WO2019107318A1 - X線診断装置、及び、x線管保持装置 - Google Patents

X線診断装置、及び、x線管保持装置 Download PDF

Info

Publication number
WO2019107318A1
WO2019107318A1 PCT/JP2018/043451 JP2018043451W WO2019107318A1 WO 2019107318 A1 WO2019107318 A1 WO 2019107318A1 JP 2018043451 W JP2018043451 W JP 2018043451W WO 2019107318 A1 WO2019107318 A1 WO 2019107318A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
image
diagnostic apparatus
overlapping area
subject
Prior art date
Application number
PCT/JP2018/043451
Other languages
English (en)
French (fr)
Inventor
基裕 佐藤
英輔 戸村
孝一 神長
稔明 近藤
Original Assignee
キヤノンメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンメディカルシステムズ株式会社 filed Critical キヤノンメディカルシステムズ株式会社
Priority to JP2019557217A priority Critical patent/JPWO2019107318A1/ja
Priority to CN201880076515.6A priority patent/CN111417344B/zh
Publication of WO2019107318A1 publication Critical patent/WO2019107318A1/ja
Priority to US16/883,091 priority patent/US11344271B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other

Definitions

  • Embodiments of the present invention relate to an X-ray diagnostic apparatus and an X-ray tube holding apparatus.
  • An X-ray diagnostic apparatus that performs X-ray imaging by irradiating the subject with X-rays and detecting the X-rays transmitted through the subject is widely used in the medical field.
  • One of the imaging methods of this X-ray diagnostic apparatus is long imaging. In this long radiographing, since the imaging range is limited in one X-ray imaging using an X-ray tube, a plurality of X-ray imagings are performed to generate a plurality of X-ray images at different imaging positions. These are imaging methods in which the plurality of X-ray images are combined to widen the imaging range.
  • image processing such as blending processing is performed on an overlapping area where different X-ray images are combined and pasted together. Need to That is, images are created based on a plurality of different X-ray images for the overlapping area so that the X-ray images do not have a sense of discomfort when the different X-ray images are pasted together.
  • image processing since there is a risk that the X-ray image is blurred, it is not preferable that the blending processing is performed on the region of interest of the user.
  • An object of the present embodiment is to be applied to an X-ray diagnostic apparatus capable of moving an overlapping region of X-ray images when generating a long X-ray image, and such an X-ray diagnostic apparatus An X-ray tube holding device is provided.
  • the X-ray diagnostic apparatus includes a display unit that displays a plurality of X-ray irradiation ranges for generating a long X-ray image superimposed on an image indicating a subject, and a user's operation. And a display control unit for changing the position of the overlapping region of the X-ray irradiation ranges adjacent to each other displayed on the display unit.
  • the X-ray diagnostic apparatus includes an X-ray tube for generating X-rays, an X-ray detector for detecting X-rays passing through a subject, and a plurality of X-ray irradiations on an image showing the subject.
  • a display unit for overlappingly displaying a range, an input unit for receiving an operation of the user, and a position of an overlapping region of overlapping X-ray irradiation ranges adjacent to each other displayed on the display unit based on the operation of the user
  • a display control unit that changes at least one of the sizes.
  • FIG. 3 is a view for explaining an aspect of optical imaging by an optical camera in the X-ray diagnostic apparatus of FIG. 1.
  • the figure explaining the aspect of the optical imaging by the optical camera in the X-ray diagnostic apparatus of FIG. The figure which shows the flowchart explaining the long image imaging process performed with the X-ray diagnostic apparatus of FIG.1 and FIG.5.
  • FIG 8 is a view for explaining another example of the operation of changing the position of the overlapping area using the preparation screen in step S14 of the long image pickup process according to the first embodiment.
  • the figure which demonstrates the process of imaging an X-ray image by several different arrangement
  • 1 is a block diagram showing an X-ray diagnostic apparatus and a patient information system connected to the X-ray diagnostic apparatus.
  • designated apparatus in the stand in which the X-ray detector was provided.
  • FIG. 1 is a block diagram for explaining the overall configuration of the X-ray diagnostic apparatus 1 according to the first embodiment.
  • the X-ray diagnostic apparatus 1 shown in FIG. 1 mainly includes a stand 10, an X-ray tube holding device 12, a high voltage generator 14, an X-ray detector 16, a processing circuit 18, a display 20, and an input.
  • a circuit 22 and a memory circuit 24 are configured.
  • the X-ray tube holding device 12 according to the present embodiment is configured to include an X-ray tube 12a, an X-ray stop 12b, a display 12c, and an optical camera 12d.
  • a subject P in a standing position is located.
  • the subject in the standing position by one X-ray imaging using the X-ray detector 16 of the stand 10 and the X-ray tube 12 a of the X-ray tube holding device 12 P can be partially imaged.
  • the stand 10 is configured to be movable up and down in conjunction with the X-ray tube holding device 12, and X-ray imaging can be performed with a plurality of different arrangements to generate X-ray images with a plurality of different arrangements. It is. That is, in the X-ray diagnostic apparatus 1 according to the present embodiment, it is possible to generate long X-ray images by combining X-ray images in a plurality of arrangements.
  • the X-ray tube 12a of the X-ray tube holding device 12 is supplied with high voltage and filament current from the high voltage generator 14 under the control of the processing circuit 18, and generates X-rays based on these.
  • the X-ray stop 12b of the X-ray tube holding device 12 restricts the X-rays generated by the X-ray tube 12a, and controls the range of X-rays irradiated to the subject P.
  • the irradiation range of X-rays can be narrowed by narrowing the diaphragm of the X-ray diaphragm 12b, and conversely, the irradiation range of X-rays is broadened by opening the diaphragm of the X-ray diaphragm 12b.
  • the degree of stop of the X-ray stop 12 b is controlled by a control signal from the processing circuit 18 based on, for example, an instruction from the operator.
  • the display 12c of the X-ray tube holding device 12 displays various information related to the X-ray diagnostic apparatus 1 to the operator, and displays an image captured by the optical camera 12d. Further, in the present embodiment, the display 12 c is configured by a touch panel, and the operator can input various instructions to the X-ray diagnostic apparatus 1. That is, the display 12c corresponds to the input unit in the present embodiment.
  • the optical camera 12d of the X-ray tube holding device 12 is an imaging device capable of capturing an image showing the subject P, and particularly in the present embodiment, a wide angle capable of imaging the whole body of the subject P
  • the imaging device of The optical camera 12d is not an imaging device for X imaging, but is an optical imaging device that detects light and converts it into an electric signal to perform imaging.
  • the high voltage generator 14 generates a high voltage and a filament current according to the X-ray conditions based on the control instruction from the processing circuit 18, and supplies the high voltage and the filament current to the X-ray tube 12a of the X-ray tube holding device 12
  • the X-ray tube 12a generates X-rays.
  • the X-ray detector 16 is configured of, for example, a flat panel detector (FPD: Flat Panel Detector) having a plurality of pixels arranged in a two-dimensional manner, and each pixel is an X-ray tube 12a which transmits the subject P. X-rays from the sensor are detected, converted into electrical signals, and further converted into digital signals. This digital signal is output to the processing circuit 18.
  • FPD Flat Panel Detector
  • the processing circuit 18 is a control circuit that performs overall control of the X-ray diagnostic apparatus 1 and is also an arithmetic circuit that performs various calculations.
  • the processing circuit 18 according to the present embodiment has an image acquisition function 18a, a generation function 18b, a display control function 18c, an X-ray image imaging function 18d, and a long X-ray image display function 18e.
  • the image acquisition function 18a corresponds to the image acquisition unit according to the present embodiment
  • the generation function 18b corresponds to the generation unit in the present embodiment
  • the display control function 18c corresponds to the display control unit in the present embodiment.
  • the X-ray imaging function 18d corresponds to the X-ray imaging section in the present embodiment
  • the long X-ray image display function 18e corresponds to the long X-ray image display section in the present embodiment. .
  • each processing function performed by the image acquisition function 18a, the generation function 18b, the display control function 18c, the X-ray image imaging function 18d, and the long X-ray image display function 18e is a computer.
  • the processing circuit 18 is a processor that realizes a function corresponding to each program by reading the program from the program storage circuit 24 a of the storage circuit 24 and executing the program.
  • the processing circuit in the state of reading out each program has each function shown in the processing circuit 18 of FIG. In FIG.
  • the processing circuit 18 may be configured by combining a plurality of independent processors, and each processor may execute a program to realize these functions.
  • the display 20 displays various images and information.
  • the display 20 displays a medical image (X-ray image) generated by the processing circuit 18, a graphical user interface (GUI) for receiving various operations from the operator, and the like.
  • X-ray image X-ray image
  • GUI graphical user interface
  • the long X-ray image generated by the generation function 18 b of the processing circuit 18 is displayed.
  • the display 20 is configured of, for example, a liquid crystal display or a CRT (Cathode Ray Tube) display.
  • the input circuit 22 receives various input operations from the operator, converts the received input operations into electric signals, and outputs the electric signals to the processing circuit 18.
  • the input circuit 22 is realized by a mouse, a keyboard, a trackball, a manual switch, a foot switch, a button, a joystick, or the like.
  • the input circuit 22 can also be configured by configuring the display 12 c and the display 20 with a touch panel.
  • the storage circuit 24 is realized by, for example, a random access memory (RAM), a semiconductor memory device such as a flash memory, a hard disk, an optical disk or the like.
  • the storage circuit 24 according to the present embodiment is configured to include, for example, a program storage circuit 24 a and an image storage circuit 24 b.
  • the program storage circuit 24 a stores various programs to be executed by the processing circuit 18 and the like.
  • the image storage circuit 24 b stores data related to various images.
  • an X-ray image generated based on X-rays detected by the X-ray detector 16 is stored in the image storage circuit 24 b or the optical camera 12 d of the X-ray tube holding device 12 The image captured by the image is stored.
  • the processing circuit 18 is configured by, for example, a processor.
  • the term processor means, for example, a central processing unit (CPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), a programmable logic device (for example, a simple programmable logic device). It means circuits such as (Simple Programmable Logic Device (SPLD), Complex Programmable Logic Device (CPLD), and Field Programmable Gate Array (FPGA)).
  • SPLD Simple Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the processor implements the function by reading and executing the program stored in the program storage circuit 24 a of the storage circuit 24. Instead of storing the program in the program storage circuit 24a of the storage circuit 24, the program may be directly incorporated in the circuit of the processor.
  • the processor implements the function by reading and executing a program embedded in the circuit.
  • the processor is not limited to being configured as a single processor circuit, and a plurality of independent circuits may be combined to be configured as a single processor to realize its function. Further, the plurality of components in FIG. 1 may be integrated into one processor to realize its function.
  • FIG. 2 is a schematic view showing the imaging process of the stepping long image
  • FIG. 3 is a schematic view showing the imaging process of the irradiation field division long imaging.
  • the case of imaging a long image by the number of times of imaging twice is illustrated using the side view of the X-ray diagnostic apparatus 1.
  • the X-ray tube holding device 12 and the X-ray detector 16 are moved to the upper position of the imaging target to capture the object P Take an image of the upper position on the subject.
  • the X-ray tube holding device 12 and the X-ray detector 16 are moved to the lower position of the imaging target to perform imaging of the lower position of the imaging target of the object P .
  • the center of the X-ray tube 12a of the X-ray tube holder 12 and the center of the X-ray detector 16 coincide with each other, and the X-ray iris 12b
  • the X-rays generated in 12a are directed in the front direction.
  • the X-ray tube holding device 12 is fixed at the central position of the object P to be imaged. Then, the X-ray detector 16 is moved to the upper position of the imaging target, and imaging of the upper position of the imaging target of the object P is performed. Next, as shown in FIG. 3B, the X-ray detector 16 is moved to the lower position of the imaging target, and imaging of the lower position of the imaging target of the object P is performed.
  • the position of the X-ray tube 12a of the X-ray tube holding device 12 is immobile at the central position, so the X-ray iris 12b is located above the imaging target in the first X-ray imaging.
  • the X-ray stop is adjusted to the position, and in the second X-ray imaging, the X-ray stop is adjusted to the lower position of the imaging target.
  • FIG. 4 is a view showing an example of an image in which one long image is generated by three times of X-ray imaging.
  • X-ray images IM1, IM2, IM3 are acquired in three different arrangements and these are combined to generate a long X-ray image, overlapping regions LP1, LP1, of different X-ray images IM1, IM2, IM3 It will be necessary to apply blending to LP2. Therefore, the X-ray diagnostic apparatus 1 according to the present embodiment has a function of avoiding the positioning of the region of interest and the like in the overlapping regions LP1 and LP12 as described later. That is, the X-ray images IM1, IM2, and IM3 indicate the irradiation ranges of X-rays at the time of imaging one X-ray image.
  • FIG. 1 an example in which the X-ray diagnostic apparatus 1 performs X-ray imaging of a standing subject P in a plurality of arrangements and combines the plurality of X-ray images to generate a long X-ray image is described.
  • the X-ray diagnostic apparatus 1 performs X-ray imaging in a plurality of arrangements for the subject P in the supine position, and the plurality of X-ray images can be combined to generate a long X-ray image.
  • FIG. 5 is a block diagram for explaining the overall configuration of the X-ray diagnostic apparatus 1 which performs X-ray imaging in a plurality of different arrangements to generate a long X-ray image of the subject P in the supine position.
  • a bed 30 is provided instead of the stand 10 of the X-ray diagnostic apparatus 1 of FIG.
  • the subject P lies on the top of the bed 30, and X-ray imaging of the subject P in the supine position is performed.
  • the other configuration of the X-ray diagnostic apparatus 1 of FIG. 5 is substantially equivalent to that of the X-ray diagnostic apparatus 1 of FIG.
  • FIG. 6 is a view for explaining an aspect of optical imaging by the optical camera 12 d in the X-ray diagnostic apparatus 1 of FIG. 1 described above.
  • the X-ray tube holding device 12 according to the present embodiment is provided with a wide-angle optical camera 12 d, and the subject in the standing position stands in front of the stand 10 by the optical camera 12 d.
  • An image showing the whole body of P can be optically captured.
  • FIG. 7 is a view for explaining an aspect of optical imaging by the optical camera 12 d in the X-ray diagnostic apparatus 1 of FIG. 5 described above.
  • the X-ray tube holding device 12 includes an optical camera 12 d with a wide angle, and the subject P of a supine posture lying on a bed 30 by the optical camera 12 d. An image showing the whole body can be optically captured.
  • the long image pickup process shown in FIG. 8 is realized by the processing circuit 18 reading and executing the long image pickup process program stored in the program storage circuit 24 a of the memory circuit 24.
  • the X-ray diagnostic apparatus 1 acquires an image showing the subject P (step S10).
  • the process of acquiring the image of the subject P is realized by the image acquiring function 18 a of the processing circuit 18.
  • an image of the subject P is acquired by optically imaging the subject P with the optical camera 12 d.
  • the image of the subject P may be an image showing the whole body of the subject P or an image showing a part of the subject P.
  • the X-ray diagnostic apparatus 1 generates an image including an overlapping area in which the X-ray images overlap when imaging X-ray images in a plurality of different arrangements on the image showing the subject P. , And display on the display 12c or the display 20 as a preparation screen (step S12).
  • the process of generating an image including the overlapping area and displaying it as a preparation screen is realized by the display control function 18 c of the processing circuit 18.
  • FIG. 9 is a view showing an example of the preparation screen W1 displayed on the display 12c or the display 20 of the X-ray diagnostic apparatus 1 according to the present embodiment.
  • the preparation screen W1 includes X-ray images IM1 and IM2 regions RG1 and IM2 captured from a plurality of different positions superimposed on the whole-body image showing the subject P acquired in step S10.
  • RG2 is displayed virtually.
  • the regions RG1 and RG2 of the X-ray images IM1 and IM2 virtually indicate the regions to be imaged when the imaging of the X-ray image is performed in step S16 described later. That is, the X-ray images IM1 and IM2 respectively indicate the X-ray irradiation range in one X-ray imaging.
