池用正极活性物质前驱体的制造方法、及非水类电解质二次电池用正极活性物质的制造方法
JP2022179554A (ja) リチウム化合物
JP7389376B2 (ja) 非水系電解質二次電池用正極活物質
JP7452570B2 (ja) 非水系電解質二次電池用正極活物質
JP7135354B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
CN111094188A (zh) 金属复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及使用其的非水电解质二次电池
JP2019021425A (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法
JPWO2020171126A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP2021012807A (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
WO2019107373A1 (ja) 非水系電解質二次電池用正極活物質前駆体
JP7207323B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法
JP7031296B2 (ja) ニッケル複合酸化物、正極活物質の製造方法
WO2019082992A1 (ja) ニッケル複合酸化物、リチウムニッケル複合酸化物の製造方法
JP7468662B2 (ja) ニッケル含有水酸化物の製造方法、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池
JP7408912B2 (ja) リチウムイオン二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557248

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018882985

Country of ref document: EP

Effective date: 20200629