WO2019106744A1 - バッテリ充電装置 - Google Patents

バッテリ充電装置 Download PDF

Info

Publication number
WO2019106744A1
WO2019106744A1 PCT/JP2017/042765 JP2017042765W WO2019106744A1 WO 2019106744 A1 WO2019106744 A1 WO 2019106744A1 JP 2017042765 W JP2017042765 W JP 2017042765W WO 2019106744 A1 WO2019106744 A1 WO 2019106744A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
fet
circuit
state
rectifier circuit
Prior art date
Application number
PCT/JP2017/042765
Other languages
English (en)
French (fr)
Inventor
洋史 山口
裕貴 若月
竜一郎 高橋
松田 和男
Original Assignee
マーレエレクトリックドライブズジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マーレエレクトリックドライブズジャパン株式会社 filed Critical マーレエレクトリックドライブズジャパン株式会社
Priority to PCT/JP2017/042765 priority Critical patent/WO2019106744A1/ja
Priority to US16/765,065 priority patent/US11476697B2/en
Priority to JP2019556451A priority patent/JP6838169B2/ja
Publication of WO2019106744A1 publication Critical patent/WO2019106744A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/28Regulation of the charging current or voltage by variation of field using magnetic devices with controllable degree of saturation in combination with controlled discharge tube or controlled semiconductor device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit

Definitions

  • the present invention relates to a battery charging device for charging a battery with a rectified output of a magnet type AC generator.
  • a device for charging a battery one configured to charge the battery with a rectified output of a magnet type AC generator driven by a drive source such as an engine or a windmill is known.
  • this type of charging device includes a rectifier circuit that rectifies an output of a generator and supplies it to a battery, a battery voltage detection circuit that detects a voltage across the battery (battery voltage), and a battery detected by this detection circuit. It is determined that the battery needs to be charged by the charge necessity determination unit that determines whether it is necessary to charge the battery or to stop charging the battery according to the voltage, and the charge necessity determination unit When charging current is supplied from the generator to the battery through the rectifier circuit, and it is determined by the charging necessity judgment means that charging of the battery needs to be stopped to prevent overcharging, supply of charging current to the battery is It is comprised by the control part which controls supply of the charging current to a battery so that it may stop.
  • the output of the generator is rectified when the charging necessity determination means determines that the battery needs to be charged, and the battery is Supply the charging current to the battery, and when it is determined by the charging necessity determination means that charging of the battery needs to be stopped, short-circuit control is performed to short the output terminals of the generator to supply charging current to the battery
  • the control unit is often configured to stop the
  • the diode bridge full wave rectifier circuit which constituted the upper and lower arms of the bridge circuit with the diode is used widely.
  • the diode since the diode generates a large loss when forward current flows, the use of this rectifier circuit inevitably leads to a large power loss generated when rectifying the output of the generator. If a large power loss occurs in the rectification circuit, not only the temperature of the rectification circuit rises, but it is not preferable because it becomes necessary to use a large generator in order to supply the necessary charging current to the battery.
  • Patent Document 1 it has been proposed to use a full-bridge full-wave rectifier circuit in which upper and lower arms of the bridge circuit are configured by MOSFETs as a rectifier circuit that rectifies an output of a generator. . Since the MOSFET produces very little loss in the main circuit (drain-source circuit) when it is turned on, it is recommended that each arm of the rectifier circuit that rectifies the generator output be a MOSFET. Power loss generated in the rectifier circuit is reduced by controlling each MOSFET so that the current supplied to the battery from the power supply through the rectifier circuit flows between the drain and source of the MOSFETs that make up either arm of the rectifier circuit. can do.
  • the MOSFETs constituting the arms from the generator to the rectifier circuit Each arm is configured such that the polarity of the voltage applied between the drain and source of each of the arms forwardly biases the parasitic diode formed between the drain and source of the MOSFET constituting each arm. It may be controlled to turn on certain MOSFETs. The polarity of the voltage applied between the drain and source of each MOSFET can be determined by detecting the polarity of the potential at each input terminal of the rectifier circuit.
  • the upper arm connected to each input terminal when the polarity of the potential of each input terminal of the rectifier circuit is a polarity for applying a forward voltage to the parasitic diode of the MOSFET of the upper arm connected to each input terminal
  • the MOSFETs in the lower arm and the MOSFETs in the lower arm determine the states to be taken as the on state and the off state respectively, and the polarity of the potential of each input terminal of the rectifier circuit detected by the input potential polarity detection circuit is connected to each input terminal
  • the MOSFETs of the upper arm and the lower arm that are connected to each input terminal when the polarity is to apply a reverse voltage to the parasitic diode of the upper arm MOSFET are turned off and on respectively It can be decided.
  • a full-bridge full-wave rectifier circuit in which upper and lower arms are formed of MOSFETs is used as a rectifier circuit to rectify the output of the generator, it is connected to each input terminal of the rectifier circuit at each time
  • the state of each MOSFET is determined based on the polarity of the potential of each input terminal of the rectifier circuit to determine whether the MOSFETs in the upper and lower arms should be in the on state or in the off state, respectively.
  • a transient period in which all MOSFETs are turned off occurs in the process of terminating short circuit control and shifting to control during charging, and during this transient period, parasitic diodes of the MOSFETs
  • the charging current is supplied to the battery through the full-wave rectification circuit configured by the above-mentioned, and a large amount of heat is generated in the parasitic diode with a large power loss.
  • the condition requiring charging and the condition requiring charging suspension may be repeated in a short cycle, so transition from short circuit control to control during charging If a transition period in which current flows through the parasitic diode of the MOSFET occurs in the process, there is a problem that the temperature of the rectifier circuit is excessively increased by the heat generated from the parasitic diode with large power loss.
  • a sensor is separately provided to obtain information on the rotational angle position at each moment of the magnet rotor of the generator, and from the rotational angle position information of the rotor obtained by this sensor, The phase of the voltage applied to each input terminal is estimated, and based on this phase information, it is determined which of the upper and lower MOSFETs connected to each input terminal of the rectifier circuit should be turned on and which should be turned off. It is possible to do.
  • a sensor for obtaining information on the rotational angle position at each moment of the magnet rotor is separately provided, it is inevitable that the number of parts constituting the charging device increases and the cost increases.
  • Information on the polarity of the potential of each input terminal of the rectifier circuit can be obtained at any time during short circuit control without requiring a special sensor to be detected, and control of the MOSFET during charging can be resumed promptly after completing the short circuit control. It is about being able to do it.
  • each arm constituting a bridge circuit is formed of a MOSFET, and an input terminal to which an output of a generator is input, and a positive side and a negative terminal respectively connected to a positive terminal and a negative terminal of a battery.
  • a full-bridge type rectifier circuit having a negative side output terminal, a battery voltage detection circuit for detecting a voltage across the battery, and an input potential polarity detection circuit for detecting the polarity of the potential of each input terminal of the rectifier circuit;
  • the battery voltage detection circuit and the FET control unit that controls the MOSFET of the rectification circuit according to the detection output of the input potential polarity detection circuit.
  • a charge necessity determination unit that determines whether the FET control unit needs to charge the battery or to stop charging the battery based on the voltage detected by the battery voltage detection circuit.
  • each input terminal whose input potential polarity detection circuit detects whether each MOSFET of the rectification circuit should be in the on state or the off state.
  • the on / off state determination means for performing the on / off state determination process determined based on the polarity of the potential of the voltage, and the state of each MOSFET of the rectifier circuit on / off when it is determined by the charge necessity determination means that the battery needs charging.
  • the charge FET control means for performing charge FET control for controlling the state determination means to match the state determined by the state determination means, and the battery by the charge necessity determination means
  • the MOSFETs constituting all the upper arms of the rectifier circuit are simultaneously turned on when it is determined that charging needs to be stopped, or the MOSFETs constituting all the lower arms are simultaneously turned on.
  • short-circuit control means for performing short-circuit control to short-circuit between the output terminals of the generator, and FET off causing at least the FET off period in which all MOSFETs of the rectifier circuit are off when performing short-circuit control. And means.
  • the on / off state determination means is also on / off state based on the polarity of the potential of each input terminal of the rectifier circuit detected by the input potential polarity detection circuit during each FET off period while the short circuit control means is performing short circuit control. It is configured to perform a decision process.
  • each FET is also turned off while performing short circuit control. Since the polarity of the potential of each input terminal of the rectifier circuit can be detected during the period, either the upper arm MOSFET or the lower arm MOSFET connected to each input terminal of the rectifier circuit is turned on at each time. Therefore, it is possible to determine which one is to be turned off, and it is possible to resume FET control at the time of charging immediately after the short circuit control is finished.
  • the FET off period in which all the MOSFETs of the rectifier circuit are turned off is generated at a set cycle when performing short circuit control, between the output terminals of the generator during each FET off period Since the short circuit is released, the output of the generator is rectified by the full wave rectification circuit consisting of the parasitic diodes of the MOSFETs constituting the rectification circuit and supplied to the battery. Since the FET off period repeatedly occurs while short circuit control is performed, when the battery is charged by the output of the generator rectified by the full wave rectification circuit consisting of the parasitic diode of the MOSFET during each FET off period, the battery May be overcharged.
  • the amount of electric power [Ws] outputted per unit time through the parasitic diode of the MOSFET constituting the rectifier circuit from the generator during the short circuit control is performed per unit time It is preferable to set the length of the FET off period so as to keep it below the minimum value of the amount of power [Ws] that the battery needs to supply to the load.
  • the FET off period By setting the FET off period in this way, all power output from the generator through the parasitic diode of the MOSFET in the rectifier circuit during the FET off period is supplied to the battery load, and power from the rectifier circuit to the battery is supplied. Since the battery is not supplied, the possibility of the battery being overcharged can be eliminated.
  • the charge necessity determination means determines that the battery needs to be charged when the battery voltage is less than or equal to the specified voltage, and determines that it is necessary to suspend the charge of the battery when the battery voltage exceeds the specified voltage. Can be configured to When the charging necessity determination means is configured as described above, if the battery voltage is continuously detected and the necessity of charging is determined following the fluctuation of the battery voltage, the battery load may be finely changed. In response to voltage fluctuations, the FET control and the short circuit control may be switched in a very short cycle during charging, which may cause the rectifier circuit to oscillate. When the rectifier circuit oscillates, the MOSFETs constituting the rectifier circuit are frequently turned on and off, and there is a possibility that the MOSFET may be overheated and destroyed due to the switching loss generated in the MOSFET.
  • sampling timing generating means for generating sampling timing at a constant cycle
  • the charging necessity determination means determines the battery voltage detection circuit only at each sampling timing generated by the sampling timing generating means. Is configured to sample the voltage that it is detecting and to determine whether the battery needs to be charged or the battery needs to be paused based on the sampled voltage.
  • the sampling timing is generated at a constant cycle and the battery voltage is sampled only at each sampling timing to determine whether the battery needs to be charged, it is necessary from each sampling timing to the next sampling timing. Since the control is fixed to either the FET control during charging or the short circuit control, when the battery voltage fluctuates frequently, the short circuit control and the FET control during charging are performed in a short cycle according to the fluctuation of the battery voltage. It is possible to prevent the occurrence of a switched state. Therefore, the rectifier circuit can be prevented from oscillating, and the MOSFETs constituting the rectifier circuit can be frequently turned on and off to prevent overheating due to switching loss.
  • each FET is generated during the short circuit control by causing the FET off period in which all the MOSFETs of the rectifier circuit are turned off at a set cycle while at least the short circuit control is performed. Since the polarity of the potential of each input terminal of the rectifier circuit can be detected during the off period, the MOSFET of the upper arm connected to each input terminal of the rectifier circuit also while performing short circuit control The on / off state determination process can be performed to determine which of the lower arm MOSFETs is to be turned on and which is to be turned off. Therefore, according to the present invention, it is possible to resume FET control at the time of charge immediately after the termination of short circuit control and resume charging of the battery in a state where power loss generated in the rectifier circuit is reduced.
  • the charge timing determination means determines the necessity of charging the battery based on the sampled voltage by sampling the battery voltage only at each sampling timing by generating the sampling timing in a fixed cycle.
  • control is fixed to either FET control during charging or short-circuit control between each sampling timing and the next sampling timing, so when the battery voltage fluctuates at a high frequency, It is possible to prevent short circuit control and FET control during charging from being switched in a short cycle according to fluctuations, and the MOSFETs constituting the rectifier circuit are frequently turned on and off to cause overheating due to switching loss. You can prevent.
  • FIG. 1 is a circuit diagram showing the configuration of an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of the FET control unit used in the embodiment of FIG.
  • FIG. 3 is a circuit diagram for explaining the operation of the rectifier circuit when performing FET control during charge in the embodiment of the present invention.
  • FIG. 4 is a circuit diagram for explaining the operation of the rectifier circuit when performing short circuit control in the embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing the configuration of another embodiment of the present invention.
  • FIG. 6 is a waveform diagram showing waveforms of three-phase AC voltages output by the magnet type AC generator used in the embodiment of the present invention.