  • an overlapping region LP1 in which both images are superimposed is formed. That is, in the case of FIG. 9, when long-length imaging is performed with the setting shown on the preparation screen W1 of FIG. 9, two X-ray images IM1 and IM2 are generated by two X-ray imagings, and the preparation screen W1. It is specified in advance to the operator that a long image including the overlapping area LP1 is generated at the position shown in FIG.
  • the overlapping area LP1 indicates an area where the X-ray irradiation range in imaging the X-ray image IM1 and the X-ray irradiation range in imaging the X-ray image IM2 overlap.
  • the position of the overlapping region LP1 is located at an undesirable site such as a region of interest.
  • the X-ray diagnostic apparatus 1 subsequently receives an operation input for moving the overlapping area LP1 to change the position (step S14).
  • acceptance of the operation input is realized by the display 12 c or the display 20 configured by a touch panel under the control of the display control function 18 c.
  • FIG. 10 is a diagram showing an example of operation input for moving the overlapping area LP1 to change the position on the preparation screen W1 according to the present embodiment.
  • the display 12c or the display 20 is configured by, for example, a touch panel, the position of the overlapping area LP1 can be determined by the operator dragging the overlapping area LP1 with a finger. You can change
  • the user drags the overlapping area LP1 to the lower side of the preparation screen W1 while touching the overlapping area LP1.
  • the overlapping area LP1 moves to the lower side of the preparation screen W1.
  • the size of the region RG1 of the X-ray image IM1 is large, and the size of the region RG2 is small.
  • the size of the overlapping area LP1 may be separately changed. For example, when the operator long-presses the overlap area LP1 displayed on the preparation screen W1 with a finger, the preparation screen W1 enters the size change mode for the overlap area LP1, and the lines LN1 and LN2 of the X-ray images IM1 and IM2 are displayed. By moving the operator, the size of the overlapping area LP1 may also be changed. Also, at that time, the change in size of the overlapping area LP1 is restricted so that the overlapping area LP1 between the X-ray image IM1 and the X-ray image IM2 does not become smaller as combining processing and blending processing can not be performed. It is also good.
  • the operator exceeds the maximum imaging range in which the overlapping region can be imaged in one X-ray imaging.
  • the region RG1 and RG2 of the X-ray images IM1 and IM2 are to be enlarged, there is a limitation. That is, in the example of FIG. 10, for example, even if the operator tries to move the line LN1 of the X-ray image IM1 when the X-ray image IM1 is going to exceed the size which can be imaged at one time, It is configured not to move.
  • the operator is configured not to move the overlapping region LP1 any more. It is done.
  • the X-ray diagnostic apparatus 1 picks up X-ray images in a plurality of different arrangements based on the settings made on the preparation screen W1 of step S14, and takes a long X-ray image.
  • step S16 X-ray imaging of the subject P is performed based on the imaging ranges of the plurality of X-rays having the overlapping area set in step S14, and a long X-ray image is generated.
  • the generation of the long X-ray image is realized by the X-ray imaging function 18 d of the processing circuit 18.
  • FIG. 12 is a view for explaining the process of imaging X-ray images in a plurality of different arrangements in order to generate a long X-ray image in the X-ray diagnostic apparatus 1 according to the present embodiment.
  • the first X-ray image is captured at the upper position of the imaging range for the subject P, and then the second X-ray image is captured at the lower position of the imaging range for the subject P I do. Since the imaging region in the first imaging may be small, the X-ray imaging is performed by narrowing the X-ray iris 12b small in order to suppress the exposure dose of the subject P.
  • the imaging region is large in the second imaging, the X-ray diaphragm 12b is widely opened to perform X-ray imaging. In this manner, imaging of a plurality of X-ray images in different arrangements of different sizes is performed based on the setting of the preparation screen W1.
  • the X-ray diagnostic apparatus 1 combines a plurality of X-ray images captured in step S16 to generate a long X-ray image (step S18).
  • the generation of the long X-ray image is realized by the generation function 18 b of the processing circuit 18. That is, as shown in FIG. 4, since X-ray images are captured by a plurality of arrangements, these X-ray images are combined and synthesized to generate a long X-ray image. At this time, since the positions of the overlapping regions LP1 and LP2 are out of the region of interest or the like, it is possible to prevent the region of interest or the like from being affected by the blending process.
  • the X-ray diagnostic apparatus 1 displays the long X-ray image generated in step S18 on the display 12c or the display 20 (step S20).
  • the process of displaying the long X-ray image is realized by the long X-ray image display function 18 e of the processing circuit 18.
  • the long X-ray image generated in step S18 is stored and stored in the image storage circuit 24b of the storage circuit 24 before or after being displayed on the display 12c or the display 20. You may do so.
  • the preparation screen displayed on the display 12 c or the display 20 before the imaging of the X-ray image for generating the long X-ray image Using W1 it was possible to adjust in advance and change which part on the subject P the overlapping region LP1 is located. For this reason, it is possible to avoid that the overlapping region LP1 is located at an undesirable site such as the region of interest, and this prevents the accurate diagnosis.
  • the overlapping region LP1 of a plurality of X-ray images there is a risk of positional deviation due to performing X-ray imaging a plurality of times. Therefore, it should be avoided as much as possible that the region of interest is located in the overlapping region of the plurality of X-ray images, but according to the X-ray diagnostic apparatus 1 according to the present embodiment, the position of the overlapping region LP1 is adjusted in advance You can avoid this.
  • the position and the size of the overlapping region LP1 can be flexibly changed according to the position of the region of interest and the like. Furthermore, in the preparation screen W1 displayed on the display 12c or the display 20, the overlapping area LP1 can be dragged to change the position of the overlapping area LP1, so that the operability of the operator can be improved. Can.
  • the region of interest is merely an example of a portion that is not preferable for the overlapping region LP1 to be located. That is, the X-ray diagnostic apparatus 1 according to the present embodiment can exert an effect not only on avoiding the overlapping region LP1 being located in the region of interest but also on any part where the overlapping region LP1 is not preferably located. .
  • the overlapping region LP1 is located at a sensitive site such as a genital organ of the subject P, it can be said that it is not desirable because the X-ray irradiation is performed twice.
  • the operator can use the preparation screen W1 to change the overlapping area LP1 so as not to be located at the sensitive part.
  • the size of the X-ray images IM1 and IM2 is likely to exceed the maximum imaging range that can be imaged at one time on the preparation screen W1 displayed in step S14 of the long-length imaging process.
  • the X-ray images IM1 and IM2 exceeding the maximum imaging range can not be expanded, but in the second embodiment, the X-ray image is divided in such a case.
  • two X-ray images IM1 and IM2 are divided into three X-ray images IM1, IM2 and IM3.
  • portions different from the first embodiment will be described.
  • FIG. 13 is a block diagram for explaining the overall configuration of the X-ray diagnostic apparatus 1 according to this embodiment, and is a diagram corresponding to FIG. 1 described above.
  • the overall configuration of the X-ray diagnostic apparatus 1 according to the present embodiment is the same as the first configuration described above except that the processing circuit 18 additionally includes an X-ray image area dividing function 18 f. It is the same as that of the embodiment.
  • the X-ray image area dividing function 18 f is also a function realized by the processing circuit 18 reading and executing the program stored in the program storage circuit 24 a of the storage circuit 24.
  • the X-ray image area dividing function 18 f corresponds to the X-ray image area dividing unit in the present embodiment.
  • the processing circuit 18 shown in FIG. The present embodiment can be realized by additionally providing the X-ray image region dividing function 18 f.
  • FIG. 15A and FIG. 15B are diagrams for explaining the operation input on the preparation screen W1 displayed on the display 12c or the display 20 in step S14 of the long image pickup process.
  • an overlapping area LP1 between the area RG1 of the X-ray image IM1 and the area RG2 of the X-ray image IM2 is located above the preparation screen W1.
  • the region RG2 of the X-ray image IM2 exceeds the maximum imaging range as a result of moving to the region, the region RG2 of the X-ray image IM2 is divided to generate the X-ray image IM3 having the region RG3. That is, when exceeding the predetermined radiation range of the X-ray which is the maximum imaging range of the X-ray image IM2, the X-ray image IM2 is divided into two and generated by being divided.
  • the line images IM2 and IM3 are made to fall within the X-ray irradiation range. Then, an overlapping area LP2 is generated in the overlapping portion of the area RG2 of the X-ray image IM2 and the area RG3 of the X-ray image IM3.
  • the division of the X-ray image IM2 is realized by the X-ray image area dividing function 18f of the processing circuit 18.
  • the division of the X-ray image IM2 may be automatically performed by the X-ray image area dividing function 18f.
  • the area RG2 of the X-ray image IM2 may be the largest imaging range.
  • the change of the size may be limited once, and the operator may be prompted to confirm by pop-up or the like, and then the X-ray image IM2 may be divided.
  • the other processes are the same as in the first embodiment described above.
  • the X-ray diagnostic apparatus 1 when the X-ray image exceeds the maximum imaging range in the setting of the preparation screen W1, an X-ray image exceeding the maximum imaging range was divided. Therefore, the operator can easily move the overlapping region LP1 to an arbitrary position of the object P without worrying about the limitation of the maximum imaging range of the X-ray image.
  • the operator moves the overlapping area LP1 based on the preparation screen W1 displayed on the display 12c or the display 20.
  • the X-ray diagnostic apparatus 1 moves the overlap area LP1 to a position avoiding the avoidance site.
  • FIG. 16 is a block diagram for explaining the overall configuration of the X-ray diagnostic apparatus 1 according to the third embodiment, and corresponds to FIG. 1 described above.
  • the overall configuration of the X-ray diagnostic apparatus 1 according to the present embodiment is the above-described first embodiment except that the processing circuit 18 additionally includes the overlapping area moving function 18 g.
  • the overlapping area moving function 18g is also a function realized by the processing circuit 18 reading and executing the program stored in the program storage circuit 24a of the storage circuit 24.
  • the overlapping area moving function 18g corresponds to the first overlapping area moving unit and the second overlapping area moving unit in the present embodiment.
  • the processing circuit 18 shown in FIG. This embodiment can be realized by additionally providing the overlapping area moving function 18g.
  • FIGS. 18A and 18B are diagrams for explaining the operation input on the preparation screen W1 displayed on the display 12c or the display 20 in step S14 of the long image pickup process.
  • the overlapping region LP1 of the X-ray image IM1 and the X-ray image IM2 is located in the region of interest of the subject P. Therefore, the operator touches the position of the region of interest of the subject P displayed on the display 12c or the display 20 with a finger and designates it as the avoidance site AP. Then, as shown in FIG. 18B, the X-ray diagnostic apparatus 1 moves the overlapping area LP1 to a position avoiding the avoidance site AP designated by the operator.
  • the RG 2 and the overlapping area LP 1 are displayed on the display 12 c or the display 20 as the preparation screen W 1.
  • the overlapping area moving function 18g of the processing circuit 18 compares the position of the designated avoidance area AP with the position of the overlapping area LP1, and the overlapping area LP1 is located at the avoidance site AP. If yes, the overlapping region LP1 is moved to a position avoiding the designated avoidance site AP.
  • the area RG1 of the X-ray image IM1 is reduced, the area RG2 of the X-ray image IM2 is enlarged, and the overlapping area LP1 is moved above the preparation screen W1.
  • the overlapping region LP1 can be moved to a position avoiding the designated avoidance site AP.
  • the mode of movement of the overlapping area LP1 is arbitrary, but for example, an X-ray image having the smallest area among a plurality of X-ray images may be enlarged and moved, or the largest area may be moved.
  • the X-ray image having X may be reduced and moved.
  • X-ray images for which the region is scaled may be randomly selected and moved.
  • the X-ray image region dividing function 18 f divides the region of the X-ray image exceeding the maximum imaging range and performs processing for increasing the number of imaging.
  • the operator avoids locating the overlapping area based on the image of the subject P displayed by the display control function 18 c. Since the site AP can be specified from the display 12c or the display 20, the overlapping area can be moved more easily. That is, the operator can move the overlapping area to a position avoiding the avoidance site AP simply by touching the display 12 c or the display 20 and specifying the avoidance site AP.
  • the object P and the regions RG1 and RG2 of the X-ray images IM1 and IM2 are displayed on the preparation screen W1 of the display 12c or the display 20. Therefore, the operator designates the avoidance site AP, but the avoidance site AP may be set in advance.
  • the preparation screen W1 is displayed in step S14, the subject P is displayed but the regions RG1 and RG2 of the X-ray images IM1 and IM2 are not displayed yet .
  • the operator touches the display 12c or the display 20 to set in advance an avoidance site AP for which the overlapping area LP1 should be avoided.
  • the overlap area moving function 18g of the processing circuit 18 compares the position of the set avoidance site AP with the position of the overlap area LP1 to be displayed, and the overlap area LP1 is the avoidance site AP. If the overlapping region LP1 is moved to a position avoiding the set avoidance site AP, the regions RG1 and RG2 of the X-ray images IM1 and IM2 are displayed on the preparation screen W1. In the example of FIG.
  • the overlapping region LP1 is formed in a state in which the region RG1 of the X-ray image IM1 is reduced and the region RG2 of the X-ray image IM2 is enlarged, and the X-ray images IM1 and IM2 are formed.
  • the areas RG1 and RG2 are displayed.
  • the overlapping region LP1 can be moved to a position where the avoidance site AP is avoided. Therefore, the display 12 c or the display 20 configured by the touch panel corresponds to the avoidance designation unit and the avoidance setting unit in the present embodiment.
  • optical camera 12d was provided in X-ray tube maintenance device 12, this optical camera 12d can also be omitted.
  • the fourth embodiment a modified example of the X-ray diagnostic apparatus 1 in which the optical camera 12d is omitted will be described.
  • portions different from the above-described first embodiment will be described.
  • FIG. 21 is a block diagram for explaining the overall configuration of the X-ray diagnostic apparatus 1 according to the fourth embodiment.
  • the X-ray tube holding device 12 is not provided with the optical camera 12 d.
  • the optical camera 12 d is provided in the X-ray tube holding device 12, it is possible to realize the present embodiment described below.
  • the configurations of the processing circuit 18 and the memory circuit 24 are different from those of the first embodiment described above. That is, in the processing circuit 18, instead of the image acquisition function 18a, a subject information acquisition function 18h and a human body projection image acquisition function 18i are provided. In the memory circuit 24, a human body projection image storage circuit 24c is additionally provided.
  • FIG. 21 is a block diagram of the X-ray diagnostic apparatus 1 which performs X-ray imaging of a standing subject P to generate a long X-ray image, but in the same manner as in the first embodiment described above, The subject P may be X-ray imaged to generate a long X-ray image.
  • FIG. 22 is a block diagram for explaining the overall configuration of the X-ray diagnostic apparatus 1 which performs X-ray imaging in a plurality of different arrangements to generate a long X-ray image of the subject P in the supine position. As can be seen from FIG. 22, in the present embodiment, the optical camera 12 d of the X-ray tube holding device 12 is also omitted in the X-ray diagnostic apparatus 1 that performs X-ray imaging of the subject P in the supine position.
  • the X-ray diagnostic apparatus 1 shown in FIGS. 21 and 22 is communicably connected to a patient information system 110 as shown in FIG.
  • the patient information system 110 is a system that manages information on individual patients such as electronic medical records and medication history, and in the present embodiment, information such as the age, height, weight, gender, race, etc. of the patient, among others. Is stored. Further, in the present embodiment, the patient information system 110 may additionally or alternatively store information as to whether it is an adult or a child.
  • the long image pickup process shown in FIG. 24 is a process realized by the processing circuit 18 reading and executing a long image pickup process program stored in the program storage circuit 24 a of the memory circuit 24. Further, the long image pickup process shown in FIG. 24 is a process corresponding to the long image pickup process shown in FIG. 8 in the first embodiment described above.