  • FIGS. 7A to 7K are waveform diagrams showing voltage waveforms of respective portions when performing FET control at the time of charge in the embodiment of FIG.
  • FIGS. 8A to 8K are waveform diagrams showing voltage waveforms of respective portions when short circuit control is performed in the embodiment of FIG.
  • FIG. 9 is a flowchart showing an example of an algorithm of a program to be executed by the microprocessor to configure the FET control unit used in the embodiment of the present invention.
  • FIG. 10 is a flowchart showing another example of an algorithm of a program to be executed by the microprocessor to configure the FET control unit used in the embodiment of the present invention.
  • FIG. 11 is a table showing the structure of a table to be referred to when the microprocessor constituting the FET control unit determines whether each MOSFET of the rectifier circuit is turned on or off in the embodiment of the present invention. is there.
  • FIG. 1 is a magnet type AC generator which is rotationally driven by a power source such as an engine or a windmill
  • 2 is a full wave rectification circuit which rectifies the output of the generator 1
  • 3 is charged by the output of the rectification circuit 2 It is a battery.
  • the generator 1 has U, V, and W three-phase power generation coils Lu, Lv, and Lw wound around an armature core having a magnet rotor that is rotationally driven by a power source and a magnetic pole portion facing the magnetic poles of the magnet rotor. It consists of a rotating stator.
  • the power generation coils Lu to Lw are star-connected, and three-phase output terminals 1u, 1v and 1w are drawn from the non-neutral point side end of these power generation coils.
  • the rectifier circuit 2 is a full-bridge three-phase full-wave rectifier circuit in which each arm of the bridge circuit is formed of a MOSFET, and includes three-phase input terminals 2u to 2w and positive and negative output terminals 2a and 2b.
  • the illustrated rectifier circuit has MOSFETs F1 to F3 of upper arms of U, V, W phases whose sources are connected to input terminals 2u to 2w and drains are commonly connected to positive side DC output terminal 2a, and input terminals 2u to Input terminals 2 u to 2 w are respectively connected to output terminals 1 u to 1 w of the generator 1.
  • the input terminals 2 u to 2 w are respectively connected to the drains 2 w and the sources thereof connected to the negative DC output terminal 2 b. It is connected to the.
  • the positive side output terminal 2 a of the rectifier circuit 2 is connected to the positive electrode terminal of the battery 3, and the negative side output terminal 2 b of the rectifier circuit 2 is grounded together with the negative electrode terminal of the battery 3.
  • the full-bridge three-phase full-wave rectifier circuit is also configured by the parasitic diodes D1 to D6 formed between the drains and sources of the MOSFETs F1 to F6.
  • the rectified output of the generator is supplied to the battery even when ⁇ 6 are turned off.
  • the rectifying circuit configured by the parasitic diodes D1 to D6 performs a rectifying operation to rectify the output of the generator 1 In this case, the power loss caused by the rectification operation is large, and the battery 3 can not be charged efficiently.
  • the MOSFETs F1 to F6 in which the respective parasitic diodes are formed are turned on.
  • the power loss generated in the rectifier circuit 2 is reduced by causing the rectifying operation to be performed while a current flows between the drain and source of the MOSFETs F1 to F6.
  • 4 is a battery voltage detection circuit that detects the voltage (battery voltage) across the battery 3
  • 5 is an input potential polarity detection circuit that detects the polarity of the potential of the three phase input terminals 2u to 2w of the rectifier circuit 2.
  • an FET control unit for controlling the MOSFETs F1 to F6 of the rectifier circuit according to the detection output of the battery voltage detection circuit 4 and the detection output of the input potential polarity detection circuit 5.
  • the battery charging device 7 is configured by the rectification circuit 2, the battery voltage detection circuit 4, the input potential polarity detection circuit 5, and the FET control unit 6.
  • a load 9 is connected to both ends of the battery 3 through the switch 8.
  • the battery 3 is mounted on the device driven by the engine, and the load driven by the battery 3 includes the electrical components essential for operating the engine.
  • an injector fuel injection valve
  • a fuel pump for supplying fuel in the fuel tank to the injector
  • an ignition device for igniting the engine
  • an injector And an ECU Electronic Control Unit
  • an actuator for driving the throttle valve is additionally provided.
  • the battery voltage detection circuit 4 is a circuit that generates an electric signal including information of the battery voltage, and is formed of, for example, a resistive voltage dividing circuit connected in parallel to both ends of the battery 3 and outputting a voltage proportional to the battery voltage. Ru.
  • the output of the battery voltage detection circuit 4 is input to the port Ao of the microprocessor constituting the FET control unit 6.
  • the microprocessor that constitutes the FET control unit 6 may be provided in the ECU that controls the electrical components of the engine, or may be provided exclusively for the battery charging device.
  • ⁇ Input potential polarity detection circuit When the input potential polarity detection circuit 5 causes the rectification circuit 2 to rectify the output of the generator 1, any MOSFET of the rectification circuit 2 is turned on at each time, and any MOSFET is turned off. It is provided in order to obtain information to determine the way of thinking.
  • the illustrated input potential polarity detection circuit 5 is provided corresponding to each of the input terminals 2 u to 2 w of the rectifier circuit, and the polarity of the potential of the input terminals 2 u to 2 w with respect to the potential (earth potential) of the negative electrode of the battery is positive.
  • polarity detection switch Su to Sw whose on / off state differs depending on when and when it is negative, and the potential of the input terminal of the rectifier circuit is positive or negative depending on the state of the polarity detection switch Su to Sw It is configured to detect whether
  • Each polarity detection switch used in the illustrated example includes an NPN transistor Tr whose emitter is grounded, a resistor r1 for connecting between the collector of the transistor Tr and the output terminal B of a constant voltage DC power supply (not shown). It comprises a resistor r2 whose one end is connected to the base of the transistor Tr, a diode Da whose cathode is connected to the other end of the resistor r2, and a resistor r3 connected between the base and emitter of the transistor Tr.
  • the base of each transistor Tr of Sw is connected to the U-phase, V-phase and W-phase input terminals 2u, 2v and 2w of the rectifier circuit 2 through a diode Da.
  • the polarity detection switches Su to Sw are supplied with a base current to the respective transistors Tr to be turned on.
  • the polarity of the potential with respect to the ground potential of the input terminals 2u-2w is negative, or when the potential with respect to the ground potential of the input terminals 2u-2w of the rectifier circuit 2 is less than the threshold value, it is turned off.
  • the collectors of the transistors Tr of the polarity detection switches Su to Sw are connected to the ports A1, A2 and A3 of the microprocessor constituting the FET control unit 6, respectively, and the L levels to the ports A1 to A3 from the polarity detection switches Su to Sw A binary signal is provided which assumes either a low level or a zero level) or an H level (high) state.
  • the L level signal is a port of the microprocessor A5 and A2 of the microprocessor constituting the FET control unit 6.
  • the H level signal constitutes the FET control unit 6 It is input to processor ports A1 to A3.
  • the L level signal corresponds to binary "0" and the H level signal corresponds to binary "1".
  • a sampling timing generation unit 601 As shown in FIG. 2, in the FET control unit 6 used in the present embodiment, a sampling timing generation unit 601, a charge necessity determination unit 602, an on / off state determination unit 603, and a charge FET control unit 604.
  • a short circuit control means 605, an FET off means 606, and an FET drive circuit 607 are provided.
  • the sampling timing generation means 601 is a means for generating sampling timing at a constant cycle.
  • the sampling timing generation means 601 may be constituted by means for performing processing for determining each sampling timing based on a clock pulse generated in the microprocessor, and sampling pulses for instructing sampling of predetermined data may be used. It may consist of an oscillator that generates at a constant sample period.
  • the charging necessity determination means 602 is a means for determining the necessity of charging the battery 3, and the battery voltage detection circuit 4 determines whether it is necessary to charge the battery 3 or to suspend charging of the battery 3. The determination is made based on the voltage being detected.
  • the charging necessity determination unit 602 determines that the battery 3 needs to be charged, for example, when the battery voltage detected by the battery voltage detection circuit 4 is lower than or equal to a specified voltage, and is detected by the battery voltage detection circuit 4 It can be configured to determine that the charging of the battery 3 needs to be stopped when the battery voltage is higher than the specified voltage.
  • the charge necessity determination unit 602 used in this embodiment samples the voltage detected by the battery voltage detection circuit 4 only at each sampling timing generated by the sampling timing generation unit 601, and the sampled voltage is less than or equal to the specified voltage. When it is determined that charging of the battery is necessary, and when the sampled voltage exceeds the specified voltage, it is determined that charging of the battery needs to be stopped.
  • the on / off state determination means 603 determines the state that each MOSFET of the rectifier circuit 2 should take at each time to minimize the power loss generated in the rectifier circuit 2 when rectifying the output of the generator 1 and supplying it to the battery 3 Is a means for performing an on / off state determination process of determining whether the state is the on state or the off state based on the polarity of the potential of the input terminals 2u to 2w detected by the input potential polarity detection circuit 5.
  • the on / off state determination means 603 used in the present embodiment is a parasitic diode of the MOSFET of the upper arm whose polarity of the potential of each input terminal of the rectifier circuit 2 detected by the input potential polarity detection circuit 5 is connected to each input terminal.
  • the upper arm MOSFET and the lower arm MOSFET connected to each input terminal determine the states to be taken as the on state and the off state, respectively, when the polarity (positive polarity) applying forward voltage to the
  • the polarity (negative polarity) of applying the reverse voltage to the parasitic diode of the MOSFET of the upper arm connected to each input terminal is the polarity of the potential of each input terminal of the rectifier circuit 2 detected by the potential polarity detection circuit 5
  • the state in which the upper arm MOSFET and lower arm MOSFET connected to each input terminal should be taken at a given time It is configured to determine an off state and the on state.
  • the on / off state determination means 603 used in this embodiment constitutes upper and lower arms connected to the input terminal 2 u when the potential of the U-phase input terminal 2 u of the rectifier circuit is positive.
  • the state to be taken by the MOSFET F1 constituting the upper arm and the state to be taken by the MOSFET F4 constituting the lower arm are respectively determined as the on state and the off state.
  • the potential of the input terminal 2u of the first stage is negative, the state which should be taken by the MOSFET F1 constituting the upper arm and the lower arm of the MOSFETs constituting the upper and lower arms connected to the input terminal 2u
  • the states to be taken by the configured MOSFET F4 are respectively determined as the off state and the on state.
  • the on / off state determination means 603 used in this embodiment is also configured of upper and lower arms connected to the input terminal 2v when the potential of the V-phase input terminal 2v of the rectifier circuit is positive.
  • the state to be taken by the MOSFET F2 constituting the upper arm and the state to be taken by the MOSFET F5 constituting the lower arm are respectively determined as the on state and the off state.
  • the MOSFET F2 constituting the upper arm and the MOSFET F5 constituting the lower arm should be taken.
  • the state to be taken is determined to be the off state and the on state, respectively.
  • the on / off state determination means 603 used in this embodiment is also configured of the upper and lower arms connected to the input terminal 2 w when the potential of the W-phase input terminal 2 w of the rectifier circuit is positive.
  • the state to be taken by the MOSFET F3 constituting the upper arm and the state to be taken by the MOSFET F6 constituting the lower arm are respectively determined as the on state and the off state, and the potential of the W phase input terminal 2w of the rectifier circuit
  • the MOSFET F3 constituting the upper arm should take the state to be taken and the MOSFET F6 constituting the lower arm.
  • the state to be taken is determined to be the off state and the on state, respectively.
  • the on / off state determination means 603 reads the binary signal inputted from the input potential polarity detection circuit 5 to the ports A1, A2 and A3 at each sampling timing generated by the sampling timing generation means 601, the ports A1, A2 and A3. Every time the binary signal input to the circuit is read, any one of the MOSFETs F1 to F6 constituting the rectifier circuit 2 is turned on and one is turned off by referring to the table shown in FIG. Decide.
  • the microprocessor causes either the during-charge FET control means 604 or the short circuit control means 605 to perform a control operation according to the result of the determination by the charge necessity determination means 602.
  • the on / off state determination means 603 determines the state of each of the MOSFETs F1 to F6 of the rectification cycle 2 when it is determined by the charge necessity determination means 602 that the battery 3 needs to be charged. It is a means to perform FET control at the time of charge which is controlled to match the above state.
  • the short circuit control means 605 simultaneously operates all the MOSFETs F1 to F3 constituting the upper arms of the rectifier circuit 2 when it is determined by the charge necessity determination means 602 that charging of the battery 3 needs to be stopped.
  • the MOSFETs F4 to F6 which are turned on or which constitute all the lower arms are simultaneously turned on to short-circuit the output terminals of the generator 1 for short circuit control.
  • the short circuit control means 605 used in this embodiment is a MOSFET F4 which constitutes all lower arms of the rectifier circuit 2 when it is judged by the charge necessity judgment means 602 that charging of the battery 3 needs to be stopped. It is configured to perform short circuit control to short between the output terminals of the generator 1 by simultaneously turning on to F6.
  • the input potential polarity detection circuit 5 is shorted between the output terminals 1u-1v, 1v-1w and 1w-1u of the generator 1. Since the potential detected by is kept at 0, it is decided which of the MOSFETs F1 to F6 of the rectifier circuit should be turned on and which should be turned off in order to rectify the generator output and supply it to the battery. I could't get the information I needed.
  • the short circuit will occur.
  • MOSFETs F1 to F6 can not immediately determine the on / off state to be taken immediately upon termination of control and resumption of FET control during charge, restart of FET control during charge is delayed, during which time parasitic diodes of the MOSFET are used. The problem arises that the current flows through the configured rectifier circuit causing a large loss.
  • the supply of drive signals to all the MOSFETs F1 to F6 of the rectifier circuit 2 is stopped at least when performing short circuit control, and these MOSFETs are turned off
  • the FET off means 606 is provided which causes the FET off period to occur at a set period.
  • the FET off means 606 may be configured to cause the FET off period only at the time of short circuit control, but in the present embodiment, all the MOSFETs F1 to F1 of the rectifier circuit 2 are also controlled when performing FET control during charging.
  • the FET off means 606 is configured to cause the FET off period in which F6 is off in a set cycle.
  • the FET off means 606 may be configured to generate the FET off period at a timing different from the sampling timing generated by the sampling timing generating means, but in the present embodiment, charging is performed to simplify control.
  • the FET off period during which all the MOSFETs F1 to F6 constituting the rectifier circuit are turned off at each sampling timing generated by the sampling timing generation means 601 FET off means 606 is configured to produce.
  • the FET off period generated by the FET off means 606 may be a period showing a constant length at all, and starts at a timing when it arrives at a constant cycle, and the on / off state determining means comprises MOSFETs F1 to F6 of the rectifier circuit. Starting from a period that ends when information necessary to determine the on / off state is obtained or a timing that arrives at a fixed cycle, the on / off state determination means determines the on / off state of the MOSFETs F1 to F6 in the rectifier circuit. It may be a period which ends when the on / off state determination process for the purpose is completed.
  • FET off period ⁇ t at which all the MOSFETs F1 to F6 of the rectifier circuit 2 are turned off is generated at a set cycle at least when short circuit control is performed, even in the state where short circuit control is performed, An on / off state that determines the state that each MOSFET of the rectifier circuit should take when rectifying the output of the generator and supplying it to the battery by detecting the polarity of the potential of the input terminal of the rectifier circuit 2 during each FET off period Since the determination process can be performed, the FET control at the time of charge can be resumed promptly after the short circuit control is finished.
  • the FET drive circuit 607 is a circuit for applying drive signals to the gates of the MOSFETs F to F6 constituting the rectifier circuit 2 and responds to commands given from the FET control means 603 during charging, the short circuit control means 605 and the FET off means 606. Then, drive signals are supplied to the gates of the MOSFETs so as to turn on and off the MOSFETs F1 to F6 constituting the rectifier circuit 2 at a predetermined timing.
  • the charge necessity determination unit 602, the on / off state determination unit 603, the charge FET control unit 604, the short circuit control unit 605, and the FET off unit 606. Is configured by causing a microprocessor to execute a predetermined program.
  • the sampling timing generation unit 601 may be configured by causing the microprocessor to execute a predetermined program, or may be configured by a pulse oscillator.
  • the magnet type AC generator 1 used in the present embodiment outputs AC voltages Vu, Vv and Vw of three phases of U, V and W phases.
  • the battery charging device 7 performs FET control during charging when the battery voltage is below the specified voltage and the charging necessity determination unit 602 determines that the battery 3 needs to be charged, and the rectification of the generator 1 is performed. The output is supplied to the battery 3.
  • the battery necessity determination means 602 determines that it is necessary to suspend charging of the battery 3 in order to prevent overcharging of the battery 3 when the battery voltage exceeds the specified voltage
  • the MOSFET F4 to At the same time, by turning on F6, short-circuit control is performed to short the output terminals of the generator, thereby stopping the supply of the charging current from the generator 1 to the battery 3.
  • FIG. 7 voltage waveforms of the respective parts when performing FET control during charging are shown, and referring to FIG. 8, voltage waveforms of the respective parts when performing short circuit control are shown. 7 and 8, (A) shows an enlarged waveform of a Z portion between times t1 and t2 of the three-phase AC voltage shown in FIG. 6, and (B) shows a sampling timing.
  • the sampling pulse Ps which the generation means 601 outputs in order to produce a sampling timing with a fixed period is shown.
  • (C) to (E) show the polarity of the potential of the U-phase to W-phase input terminals 2u to 2w of the rectifier circuit 2 detected by the input potential polarity detection circuit 5, respectively (F) to (K) Respectively indicate the on / off states of the MOSFETs F1 to F6 constituting the rectifier circuit 2.
  • the microprocessor reads the battery voltage detected by the battery voltage detection circuit 4 each time the sampling pulse Ps is generated, and determines whether the read battery voltage is lower than or equal to the specified voltage. By this determination, when it is determined that the battery voltage is less than or equal to the specified voltage, it is determined that the battery needs to be charged, and when it is determined that the battery voltage exceeds the specified voltage, overcharging is prevented. It is determined that charging of the battery needs to be paused to
  • the U of the rectifier circuit 2 While the output voltage of the U phase of the generator 1 is in a positive half wave in a section where the output voltage of the generator 1 shows the waveform of FIG. 7A, the U of the rectifier circuit 2 is shown as shown in FIG. The potential of the phase input terminal 2u exhibits positive polarity, and the potential of the U-phase input terminal 2u of the rectifier circuit 2 exhibits negative polarity while the output voltage of the U phase of the generator 1 is in the negative half wave. Further, in the section shown in FIG. 7A, since the V-phase output voltage of the generator 1 is in the positive half wave, as shown in FIG.
  • the V-phase input terminal 2v of the rectifier circuit 2 is Potential of the W phase of the generator 1 is in a negative half wave, the potential of the W phase input terminal 2w of the rectifier circuit has a negative polarity as shown in FIG. Show.
  • the on / off state determination unit 603 configured by the microprocessor reads the detection output of the input potential polarity detection circuit 5 input to the ports A1 to A3 at each sampling timing, and refers to the table in FIG. It is determined which of the MOSFETs of the upper and lower arms connected to each input terminal of 2 should be turned on and which should be turned off.
  • the FET control means 604 makes the on / off state of the MOSFETs of the upper and lower arms connected to each input terminal of the rectification circuit 2 match the state determined by the on / off state determination means 603. Provide a drive signal to the MOSFET.
  • the FET off means 606 used in the present embodiment is configured such that a time corresponding to the pulse width of each sampling pulse is taken as the FET off period ⁇ t every time the sampling timing generating means 601 generates each sampling timing. Turn off all the MOSFETs of the inter rectifier circuit.
  • the battery When the battery is charged in the section shown in FIG. 7, it is connected to the input terminal 2u as shown in FIG. 7 (F) while the potential of the U-phase input terminal 2u of the rectifier circuit shows positive polarity.
  • the upper arm MOSFET F1 is turned on, and as shown in FIG. 7I, the lower arm MOSFET F4 connected to the input terminal 2u is turned off.
  • the potential of the U-phase input terminal shows negative polarity
  • the upper arm MOSFET F1 connected to the input terminal 2u is turned off, and the lower arm MOSFET F4 connected to the input terminal 2u is turned on. Be put into a state.
  • the potential of the V-phase input terminal 2v of the rectifier circuit shows positive polarity as shown in FIG.
  • the upper arm MOSFET F2 connected to the input terminal 2v of the rectifier circuit is turned on as shown in), and the lower arm MOSFET F5 connected to the input terminal 2v is turned off as shown in FIG. Be put into a state.
  • FIG. 7E since the potential of the W-phase input terminal of the rectifier circuit is negative, as shown in FIG. 7H, the MOSFET of the upper arm connected to the input terminal 2w F3 is turned off, and the lower arm MOSFET F6 connected to the input terminal 2w is turned on as shown in FIG.
  • the FET off means 606 turns off the FET every time the sampling timing generating means 601 generates the sampling pulse shown in FIG.
  • the supply of drive signals to all the MOSFETs F1 to F6 of the rectifier circuit is stopped for a period ⁇ t to turn off all the MOSFETs. Therefore, when FET control is performed during charging, the MOSFET turned on based on the determination by the on / off state determination means 603 is turned off for a constant FET off period ⁇ t every time each sampling timing arrives. .
  • the charging necessity determination means is configured to detect the battery voltage continuously and determine the necessity of charging following the fluctuation of the battery voltage, the load of the battery fluctuates at a high frequency and the battery
  • the FET control and the short circuit control are switched in a very short cycle during charging, the rectifier circuit 2 oscillates, and the MOSFET constituting the rectifier circuit is overheated by the switching loss. There is a risk of destruction.
  • the sampling timing is generated at a constant cycle and the battery voltage is sampled only at each sampling timing to determine whether the battery needs to be charged or not, from each sampling timing Since the control is fixed to either the FET control during charging or the short circuit control until the next sampling timing, when the battery voltage fluctuates frequently, the short circuit control and the FET during charging according to the fluctuation of the battery voltage It is possible to prevent the occurrence of a state where control is switched in a short cycle, and it is possible to prevent the MOSFET constituting the rectifier circuit from being turned on and off frequently and overheating due to switching loss.
  • the charge necessity determination means is configured to generate sampling timings in a constant cycle and detect the battery voltage only at each sampling timing to determine the necessity of charging the battery, If the sample period is too long, battery voltage fluctuations can not be detected properly and battery charging can not be properly controlled.
  • the FET off period is generated at a constant period (sample period in this embodiment) as in the present embodiment, if the period for causing the FET off period is too short, the FET off period frequently occurs. It will not be possible to control properly.
  • the cycle in which the sampling timing generating means 601 generates the sampling timing is set to a length that can appropriately control the charge control of the battery based on the experimental result and does not disturb the short circuit control. When charging a battery for driving an electrical component necessary for operating the engine, it has been experimentally confirmed that the sample period is suitably set to, for example, about 125 ⁇ sec.
  • the FET off period may be constant, start at a constant cycle, may be a period showing a constant length at all times, start at a timing when it arrives at a constant cycle, and the on / off state determining means may be a MOSFET of the rectifier circuit Starting with a period that ends when information necessary to determine the on / off state of F1 to F6 is acquired, or at a timing that arrives at a fixed cycle, the on / off state determination means turns on or off MOSFETs F1 to F6 in the rectifier circuit. It may be a period which ends when the on / off state determination processing for determining the state is completed, but in the example shown in FIGS. 7 and 8, the constant period ⁇ t corresponding to the pulse width of the sampling pulse Ps The FET is off.
  • short circuit control means 605 When charging necessity determination means 602 determines that charging of the battery needs to be suspended, short circuit control means 605 simultaneously turns on MOSFETs F1 to F3 constituting all upper arms of rectifier circuit 2. The MOSFETs F4 to F6 constituting the lower arm or all the lower arms are simultaneously turned on to perform short circuit control to short between the output terminals 1u and 1v, 1v and 1w, and 1w and 1u of the generator.
  • the MOSFETs F1 to F3 constituting all the upper arms of the rectifier circuit 2 are turned off, and the MOSFETs constituting all the lower arms are constituted.
  • the FET off means 606 turns off all the MOSFETs of the rectifier circuit 2 for a constant FET off period ⁇ t at each sampling timing while performing short circuit control while simultaneously turning on the MOSFETs F4 to F6.
  • the MOSFETs F4 to F6 are periodically turned off, as can be seen in FIGS.
  • the on / off state determination means 603 performs the on / off state determination processing during each FET off period ⁇ t even while the short circuit control means 605 is performing the short circuit control, and prepares for the restart of the FET control during charge.
  • short circuit current i flows through MOSFETs F 4 to F 6 in the lower arm of rectifier circuit 2 and three-phase power generation coil to supply charge current to battery 3. Is stopped.
  • short circuit control by the short circuit control means 605 is stopped, and FET control during charge by the FET control means 604 during charge is resumed.
  • the battery voltage is maintained near the specified voltage by repeating the FET control and the short circuit control during charge.
  • each of the MOSFETs F1 to F6 takes at each time to cause the MOSFETs F1 to F6 constituting the rectification circuit 2 to perform the rectification operation.
  • the on-off state to be done is required.
  • the on / off state of the MOSFETs F1 to F6 obtained during each FET off period ⁇ t in the process of performing the short circuit control is stored in the on / off state storage means (not shown) made of the RAM.
  • the on / off states of the MOSFETs F1 to F6 stored in the on / off state storage means are updated each time a new on / off state is required in each FET off period.
  • the on / off states that each of the MOSFETs F1 to F6 should be taken at each time in order to cause the MOSFETs F1 to F6 constituting the rectifier circuit 2 to perform the rectifying operation If it is determined, it is possible to resume the FET control at the time of charge immediately after the short circuit control ends. Therefore, in the process of shifting from short circuit control to FET control at the time of charge, it is possible to reduce heat generation due to the parasitic diode of the MOSFET that constitutes the rectifier circuit, and the temperature of the rectifier circuit It can prevent it from rising excessively.