  • the X-ray diagnostic apparatus 1 acquires information on the subject P (step S30).
  • the information related to the subject P is acquired by searching for the information related to the relevant subject P from the information related to the patient stored in the patient information system 110.
  • the X-ray diagnostic apparatus 1 acquires the height of the subject P.
  • the process of acquiring the information on the object P is realized by the object information acquiring function 18 h of the processing circuit 18.
  • the X-ray diagnostic apparatus 1 generates and acquires a human body projection image based on the acquired information on the subject P (step S32).
  • the human body projection image is generated and acquired based on the height. For example, when the height of the subject P is as high as 180 cm, a human body projection image based on the height of 180 cm, which is high, is generated. On the other hand, when the height of the subject P is as low as 150 cm, a human body projection image based on the low 150 cm height is generated.
  • the process of generating and acquiring the human body projection image is realized by the human body projection image acquiring function 18 i of the processing circuit 18. That is, the human body projection image acquisition function 18i of the processing circuit 18 reads the most appropriate data of the human body projection image from the human body projection image storage circuit 24c of the storage circuit 24 based on the information on the subject P, and the human body projection image Generate Therefore, for example, data of a plurality of human body projection images is stored in the human body projection image storage circuit 24c, and based on the information of the object P, the data of the human body projection image most similar to the human body projection image acquiring function 18i gets.
  • data of a human-body projection image is stored in the human-body projection image storage circuit 24 c for heights of 130 cm to 200 cm in 10 cm increments. Then, the human body projection image acquisition function 18i acquires data of a human body projection image of the most approximate height from the human body projection image storage circuit 24c based on the information on the height of the subject P.
  • the human body projection image acquisition function 18i may correct the read data of the human body projection image based on the information on the subject P as appropriate to generate a human body projection image. For example, when the height of the subject P is 165 cm, both data of a human body projection image of 160 cm and data of a human body projection image of 170 cm are acquired, and data of an intermediate human body projection image is generated It is also good. As a result, it is possible to acquire a more accurate human body projection image.
  • the information regarding the subject P is not limited to the height.
  • the body shape may be inferred to generate a human body projection image that also reflects the inferred body shape.
  • the sex of the subject P may be acquired, and a male human body projection image may be generated for a male, and a female human body projection image may be generated for a female.
  • the data of the human body projection image according to the physical form of the subject P or according to the sex of the subject P is stored in the human body projection image storage circuit 24c.
  • a human body projection image may be generated based on information on whether the subject P is an adult or a child. That is, when the subject P is an adult, a human body projection image pronounced of an adult may be generated, and when the subject P is a child, a human body projection image pronounced of a child may be generated. .
  • data of a human body projection image of an adult and data of a human body projection image of a child are stored in the human body projection image storage circuit 24c. As a result, although the accuracy of the human body projection image becomes rough, the amount of information of the human body projection image storage circuit 24c can be reduced.
  • the human body projection image generated when the subject P is a child may be smaller than the human body projection image generated when the subject P is an adult. In this case, it is not necessary to store data of a human body projection image of a child in the human body projection image storage circuit 24c, and the amount of information stored in the human body projection image storage circuit 24c can be further reduced.
  • the generated human body projection image may be generated based on the race of the subject P.
  • the race is a Western person
  • a long-legged human body projection image may be generated
  • a short-footed human body projection image may be generated.
  • data of a human body projection image according to the race is stored in the human body projection image storage circuit 24c.
  • the X-ray diagnostic apparatus 1 obtains information on the subject P from the patient information system 110.
  • the X-ray diagnostic apparatus 1 can obtain information on the subject P using various methods. You can get For example, before starting X-ray imaging, the operator of the X-ray diagnostic apparatus 1 may manually input the height, weight, and the like of the subject P from the input circuit 22 to the X-ray diagnostic apparatus 1.
  • the X-ray diagnostic apparatus 1 captures X-ray images in a plurality of different arrangements on the acquired image of the human body projection image showing the subject P
  • the X-ray image overlaps each other.
  • An image to be included is generated and displayed on the display 12c or the display 20 as a preparation screen (step S34).
  • the process of generating an image including the overlapping area and displaying it as a preparation screen is realized by the display control function 18 c of the processing circuit 18.
  • FIG. 25 is a view showing an example of the preparation screen W1 displayed on the display 12c or the display 20 of the X-ray diagnostic apparatus 1 according to the present embodiment.
  • RG2 are displayed virtually.
  • the regions RG1 and RG2 of the X-ray images IM1 and IM2 virtually indicate the regions to be imaged when the imaging of the X-ray image is performed in step S16.
  • step S14 the X-ray diagnostic apparatus 1 receives an operation input for changing the position of the overlapping area LP1.
  • the process after this step S14 is the same as that of 1st Embodiment mentioned above, the detailed description is omitted.
  • the human body is not imaged on the subject P by the optical camera 12 d, but on the basis of information on the subject P acquired from the patient information system 110.
  • a projection image is generated and acquired, and the preparation screen W1 is displayed using this human body projection image. Therefore, the X-ray diagnostic apparatus 1 according to the first embodiment can be realized without using the optical camera 12d.
  • the fourth embodiment has described the case where the modification that does not require the installation of the optical camera 12d in the above is applied to the X-ray diagnostic apparatus 1 according to the first embodiment, but the installation of the optical camera 12d is not necessary.
  • the modified example can be applied to the X-ray diagnostic apparatus 1 according to the second to third embodiments.
  • the operator of the X-ray diagnostic apparatus 1 uses the preparation screen W1 to set the overlapping region LP1 so as to avoid the avoidance region AP which is the region of interest, but the fifth embodiment In the above, using the examination information of the subject P, the overlapping area LP1 is set so as to avoid the avoidance site AP which is the area of interest without the operator setting using the preparation screen W1. is there.
  • the preparation screen W1 uses the examination information of the subject P.
  • FIG. 26 is a block diagram for explaining the overall configuration of the X-ray diagnostic apparatus 1 according to the fifth embodiment.
  • an overlapping area setting function 18 j is additionally provided in the processing circuit 18.
  • the X-ray diagnostic apparatus 1 shown in FIG. 27 which performs X-ray imaging of the subject P in the supine position.
  • the X-ray diagnostic apparatus 1 shown in FIGS. 26 and 27 is communicably connected to the patient information system 110.
  • the long image pickup process shown in FIG. 28 is realized by the processing circuit 18 reading and executing the long image pickup process program stored in the program storage circuit 24 a of the memory circuit 24. Also, the long image pickup process shown in FIG. 28 is a process corresponding to the long image pickup process shown in FIG. 24 in the fourth embodiment described above.
  • step S40 an overlapping area in which two X-ray images are superimposed is set so as to avoid an avoidance site AP which is a region of interest in the subject P.
  • the process of setting the overlapping area is realized by the overlapping area setting function 18 j of the processing circuit 18.
  • information on the avoidance site AP can be acquired from the patient information system 110 as one of the information on the subject P in step S30. That is, when the doctor takes a long X-ray image, the examination information is registered in the patient information system 110 as one of the information on the subject P.
  • the examination information also includes information on the imaging site that is regarded as important in the diagnosis by the doctor. For this reason, the X-ray diagnostic apparatus 1 acquires the information on the imaging region from the patient information system 110, and sets the overlapping region while avoiding the imaging region which is the region of interest of the doctor.
  • the position of the large intestine can be roughly estimated from the information on the height of the subject P. Therefore, the position of the large intestine determined by this estimation is taken as the avoidance site AP. Then, an overlapping area is set avoiding the avoidance site AP which is the position of the large intestine.
  • age, sex, race and the like can be taken into account in estimating the position of the imaging region, and the estimation accuracy can be further improved.
  • the operation burden on the operator operating the X-ray diagnostic apparatus 1 can be reduced. it can. That is, when taking a long X-ray image, it is possible to save time and effort to move or adjust the overlapping area by operating the preparation screen W1.
  • the site designation device 120 is installed on the stand 10 provided with the X-ray detector 16 to operate the avoidance site AP which is the region of interest in the subject P It may be made to be designated by a person. That is, before the imaging of a long X-ray image, the operator of the X-ray diagnostic apparatus 1 operates the site designation apparatus 120 to designate the avoidance site AP and input the X-ray diagnostic apparatus 1 You may do it.
  • the site designation device 120 is provided with a plurality of designation switches SW.
  • the number of designated switches SW is arbitrary, regardless of the height of the subject P, it is desirable that the designated switches SW can be arranged with a distribution density such that the region in which the doctor is interested can be designated without a large error.
  • part specification apparatus 120 is not restricted to the structure by several designation
  • FIG. 29 illustrates an embodiment in which the region designation device 120 is provided in the X-ray diagnostic device 1 of FIG. 26 for capturing an X-ray image of a standing subject P, but the region designation device 120 is supine It is also possible to provide in the X-ray diagnostic apparatus 1 of FIG. An embodiment in this case is illustrated in FIG. That is, the site designation device 120 is provided on the side surface of the bed 30 on which the subject P lies, and the operator uses the designation switch SW of the site designation device 120 to designate the avoidance site AP. Even in this case, the part specifying device 120 may specify the avoidance part AP by another method such as a touch panel.
  • the operator can easily designate the avoidance site AP even in the X-ray diagnostic apparatus 1 in which the optical camera 12d is not provided. . That is, while looking at the subject P standing in front of the stand 10 or the subject P lying on the bed 30, the designation of the avoidance site AP, that is, the designation of the position where the overlapping area should be avoided, with high accuracy it can.
  • FIG. 31 is a diagram showing an example of the preparation screen W1 displayed on the display 12c or the display 20 in step S40.
  • the X-ray diagnostic apparatus 1 sets an overlapping region LP1 between the X-ray image IM1 and the X-ray image IM2 so as to avoid the avoidance region AP which is the region of interest.
  • the preparation screen W1 is not necessarily displayed because the preparation screen W1 is only displayed on the display 12c or the display 20 for confirmation by the operator.
  • the operator may operate the preparation screen W1 to additionally adjust the position of the overlapping area LP1.
  • the X-ray diagnostic apparatus 1 captures X-ray images in a plurality of different arrangements according to the overlapping area set in step S40, and generates a long X-ray image. (Step S16).
  • the processes after step S16 are the same as those in the fourth embodiment described above.
  • the overlapping region LP1 is set to avoid the avoidance region AP that is the region of interest without using the optical camera 12d. It is possible to take a line image. Further, by setting the overlapping area LP1 automatically based on the information on the subject P stored in the patient information system 110, the operation burden on the operator can be reduced. Alternatively, by designating the avoidance site AP using the site designation device 120, the operator can easily designate the avoidance site AP while looking at the subject P.
  • the overlapping region is set so as to avoid the avoidance region AP by setting the avoidance region AP which is the region of interest, but in the sixth embodiment, the overlapping region itself is set. It is intended to be specified.
  • portions different from the above-described fifth embodiment will be described.
  • the overall configuration of the X-ray diagnostic apparatus 1 according to the sixth embodiment is the same as that shown in FIGS. 26 and 27 in the fifth embodiment described above. Further, the configuration of the site designation device 120 is also the same as that in FIGS. 29 and 30 in the fifth embodiment described above. However, the processing content of step S40 in the long image pickup processing shown in FIG. 28 is different.
  • the X-ray diagnostic apparatus 1 sets overlapping areas of a plurality of X-ray images.
  • the length is set according to the specification.
  • Set the overlapping area of the X-ray image of the scale For example, when the setting position of the overlapping area is registered in advance in the patient information system 110, the X-ray diagnostic apparatus 1 acquires information on the setting position of the overlapping area from the patient information system 110. In this case, for example, the doctor himself sets an overlapping position so as to avoid the region of interest, and registers it in the patient information system 110 as examination information. The X-ray diagnostic apparatus 1 sets the overlapping area of the long X-ray image based on the set position of the overlapping area registered in the patient information system 110.
  • the operator can operate the part specifying device 120 to specify the overlapping area itself.
  • the operator designates the position of the overlapping area using the designation switch SW of the site designation device 120 so as to avoid the avoidance site AP which is the area of interest. That is, by operating one of the designated switches SW, the position avoiding the avoidance site AP is input to the X-ray diagnostic apparatus 1. It is up to the operator to decide at what position the overlapping area is set to avoid the avoidance site AP.
  • FIG. 32 is a diagram showing an example of the preparation screen W1 displayed on the display 12c or the display 20 in step S40.
  • the position of the overlapping area LP1 set by the operator is shown as the set position ST.
  • the X-ray diagnostic apparatus 1 sets an overlapping area LP1 between the X-ray image IM1 and the X-ray image IM2 at the setting position ST.
  • the preparation screen W1 is not necessarily displayed because the preparation screen W1 is only displayed on the display 12c or the display 20 for confirmation by the operator.
  • the operator of the X-ray diagnostic apparatus 1 may be able to additionally adjust the position of the overlapping area LP1 by operating the preparation screen W1 as necessary.
  • the overlapping region LP1 is set avoiding the avoidance region AP which is the region of interest without using the optical camera 12d, and the long X-ray image Can be taken. Further, by setting the overlapping area LP1 automatically based on the information on the set position stored in the patient information system 110, the operation load on the operator can be reduced. Alternatively, by specifying the set position ST of the overlapping area LP1 using the part specifying device 120, the operator can easily set the overlapping area LP1 at a position avoiding the avoidance part AP while looking at the subject P. it can.
  • the display 12c and the display 20 are configured by a touch panel, and the operator performs various inputs to the preparation screen W1 to the display 12c or the display 20.
  • the various inputs are not limited to the touch panel, and can be input by any method.
  • an input device such as a mouse for operating the display 12c or the display 20 may be prepared, and the operator may input various information on the preparation screen W1 to the X-ray diagnostic apparatus 1 using this input device. .
  • the preparation screen W1 is displayed on the display 12c or the display 20 of the X-ray tube holding device 12.
  • the preparation screen W1 is not limited to the display 12c or the display 20. It is possible to display at any place.
  • the preparation screen W1 may be displayed on the display of an external computer (not shown), and the operator may perform various inputs on the preparation screen W1 while looking at this display.
  • the X-ray diagnostic apparatus 1 is configured as a whole including an external computer and a display.
  • the optical camera 12d is provided in the X-ray tube holding device 12
  • the mounting position of the optical camera 12d is arbitrary.
  • the optical camera 12d may be attached to a fixed object 100 such as a ceiling or a wall.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