  • the generator 1 is operated during each FET off period ⁇ t. Power is output through a full-wave rectifier circuit constituted by parasitic diodes D1 to D6 of the MOSFETs F1 to F6 constituting the rectifier circuit 2. Since the FET off period ⁇ t repeatedly occurs while the short circuit control is performed, the battery may be overcharged if the battery 3 is charged by the power output from the rectifier circuit 2 during the FET off period ⁇ t. There is.
  • the full wave rectification circuit consisting of the parasitic diodes D1 to D6 of the MOSFETs F1 to F6 constituting the rectification circuit 2 from the generator 1 in the state where short circuit control is performed
  • the length of the FET off period ⁇ t is set in order to keep the amount of power [Ws] output to a value less than the minimum value of the amount of power [Ws] required to be supplied from the battery to the load every unit time. Is preferred.
  • the FET off period ⁇ t is set so as to be less than the minimum value of the amount [Ws]
  • the power output from the generator 1 through the rectifier circuit constituted by parasitic diodes D1 to D6 during the FET off period ⁇ t Since all the power is supplied to the load 9 of the battery 3 and power is not supplied from the rectifier circuit 2 to the battery 3, the possibility of the battery being overcharged can be eliminated.
  • the FET off period ⁇ t is too short, the polarity of the potential of the input terminal of the rectifier circuit can not be accurately detected, and the on / off state to be taken by each of the MOSFETs F1 to F6 is properly determined. If the FET off period ⁇ t is constant, it is necessary to set the length so as not to be too short.
  • the minimum value of the amount of power that needs to be supplied from the battery 3 to the load 9 is, for example, the minimum value of the amount of power consumed by the load that is essential for operating the device in which the battery 3 is mounted.
  • the minimum value of the amount of power required to be supplied from the battery 3 to the load 9 is For example, the amount of electric power necessary to drive the electrical components necessary to operate the engine such as an injector, a fuel pump, and an igniter when the engine is idling.
  • the length of the FET off period ⁇ t can be set to, for example, about 10 ⁇ sec.
  • the charge necessity determination unit 602, the on / off state determination unit 603, and the charge time are performed when the FET off period is generated at a constant cycle even when performing the FET control during charge and when performing the short circuit control.
  • An example of an algorithm of processing to be repeatedly executed by the microprocessor for every minute time to constitute the FET control means 604, the short circuit control means 605 and the FET off means 606 is shown in FIG.
  • each FET off period starts at each sampling timing, and ends when the on / off state determination process for determining the on / off state of the MOSFETs F1 to F6 in the rectifier circuit is completed. Is said to be.
  • step S101 it is first determined in step S101 whether the current implementation timing of this process is the timing (sampling timing) for detecting the polarity of the potential of the input terminal of the rectifier circuit. As a result, if it is determined that the present implementation timing is not the timing for detecting the polarity of the potential of the input terminal of the rectifier circuit, nothing is done thereafter and this processing is ended.
  • step S101 it is determined in step S101 that the present execution timing is the timing for detecting the polarity of the potential of the input terminal of the rectifier circuit, an FET off command is given to the FET drive circuit 607 in step S102 to all the MOSFETs F1 to F6. To stop the supply of drive signals.
  • the FET off means 606 is configured by step S102.
  • step S102 After stopping the supply of drive signals to MOSFETs F1 to F6 in step S102, the process proceeds to step S103, and the table of FIG. 11 is searched according to the value of the binary signal applied to ports A1 to A3. Determine the on / off state to be taken by the MOSFETs F1 to F6.
  • the on / off state determination means 603 is configured by this step.
  • step S104 it is determined whether the battery voltage being sampled exceeds the specified voltage. As a result, when it is determined that the battery voltage does not exceed the specified voltage, the process proceeds to step S105, and the rectifier circuit from the FET drive circuit 607 to match the states of the MOSFETs F1 to F6 with the state determined in step S103.
  • the FET control at the time of charge is performed by giving a drive signal to a predetermined MOSFET of This step S105 constitutes the FET control means at the time of charge.
  • step S104 If it is determined in step S104 that the battery voltage exceeds the specified voltage, the process proceeds to step S106, and a drive signal is simultaneously applied from the FET drive circuit 607 to the MOSFETs F4 to F6 to simultaneously turn on the MOSFETs F4 to F6. Control the short circuit.
  • the short control control means 605 is comprised by this step S160.
  • short circuit control is performed by turning off all the upper arm MOSFETs F1 to F3 of the rectifier circuit 2 and simultaneously turning on all the lower arm MOSFETs F4 to F6.
  • the short circuit control may be performed by simultaneously turning on the MOSFETs F1 to F3 of all the upper arms of two.
  • the FET off period is started at each sampling timing, and is ended when the on / off state determination processing is completed.
  • the FET off period is generated at a constant cycle even when performing the FET control during charging and the short circuit control, but in the other embodiments of the present invention, the FET off period is generated during the short circuit control. Only cause FET off period.
  • the microprocessor is repeated every minute time to configure the charge necessity determination unit 602, the on / off state determination unit 603, the FET control unit 604 during charging, the short circuit control unit 605, and the FET off unit 606.
  • An example of an algorithm of processing to be executed is shown in FIG.
  • step S201 it is determined whether the current implementation timing of this process is timing to detect the polarity of the potential of the input terminal of the rectifier circuit. As a result, if it is determined that the present timing is not the timing to detect the polarity of the potential of the input terminal of the rectifier circuit, the process is terminated without doing anything.
  • step S201 If it is determined in step S201 that the present timing is the timing to detect the polarity of the potential of the input terminal of the rectifier circuit, it is determined in step S202 whether the battery voltage sampled exceeds the specified voltage. As a result, when it is determined that the battery voltage is less than or equal to the specified voltage, the process proceeds to step S203, and it is determined whether the short circuit control flag is set to 1.
  • the short circuit control flag is a flag that is set to 1 when starting short circuit control, and is set to 1 in step S211 when it is determined that the battery voltage exceeds the specified voltage.
  • step S202 If it is determined in step S202 that the battery voltage is less than or equal to the specified voltage, and it is determined in step S203 that the short circuit control flag is not set to 1 (when it is necessary to charge the battery), the process proceeds to step S205.
  • step S206 After the on / off states of the MOSFETs F1 to F6 are determined by searching the table of FIG. 11 according to the value of the binary signal applied to the ports A1 to A3, the process proceeds to step S206 to proceed with the MOSFET F1.
  • FET control at the time of charge is performed by giving a drive signal from the FET drive circuit 607 to a predetermined MOSFET of the rectifier circuit.
  • step S207 the short circuit control flag is cleared to end this process.
  • step S202 When it is determined in step S202 that the battery voltage exceeds the specified voltage, a FET off command is given to the FET drive circuit 607 in step S208 to stop the supply of drive signals to all the MOSFETs F1 to F6.
  • step S209 the on / off states of the MOSFETs F1 to F6 are determined by searching the table of FIG. 11 according to the value of the binary signal applied to the ports A1 to A3.
  • the drive circuit 607 simultaneously supplies drive signals to the MOSFETs F4 to F6 to simultaneously turn on the MOSFETs F4 to F6 to perform short circuit control.
  • step S211 the short circuit control flag is set to 1 and this process is ended. While the state in which the battery voltage is determined to have exceeded the specified voltage in step S202 continues, steps S208 to S211 are executed to perform short circuit control.
  • step S202 If it is determined in step S202 that the battery voltage is less than or equal to the specified voltage in the state where short circuit control is performed, it is determined in step S203 that the short circuit control flag is set to 1; After the FET off command is given to stop the supply of drive signals to all the MOSFETs F1 to F6, the process proceeds to step S205 and the MOSFETs are switched according to the value of the binary signal applied to the ports A1 to A3. Determine the on / off state to be taken by F1 to F6. Next, in step S206, the FET drive circuit 607 supplies a drive signal to a predetermined MOSFET of the rectifier circuit so that the state of the MOSFETs F1 to F6 matches the state determined in step S205. After execution, the short circuit control flag is cleared to 0 in step S207.
  • step S202 When the process of FIG. 10 is executed with the short circuit control flag cleared, if it is determined in step S202 that the battery voltage is less than or equal to the specified voltage, the short circuit flag is not set to 1 in step S203. Therefore, steps S205 to S207 are performed without performing step 204, and FET control during charging is performed. Therefore, the FET off control is executed only at the time of short circuit control, and is not executed at the time of charge battery control.
  • step S202 configures the charging necessity determination unit 602
  • steps S204 and S208 configure the FET off unit.
  • the on / off state determination means 603 is configured by steps S205 and S209
  • the FET control means 604 for charging and the short circuit control means 605 are configured respectively by steps S206 and S210.
  • the FET off means starts the FET off period at a constant cycle, and when the on / off state determination process is completed, the FET off period Although it is configured to be terminated, if the FET off means is configured in this way, the FET off period becomes the minimum necessary length, so that the possibility of the battery being overcharged at the time of short circuit control is eliminated. be able to.
  • step S101 shown in FIG. 9 and step S201 shown in FIG. 10 are omitted.
  • the three-phase generating coils Lu to Lw of the magnet type AC generator 1 are star-connected, but the three-phase generating coils Lu to Lw are ⁇ -connected as shown in FIG.
  • the battery charging device can be widely used in the industrial field where it is necessary to charge a battery using a magnet type AC generator driven by a power source such as an engine, a windmill, or a water wheel as a power source.