X線診断装置は、被検体を示す画像に、長尺X線画像を生成するための複数のX線照射範囲を重ねて表示する表示部と、ユーザの操作に基づき、前記表示部に表示された、互いに隣接する前記X線照射範囲の重複する重複領域の位置を変更する表示制御部と、を備える。

Description

X線診断装置、及び、X線管保持装置
 本発明の実施形態は、X線診断装置、及び、X線管保持装置に関する。
 被検体にX線を照射し、被検体を透過したX線を検出することによりX線撮像を行うX線診断装置が広く医用分野で使用されている。このX線診断装置の撮影法の1つとして、長尺撮影がある。この長尺撮影は、X線管を用いた1回のX線撮像では撮像範囲が限られていることから、複数回のX線撮像を行って撮像位置の異なる複数のX線画像を生成し、これら複数のX線画像を合成して、撮像範囲を広げる撮影法である。
 しかし、長尺撮影では、複数のX線画像を合成する必要があり、このX線画像を合成する際に、異なるX線画像を結合して貼り合わせる重複領域には、ブレンド処理等の画像処理を施す必要がある。すなわち、異なるX線画像を貼り合わせることでX線画像に違和感が生じないように、重複領域については、異なる複数のX線画像に基づく画像が作成される。ところが、このような画像処理によると、X線画像がぼける等のリスクがあることから、ユーザの関心領域にブレンド処理が施されるのは好ましくない。
国際公開第2014/132361号
 本実施形態の目的は、長尺のX線画像を生成する際に、X線画像の重複領域を移動可能なX線診断装置、及び、そのようなX線診断装置に適用することの可能なX線管保持装置を提供することである。
 本実施形態に係るX線診断装置は、被検体を示す画像に、長尺X線画像を生成するための複数のX線照射範囲を重ねて表示する表示部と、ユーザの操作に基づき、前記表示部に表示された、互いに隣接する前記X線照射範囲の重複する重複領域の位置を変更する表示制御部と、を備える。
 本実施形態に係るX線診断装置は、X線を発生させるX線管と、被検体を通過したX線を検出するX線検出器と、前記被検体を示す画像に、複数のX線照射範囲を重ねて表示する表示部と、ユーザの操作を受け付ける入力部と、前記ユーザの操作に基づき、前記表示部に表示された、互いに隣接する前記X線照射範囲の重複する重複領域の位置および大きさの少なくとも一方を変更する表示制御部と、を備える。
第1実施形態に係るX線診断装置の全体構成を説明するブロック図(立位の場合)。 ステッピング式の長尺画像の撮像過程を示す模式図。 照射野分割方式の長尺撮影の撮像過程を示す模式図。 3回のX線撮像により、1つの長尺画像を生成した画像の一例を示す図。 第1実施形態に係るX線診断装置の全体構成を説明するブロック図(仰臥位の場合)。 図1のX線診断装置における光学カメラによる光学的撮像の態様を説明する図。 図5のX線診断装置における光学カメラによる光学的撮像の態様を説明する図。 図1及び図5のX線診断装置で実行される長尺画像撮像処理について説明するフローチャートを示す図。 長尺画像撮像処理のステップS12により、X線診断装置のディスプレイに表示される準備画面の一例を示す図。 第1実施形態に係る長尺画像撮像処理のステップS14により、準備画面を用いて重複領域の位置を変更する操作の一例を説明する図。 第1実施形態に係る長尺画像撮像処理のステップS14により、準備画面を用いて重複領域の位置を変更する操作の別の例を説明する図。 X線診断装置において、長尺のX線画像を生成するために、異なる複数の配置でX線画像を撮像する過程を説明する図。 第2実施形態に係るX線診断装置の全体構成を説明するブロック図(立位の場合)。 第2実施形態に係るX線診断装置の全体構成を説明するブロック図(仰臥位の場合)。 第2実施形態に係る長尺画像撮像処理のステップS14により、準備画面を用いて重複領域の位置を変更する操作の一例を説明する図。 第3実施形態に係るX線診断装置の全体構成を説明するブロック図(立位の場合)。 第3実施形態に係るX線診断装置の全体構成を説明するブロック図(仰臥位の場合)。 第3実施形態に係る長尺画像撮像処理のステップS14により、準備画面を用いて重複領域の位置を変更する操作の一例を説明する図。 第3実施形態に係る長尺画像撮像処理のステップS14により、準備画面を用いて重複領域の位置を変更する操作の別の例を説明する図。 固定物に光学カメラを取り付けた変形例における、X線診断装置の全体構成を説明するブロック図。 第4実施形態に係るX線診断装置の全体構成を説明するブロック図(立位の場合)。 第4実施形態に係るX線診断装置の全体構成を説明するブロック図(仰臥位の場合)。 X線診断装置と、このX線診断装置に接続された患者情報システムを示すブロック図。 図22及び図23のX線診断装置で実行される長尺画像撮像処理について説明するフローチャートを示す図。 長尺画像撮像処理のステップS34により、X線診断装置のディスプレイに表示される準備画面の一例を示す図。 第5実施形態に係るX線診断装置の全体構成を説明するブロック図(立位の場合)。 第5実施形態に係るX線診断装置の全体構成を説明するブロック図(仰臥位の場合)。 図26及び図27のX線診断装置で実行される長尺画像撮像処理について説明するフローチャートを示す図。 X線検出器が設けられたスタンドに部位指定装置を設置した構成を説明する図。 被検体が横たわる寝台に部位指定装置を設置した構成を説明する図。 第5実施形態に係る長尺画像撮像処理のステップS40により、X線診断装置のディスプレイに表示される準備画面の一例を示す図。 第6実施形態に係る長尺画像撮像処理のステップS40により、X線診断装置のディスプレイに表示される準備画面の一例を示す図。
 以下、図面を参照しながら、本実施形態に係るX線診断装置、及び、X線管保持装置を説明する。なお、以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行うこととする。
 〔第1実施形態〕
 図1は、第1実施形態に係るX線診断装置1の全体構成を説明するブロック図である。この図1に示すX線診断装置1は、主として、スタンド10と、X線管保持装置12と、高電圧発生器14と、X線検出器16と、処理回路18と、ディスプレイ20と、入力回路22と、記憶回路24と、備えて構成されている。また、本実施形態に係るX線管保持装置12は、X線管12aと、X線絞り器12bと、ディスプレイ12cと、光学カメラ12dとを備えて構成されている。
 スタンド10の前には、立位の状態の被検体Pが位置する。本実施形態に係るX線診断装置1では、スタンド10のX線検出器16と、X線管保持装置12のX線管12aとを用いた1回のX線撮像で、立位の被検体Pを部分的に撮像可能である。このため、スタンド10はX線管保持装置12と連動して、上下に移動可能に構成されており、異なる複数の配置でX線撮像を行って、異なる複数の配置によるX線画像が生成可能である。すなわち、本実施形態に係るX線診断装置1では、複数の配置によるX線画像を合成して、長尺のX線画像の生成が可能となる。
 X線管保持装置12のX線管12aは、処理回路18の制御の下、高電圧発生器14から高電圧とフィラメント電流とが供給され、これらに基づいて、X線を発生する。X線管保持装置12のX線絞り器12bは、X線管12aが発生したX線の絞りを行い、被検体Pに照射するX線の範囲を制御する。すなわち、X線絞り器12bの絞りを絞ることにより、X線の照射範囲を狭くすることができ、逆に、X線絞り器12bの絞りを開くことにより、X線の照射範囲を広くすることができる。X線絞り器12bの絞り具合は、例えば、操作者からの指示に基づいて、処理回路18からの制御信号により制御される。
 X線管保持装置12のディスプレイ12cは、操作者に対して、X線診断装置1に関する各種情報を表示したり、光学カメラ12dで撮像した画像を表示したりする。また、本実施形態においては、ディスプレイ12cは、タッチパネルで構成されており、操作者は各種の指示をX線診断装置1に入力することができる。すなわち、このディスプレイ12cは、本実施形態における入力部に相当している。
 X線管保持装置12の光学カメラ12dは、被検体Pを示す画像を撮像することが可能な撮像装置であり、特に本実施形態においては、被検体Pの全身を撮像することが可能な広角の撮像装置である。また、光学カメラ12dは、X撮像用の撮像装置ではなく、光を検出して電気信号に変換し、撮像を行う光学的な撮像装置である。
 高電圧発生器14は、処理回路18からの制御指示に基づいて、X線条件に応じた高電圧とフィラメント電流とを発生させて、X線管保持装置12のX線管12aに供給し、X線管12aにX線を発生させる。
 X線検出器16は、例えば、2次元に配列された複数の画素を有する平面検出器(FPD:Flat Panel Detector)から構成されており、各画素は、被検体Pを透過したX線管12aからのX線を検出し、この検出されたX線を電気信号に変換し、さらにデジタル信号に変換する。このデジタル信号は、処理回路18に出力される。
 処理回路18は、このX線診断装置1の全体的な制御を行う制御回路であり、また、各種の演算を行う演算回路でもある。例えば、本実施形態に係る処理回路18は、画像取得機能18aと、生成機能18bと、表示制御機能18cと、X線画像撮像機能18dと、長尺X線画像表示機能18eとを有する。画像取得機能18aは本実施形態に係る画像取得部に相当しており、生成機能18bは本実施形態における生成部に相当しており、表示制御機能18cは本実施形態における表示制御部に相当しており、X線画像撮像機能18dは本実施形態におけるX線画像撮像部に相当しており、長尺X線画像表示機能18eは本実施形態における長尺X線画像表示部に相当している。
 図1における実施形態では、画像取得機能18aと、生成機能18bと、表示制御機能18cと、X線画像撮像機能18dと、長尺X線画像表示機能18eにて行われる各処理機能は、コンピュータによって実行可能なプログラムの形態で記憶回路24のプログラム記憶回路24aに格納されている。処理回路18はプログラムを記憶回路24のプログラム記憶回路24aから読み出し、実行することで、各プログラムに対応する機能を実現するプロセッサである。換言すると、各プログラムを読み出した状態の処理回路は、図1の処理回路18内に示された各機能を有することとなる。なお、図1においては単一の処理回路18にて、画像取得機能18aと、生成機能18bと、表示制御機能18cと、X線画像撮像機能18dと、長尺X線画像表示機能18eとが実現されるものとして説明したが、複数の独立したプロセッサを組み合わせて処理回路18を構成し、各プロセッサがプログラムを実行することにより、これらの機能を実現するものとしても構わない。
 ディスプレイ20は、各種の画像や情報を表示する。例えば、ディスプレイ20は、処理回路18によって生成された医用画像(X線画像)や、操作者からの各種操作を受け付けるためのGUI(Graphical User Interface)等を表示する。特に本実施形態においては、処理回路18の生成機能18bで生成された長尺のX線画像を表示する。本実施形態においては、ディスプレイ20は、例えば、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイ等によって構成される。
 入力回路22は、操作者からの各種の入力操作を受け付け、受け付けた入力操作を電気信号に変換して処理回路18に出力する。例えば、入力回路22は、マウスやキーボード、トラックボール、手動スイッチ、フットスイッチ、ボタン、ジョイスティック等により実現される。本実施形態においては、ディスプレイ12cやディスプレイ20をタッチパネルにより構成することで、入力回路22を構成することも可能である。
 記憶回路24は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。本実施形態に係る記憶回路24は、例えば、プログラム記憶回路24aと、画像記憶回路24bとを備えて構成されている。プログラム記憶回路24aは、上述したように、処理回路18等で実行される各種のプログラムが格納されている。画像記憶回路24bには、各種の画像に関するデータが格納される。本実施形態においては、画像記憶回路24bには、例えば、X線検出器16で検出されたX線に基づいて生成されたX線画像が格納されたり、X線管保持装置12の光学カメラ12dで撮像された画像が格納されたりする。
 上述したように、本実施形態においては、処理回路18は、例えば、プロセッサにより構成される。ここで、プロセッサという文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及び、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。プロセッサは、記憶回路24のプログラム記憶回路24aに保存されたプログラムを読み出して実行することにより機能を実現する。なお、記憶回路24のプログラム記憶回路24aにプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むよう構成して構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。なお、プロセッサは、プロセッサ単一の回路として構成されている場合に限らず、複数の独立した回路を組み合わせて、1つのプロセッサとして構成し、その機能を実現するようにしてもよい。さらに、図1における複数の構成要素を1つのプロセッサへ統合して、その機能を実現するようにしてもよい。
 次に、図2及び図3に基づいて、本実施形態に係る長尺画像の撮像過程の一例を説明する。図2は、ステッピング式の長尺画像の撮像過程を示す模式図であり、図3は、照射野分割方式の長尺撮影の撮像過程を示す模式図である。これら図2及び図3においては、ともに、2回の撮像回数で長尺画像の撮像をする場合を、X線診断装置1の側面図を用いて図示している。
 まず、図2(a)に示すように、ステッピング式の長尺撮影においては、X線管保持装置12とX線検出器16とを撮像対象の上方位置に移動して、被検体Pの撮像対象における上方位置の撮像を行う。次に、図2(b)に示すように、X線管保持装置12とX線検出器16とを撮像対象の下方位置に移動して、被検体Pの撮像対象における下方位置の撮像を行う。これら2回のX線撮像においては、ともに、X線管保持装置12のX線管12aの中心とX線検出器16の中心は、一致しており、X線絞り器12bは、X線管12aで生成されたX線を正面方向に向けて照射する。