  • a power source such as an engine, a windmill, or a water wheel as a power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Rectifiers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Eletrric Generators (AREA)
  • Protection Of Static Devices (AREA)

Abstract

磁石式交流発電機の出力を整流する回路として各アームがMOSFETからなるフルブリッジ形の整流回路を用いるバッテリ充電装置が提供される。本発明に係る充電装置は、バッテリの充電時に整流回路の各MOSFETがとるべきオンオフの状態を整流回路の入力端子の電位の極性に基づいて決定するオンオフ状態決定手段と、バッテリを充電する際に整流回路の各MOSFETの状態をオンオフ状態決定手段が決定した状態に一致させる制御を行う充電時FET制御手段と、バッテリの充電を休止する際に発電機の出力端子間を短絡する短絡制御を行う短絡制御手段と、整流回路のすべてのMOSFETがオフ状態になるFETオフ期間を一定の周期で生じさせるFETオフ手段とを備えており、短絡制御が行われている間も、バッテリ充電時に整流回路の各MOSFETがとるべき状態を決定するための情報を各FETオフ期間の間に得ることができるようにした。

Description

バッテリ充電装置
 本発明は、磁石式交流発電機の整流出力でバッテリを充電するバッテリ充電装置に関するものである。
 バッテリを充電する装置として、エンジンや風車等の駆動源により駆動される磁石式交流発電機の整流出力でバッテリを充電するように構成されたものが知られている。
 一般にこの種の充電装置は、発電機の出力を整流してバッテリに供給する整流回路と、バッテリの両端の電圧(バッテリ電圧)を検出するバッテリ電圧検出回路と、この検出回路により検出されたバッテリ電圧に応じてバッテリを充電する必要があるのかバッテリの充電を休止する必要があるのかを判定する充電要否判定手段と、充電要否判定手段によりバッテリを充電する必要があると判定されているときに発電機から整流回路を通してバッテリに充電電流を供給し、充電要否判定手段により過充電を防ぐためにバッテリの充電を休止する必要があると判定されたときにバッテリへの充電電流の供給を停止するようにバッテリへの充電電流の供給を制御する制御部とにより構成される。
 バッテリに充電電流を供給する電源として磁石式交流発電機が用いられる場合には、充電要否判定手段によりバッテリを充電する必要があると判定されているときに発電機の出力を整流してバッテリに充電電流を供給し、充電要否判定手段によりバッテリの充電を休止する必要があると判定されたときに発電機の出力端子間を短絡する短絡制御を行うことによりバッテリへの充電電流の供給を停止するように制御部を構成することが多い。
 磁石式交流発電機の出力を整流する整流回路としては、ブリッジ回路の上下のアームをダイオードにより構成したダイオードブリッジ全波整流回路が広く用いられている。しかし、ダイオードは順方向電流が流れた際に生じる損失が大きいため、この整流回路を用いると、発電機の出力を整流する際に生じる電力損失が大きくなるのを避けられない。整流回路で大きな電力損失が生じると、整流回路の温度が上昇するだけでなく、バッテリに必要な充電電流を供給するために大形の発電機を用いることが必要になるため好ましくない。
 そこで、特許文献1に示されているように、発電機の出力を整流する整流回路として、ブリッジ回路の上下のアームをMOSFETにより構成したフルブリッジ形の全波整流回路を用いることが提案された。MOSFETは、オン状態にされた際にその主回路(ドレイン・ソース間回路)で生じる損失が極めて少ないため、発電機の出力を整流する整流回路の各アームをMOSFETにより構成しておくと、発電機から整流回路を通してバッテリに供給する電流を、整流回路のいずれかのアームを構成しているMOSFETのドレイン・ソース間を通して流すように各MOSFETを制御することにより、整流回路で生じる電力損失を少なくすることができる。
 発電機から整流回路を通してバッテリに供給する電流を、整流回路のいずれかのアームを構成しているMOSFETのドレイン・ソース間を通して流すには、発電機から整流回路の各アームを構成しているMOSFETのドレイン・ソース間に印加される電圧の極性が、各アームを構成しているMOSFETのドレイン・ソース間に形成された寄生ダイオードを順方向にバイアスする極性であるときに各アームを構成しているMOSFETをオン状態にするように制御すればよい。各MOSFETのドレイン・ソース間に印加されている電圧の極性は、整流回路の各入力端子の電位の極性を検出することにより判別することができる。
 例えば、整流回路の各入力端子の電位の極性が各入力端子に接続されている上側アームのMOSFETの寄生ダイオードに順方向電圧を印加する極性であるときに各入力端子に接続されている上側アームのMOSFET及び下側アームのMOSFETがそれぞれとるべき状態をオン状態及びオフ状態と決定し、入力電位極性検出回路により検出されている整流回路の各入力端子の電位の極性が各入力端子に接続されている上側アームのMOSFETの寄生ダイオードに逆方向電圧を印加する極性であるときに各入力端子に接続されている上側アームのMOSFET及び下側アームのMOSFETがそれぞれとるべき状態をオフ状態及びオン状態と決定することができる。
 また、発電機の出力を整流する整流回路として、ブリッジ回路の各アームがMOSFETにより構成されたフルブリッジ形の全波整流回路を用いる場合には、整流回路の下アームを構成しているMOSFETを同時にオン状態にすることにより発電機の出力端子間を短絡することができるため、充電要否判定手段によりバッテリの充電を休止する必要があると判定されたときに、バッテリへの充電電流の供給を停止するための短絡制御を容易に行うことができる。磁石式交流発電機の出力を整流するフルブリッジ形の整流回路の下アームを構成しているMOSFETを同時にオン状態にすることにより発電機の出力端子間を短絡することは、例えば特許文献2に記載されている。
特開平4-138030号公報 特開平11-225446号公報
 上記のように、発電機の出力を整流する整流回路として、上下の各アームがMOSFETにより構成されたフルブリッジ形の全波整流回路を用いると、各時刻において整流回路の各入力端子に接続された上下のアームのMOSFETがそれぞれとるべき状態がオン状態であるかオフ状態であるかを、整流回路の各入力端子の電位の極性に基づいて決定して、各MOSFETの状態を決定された状態に一致させるように制御することにより電力損失が少ない整流回路を構成して、バッテリの充電を低損失で行わせることができる。
 しかしながら、バッテリ電圧が規定電圧を超えて、バッテリの充電を休止させる必要があると判定されたときに、整流回路のすべての下アームを構成しているMOSFETを同時にオン状態にして発電機の出力を短絡する短絡制御を行った場合には、短絡制御が行われている間、整流回路の各入力端子の電位がゼロ電位に保たれるため、各時刻において整流回路の各MOSFETがとるべき状態を決定するための情報を得ることができなくなるという問題が生じる。
 従って、上記のように構成した場合には、短絡制御を終了してバッテリの充電を再開する際に、整流回路の各入力端子に接続された上アームのMOSFET及び下アームのMOSFETの何れをオン状態にし、何れをオフ状態にすべきかを直ちに決定することができないため、バッテリを充電する際のMOSFETのオンオフ制御を速やかに再開することができない。従って、この種のバッテリ充電装置では、短絡制御を終了して充電時の制御に移行する過程ですべてのMOSFETがオフ状態にされる過渡期間が生じ、この過渡期間の間は、MOSFETの寄生ダイオードにより構成された全波整流回路を通してバッテリに充電電流が供給され、電力損失が大きい寄生ダイオードで多くの熱が発生する。負荷が接続されているバッテリを充電する場合には、充電を必要とする状態と充電を休止する必要がある状態とが短い周期で繰り返されることがあるため、短絡制御から充電時の制御に移行する過程でMOSFETの寄生ダイオードを通して電流が流れる過渡期間が生じると、電力損失が大きい寄生ダイオードから発生する熱により整流回路の温度が過度に上昇するという問題があった。
 上記の問題が生じるのを防ぐため、発電機の磁石回転子の各瞬時における回転角度位置の情報を得るセンサを別途設けて、このセンサにより得られる回転子の回転角度位置情報から、整流回路の各入力端子に印加される電圧の位相を推測し、この位相情報に基づいて整流回路の各入力端子に接続されている上下のMOSFETの何れをオン状態にし、何れをオフ状態にすべきかを決定することが考えられる。しかしながら、磁石回転子の各瞬時における回転角度位置の情報を得るセンサを別途設けると、充電装置を構成する部品の点数が多くなってコストが上昇するのを避けられない。
 本発明の目的は、磁石式交流発電機の出力を整流する整流回路として、ブリッジ回路の各アームがMOSFETにより構成された全波整流回路を用いるバッテリ充電装置において、発電機の出力電圧の位相を検出するセンサを特別に設けることなく、短絡制御時にも随時整流回路の各入力端子の電位の極性の情報を得て、短絡制御を終了した後速やかに充電時のMOSFETの制御を再開させることができるようにすることにある。
 本発明は、磁石式交流発電機の整流出力でバッテリを充電するバッテリ充電装置を対象とする。本発明に係るバッテリ充電装置は、ブリッジ回路を構成する各アームがMOSFETからなっていて、発電機の出力が入力される入力端子と、バッテリのプラス端子及びマイナス端子にそれぞれ接続されるプラス側及びマイナス側の出力端子とを有するフルブリッジ形の整流回路と、バッテリの両端の電圧を検出するバッテリ電圧検出回路と、整流回路の各入力端子の電位の極性を検出する入力電位極性検出回路と、バッテリ電圧検出回路及び入力電位極性検出回路の検出出力に応じて前記整流回路のMOSFETを制御するFET制御部とを備えている。
 本発明においては、上記FET制御部が、バッテリ電圧検出回路が検出している電圧に基づいてバッテリを充電する必要があるかバッテリの充電を休止する必要があるかを判定する充電要否判定手段と、発電機の出力を整流してバッテリに供給する際に整流回路の各MOSFETがとるべき状態がオン状態であるかオフ状態であるかを入力電位極性検出回路が検出している各入力端子の電位の極性に基づいて決定するオンオフ状態決定処理を行うオンオフ状態決定手段と、充電要否判定手段によりバッテリを充電する必要があると判定されているときに整流回路の各MOSFETの状態をオンオフ状態決定手段が決定した状態に一致させるように制御する充電時FET制御を行う充電時FET制御手段と、充電要否判定手段によりバッテリの充電を休止する必要があると判定されているときに整流回路のすべての上アームを構成しているMOSFETを同時にオン状態にするか又はすべての下アームを構成しているMOSFETを同時にオン状態にして発電機の出力端子間を短絡する短絡制御を行う短絡制御手段と、少なくとも短絡制御を行う際に整流回路のすべてのMOSFETがオフ状態になるFETオフ期間を設定された周期で生じさせるFETオフ手段とを備えている。上記オンオフ状態決定手段は、短絡制御手段が短絡制御を行っている間も、各FETオフ期間の間に入力電位極性検出回路が検出した整流回路の各入力端子の電位の極性に基づいてオンオフ状態決定処理を行うように構成されている。
 上記のように、短絡制御を行っている間に、整流回路のすべてのMOSFETがオフ状態になるFETオフ期間を設定された周期で生じさせると、短絡制御を行っている間も、各FETオフ期間の間に整流回路の各入力端子の電位の極性を検出することができるため、各時刻において整流回路の各入力端子に接続されている上アームのMOSFET及び下アームのMOSFETの何れをオン状態とし、何れをオフ状態とするかを決定することができ、短絡制御を終了した後速やかに充電時FET制御を再開させることができる。従って、短絡制御から充電時FET制御に移行する過程で、整流回路を構成しているMOSFETの寄生ダイオードで生じる発熱を少なくすることができ、短絡制御が繰り返し行われた場合に整流回路の温度が過度に上昇するのを防ぐことができる。
 上記のように、短絡制御を行う際に整流回路のすべてのMOSFETがオフ状態になるFETオフ期間を設定された周期で生じさせた場合、各FETオフ期間の間は発電機の出力端子間の短絡が解除されるため、発電機の出力が整流回路を構成しているMOSFETの寄生ダイオードからなる全波整流回路により整流されてバッテリに供給される。FETオフ期間は短絡制御が行われている間繰り返し生じるため、各FETオフ期間の間にMOSFETの寄生ダイオードからなる全波整流回路により整流された発電機の出力によりバッテリが充電されると、バッテリが過充電状態になるおそれがある。
 従って本発明を実施するに当たっては、短絡制御が行われている間に発電機から整流回路を構成しているMOSFETの寄生ダイオードを通して単位時間毎に出力される電力量[Ws]を単位時間毎にバッテリが負荷に供給する必要がある電力量[Ws]の最小値以下に抑えるように、FETオフ期間の長さを設定しておくことが好ましい。このようにFETオフ期間を設定しておくと、FETオフ期間の間に発電機から整流回路のMOSFETの寄生ダイオードを通して出力される電力はすべてバッテリの負荷に供給され、整流回路からバッテリに電力が供給されることがないため、バッテリが過充電状態にされるおそれを無くすことができる。
 充電要否判定手段は、バッテリ電圧が規定電圧以下であるときにバッテリの充電が必要であると判定し、バッテリ電圧が規定電圧を超えているときにバッテリの充電を休止する必要があると判定するように構成することができる。このように充電要否判定手段を構成する場合、バッテリ電圧を連続的に検出して、バッテリ電圧の変動に追従して充電の要否を判定すると、バッテリの負荷が細かく変動する場合に、バッテリ電圧の変動に合わせて、充電時FET制御と短絡制御とが非常に短い周期で切り換えられる状態が生じ、整流回路が発振状態になることがある。整流回路が発振状態になると、整流回路を構成しているMOSFETが頻繁にオンオフさせられるため、MOSFETで生じるスイッチング損失によりMOSFETが過熱して破壊するおそれがある。
 そこで、本発明の他の態様では、一定の周期でサンプリングタイミングを生じさせるサンプリングタイミング発生手段が設けられ、充電要否判定手段は、サンプリングタイミング発生手段が生じさせる各サンプリングタイミングでのみバッテリ電圧検出回路が検出している電圧をサンプリングして、サンプリングした電圧に基づいてバッテリの充電が必要であるか、バッテリの充電を休止する必要があるかを判定するように構成される。
 上記のように、一定の周期でサンプリングタイミングを生じさせて、各サンプリングタイミングでのみバッテリ電圧をサンプリングしてバッテリの充電の要否を判定するようにすると、各サンプリングタイミングから次のサンプリングタイミングまでの間、制御が充電時FET制御又は短絡制御のいずれかに固定されるため、バッテリ電圧が高頻度で変動した場合に、バッテリ電圧の変動に合わせて短絡制御と充電時FET制御とが短い周期で切り換えられる状態が生じるのを防ぐことができる。従って、整流回路が発振状態になるのを防ぐことができ、整流回路を構成しているMOSFETが頻繁にオンオフさせられて、スイッチング損失により過熱するのを防ぐことができる。
 本発明の他の態様は、以下に記載される発明を実施するための形態についての説明中で明らかにされる。
 本発明によれば、少なくとも短絡制御を行っている間、整流回路のすべてのMOSFETがオフ状態になるFETオフ期間を設定された周期で生じさせて、短絡制御を行っている間も、各FETオフ期間の間に整流回路の各入力端子の電位の極性を検出することができるようにしたので、短絡制御を行っている間も、整流回路の各入力端子に接続されている上アームのMOSFET及び下アームのMOSFETの何れをオン状態とし、何れをオフ状態とするかを決定するオンオフ状態決定処理を行うことができる。従って本発明によれば、短絡制御を終了した後速やかに充電時FET制御を再開させて、整流回路で生じる電力損失の低減を図った状態でバッテリの充電を再開させることができ、短絡制御から充電時FET制御に移行する過程で、整流回路を構成するMOSFETの寄生ダイオードを通して電流が流れる時間を無くすか又は極めて短くして、電力損失が大きい寄生ダイオードから発生する熱により整流回路の温度が過度に上昇するのを防ぐことができる。
 また本発明において、一定の周期でサンプリングタイミングを生じさせて、各サンプリングタイミングでのみバッテリ電圧をサンプリングしてサンプリングした電圧に基づいてバッテリの充電の要否を判定するように充電要否判定手段を構成した場合には、各サンプリングタイミングから次のサンプリングタイミングまでの間、制御が充電時FET制御又は短絡制御のいずれかに固定されるため、バッテリ電圧が高頻度で変動した場合に、バッテリ電圧の変動に合わせて短絡制御と充電時FET制御とが短い周期で切り換えられる状態が生じるのを防ぐことができ、整流回路を構成しているMOSFETが頻繁にオンオフさせられて、スイッチング損失により過熱するのを防ぐことができる。
図1は、本発明の一実施形態の構成を示した回路図である。 図2は、図1の実施形態で用いるFET制御部の構成例を示したブロック図である。 図3は、本発明の実施形態において充電時FET制御を行う際の整流回路の動作を説明するための回路図である。 図4は、本発明の実施形態において短絡制御を行う際の整流回路の動作を説明するための回路図である。 図5は、本発明の他の実施形態の構成を示した回路図である。 図6は、本発明の実施形態で用いる磁石式交流発電機が出力する3相交流電圧の波形を示した波形図である。 図7(A)ないし(K)は、図1の実施形態において、充電時FET制御を行う際の各部の電圧波形を示した波形図である。 図8(A)ないし(K)は、図1の実施形態において、短絡制御を行う際の各部の電圧波形を示した波形図である。 図9は、本発明の実施形態で用いるFET制御部を構成するためにマイクロプロセッサに実行させるプログラムのアルゴリズムの一例を示したフローチャートである。 図10は、本発明の実施形態で用いるFET制御部を構成するためにマイクロプロセッサに実行させるプログラムのアルゴリズムの他の例を示したフローチャートである。 図11は、本発明の実施形態においてFET制御部を構成するマイクロプロセッサが整流回路の各MOSFETをオン状態にするかオフ状態にするかを決定する際に参照するテーブルの構造を示した図表である。
 <実施形態の構成>
 図1を参照すると、本発明に係るバッテリ充電装置の一実施形態の全体的な構成が示されている。同図において、1はエンジンや風車等の動力源により回転駆動される磁石式交流発電機、2は発電機1の出力を整流する全波整流回路、3は整流回路2の出力で充電されるバッテリである。
 発電機1は、動力源により回転駆動される磁石回転子と、この磁石回転子の磁極に対向する磁極部を有する電機子鉄心にU,V,W3相の発電コイルLu,Lv及びLwを巻回してなる固定子とにより構成されている。図1に示した例では、発電コイルLu~Lwがスター結線されていて、これらの発電コイルの非中性点側の端部から3相の出力端子1u,1v及び1wが引き出されている。
 <整流回路>
 整流回路2は、ブリッジ回路の各アームをMOSFETにより構成したフルブリッジ形の3相全波整流回路で、3相の入力端子2u~2wと、プラス側及びマイナス側の出力端子2a及び2bとを有している。図示の整流回路は、入力端子2u~2wにソースが接続され、ドレインがプラス側直流出力端子2aに共通接続されたU,V,W3相の上アームのMOSFET F1~F3と、入力端子2u~2wにそれぞれドレインが接続されソースがマイナス側直流出力端子2bに共通接続された下アームのMOSFET F4~F6とにより構成されていて、入力端子2u~2wはそれぞれ発電機1の出力端子1u~1wに接続されている。また整流回路2のプラス側出力端子2aは、バッテリ3の正極端子に接続され、整流回路2のマイナス側出力端子2bは、バッテリ3の負極端子と共に接地されている。
 本実施形態で用いる整流回路2においては、MOSFET F1~F6のドレイン・ソース間に形成された寄生ダイオードD1~D6によってもフルブリッジ形の3相全波整流回路が構成されているため、MOSFET F1~F6をオフにした状態でも、発電機の整流出力がバッテリに供給される。この場合、寄生ダイオードD1~D6は、順方向電流が流れた際に生じる損失が大きいため、寄生ダイオードD1~D6により構成された整流回路に発電機1の出力を整流する整流動作を行わせた場合には、整流動作に伴って生じる電力損失が大きくなり、バッテリ3の充電を効率よく行うことができない。
 そこで本実施形態では、発電機1の出力を整流する過程で寄生ダイオードD1~D6のそれぞれに順方向電圧が印加される期間、それぞれの寄生ダイオードが形成されているMOSFET F1~F6をオン状態にして、MOSFET F1~F6のドレイン・ソース間を通して電流を流しながら整流動作を行わせることにより、整流回路2で生じる電力損失の低減を図る。
 図1において、4はバッテリ3の両端の電圧(バッテリ電圧)を検出するバッテリ電圧検出回路、5は整流回路2の3相の入力端子2u~2wの電位の極性を検出する入力電位極性検出回路、6はバッテリ電圧検出回路4の検出出力及び入力電位極性検出回路5の検出出力に応じて整流回路のMOSFET F1~F6を制御するFET制御部である。図1に示した例では、整流回路2と、バッテリ電圧検出回路4と、入力電位極性検出回路5と、FET制御部6とによりバッテリ充電装置7が構成されている。バッテリ3の両端には、スイッチ8を通して負荷9が接続されている。
 本実施形態では、エンジンにより駆動される機器にバッテリ3が搭載されているものとし、バッテリ3が駆動する負荷の中には、エンジンを動作させるために必要不可欠な電装品が含まれるものとする。エンジンを動作させるために必要不可欠な電装品とは、例えば、エンジンに燃料を供給するインジェクタ(燃料噴射弁)、燃料タンク内の燃料をインジェクタに供給する燃料ポンプ、エンジンを点火する点火装置、インジェクタや点火装置を制御するECU(Electrical Control Unit)等である。エンジンのスロットルバルブを電子的に制御する場合には、これらに加えて更にスロットルバルブを駆動するアクチュエータが設けられる。
 <バッテリ電圧検出回路>
 バッテリ電圧検出回路4は、バッテリ電圧の情報を含む電気信号を発生する回路で、例えば、バッテリ3の両端に並列に接続されて、バッテリ電圧に比例した電圧を出力する抵抗分圧回路により構成される。バッテリ電圧検出回路4の出力はFET制御部6を構成するマイクロプロセッサのポートAo に入力されている。FET制御部6を構成するマイクロプロセッサは、エンジンの電装品を制御するECU内に設けられているものでもよく、バッテリ充電装置専用に設けられたものでもよい。
 <入力電位極性検出回路>
 入力電位極性検出回路5は、発電機1の出力を整流する動作を整流回路2に行わせる際に、各時刻において整流回路2の何れのMOSFETをオン状態とし、何れのMOSFETをオフ状態とすべきかを決定するための情報を得るために設けられている。図示の入力電位極性検出回路5は、整流回路の入力端子2u~2wにそれぞれ対応して設けられて、バッテリの負極の電位(アース電位)に対する入力端子2u~2wの電位の極性が正極性のときと負極性のときとでオンオフの状態を異にする極性検出スイッチSu~Swを備えていて、極性検出スイッチSu~Swの状態により整流回路の入力端子の電位が正極性であるか負極性であるかを検出するように構成されている。
 図示の例で用いられている各極性検出スイッチは、エミッタが接地されたNPNトランジスタTrと、トランジスタTrのコレクタと図示しない定電圧直流電源の出力端子Bとの間を接続する抵抗器r1 と、トランジスタTrのベースに一端が接続された抵抗r2 と、抵抗r2 の他端にカソードが接続されたダイオードDa と、トランジスタTrのベースエミッタ間に接続された抵抗r3 とからなり、極性検出スイッチSu~SwのそれぞれのトランジスタTrのベースがダイオードDa を通して整流回路2のU相,V相及びW相の入力端子2u,2v及び2wに接続されている。
 極性検出スイッチSu~Swは、整流回路2の入力端子2u~2wの接地電位に対する電位の極性が正極性であるときにそれぞれのトランジスタTrにベース電流が与えられてオン状態になり、整流回路2の入力端子2u~2wの接地電位に対する電位の極性が負極性であるとき又は整流回路2の入力端子2u~2wの接地電位に対する電位がしきい値未満であるときにオフ状態になる。極性検出スイッチSu~SwのそれぞれのトランジスタTrのコレクタがFET制御部6を構成するマイクロプロセッサのポートA1,A2及びA3に接続され、極性検出スイッチSu~SwからそれぞれポートA1~A3にLレベル(ローレベルまたは零レベル)の状態又はHレベル(高レベル)の状態の何れかの状態をとる二値信号が与えられる。
 整流回路2の入力端子2u~2wの電位の極性が正極性で極性検出スイッチSu~Swがオン状態にあるときに、Lレベルの信号がFET制御部6を構成するマイクロプロセッサのポートA1,A2及びA3に入力され、整流回路2の入力端子2u~2wの電位の極性が負極性で極性検出スイッチSu~Swがオフ状態にあるときに、Hレベルの信号がFET制御部6を構成するマイクロプロセッサのポートA1~A3に入力される。ここでは、Lレベルの信号が二進数の「0」に対応し、Hレベルの信号が二進数の「1」に対応するものとする。
 <FET制御部>
 図2に示されているように、本実施形態で用いるFET制御部6には、サンプリングタイミング発生手段601と、充電要否判定手段602と、オンオフ状態決定手段603と、充電時FET制御手段604と、短絡制御手段605と、FETオフ手段606と、FET駆動回路607とが設けられている。
 サンプリングタイミング発生手段601は、一定の周期でサンプリングタイミングを生じさせる手段である。サンプリングタイミング発生手段601は、マイクロプロセッサ内で発生するクロックパルスに基づいて、各サンプリングタイミングを決定する処理を行う手段により構成されていてもよく、所定のデータをサンプリングすることを指示するサンプリングパルスを一定のサンプル周期で発生する発振器からなっていてもよい。
 充電要否判定手段602は、バッテリ3の充電の要否を判定する手段で、バッテリ3を充電する必要があるか、バッテリ3の充電を休止する必要があるかを、バッテリ電圧検出回路4が検出している電圧に基づいて判定するように構成される。充電要否判定手段602は、例えば、バッテリ電圧検出回路4により検出されているバッテリ電圧が規定電圧以下のときにバッテリ3の充電が必要であると判定し、バッテリ電圧検出回路4により検出されているバッテリ電圧が規定電圧を超えているときにバッテリ3の充電を休止する必要があると判定するように構成することができる。
 本実施形態で用いる充電要否判定手段602は、サンプリングタイミング発生手段601が生じさせた各サンプリングタイミングでのみバッテリ電圧検出回路4が検出している電圧をサンプリングして、サンプリングした電圧が規定電圧以下であるときにバッテリの充電が必要であると判定し、サンプリングした電圧が規定電圧を超えているときにバッテリの充電を休止する必要があると判定するように構成されている。
 オンオフ状態決定手段603は、発電機1の出力を整流してバッテリ3に供給する際に整流回路2で生じる電力損失を最小にするために、各時刻において整流回路2の各MOSFETがとるべき状態がオン状態であるかオフ状態であるかを、入力電位極性検出回路5が検出している入力端子2u~2wの電位の極性に基づいて決定するオンオフ状態決定処理を行う手段である。
 本実施形態で用いるオンオフ状態決定手段603は、入力電位極性検出回路5により検出されている整流回路2の各入力端子の電位の極性が各入力端子に接続されている上側アームのMOSFETの寄生ダイオードに順方向電圧を印加する極性(正極性)であるときに各入力端子に接続されている上側アームのMOSFET及び下側アームのMOSFETがそれぞれとるべき状態をオン状態及びオフ状態と決定し、入力電位極性検出回路5により検出されている整流回路2の各入力端子の電位の極性が各入力端子に接続されている上側アームのMOSFETの寄生ダイオードに逆方向電圧を印加する極性(負極性)であるときに各入力端子に接続されている上側アームのMOSFET及び下側アームのMOSFETがそれぞれとるべき状態をオフ状態及びオン状態と決定するように構成されている。