 一方、図3(a)に示すように、照射野分割方式の長尺撮影においては、X線管保持装置12は、被検体Pの撮像対象における中央位置で固定する。そして、X線検出器16を撮像対象の上方位置に移動して、被検体Pの撮像対象における上方位置の撮像を行う。次に、図3(b)に示すように、X線検出器16を撮像対象の下方位置に移動して、被検体Pの撮像対象における下方位置の撮像を行う。これら2回の撮像においては、X線管保持装置12のX線管12aの位置は中央位置で不動であるので、X線絞り器12bは、1回目のX線撮像においては、撮像対象の上方位置にX線の絞りを合わせ、2回目のX線撮像においては、撮像対象の下方位置にX線の絞りを合わせる。これにより、X線管保持装置12を動かさずとも、X線検出器16を動かすだけで、長尺撮影を行うことができる。
 図4は、3回のX線撮像により、1つの長尺画像を生成した画像の一例を示す図である。このように、3つの異なる配置でX線画像IM1、IM2、IM3を取得し、これらを合成して長尺のX線画像を生成すると、異なるX線画像IM1、IM2、IM3の重複領域LP1、LP2に、ブレンド処理を施す必要が生じてしまう。このため、本実施形態に係るX線診断装置1は、この重複領域LP1、LP12に関心領域等が位置してしまうのを、後述のように避ける機能を備えている。つまり、X線画像IM1、IM2、IM3は、1回のX線画像を撮像する際のX線の照射範囲をそれぞれ示している。
 なお、図1では、立位の被検体PをX線診断装置1が複数の配置でX線撮像を行い、これら複数のX線画像を合成して長尺のX線画像を生成する例を説明したが、仰臥位の被検体PをX線診断装置1が複数の配置でX線撮像を行い、これら複数のX線画像を合成して長尺のX線画像を生成することもできる。
 図5は、仰臥位の被検体Pを異なる複数の配置でX線撮像を行い、長尺のX線画像を生成するX線診断装置1の全体構成を説明するブロック図である。この図5から分かるように、図5のX線診断装置1においては、図1のX線診断装置1のスタンド10の代わりに、寝台30が設けられている。この寝台30の天板の上に、被検体Pは横たわり、仰臥位の被検体PのX線撮像が行われる。
 すなわち、寝台30の下には、X線検出器16が位置しており、X線管保持装置12のX線管12aで生成されたX線が、寝台30上の被検体Pを透過し、この透過したX線がX線検出器16で検出される。図5のX線診断装置1における、それ以外の構成は、実質的に、図1のX線診断装置1と同等である。
 図6は、上述した図1のX線診断装置1における光学カメラ12dによる光学的撮像の態様を説明する図である。この図6に示すように、本実施形態に係るX線管保持装置12は広角の光学カメラ12dを備えており、この光学カメラ12dにより、スタンド10の前に立っている、立位の被検体Pの全身を示す画像を光学的に撮像できる。
 図7は、上述した図5のX線診断装置1における光学カメラ12dによる光学的撮像の態様を説明する図である。この図7に示すように、本実施形態に係るX線管保持装置12は広角の光学カメラ12dを備えており、この光学カメラ12dにより、寝台30に横たわっている、仰臥位の被検体Pの全身を示す画像を光学的に撮像できる。
 次に、図8に基づいて、本実施形態に係るX線診断装置1で実行される長尺画像撮像処理について説明する。この図8に示す長尺画像撮像処理は、記憶回路24のプログラム記憶回路24aに格納されている長尺画像撮像処理プログラムを処理回路18が読み込んで実行することにより、実現される処理である。
 図8に示すように、まず、X線診断装置1は、被検体Pを示す画像を取得する(ステップS10)。この被検体Pの画像を取得する処理は、処理回路18の画像取得機能18aにより実現される。本実施形態では、例えば、光学カメラ12dにより、光学的に被検体Pを撮像して、被検体Pの画像を取得する。被検体Pの画像は、被検体Pの全身を示す画像でもよいし、被検体Pの一部を示す画像でもよい。
 次に、X線診断装置1は、被検体Pを示す画像上に、異なる複数の配置でX線画像の撮像を行った場合に、各X線画像が重なる重複領域を含む画像を生成して、準備画面としてディスプレイ12c又はディスプレイ20に表示する(ステップS12)。本実施形態においては、この重複領域を含む画像を生成して準備画面として表示する処理は、処理回路18の表示制御機能18cにより実現される。
 図9は、本実施形態に係るX線診断装置1のディスプレイ12c又はディスプレイ20に表示される準備画面W1の一例を示す図である。この図9に示すように、準備画面W1には、ステップS10で取得した被検体Pを示す全身画像の上に重ねて、異なる複数の位置から撮像されるX線画像IM1、IM2の領域RG1、RG2が仮想的に表示される。このX線画像IM1、IM2の領域RG1、RG2は、後述するステップS16でX線画像の撮像を行った場合に撮像される領域を仮想的に示している。すなわち、X線画像IM1、IM2は、それぞれ、1回のX線撮像におけるX線の照射範囲を示している。
 これらX線画像IM1、IM2の領域RG1、RG2が結合する部分には、両画像が重ね合わさった重複領域LP1が形成される。つまり、この図9は、図9の準備画面W1で示された設定で長尺撮影を行った場合、2回のX線撮像により、2つのX線画像IM1、IM2が生成され、準備画面W1に示す位置に重複領域LP1を含む長尺画像が生成されることを予め操作者に明示している。換言すれば、重複領域LP1は、X線画像IM1を撮像する場合のX線の照射範囲と、X線画像IM2を撮像する場合のX線の照射範囲とが、重複する領域を示している。しかし、重複領域LP1の位置が関心領域等の好ましくない部位に位置していることも想定される。
 このため、図8に示すように、本実施形態に係るX線診断装置1では、続いて、重複領域LP1を移動して位置を変更する操作入力を受け付ける(ステップS14)。本実施形態においては、この操作入力の受付は、表示制御機能18cの制御の下、タッチパネルで構成されたディスプレイ12c又はディスプレイ20により実現される。
 図10は、本実施形態に係る準備画面W1において、重複領域LP1を移動して位置を変更する操作入力の一例を示す図である。この図10に示すように、本実施形態においては、ディスプレイ12c又はディスプレイ20が例えばタッチパネルで構成されていることから、操作者が指で重複領域LP1をドラッグ操作することにより、重複領域LP1の位置を変更できる。
 例えば、重複領域LP1を下方に移動する場合には、重複領域LP1をタッチしながら準備画面W1の下方にドラッグする。これにより、重複領域LP1が準備画面W1の下方に移動する。このとき、X線画像IM1の領域RG1の大きさは大きくなり、領域RG2の大きさは小さくなる。ここでは、重複領域LP1の大きさは、変更されないことを前提としている。
 逆に、重複領域LP1を上方に移動する場合には、重複領域LP1をタッチしながら準備画面W1の上方にドラッグする。これにより、重複領域LP1が準備画面W1の上方に移動する。このとき、X線画像IM2の領域RG2の大きさは大きくなり、領域RG1の大きさは小さくなる。ここでも、重複領域LP1の大きさは、変更されないことを前提としている。
 なお、この図11の例では、重複領域LP1の大きさを別途変更できるようにしてもよい。例えば、準備画面W1に表示された重複領域LP1を操作者が指で長押しした場合、準備画面W1が重複領域LP1に関する大きさ変更モードに入り、X線画像IM1、IM2の線LN1、LN2を操作者が移動することにより、重複領域LP1の大きさも変更できるようにしてもよい。また、その際、結合処理やブレンド処理ができないほど、X線画像IM1とX線画像IM2との重複領域LP1が小さくなってしまわないように、重複領域LP1の大きさの変更に制限をかけてもよい。
 また、本実施形態に係るX線診断装置1では、図10及び図11に示した準備画面W1において、操作者が重複領域を1回のX線撮像で撮像できる最大撮像範囲を超えて操作者がX線画像IM1、IM2の領域RG1、RG2を大きくしようとした場合は、制限がかかるように構成されている。すなわち、図10の例では、例えば、X線画像IM1が1回で撮像できる大きさを超えようとしている場合には、操作者がX線画像IM1の線LN1を移動しようとしても、それ以上、移動しないように構成されている。図11の例では、例えば、X線画像IM1が1回で撮像できる最大撮像範囲を超えようとしている場合には、操作者が重複領域LP1を移動しようとしても、それ以上、移動しないように構成されている。
 次に、図8に示すように、X線診断装置1は、ステップS14の準備画面W1でなされた設定に基づいて、異なる複数の配置でX線画像を撮像して、長尺のX線画像の生成を行う(ステップS16)。すなわち、ステップS14で設定された重複領域を有する複数のX線の撮像範囲に基づいて、被検体PのX線撮像を行い、長尺のX線画像を生成する。本実施形態においては、この長尺のX線画像の生成は、処理回路18のX線画像撮像機能18dにより実現される。
 図12は、本実施形態に係るX線診断装置1において、長尺のX線画像を生成するために、異なる複数の配置でX線画像を撮像する過程を説明する図である。この図12に示す例では、被検体Pに対する撮像範囲の上方位置で1回目のX線画像の撮像を行い、続いて、被検体Pに対する撮像範囲の下方位置で2回目のX線画像の撮像を行う。1回目の撮像は撮像領域が小さくてよいので、被検体Pの被曝量を抑えるべく、X線絞り器12bを小さく絞って、X線撮像を行う。一方、2回目の撮像は撮像領域が大きいので、X線絞り器12bを大きく開いて、X線撮像を行う。このように、異なる大きさの異なる配置で複数のX線画像の撮像を、準備画面W1の設定に基づいて行う。
 次に、図8に示すように、X線診断装置1は、ステップS16で撮像した複数のX線画像を合成して、長尺のX線画像を生成する(ステップS18)。本実施形態においては、この長尺のX線画像の生成は、処理回路18の生成機能18bにより実現される。すなわち、図4に示したように、複数の配置によりX線画像が撮像されているので、これらのX線画像を結合して合成し、長尺のX線画像を生成する。この際、重複領域LP1、LP2の位置は、関心領域等を外れているので、ブレンド処理による影響を関心領域等が受けるのを防止することができる。
 次に、図8に示すように、X線診断装置1は、ステップS18で生成された長尺のX線画像を、ディスプレイ12cやディスプレイ20に表示する(ステップS20)。この長尺のX線画像を表示する処理は、処理回路18の長尺X線画像表示機能18eにより実現される。なお、ステップS18で生成された長尺のX線画像は、ディスプレイ12cやディスプレイ20に表示される前に、又は、表示された後に、記憶回路24の画像記憶回路24bに格納されて記憶されるようにしてもよい。
 以上のように、本実施形態に係るX線診断装置1によれば、長尺のX線画像を生成するためのX線画像の撮像の前に、ディスプレイ12c又はディスプレイ20に表示された準備画面W1を用いて、被検体P上のどの部分に重複領域LP1が位置するのかを予め調整して変更することができるようにした。このため、関心領域等の好ましくない部位に重複領域LP1が位置してしまい、正確な診断の妨げとなってしまうことを回避することができる。
 すなわち、複数のX線画像の重複領域LP1には、複数回のX線撮影を行ったことによる位置ずれのリスクが存在している。このため、複数のX線画像の重複領域に、関心領域が位置することは、極力避けるべきであるが、本実施形態に係るX線診断装置1によれば、重複領域LP1の位置を予め調整して、これを回避できる。
 また、準備画面W1において、X線画像の大きさを個別に変更できるようにしたので、関心領域等の位置に応じて、柔軟に重複領域LP1の位置や大きさを変更することができる。さらには、ディスプレイ12c又はディスプレイ20に表示された準備画面W1において、重複領域LP1をドラッグして、重複領域LP1の位置を変更することができるようにしたので、操作者の操作性を向上させることができる。
 なお、関心領域は重複領域LP1が位置するのに好ましくない部位の一例に過ぎない。すなわち、重複領域LP1が関心領域に位置するのを避けるだけでなく、重複領域LP1が位置するのが好ましくないあらゆる部位に関して、本実施形態に係るX線診断装置1は効果を発揮することができる。例えば、被検体Pの生殖器等の敏感部位に重複領域LP1が位置すると、X線の照射が2回あることから、望ましくないとも言える。このような場合には、本実施形態に係るX線診断装置1では、操作者は、準備画面W1を用いて、重複領域LP1が敏感部位に位置しないように変更することができる。
 〔第2実施形態〕
 上述した第1実施形態においては、長尺画像撮像処理のステップS14で表示される準備画面W1において、X線画像IM1、IM2の大きさが1回で撮像できる最大撮像範囲を超えそうな場合は、準備画面W1における操作入力において、最大撮像範囲を超えるX線画像IM1、IM2の拡大はできないように制限をしたが、第2実施形態では、そのような場合には、X線画像が分割されるようにして、例えば2つのX線画像IM1、IM2が分割されて、3つのX線画像IM1、IM2、IM3となるようにしたものである。以下、第1実施形態と異なる部分を説明する。
 図13は、本実施形態に係るX線診断装置1の全体構成を説明するブロック図であり、上述した図1に対応する図である。この図13に示すように、本実施形態に係るX線診断装置1の全体構成は、処理回路18がX線画像領域分割機能18fを追加的に備えている点を除いて、上述した第1実施形態と同様である。このX線画像領域分割機能18fも、記憶回路24のプログラム記憶回路24aに格納されたプログラムを、処理回路18が読み込んで実行することにより実現される機能である。このX線画像領域分割機能18fが本実施形態におけるX線画像領域分割部に相当する。
 なお、仰臥位の被検体Pに対して長尺のX線画像の撮像を行う場合は、第1実施形態の図5に対応する図14に示すように、図5に示した処理回路18にX線画像領域分割機能18fを追加的に設けることにより、本実施形態を実現できる。
 この図13及び図14に示すX線診断装置1も、上述した第1実施形態の図8と同様に、長尺画像撮像処理が実行されるが、そのステップS14で実行される準備画面W1における操作入力が異なる。図15(a)及び図15(b)は、長尺画像撮像処理のステップS14で、ディスプレイ12c又はディスプレイ20に表示される準備画面W1における操作入力を説明する図である。