 更に詳細に説明すると、本実施形態で用いるオンオフ状態決定手段603は、整流回路のU相の入力端子2uの電位が正極性であるときに、入力端子2uに接続されている上下のアームを構成しているMOSFETのうち、上アームを構成しているMOSFET F1がとるべき状態及び下アームを構成しているMOSFET F4がとるべき状態をそれぞれオン状態及びオフ状態と決定し、整流回路のU相の入力端子2uの電位が負極性であるときには、入力端子2uに接続されている上下のアームを構成しているMOSFETのうち、上アームを構成しているMOSFET F1がとるべき状態及び下アームを構成しているMOSFET F4がとるべき状態をそれぞれオフ状態及びオン状態と決定する。
 本実施形態で用いるオンオフ状態決定手段603はまた、整流回路のV相の入力端子2vの電位が正極性であるときに、入力端子2vに接続されている上下のアームを構成しているMOSFETのうち、上アームを構成しているMOSFET F2がとるべき状態及び下アームを構成しているMOSFET F5がとるべき状態をそれぞれオン状態及びオフ状態と決定し、整流回路のV相の入力端子2vの電位が負極性であるときには、入力端子2vに接続されている上下のアームを構成しているMOSFETのうち、上アームを構成しているMOSFET F2がとるべき状態及び下アームを構成しているMOSFETF5がとるべき状態をそれぞれオフ状態及びオン状態と決定する。
 本実施形態で用いるオンオフ状態決定手段603はまた、整流回路のW相の入力端子2wの電位が正極性であるときに、入力端子2wに接続されている上下のアームを構成しているMOSFETのうち、上アームを構成しているMOSFET F3がとるべき状態及び下アームを構成しているMOSFETF6がとるべき状態をそれぞれオン状態及びオフ状態と決定し、整流回路のW相の入力端子2wの電位が負極性であるときには、入力端子2wに接続されている上下のアームを構成しているMOSFETのうち、上アームを構成しているMOSFET F3がとるべき状態及び下アームを構成しているMOSFET F6がとるべき状態をそれぞれオフ状態及びオン状態と決定する。
 FET制御部6を構成するマイクロプロセッサのポートA1,A2及びA3に入力される2値信号(0又は1)と整流回路2を構成しているMOSFETの状態(ON状態又はOFF状態)との関係を示したテーブルを図11に示した。このテーブルは、マイクロプロセッサのROMに記憶させておく。
 オンオフ状態決定手段603は、入力電位極性検出回路5からポートA1,A2及びA3に入力されている二値信号を、サンプリングタイミング発生手段601が生じさせる各サンプリングタイミングで読み込み、ポートA1,A2及びA3に入力されている二値信号を読み込む毎に、図11に示したテーブルを参照することにより、整流回路2を構成しているMOSFET F1~F6の何れをオン状態にし、何れをオフ状態にするかを決定する。
 マイクロプロセッサは、充電要否判定手段602による判定の結果に応じて、充電時FET制御手段604又は短絡制御手段605の何れかに制御動作を行わせる。充電時FET制御手段604は、充電要否判定手段602によりバッテリ3を充電する必要があると判定されているときに整流回2のMOSFET F1~F6のそれぞれの状態をオンオフ状態決定手段603が決定した状態に一致させるように制御する充電時FET制御を行う手段である。また短絡制御手段605は、充電要否判定手段602によりバッテリ3の充電を休止する必要があると判定されているときに整流回路2のすべての上アームを構成しているMOSFET F1~F3を同時にオン状態にするか又はすべての下アームを構成しているMOSFET F4~F6を同時にオン状態にして発電機1の出力端子間を短絡する短絡制御を行う手段である。
 本実施形態で用いる短絡制御手段605は、充電要否判定手段602によりバッテリ3の充電を休止する必要があると判定されているときに整流回路2のすべての下アームを構成しているMOSFET F4~F6を同時にオン状態にすることにより発電機1の出力端子間を短絡する短絡制御を行うように構成されている。
 従来のバッテリ充電装置においては、短絡制御が行われているときに、発電機1の出力端子1u-1v間、1v-1w間及び1w-1u間が短絡されていて、入力電位極性検出回路5が検出する電位が0に保たれていたため、発電機の出力を整流してバッテリに供給するために整流回路のMOSFET F1~F6の何れをオン状態とし、何れをオフ状態とすべきかを決定するために必要な情報を得ることができなかった。短絡制御を行っている間に充電時FET制御を行う際に整流回路のMOSFET F1~F6の何れをオン状態とし、何れをオフ状態とすべきかを決定するための情報が得られないと、短絡制御を終了して充電時FET制御を再開する際に直ちにMOSFET F1~F6のそれぞれがとるべきオンオフの状態を決定することができないため、充電時FET制御の再開が遅れ、その間MOSFETの寄生ダイオードにより構成される整流回路を通して電流が流れて大きな損失が生じるという問題が生じる。
 このような問題が生じるのを防ぐため、本実施形態では、少なくとも短絡制御を行う際に整流回路2のすべてのMOSFET F1~F6への駆動信号の供給を停止させて、これらのMOSFETがオフ状態になるFETオフ期間を設定された周期で生じさせるFETオフ手段606を設けている。FETオフ手段606は、短絡制御時にのみFETオフ期間を生じさせるように構成されていてもよいが、本実施形態では、充電時FET制御を行う際にも、整流回路2のすべてのMOSFET F1~F6がオフ状態になるFETオフ期間を設定された周期で生じさせるようにFETオフ手段606が構成されている。
 FETオフ手段606は、サンプリングタイミング発生手段が発生するサンプリングタイミングとは別個のタイミングでFETオフ期間を生じさせるように構成されていてもよいが、本実施形態では、制御を簡単にするため、充電時FET制御を行う際も、短絡制御を行う際も、サンプリングタイミング発生手段601が生じさせた各サンプリングタイミングで整流回路を構成しているすべてのMOSFET F1~F6をオフ状態にするFETオフ期間を生じさせるようにFETオフ手段606が構成されている。
 FETオフ手段606が生じさせるFETオフ期間は、常に一定の長さを示す期間であってもよく、一定の周期で到来するタイミングで開始し、オンオフ状態決定手段が整流回路のMOSFET F1~F6のオンオフの状態を決定するために必要な情報を取得した時に終了する期間、又は一定の周期で到来するタイミングで開始し、オンオフ状態決定手段が整流回路のMOSFET F1~F6のオンオフの状態を決定するためのオンオフ状態決定処理を完了した時点で終了する期間であってもよい。
 少なくとも短絡制御を行う際に整流回路2のすべてのMOSFET F1~F6がオフ状態になるFETオフ期間Δtを設定された周期で生じさせるようにしておくと、短絡制御が行われている状態でも、各FETオフ期間の間に整流回路2の入力端子の電位の極性を検出して、発電機の出力を整流してバッテリに供給する際に整流回路の各MOSFETがとるべき状態を決定するオンオフ状態決定処理を行うことができるため、短絡制御を終了した後、速やかに充電時FET制御を再開させることができる。
 FET駆動回路607は、整流回路2を構成しているMOSFET F~F6のゲートに駆動信号を与える回路で、充電時FET制御手段603、短絡制御手段605及びFETオフ手段606から与えられる指令に応じて、整流回路2を構成しているMOSFETF1~F6を所定のタイミングでオンオフさせるように各MOSFETのゲートに駆動信号を供給する。
 図2に示されたFET制御部6の構成要素のうち、充電要否判定手段602と、オンオフ状態決定手段603と、充電時FET制御手段604と、短絡制御手段605と、FETオフ手段606とは、マイクロプロセッサに所定のプログラムを実行させることにより構成される。サンプリングタイミング発生手段601は、マイクロプロセッサに所定のプログラムを実行させることにより構成してもよく、パルス発振器により構成してもよい。
 <動作説明>
 本実施形態で用いる磁石式交流発電機1は、図6に示したように、U,V,W3相の交流電圧Vu ,Vv ,Vwを出力する。バッテリ充電装置7は、バッテリ電圧が規定電圧以下で、充電要否判定手段602がバッテリ3を充電する必要があると判定しているときに、充電時FET制御を行って、発電機1の整流出力をバッテリ3に供給する。またバッテリ電圧が規定電圧を超えていて、バッテリ3の過充電を防止するために、バッテリ3の充電を休止する必要があると充電要否判定手段602が判定しているときに、MOSFET F4~F6を同時にオン状態にすることにより発電機の出力端子間を短絡する短絡制御を行って発電機1からバッテリ3への充電電流の供給を停止させる。以下これらの制御について説明する。
 <充電時FET制御>
 図7を参照すると、充電時FET制御を行う際の各部の電圧波形が示されており、図8を参照すると、短絡制御を行う際の各部の電圧波形が示されている。図7及び図8において、(A)は、図6に示された3相交流電圧の時刻t1とt2との間のZ部の波形を拡大して示しており、(B)は、サンプリングタイミング生成手段601が一定の周期でサンプリングタイミングを生じさせるために出力するサンプリングパルスPs を示している。また(C)ないし(E)はそれぞれ入力電位極性検出回路5によ検出された整流回路2のU相ないしW相の入力端子2uないし2wの電位の極性を示し、(F)ないし(K)はそれぞれ整流回路2を構成しているMOSFET F1~F6のオンオフの状態を示している。
 マイクロプロセッサは、サンプリングパルスPs が発生する毎にバッテリ電圧検出回路4が検出しているバッテリ電圧を読み込んで、読み込んだバッテリ電圧が規定電圧以下であるか規定電圧を超えているかを判定する。この判定により、バッテリ電圧が規定電圧以下であると判定されたときにバッテリの充電を行う必要があると判定し、バッテリ電圧が規定電圧を超えていると判定されたときに、過充電を防止するためにバッテリの充電を休止する必要があると判定する。
 発電機1の出力電圧が図7(A)の波形を示す区間では、発電機1のU相の出力電圧が正の半波にある間同図(C)に示すように整流回路2のU相の入力端子2uの電位が正極性を示し、発電機1のU相の出力電圧が負の半波にある間整流回路2のU相の入力端子2uの電位が負極性を示す。また図7(A)に示した区間においては、発電機1のV相の出力電圧が正の半波にあるため、図7(D)に示すように整流回路2のV相の入力端子2vの電位が正極性を示し、発電機1のW相の出力電圧が負の半波にあるため、図7(E)に示すように整流回路のW相の入力端子2wの電位が負極性を示す。
 マイクロプロセッサが構成するオンオフ状態決定手段603は、ポートA1~A3に入力されている入力電位極性検出回路5の検出出力を各サンプリングタイミングで読み込んで、図11のテーブルを参照することにより、整流回路2の各入力端子に接続されている上下のアームのMOSFETのいずれをオン状態にし、何れをオフ状態にすべきかを決定する。充電時FET制御手段604は、整流回路2の各入力端子に接続されている上下のアームのMOSFETのオンオフの状態をオンオフ状態決定手段603により決定された状態に一致させるように整流回路の所定のMOSFETに駆動信号を与える。
 また本実施形態で用いるFETオフ手段606は、サンプリングタイミング発生手段601が各サンプリングタイミングを生じさせる毎に、各サンプリングパルスのパルス幅に相当する時間をFETオフ期間Δtとして、各FETオフ期間Δtの間整流回路のすべてのMOSFETをオフ状態にする。
 図7に示した区間でバッテリの充電を行う際には、整流回路のU相の入力端子2uの電位が正極性を示している間、図7(F)に示すように入力端子2uに接続されている上アームのMOSFET F1がオン状態にされ、図7(I)に示すように、入力端子2uに接続されている下アームのMOSFET F4がオフ状態にされる。またU相の入力端子の電位が負極性を示している間入力端子2uに接続されている上アームのMOSFET F1がオフ状態にされ、入力端子2uに接続されている下アームのMOSFET F4がオン状態にされる。
 図7に示した区間でバッテリの充電を行う際にはまた、同図(D)に示すように整流回路のV相の入力端子2vの電位が正極性を示しているため、同図(G)に示すように整流回路の入力端子2vに接続された上アームのMOSFET F2がオン状態にされ、同図(J)に示すように、入力端子2vに接続された下アームのMOSFET F5がオフ状態にされる。また図7(E)に示すように、整流回路のW相の入力端子の電位が負極性であるため、同図(H)に示すように、入力端子2wに接続されている上アームのMOSFET F3がオフ状態にされ、同図(K)に示したように、入力端子2wに接続されている下アームのMOSFET F6がオン状態にされる。
 本実施形態では、充電時FET制御が行われる際にも、サンプリングタイミング発生手段601が図7(B)に示したサンプリングパルスを発生してサンプリングタイミングを生じさせる毎にFETオフ手段606がFETオフ期間Δtの間整流回路のすべてのMOSFET F1~F6への駆動信号の供給を停止してすべてのMOSFETをオフ状態にする。従って、充電時FET制御が行われる際にオンオフ状態決定手段603による決定に基づいてオン状態にされたMOSFETは、各サンプリングタイミングが到来する毎に一定のFETオフ期間Δtの間オフ状態にされる。
 充電時FET制御が行われる際には、図3に矢印で示したように、整流回路2の各MOSFETに電流iが流れ,バッテリ3に充電電流Icが供給される。
 本実施形態のように、バッテリ電圧が規定電圧以下であるときにバッテリの充電が必要であると判定し、バッテリ電圧が規定電圧を超えているときにバッテリの充電を休止する必要があると判定するように充電要否判定手段を構成する場合、バッテリ電圧を連続的に検出して、バッテリ電圧の変動に追従して充電の要否を判定すると、バッテリの負荷が高い頻度で変動してバッテリ電圧が頻繁に変動した場合に、充電時FET制御と短絡制御とが非常に短い周期で切り換えられて、整流回路2が発振状態になり、整流回路を構成しているMOSFETがスイッチング損失により過熱して破壊するおそれがある。このような問題が生じるのを防ぐためには、バッテリ電圧が第1の規定電圧を超えたときにバッテリの充電を休止する必要があると判定し、バッテリ電圧が第1の規定電圧よりも小さい値に設定された第2の規定電圧以下になったときにバッテリの充電を行う必要があると判定するように充電要否判定手段を構成してバッテリ充電装置の動作にヒステリシス特性を持たせる等の手段を講じる必要がある。