 この図15(a)及び図15(b)に示すように、本実施形態においては、X線画像IM1の領域RG1とX線画像IM2の領域RG2との重複領域LP1を、準備画面W1の上方に移動した結果、X線画像IM2の領域RG2が最大撮像範囲を超えてしまう場合には、X線画像IM2の領域RG2を分割して、領域RG3を有するX線画像IM3を生成する。すなわち、X線画像IM2の最大撮像範囲である、予め定められたX線の照射範囲を超えてしまう場合には、このX線画像IM2を2つに分割して、分割して生成されたX線画像IM2、IM3がそれぞれX線の照射範囲に収まるようにする。そして、X線画像IM2の領域RG2とX線画像IM3の領域RG3との重ね合わせ部分には、重複領域LP2を生成する。このX線画像IM2の分割は、処理回路18のX線画像領域分割機能18fにより実現される。
 X線画像IM2の分割は、X線画像領域分割機能18fが自動的に行ってしまってもよいし、或いは、X線画像領域分割機能18fが、X線画像IM2の領域RG2が最大撮像範囲を超える時点で一旦大きさの変更を制限し、ポップアップ等で操作者に確認を促した上で、X線画像IM2の分割を行うようにしてもよい。それ以外の処理は、上述した第1実施形態と同様である。
 以上のように、本実施形態に係るX線診断装置1によれば、準備画面W1の設定において、X線画像が最大撮像範囲を超えてしまう場合には、最大撮像範囲を超えたX線画像を分割するようにした。このため、操作者は、X線画像の最大撮像範囲の制限を気にすることなく、被検体Pの任意の位置に、重複領域LP1を容易に移動させることができる。
 〔第3実施形態〕
 上述した第1実施形態及び第2実施形態では、ディスプレイ12c又はディスプレイ20に表示された準備画面W1に基づいて、操作者が重複領域LP1の移動を行うこととしたが、第3実施形態では、重複領域LP1を位置させたくない回避部位に重複領域LP1が位置する場合には、X線診断装置1が、この回避部位を避ける位置に重複領域LP1を移動するようにしたものである。以下、上述した第1実施形態及び第2実施形態と異なる部分を説明する。
 図16は、第3実施形態に係るX線診断装置1の全体構成を説明するブロック図であり、上述した図1に対応する図である。この図1に示すように、本実施形態に係るX線診断装置1の全体構成は、処理回路18が重複領域移動機能18gを追加的に備えている点を除いて、上述した第1実施形態及び第2実施形態と同様である。この重複領域移動機能18gも、記憶回路24のプログラム記憶回路24aに格納されたプログラムを、処理回路18が読み込んで実行することにより実現される機能である。この重複領域移動機能18gが本実施形態における第1重複領域移動部及び第2重複領域移動部に相当する。
 なお、仰臥位の被検体Pに対して長尺のX線画像の撮像を行う場合は、第1実施形態の図5に対応する図17に示すように、図5に示した処理回路18に重複領域移動機能18gを追加的に設けることにより、本実施形態を実現できる。
 この図16及び図17に示すX線診断装置1においても、上述した第1実施形態の図8と同様に、長尺画像撮像処理が実行されるが、そのステップS14で実行される準備画面W1に関する操作入力が異なる。図18(a)及び図18(b)は、長尺画像撮像処理のステップS14で、ディスプレイ12c又はディスプレイ20に表示される準備画面W1に関する操作入力を説明する図である。
 図18(a)に示すように、この準備画面W1の例においては、X線画像IM1とX線画像IM2の重複領域LP1が、被検体Pの関心領域に位置している。このため、操作者は、ディスプレイ12c又はディスプレイ20に表示された被検体Pの関心領域の位置を、指でタッチして、回避部位APとして指定する。すると、図18(b)に示すように、X線診断装置1は、操作者が指定した回避部位APを避けた位置に重複領域LP1を移動する。
 具体的には、処理回路18の表示制御機能18cが、被検体Pの画像上に重ねて、初期設定の状態でX線撮像した場合におけるX線画像IM1の領域RG1とX線画像IM2の領域RG2と重複領域LP1とを、ディスプレイ12c又はディスプレイ20に準備画面W1として表示する。関心領域に重複領域LP1が位置していることを認識した操作者は、被検体Pの画像に基づいて、重複領域LP1を回避すべき回避部位APを、ディスプレイ12c又はディスプレイ20の準備画面W1をタッチすることにより指定する。
 回避部位APが指定されると、処理回路18の重複領域移動機能18gは、指定された回避部位APの位置と、重複領域LP1の位置を比較し、重複領域LP1が回避部位APに位置している場合には、指定された回避部位APを避けた位置に、重複領域LP1を移動する。図18(b)の例では、X線画像IM1の領域RG1を小さくし、X線画像IM2の領域RG2を大きくして、重複領域LP1を準備画面W1の上方に移動する。これにより、指定された回避部位APを避けた位置に、重複領域LP1を移動することができる。
 重複領域LP1の移動の態様は任意であるが、例えば、複数存在するX線画像の中で最も小さい領域を有するX線画像を拡大して移動するようにしてもよいし、或いは、最も大きい領域を有するX線画像を縮小して移動するようにしてもよい。また、領域を拡大縮小するX線画像をランダムに選択して移動するようにしてもよい。
 X線画像を拡大した結果、X線画像の領域が、最大撮像範囲を超える場合も想定される。本実施形態を第1実施形態に適用した場合には、X線画像が最大撮像範囲を超えることを操作者に通知して、操作者が撮像するX線画像の枚数を増やす設定をX線診断装置1に対して行う。本実施形態を第2実施形態に適用した場合には、X線画像領域分割機能18fが最大撮像範囲を超えるX線画像の領域を分割して、撮像枚数を増やす処理を行う。
 以上のように、本実施形態に係るX線診断装置1によれば、表示制御機能18cにより表示された被検体Pの画像に基づいて、操作者は、重複領域が位置するのを回避する回避部位APをディスプレイ12c又はディスプレイ20から指定できるようにしたので、より容易に重複領域の移動をすることができる。すなわち、操作者はディスプレイ12c又はディスプレイ20をタッチして回避部位APを指定するだけで、回避部位APを避けた位置に重複領域を移動させることができる。
 なお、上述した図18(a)及び図18(b)の例では、ディスプレイ12c又はディスプレイ20の準備画面W1に、被検体PとX線画像IM1、IM2の領域RG1、RG2とが表示されてから、操作者が回避部位APを指定するようにしたが、この回避部位APは、予め設定しておくようにすることもできる。
 例えば、図19(a)に示すように、ステップS14で準備画面W1が表示された際には、被検体Pは表示されるが、X線画像IM1、IM2の領域RG1、RG2はまだ表示されない。この状態で、操作者は、ディスプレイ12c又はディスプレイ20をタッチして、重複領域LP1が位置するのを避けるべき回避部位APを予め設定する。
 回避部位APが設定されると、処理回路18の重複領域移動機能18gは、設定された回避部位APの位置と、表示しようとしている重複領域LP1の位置を比較し、重複領域LP1が回避部位APに位置している場合には、設定された回避部位APを避ける位置に、重複領域LP1を移動した後に、X線画像IM1、IM2の領域RG1、RG2を準備画面W1に表示する。図19(b)の例では、X線画像IM1の領域RG1を小さくした状態で、且つ、X線画像IM2の領域RG2を大きくした状態で、重複領域LP1を形成し、X線画像IM1、IM2の領域RG1、RG2を表示する。このような態様でも、回避部位APを回避した位置に、重複領域LP1を移動させることができる。このため、タッチパネルで構成されたディスプレイ12c又はディスプレイ20が、本実施形態における回避指定部及び回避設定部に相当する。
 〔第4実施形態〕
 上述した各実施形態においては、X線管保持装置12に光学カメラ12dを設けたが、この光学カメラ12dは省略することも可能である。第4実施形態では、この光学カメラ12dを省略したX線診断装置1の変形例を説明する。以下、上述した第1実施形態と異なる部分を説明する。
 図21は、第4実施形態に係るX線診断装置1の全体構成を説明するブロック図である。この図21に示すように、本実施形態に係るX線診断装置1においては、X線管保持装置12に光学カメラ12dが設けられていない。但し、X線管保持装置12に光学カメラ12dが設けられているX線診断装置1においても、以下に説明する本実施形態を実現することは可能ではある。
 また、本実施形態においては、処理回路18及び記憶回路24の構成が、上述した第1実施形態と異なっている。すなわち、処理回路18においては、画像取得機能18aに代えて、被検体情報取得機能18hと人体投影像取得機能18iとが設けられている。また、記憶回路24においては、人体投影像記憶回路24cが追加的に設けられている。
 図21は、立位の被検体PをX線撮像し、長尺のX線画像を生成するX線診断装置1のブロック図であるが、上述した第1実施形態と同様に、仰臥位の被検体PをX線撮像し、長尺のX線画像を生成するようにしてもよい。図22は、仰臥位の被検体Pを異なる複数の配置でX線撮像を行い、長尺のX線画像を生成するX線診断装置1の全体構成を説明するブロック図である。この図22から分かるように、本実施形態においては、仰臥位の被検体PのX線撮像を行うX線診断装置1においても、X線管保持装置12の光学カメラ12dが省略されている。
 図21及び図22に示したX線診断装置1は、図23に示すように、患者情報システム110に通信可能に接続されている。患者情報システム110は、例えば、電子カルテや投薬履歴などの個々の患者に関する情報を管理するシステムであり、本実施形態においては、特に、患者の年齢、身長、体重、性別、人種などの情報が格納されている。また、本実施形態においては、患者情報システム110は、これらに加えて、或いは、これらに代えて、大人であるのか或いは子供であるのかの情報が格納されていてもよい。
 次に、図24に基づいて、本実施形態に係るX線診断装置1で実行される長尺画像撮像処理について説明する。この図24に示す長尺画像撮像処理は、記憶回路24のプログラム記憶回路24aに格納されている長尺画像撮像処理プログラムを処理回路18が読み込んで実行することにより、実現される処理である。また、この図24に示す長尺画像撮像処理は、上述した第1実施形態における図8に示した長尺画像撮像処理に対応する処理である。
 図24に示すように、まず、X線診断装置1は、被検体Pに関する情報を取得する(ステップS30)。被検体Pに関する情報は、患者情報システム110に格納されている患者に関する情報から、X線診断装置1が、該当する被検体Pに関する情報を検索して取得する。本実施形態においては、例えば、X線診断装置1は、被検体Pの身長を取得する。なお、本実施形態においては、この被検体Pに関する情報を取得する処理は、処理回路18の被検体情報取得機能18hにより実現される。
 次に、X線診断装置1は、取得した被検体Pに関する情報に基づいて、人体投影像を生成して、取得する(ステップS32)。本実施形態においては、被検体Pに関する情報として、身長を取得しているので、この身長に基づいて人体投影像を生成し、取得する。例えば、被検体Pの身長が180cmと高い場合、高い180cmの身長に基づく人体投影像を生成する。一方、被検体Pの身長が150cmと低い場合、低い150cmの身長に基づく人体投影像を生成する。
 本実施形態においては、この人体投影像を生成して取得する処理は、処理回路18の人体投影像取得機能18iにより実現される。すなわち、処理回路18の人体投影像取得機能18iが、被検体Pに関する情報に基づいて、記憶回路24の人体投影像記憶回路24cから、最も適切な人体投影像のデータを読み出して、人体投影像を生成する。このため、人体投影像記憶回路24cには、例えば、複数の人体投影像のデータが格納されており、被検体Pの情報に基づいて、最も近似した人体投影像のデータを人体投影像取得機能18iが取得する。本実施形態の例では、130cmから200cmまで10cm刻みの身長について、人体投影像のデータが人体投影像記憶回路24cに格納されている。そして、人体投影像取得機能18iは、被検体Pの身長に関する情報に基づいて、最も近似した身長の人体投影像のデータを、人体投影像記憶回路24cから取得する。
 その際、人体投影像取得機能18iは、読み出した人体投影像のデータを、被検体Pに関する情報に基づいて、適宜修正を加えて、人体投影像を生成するようにしてもよい。例えば、被検体Pの身長が165cmであった場合、160cmの人体投影像のデータと170cmの人体投影像のデータの双方を取得し、その中間的な人体投影像のデータを生成するようにしてもよい。これにより、より精度の高い人体投影像を取得することができる。
 なお、被検体Pに関する情報は、身長に限るものではない。例えば、被検体Pの身長と体重とに基づいて、体型を類推し、類推された体型をも反映した人体投影像を生成するようにしてもよい。また、被検体Pの性別を取得して、男性であれば男性の人体投影像を生成し、女性であれば女性の人体投影像を生成するようにしてもよい。いずれも場合でも、被検体Pの体型に応じた、或いは、被検体Pの性別に応じた、人体投影像のデータが人体投影像記憶回路24cに格納されている。
 さらには、被検体Pの身長に代えて、被検体Pが大人であるのか、或いは、子供であるのかに関する情報に基づいて、人体投影像を生成してもよい。すなわち、被検体Pが大人である場合には、大人を想起する人体投影像を生成し、被検体Pが子供である場合には、子供を想起する人体投影像を生成するようにしてもよい。この場合、大人の人体投影像のデータと子供の人体投影像のデータとが、人体投影像記憶回路24cに格納されている。これにより、人体投影像の精度は荒くなるが、人体投影像記憶回路24cの情報量を削減することができる。
 或いは、被検体Pが子供である場合に生成する人体投影像を、被検体Pが大人である場合に生成する人体投影像よりも、小さくするだけでもよい。この場合、子供の人体投影像のデータを人体投影像記憶回路24cに格納する必要がなくなり、人体投影像記憶回路24cに格納される情報量をさらに削減することができる。
 また、被検体Pの人種に基づいて、生成する人体投影像を生成するようにしてもよい。例えば、人種が西洋人である場合には、足の長い人体投影像を生成し、人種が東洋人である場合には、足の短い人体投影像を生成するようにしてもよい。この場合、人種に応じた人体投影像のデータが人体投影像記憶回路24cに格納されている。
 なお、本実施形態においては、X線診断装置1は、患者情報システム110から、被検体Pに関する情報を取得することとしたが、種々の手法により、X線診断装置1は被検体Pに関する情報を取得することができる。例えば、X線撮像を始める前に、X線診断装置1の操作者がマニュアルで、被検体Pの身長や体重などを入力回路22からX線診断装置1に入力するようにしてもよい。
 次に、X線診断装置1は、取得した被検体Pを示す人体投影像の画像上に、異なる複数の配置でX線画像の撮像を行った場合に、各X線画像が重なる重複領域を含む画像を生成して、準備画面としてディスプレイ12c又はディスプレイ20に表示する(ステップS34)。本実施形態においては、この重複領域を含む画像を生成して準備画面として表示する処理は、処理回路18の表示制御機能18cにより実現される。
 図25は、本実施形態に係るX線診断装置1のディスプレイ12c又はディスプレイ20に表示される準備画面W1の一例を示す図である。この図25に示すように、準備画面W1には、ステップS32で取得した被検体Pを示す人体投影像の上に重ねて、異なる複数の位置から撮像されるX線画像IM1、IM2の領域RG1、RG2が仮想的に表示される。このX線画像IM1、IM2の領域RG1、RG2は、ステップS16でX線画像の撮像を行った場合に撮像される領域を仮想的に示している。
 次に、X線診断装置1は、ステップS14にて、重複領域LP1の位置を変更する操作入力を受け付ける。なお、このステップS14以降の処理は、上述した第1実施形態と同様であるので、その詳しい説明は割愛する。
 以上のように、本実施形態に係るX線診断装置1によれば、光学カメラ12dにより被検体Pを撮像するのではなく、患者情報システム110から取得した被検体Pに関する情報に基づいて、人体投影像を生成して取得し、この人体投影像を用いて準備画面W1を表示することとした。このため、光学カメラ12dを用いずとも、第1実施形態に係るX線診断装置1を実現することができる。
 なお、上述では光学カメラ12dの搭載を不要とする変形例を、第1実施形態に係るX線診断装置1に適用した場合を、第4実施形態として説明したが、光学カメラ12dの搭載を不要とする変形例は、第2実施形態乃至第3実施形態に係るX線診断装置1にも適用することが可能である。
 〔第5実施形態〕
 上述した第4実施形態では、X線診断装置1の操作者が準備画面W1を用いて、関心領域である回避部位APを避けるように重複領域LP1を設定するようにしたが、第5実施形態においては、被検体Pの検査情報を用いて、操作者が準備画面W1を用いた設定をせずとも、関心領域である回避部位APを避けて重複領域LP1が設定されるようにしたものである。以下、上述した第4実施形態と異なる部分を説明する。
 図26は、第5実施形態に係るX線診断装置1の全体構成を説明するブロック図である。この図26に示すように、本実施形態に係るX線診断装置1においては、処理回路18に重複領域設定機能18jがさらに追加的に設けられている。これは、仰臥位の被検体PのX線撮像を行う、図27に示すX線診断装置1でも同様である。また、上述した第4実施形態と同様に、図26及び図27に示すX線診断装置1は、患者情報システム110に通信可能に接続されている。
 次に、図28に基づいて、本実施形態に係るX線診断装置1で実行される長尺画像撮像処理について説明する。この図28に示す長尺画像撮像処理は、記憶回路24のプログラム記憶回路24aに格納されている長尺画像撮像処理プログラムを処理回路18が読み込んで実行することにより、実現される処理である。また、この図28に示す長尺画像撮像処理は、上述した第4実施形態における図24に示した長尺画像撮像処理に対応する処理である。
 図28におけるステップS30及びステップS32の処理は、上述した第4実施形態と同様である。続いて、X線診断装置1は、重複領域を設定する(ステップS40)。すなわち、被検体Pにおける関心領域である回避部位APを避けるように、2つのX線画像が重ね合わされる重複領域を設定する。この重複領域を設定する処理は、処理回路18の重複領域設定機能18jにより実現される。
 例えば、回避部位APに関する情報は、ステップS30で、被検体Pに関する情報の1つとして患者情報システム110から取得することが可能である。すなわち、医師が長尺のX線画像を撮像するにあたり、その検査情報は被検体Pに関する情報の1つとして患者情報システム110に登録される。この検査情報には、医師が診断するにあたり、重要視している撮影部位に関する情報も含まれている。このため、X線診断装置1は、この撮影部位に関する情報を患者情報システム110から取得して、医師の関心領域である撮影部位を避けて、重複領域を設定する。
 例えば、撮影部位が大腸であった場合、被検体Pの身長に関する情報から、大腸の位置はおよそ推測することができる。このため、この推測により定まる大腸の位置を、回避部位APとする。そして、この大腸の位置である回避部位APを避けて、重複領域を設定する。撮影部位の位置を推測するにあたり、被検体Pの身長に加えて、年齢や性別、人種なども考慮すれば、より推定の精度を上げることが可能となる。
 このように患者情報システム110に格納されている被検体Pに関する情報に基づいて、重複領域を自動的に設定することにより、X線診断装置1を操作する操作者の操作負担を軽減することができる。すなわち、長尺のX線画像の撮像を行う際に、準備画面W1を操作して、重複領域を移動したり調整したりする手間を省くことができる。
 また、本実施形態においては、図29に示すように、部位指定装置120を、X線検出器16が設けられたスタンド10に設置して、被検体Pにおける関心領域である回避部位APを操作者に指定させるようにしてもよい。すなわち、長尺のX線画像の撮像を行うに前に、X線診断装置1の操作者が、部位指定装置120を操作して、回避部位APを指定して、X線診断装置1に入力するようにしてもよい。
 部位指定装置120には、複数の指定スイッチSWが設けられている。指定スイッチSW数は任意であるが、被検体Pの身長に拘わらず、医師が関心を持った領域が大きな誤差無く指定できる程度の分布密度で指定スイッチSWが配置できるのが望ましい。なお、部位指定装置120は、複数の指定スイッチSWによる構成に限るものではない。例えば、スタンド10に被検体Pの身長と同程度の長さのタッチパネルを設置し、このタッチパネルを用いて、操作者が回避部位APを指定するようにしてもよい。
 図29は、立位の被検体PについてX線画像の撮像をする図26のX線診断装置1に部位指定装置120を設ける実施形態を図示しているが、部位指定装置120は、仰臥位の被検体PについてX線画像の撮像をする図27のX線診断装置1に設けることも可能である。この場合の実施形態を、図30に図示する。すなわち、被検体Pが横たわる寝台30の側面に、部位指定装置120を設け、操作者は、この部位指定装置120の指定スイッチSWを用いて回避部位APを指定する。この場合でも、部位指定装置120は、タッチパネルなどの他の手法で、回避部位APを指定するようにしてもよい。
 このように部位指定装置120を用いて回避部位APを指定することにより、光学カメラ12dが設けられていないX線診断装置1においても、操作者は、容易に回避部位APを指定することができる。すなわち、スタンド10の前に立っている被検体P或いは寝台30に横たわっている被検体Pを見ながら、高い精度で回避部位APの指定、すなわち、重複領域を避けるべき位置の指定をすることができる。
 図31は、ステップS40において、ディスプレイ12c又はディスプレイ20に表示される準備画面W1の一例を示す図である。この図31に示すように、X線診断装置1は、関心領域である回避部位APを避けるように、X線画像IM1とX線画像IM2との重複領域LP1を設定する。なお、この準備画面W1は、操作者の確認用にディスプレイ12c又はディスプレイ20に表示するに過ぎないため、必ずしも表示しなくともよい。また、必要に応じて、操作者が準備画面W1を操作して、重複領域LP1の位置を追加的に調整できるようにしてもよい。
 次に、図28に示すように、X線診断装置1は、ステップS40で設定された重複領域に従って、異なる複数の配置でX線画像を撮像して、長尺のX線画像の生成を行う(ステップS16)。このステップS16以降の処理は、上述した第4実施形態と同様である。
 以上のように、本実施形態に係るX線診断装置1によれば、光学カメラ12dを用いずとも、関心領域である回避部位APを避けるように重複領域LP1を設定して、長尺のX線画像の撮像を行うことができる。また、患者情報システム110に格納されている被検体Pに関する情報に基づいて、重複領域LP1を自動的に設定することにより、操作者の操作負担を軽減することができる。或いは、部位指定装置120を用いて回避部位APを指定することにより、操作者は、被検体Pを見ながら回避部位APを容易に指定することができる。
 〔第6実施形態〕
 上述した第5実施形態では、関心領域である回避部位APを設定することにより、この回避部位APを避けるように重複領域を設定することとしたが、第6実施形態においては、重複領域そのものを指定するようにしたものである。以下、上述した第5実施形態と異なる部分を説明する。
 第6実施形態に係るX線診断装置1の全体構成は、上述した第5実施形態における図26及び図27と同様である。また、部位指定装置120の構成も、上述した第5実施形態における図29及び図30と同様である。但し、図28に示した長尺画像撮像処理におけるステップS40の処理内容が異なる。
 すなわち、ステップS40において、X線診断装置1は、複数のX線画像の重複領域を設定するのであるが、本実施形態においては、その重複領域そのものが指定されているので、その指定に従って、長尺のX線画像の重複領域を設定する。例えば、重複領域の設定位置が、予め患者情報システム110に登録されている場合は、X線診断装置1は、患者情報システム110から重複領域の設定位置に関する情報を取得する。この場合、例えば医師自らが関心領域を避けるように重複位置を設定し、検査情報として患者情報システム110に登録しておく。X線診断装置1は、患者情報システム110に登録されている重複領域の設定位置に基づいて、長尺のX線画像の重複領域を設定する。
 また、図29及び図30に示すように、操作者が部位指定装置120を操作して、重複領域そのものを指定することも可能である。この場合、操作者は、関心領域である回避部位APを避けるように、部位指定装置120の指定スイッチSWを用いて重複領域の位置を指定する。すなわち、いずれかの指定スイッチSWを操作することにより、回避部位APを避ける位置を、X線診断装置1に入力する。どのような位置に重複領域を設定して、回避部位APを避けるのかは、操作者の任意である。
 図32は、ステップS40において、ディスプレイ12c又はディスプレイ20に表示される準備画面W1の一例を示す図である。この図32の例では、操作者が設定した重複領域LP1の位置が、設定位置STとして示されている。X線診断装置1は、この設定位置STに、X線画像IM1とX線画像IM2との重複領域LP1を設定する。なお、この準備画面W1は、操作者の確認用にディスプレイ12c又はディスプレイ20に表示するに過ぎないため、必ずしも表示しなくともよい。また、必要に応じて、X線診断装置1の操作者が、準備画面W1を操作して、重複領域LP1の位置を追加的に調整できるようにしてもよい。
 以上のように、本実施形態に係るX線診断装置1においても、光学カメラ12dを用いずとも、関心領域である回避部位APを避けて重複領域LP1を設定して、長尺のX線画像の撮像を行うことができる。また、患者情報システム110に格納されている設定位置に関する情報に基づいて、重複領域LP1を自動的に設定することにより、操作者の操作負担を軽減することができる。或いは、部位指定装置120を用いて重複領域LP1の設定位置STを指定することにより、操作者は、被検体Pを見ながら回避部位APを避けた位置に重複領域LP1を容易に設定することができる。
 以上、いくつかの実施形態を説明したが、これらの実施形態は、例としてのみ提示したものであり、発明の範囲を限定することを意図したものではない。本明細書で説明した新規な装置および方法は、その他の様々な形態で実施することができる。また、本明細書で説明した装置および方法の形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行うことができる。添付の特許請求の範囲およびこれに均等な範囲は、発明の範囲や要旨に含まれるこのような形態や変形例を含むように意図されている。
 例えば、上述した各実施形態では、ディスプレイ12cやディスプレイ20をタッチパネルで構成して、操作者は、準備画面W1に対する各種入力をディスプレイ12c又はディスプレイ20に対して行うようにしたが、準備画面W1に対する各種入力は、タッチパネルに限られるものではなく、任意の手法で入力することが可能である。例えば、ディスプレイ12cやディスプレイ20を操作するマウス等の入力デバイスを用意し、この入力デバイスを用いて、操作者は、準備画面W1に対する各種情報をX線診断装置1に入力するようにしてもよい。
 また、上述した各実施形態では、準備画面W1をX線管保持装置12のディスプレイ12c又はディスプレイ20に表示することとしたが、準備画面W1の表示はディスプレイ12c又はディスプレイ20に限られるものではなく、任意の場所で表示することが可能である。例えば、準備画面W1は、図示しない外部のコンピュータのディスプレイに表示するようにし、操作者はこのディスプレイを見ながら、準備画面W1に対する各種入力を行うようにしてもよい。このような構成の場合、外部のコンピュータ及びディスプレイを含めて、全体として、X線診断装置1を構成していることとなる。
 さらに、上述した実施形態では、光学カメラ12dはX線管保持装置12に設ける例を説明したが、光学カメラ12dの取り付け位置は任意である。例えば、図20に示すように、天井や壁などの固定物100に光学カメラ12dを取り付けるようにしても良い。
1…X線診断装置、10…スタンド、12…X線管保持装置、12a…X線管、12b…X線絞り器、12c…ディスプレイ、12d…光学カメラ、14…高電圧発生器、16…X線検出器、18…処理回路、18a…画像取得機能、18b…生成機能、18c…表示制御機能、18d…X線画像撮像機能、18e…長尺X線画像表示機能、20…ディスプレイ、22…入力回路、24…記憶回路、24a…プログラム記憶回路、24b…画像記憶回路

Claims (13)

  1.  被検体を示す画像に、長尺X線画像を生成するための複数のX線照射範囲を重ねて表示する表示部と、
     ユーザの操作に基づき、前記表示部に表示された、互いに隣接する前記X線照射範囲の重複する重複領域の位置を変更する表示制御部と、を備える、
     を備えるX線診断装置。
  2.  前記表示制御部は、ユーザの操作に基づき、前記重複領域の大きさを変更する、
     請求項1に記載のX線診断装置。
  3.  前記表示制御部は、前記重複領域の位置を変更する操作に基づき、前記互いに隣接するX線照射範囲の一方の大きさを大きくし、他方の大きさを小さくする、請求項1に記載のX線診断装置。
  4.  前記X線照射範囲または前記重複領域の位置を変更する操作に基づき、予め定められた範囲を超えたX線照射範囲を分割するX線画像領域分割部をさらに備える、請求項1乃至請求項3のいずれかに記載のX線診断装置。
  5.  前記被検体を示す画像に回避部位を指定する操作に基づき、当該回避部位が前記重複領域に位置する場合に、当該回避部位を避ける位置に前記重複領域を移動する第1重複領域移動部、をさらに備える、
     請求項1に記載のX線診断装置。
  6.  前記表示制御部は、前記重複領域の大きさを変更する操作に基づき、前記重複領域が所定の大きさより小さくならないよう、前記重複領域の大きさの変更を制限する、請求項1に記載のX線診断装置。
  7.  前記表示制御部は、前記重複領域の位置を変更する操作に基づき、当該重複領域を含むX線照射範囲の大きさが予め定められた範囲を超えないように当該X線照射範囲の大きさを制限する、請求項1に記載のX線診断装置。
  8.  前記被検体を示す画像に回避部位を指定する操作に基づき、当該回避部位を避ける位置に前記重複領域を表示させる、第2重複領域移動部と、
     をさらに備える請求項1に記載のX線診断装置。
  9.  前記表示制御部により変更された前記重複領域を有する複数のX線照射範囲に基づき、前記被検体の長尺X線画像を撮像するX線画像撮像部をさらに備える、
     請求項1に記載のX線診断装置。
  10.  前記被検体を撮像する光学カメラをさらに備える請求項1乃至請求項9のいずれかに記載のX線診断装置。
  11.  前記表示部はタッチパネルにより構成されており、前記表示部に表示された前記重複領域をタッチパネル上でドラッグしながら移動することにより、前記重複領域の位置を変更する操作入力を受け付ける、請求項1乃至請求項10のいずれかに記載のX線診断装置。
  12.  前記X線画像撮像部は、X線管を制御して、前記重複領域が設定された位置となる前記複数の配置に基づいて、複数回のX線照射を行う、請求項9に記載のX線診断装置。
  13.  X線を発生させるX線管と、
     被検体を通過したX線を検出するX線検出器と、
     前記被検体を示す画像に、複数のX線照射範囲を重ねて表示する表示部と、
     ユーザの操作を受け付ける入力部と、
     前記ユーザの操作に基づき、前記表示部に表示された、互いに隣接する前記X線照射範囲の重複する重複領域の位置および大きさの少なくとも一方を変更する表示制御部と、を備える、
     を備えるX線診断装置。
PCT/JP2018/043451 2017-11-28 2018-11-26 X線診断装置、及び、x線管保持装置 WO2019107318A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019557217A JPWO2019107318A1 (ja) 2017-11-28 2018-11-26 X線診断装置、及び、x線管保持装置
CN201880076515.6A CN111417344B (zh) 2017-11-28 2018-11-26 X射线诊断装置以及x射线管保持装置
US16/883,091 US11344271B2 (en) 2017-11-28 2020-05-26 X-ray diagnostic apparatus and X-ray tube holding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-227942 2017-11-28
JP2017227942 2017-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/883,091 Continuation US11344271B2 (en) 2017-11-28 2020-05-26 X-ray diagnostic apparatus and X-ray tube holding device

Publications (1)

Publication Number Publication Date
WO2019107318A1 true WO2019107318A1 (ja) 2019-06-06

Family

ID=66664904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043451 WO2019107318A1 (ja) 2017-11-28 2018-11-26 X線診断装置、及び、x線管保持装置

Country Status (3)

Country Link
US (1) US11344271B2 (ja)
JP (1) JPWO2019107318A1 (ja)
WO (1) WO2019107318A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021108839A (ja) * 2020-01-09 2021-08-02 コニカミノルタ株式会社 撮影制御装置、長尺撮影システム及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230556A (ja) * 2002-02-12 2003-08-19 Toshiba Medical System Co Ltd X線診断装置
JP2004209239A (ja) * 2002-12-17 2004-07-29 Toshiba Corp X線診断装置及びx線撮影方法
WO2014132361A1 (ja) * 2013-02-27 2014-09-04 株式会社島津製作所 X線撮影装置
US20170055925A1 (en) * 2015-08-25 2017-03-02 Samsung Electronics Co., Ltd. X-ray imaging apparatus and method for controlling the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1430835B1 (en) 2002-12-17 2011-11-16 Kabushiki Kaisha Toshiba System for peripheral X-ray angiography
JP2005270277A (ja) * 2004-03-24 2005-10-06 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置及び放射線画像生成方法
JP2008017965A (ja) * 2006-07-12 2008-01-31 Hitachi Medical Corp X線撮影装置
JP2009279295A (ja) 2008-05-26 2009-12-03 Fujifilm Corp 放射線画像撮影装置及び画像処理装置
US8213572B2 (en) * 2009-08-11 2012-07-03 Minnigh Todd R Retrofitable long-length digital radiography imaging apparatus and method
JP5634744B2 (ja) 2010-05-13 2014-12-03 株式会社日立メディコ X線診断装置、画像処理装置及びプログラム
JP5836079B2 (ja) 2011-11-18 2015-12-24 株式会社東芝 医用画像診断装置
JP5834971B2 (ja) * 2012-02-01 2015-12-24 コニカミノルタ株式会社 放射線画像撮影システム
JP2014068578A (ja) 2012-09-28 2014-04-21 Kanema :Kk 魚飼育水槽用具
JP2014068978A (ja) * 2012-10-01 2014-04-21 Toshiba Corp X線診断装置及びx線診断装置の制御方法
US10098598B2 (en) * 2013-06-13 2018-10-16 Samsung Electronics Co., Ltd. X-ray imaging apparatus and method for controlling the same
JP2016034300A (ja) 2014-08-01 2016-03-17 株式会社日立メディコ 画像診断装置及び撮影方法
KR101577564B1 (ko) * 2015-04-21 2015-12-15 주식회사 에스지헬스케어 의료측정용 자를 내장한 방사선 촬영장치와 그 방법
JP7130427B2 (ja) * 2018-05-14 2022-09-05 キヤノンメディカルシステムズ株式会社 X線診断装置およびx線診断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230556A (ja) * 2002-02-12 2003-08-19 Toshiba Medical System Co Ltd X線診断装置
JP2004209239A (ja) * 2002-12-17 2004-07-29 Toshiba Corp X線診断装置及びx線撮影方法
WO2014132361A1 (ja) * 2013-02-27 2014-09-04 株式会社島津製作所 X線撮影装置
US20170055925A1 (en) * 2015-08-25 2017-03-02 Samsung Electronics Co., Ltd. X-ray imaging apparatus and method for controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021108839A (ja) * 2020-01-09 2021-08-02 コニカミノルタ株式会社 撮影制御装置、長尺撮影システム及びプログラム
JP7415571B2 (ja) 2020-01-09 2024-01-17 コニカミノルタ株式会社 撮影制御装置、長尺撮影システム及びプログラム

Also Published As

Publication number Publication date
JPWO2019107318A1 (ja) 2020-11-26
CN111417344A (zh) 2020-07-14
US20200297301A1 (en) 2020-09-24
US11344271B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
US8971601B2 (en) Medical image diagnosis device and medical image processing method
US9888899B2 (en) X-ray diagnostic apparatus
JP6632847B2 (ja) X線診断装置
JP6139118B2 (ja) X線診断装置及び制御プログラム
JP6113487B2 (ja) 医用画像診断装置及び医用画像処理装置
JP7363878B2 (ja) 放射線画像表示装置および画像表示方法
JP6580963B2 (ja) 画像処理装置、画像処理方法およびx線診断装置
JP6540348B2 (ja) 放射線撮影システム
WO2019107318A1 (ja) X線診断装置、及び、x線管保持装置
US20150063536A1 (en) X-ray ct apparatus
US10159458B2 (en) X-ray diagnostic apparatus
JP6687393B2 (ja) 医用画像診断装置
US11937965B2 (en) Radiographic system
US20150164450A1 (en) System and Method for Real Time 4D Quantification
CN111417344B (zh) X射线诊断装置以及x射线管保持装置
JP7371100B2 (ja) 医用撮影システム及び医用撮影処理装置
JP2020049219A (ja) X線診断装置及びプログラム
JP6640499B2 (ja) 画像処理装置およびx線診断装置
JP5498016B2 (ja) X線診断装置および画像処理装置
JP5534648B2 (ja) X線診断装置、画像データ処理装置及び画像データ処理方法
JP2019000589A (ja) X線診断装置
JP2017086561A (ja) 医用画像処理装置及び医用画像処理プログラム
US10052074B2 (en) X-ray diagnostic apparatus
JP2024038841A (ja) 医用画像処理装置、x線診断装置、及び、医用画像処理プログラム
JP2022054145A (ja) 医療用監視装置、及び医療用監視システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883287

Country of ref document: EP

Kind code of ref document: A1