 これに対し、本実施形態のように、一定の周期でサンプリングタイミングを生じさせて、各サンプリングタイミングでのみバッテリ電圧をサンプリングしてバッテリの充電の要否を判定するようにすると、各サンプリングタイミングから次のサンプリングタイミングまでの間、制御が充電時FET制御又は短絡制御のいずれかに固定されるため、バッテリ電圧が高頻度で変動した場合に、バッテリ電圧の変動に合わせて短絡制御と充電時FET制御とが短い周期で切り換えられる状態が生じるのを防ぐことができ、整流回路を構成しているMOSFETが頻繁にオンオフさせられて、スイッチング損失により過熱するのを防ぐことができる。
 本実施形態のように、一定の周期でサンプリングタイミングを生じさせて、各サンプリングタイミングでのみバッテリ電圧を検出してバッテリの充電の要否を判定するように充電要否判定手段を構成する場合、サンプル周期が長すぎるとバッテリ電圧の変動を適確に検出することができなくなり、バッテリの充電を適確に制御することができなくなる。また本実施形態のように一定の周期(本実施形態ではサンプル周期)でFETオフ期間を生じさせる場合に、FETオフ期間を生じさせる周期を短くし過ぎると、FETオフ期間が頻繁に生じるため短絡制御を適確に行うことができなくなる。サンプリングタイミング発生手段601がサンプリングタイミングを生じさせる周期は、実験結果に基づいて、バッテリの充電制御を適確に行うことができ、かつ短絡制御に支障を来すことがない長さに設定する。エンジンを動作させるために必要な電装品を駆動するバッテリを充電する場合、上記サンプル周期は、例えば125μsec程度に設定するのが適当であることが実験により確認されている。
 FETオフ期間は、一定でもよく、一定の周期で開始され、常に一定の長さを示す期間であってもよく、一定の周期で到来するタイミングで開始し、オンオフ状態決定手段が整流回路のMOSFET F1~F6のオンオフの状態を決定するために必要な情報を取得した時に終了する期間、又は一定の周期で到来するタイミングで開始し、オンオフ状態決定手段が整流回路のMOSFET F1~F6のオンオフの状態を決定するためのオンオフ状態決定処理を完了した時点で終了す期間であってもよいが、図7及び図8に示した例では、サンプリングパルスPsのパルス幅に相当する一定の期間ΔtをFETオフ期間としている。
 <短絡制御>
 充電要否判定手段602が、バッテリの充電を休止する必要があると判定すると、短絡制御手段605が、整流回路2のすべての上アームを構成しているMOSFET F1~F3を同時にオン状態にするか、又はすべての下アームを構成しているMOSFET F4~F6を同時にオン状態にして、発電機の出力端子1u,1v間,1v,1w間及び1w,1u間を短絡する短絡制御を行う。
 本実施形態では、図8(F)ないし(H)に示すように整流回路2のすべての上アームを構成しているMOSFET F1~F3をオフ状態にし、すべての下アームを構成しているMOSFET F4~F6を同時にオン状態にすることにより、発電機の出力端子間を短絡する短絡制御を行うようにしている。MOSFET F4~F6を同時にオン状態にして短絡制御を行っている間、FETオフ手段606が各サンプリングタイミングで整流回路2のすべてのMOSFETを一定のFETオフ期間Δtの間オフ状態にするFETオフ制御を行うため、図8(I)ないし(K)に見られるように、MOSFET F4~F6は周期的にオフ状態にされる。オンオフ状態決定手段603は、短絡制御手段605が短絡制御を行っている間も、各FETオフ期間Δtの間にオンオフ状態決定処理を行って、充電時FET制御の再開に備える。
 短絡制御が行われているときには、図4に示したように、整流回路2の下アームのMOSFET F4~F6と3相の発電コイルとを通して短絡電流iが流れ、バッテリ3への充電電流の供給が停止される。短絡制御が行われている間にバッテリ電圧が規定電圧以下になると短絡制御手段605による短絡制御が停止し、充電時FET制御手段604による充電時FET制御が再開される。このようにして充電時FET制御と短絡制御とが繰り返されることにより、バッテリ電圧が規定電圧付近に保たれる。
 本実施形態では、図8(I)ないし(K)に示すように、短絡制御が行われているときに周期的にFETオフ期間Δtを生じさせるため、各FETオフ期間Δtの間に入力電位極性検出回路5の検出出力を読み込んで、図11のテーブルを参照することにより、整流回路2を構成するMOSFET F1~F6に整流動作を行わせるために各時刻においてMOSFET F1~F6のそれぞれがとるべきオンオフの状態が求められる。短絡制御が行われる過程で各FETオフ期間Δtの間に求められたMOSFET F1~F6のオンオフの状態はRAMからなるオンオフ状態記憶手段(図示せず。)に記憶される。オンオフ状態記憶手段に記憶されるMOSFET F1~F6のオンオフの状態は、各FETオフ期間において、新たなオンオフ状態が求められる毎に更新される。
 上記のように、短絡制御が行われている間も、整流回路2を構成するMOSFET F1~F6に整流動作を行わせるために各時刻においてMOSFET F1~F6のそれぞれがとるべきオンオフの状態を随時求めておくようにすると、短絡制御を終了した後速やかに充電時FET制御を再開させることができる。従って、短絡制御から充電時FET制御に移行する過程で、整流回路を構成しているMOSFETの寄生ダイオードで生じる発熱を少なくすることができ、短絡制御が繰り返し行われた場合に整流回路の温度が過度に上昇するのを防ぐことができる。
 上記のように、短絡制御を行う際に、整流回路2のすべてのMOSFET F1~F6がオフ状態になるFETオフ期間Δtを周期的に生じさせると、各FETオフ期間Δtの間、発電機1から整流回路2を構成しているMOSFET F1~F6の寄生ダイオードD1~D6により構成される全波整流回路を通して電力が出力される。FETオフ期間Δtは、短絡制御が行われている間繰り返し生じるため、FETオフ期間Δtの間に整流回路2から出力される電力によりバッテリ3が充電されると、バッテリが過充電状態になるおそれがある。
 従って本発明を実施するに当たっては、短絡制御が行われている状態で発電機1から整流回路2を構成しているMOSFET F1~F6の寄生ダイオードD1~D6からなる全波整流回路を通して単位時間毎に出力される電力量[Ws]を、単位時間毎にバッテリから負荷に供給する必要がある電力量[Ws]の最小値以下に抑えるべく、FETオフ期間Δtの長さを設定しておくのが好ましい。
 短絡制御が行われている間に、発電機1から寄生ダイオードD1~D6を通して単位時間毎に出力される電力量[Ws]を、単位時間毎にバッテリ3から負荷9に供給する必要がある電力量[Ws]の最小値以下に抑えるようにFETオフ期間Δtを設定しておくと、FETオフ期間Δtの間に発電機1から寄生ダイオードD1~D6により構成される整流回路を通して出力される電力はすべてバッテリ3の負荷9に供給され、整流回路2からバッテリ3に電力が供給されることがないため、バッテリが過充電状態にされるおそれを無くすことができる。
 但し、FETオフ期間Δtが短すぎると、整流回路の入力端子の電位の極性を適確に検出することができなくなって、MOSFET F1~F6が各時刻にとるべきオンオフの状態を適確に決定することができなくなるため、FETオフ期間Δtを一定とする場合、その長さは短すぎないように設定する必要がある。
 バッテリ3から負荷9に供給する必要がある電力量の最小値は、例えばバッテリ3が搭載された機器を動作させるために必要不可欠な負荷が消費する電力量の最小値である。
 バッテリ3が搭載された機器が、エンジン発電機やエンジンにより駆動される乗り物のようにエンジンにより駆動される機器である場合、バッテリ3から負荷9に供給する必要がある電力量の最小値は、例えば、エンジンのアイドリング時にインジェクタ、燃料ポンプ、点火装置等のエンジンを動作させるために必要な電装品を駆動するために必要な電力量である。
 エンジを動作させるために必要な電装品を負荷とするバッテリ3を充電する場合、FETオフ期間Δtの長さは、例えば10μsec程度に設定することができる。
 上記のように、充電時FET制御を行う際にも、短絡制御を行う際にも一定の周期でFETオフ期間を生じさせる場合に、充電要否判定手段602、オンオフ状態決定手段603、充電時FET制御手段604,短絡制御手段605及びFETオフ手段606を構成するために微小時間毎にマイクロプロセッサに繰り返し実行させる処理のアルゴリズムの一例を図9に示した。なお図9に示した処理では、各FETオフ期間が、各サンプリングタイミングで開始され、整流回路のMOSFET F1~F6のオンオフの状態を決定するためのオンオフ状態決定処理を完了した時点で終了する期間であるとしている。
 図9に示した処理が開始されると、先ずステップS101でこの処理の今回の実施タイミングが整流回路の入力端子の電位の極性を検出するタイミング(サンプリングタイミング)であるか否かを判定する。その結果、今回の実施タイミングが整流回路の入力端子の電位の極性を検出するタイミングではないと判定された場合には以後何もしないでこの処理を終了する。ステップS101で今回の実施タイミングが整流回路の入力端子の電位の極性を検出するタイミングであると判定されたときにはステップS102でFET駆動回路607にFETオフ指令を与えて、すべてのMOSFET F1~F6への駆動信号の供給を停止させる。ステップS102によりFETオフ手段606が構成される。
 ステップS102でMOSFET F1~F6への駆動信号の供給を停止させた後ステップS103に進んでポートA1~A3に与えられている二値信号の値に応じて、図11のテーブルを検索することによりMOSFET F1~F6がとるべきオンオフの状態を決定する。このステップによりオンオフ状態決定手段603が構成される。
 次いでステップS104に進んでサンプリングされているバッテリ電圧が規定電圧を超えているか否かを判定する。その結果、バッテリ電圧が規定電圧を超えていないと判定されたときにはステップS105に進んで、MOSFET F1~F6の状態をステップS103で決定された状態に一致させるように、FET駆動回路607から整流回路の所定のMOSFETに駆動信号を与えることにより充電時FET制御を行わせる。このステップS105により充電時FET制御手段が構成される。
 ステップS104でバッテリ電圧が規定電圧を超えていると判定されたときには、ステップS106に進んで、FET駆動回路607からMOSFET F4~F6に同時に駆動信号を与えてこれらのMOSFET F4~F6を同時にオン状態にすることにより短絡制御を行う。このステップS160により短絡制御制御手段605が構成される。
 上記の説明では、整流回路2のすべての上アームのMOSFET F1~F3をオフ状態にし、すべての下アームのMOSFET F4~F6を同時にオン状態にすることにより短絡制御を行うとしたが、整流回路2のすべての上アームのMOSFET F1~F3を同時のオン状態にすることにより短絡制御を行うようにしても良い。
 図9に示したアルゴリズムによる場合、FETオフ期間は、各サンプリングタイミングで開始され、オンオフ状態決定処理が完了した時点で終了させられる。
 <他の実施形態>
 上記の実施形態では、充電時FET制御を行う際にも、短絡制御を行う際にも一定の周期でFETオフ期間を生じさせるようにしたが、本発明の他の実施形態では、短絡制御時にのみFETオフ期間の生じさせる。このように構成する場合に、充電要否判定手段602、オンオフ状態決定手段603、充電時FET制御手段604、短絡制御手段605及びFETオフ手段606を構成するために微小時間毎にマイクロプロセッサに繰り返し実行させる処理のアルゴリズムの一例を図10に示した。
 図10に示した処理が開始されると、先ずステップS201でこの処理の今回の実施タイミングが整流回路の入力端子の電位の極性を検出するタイミングであるか否かを判定する。その結果、今回のタイミングが整流回路の入力端子の電位の極性を検出するタイミングではないと判定された場合には以後何もしないでこの処理を終了する。
 ステップS201で今回のタイミングが整流回路の入力端子の電位の極性を検出するタイミングであると判定されたときにはステップS202でサンプリングされたバッテリ電圧が規定電圧を超えているか否かを判定する。その結果、バッテリ電圧が規定電圧以下であると判定されたときにはステップS203に進んで、短絡制御フラグが1にセットされているか否かを判定する。短絡制御フラグは、短絡制御を開始する場合に1にセットされるフラグであり、バッテリ電圧が規定電圧を超えていると判定されたときにステップS211で1にセットされる。
 ステップS202でバッテリ電圧が規定電圧以下であると判定され、ステップS203で短絡制御フラグが1にセットされていないと判定されたとき(バッテリを充電する必要があるとき)には、ステップS205に進んでポートA1~A3に与えられている二値信号の値に応じて、図11のテーブルを検索することによりMOSFET F1~F6がとるべきオンオフの状態を決定した後、ステップS206に進んでMOSFET F1~F6の状態をステップS205で決定された状態に一致させるように、FET駆動回路607から整流回路の所定のMOSFETに駆動信号を与えることにより充電時FET制御を行わせる。次いでステップS207で短絡制御フラグをクリアしてこの処理を終了する。
 ステップS202でバッテリ電圧が規定電圧を超えていると判定されたときにはステップS208でFET駆動回路607にFETオフ指令を与えて、すべてのMOSFET F1~F6への駆動信号の供給を停止させる。次いでステップS209でポートA1~A3に与えられている二値信号の値に応じて、図11のテーブルを検索することによりMOSFET F1~F6がとるべきオンオフの状態を決定した後、ステップ210でFET駆動回路607からMOSFET F4~F6に同時に駆動信号を与えてこれらのMOSFET F4~F6を同時にオン状態にすることにより短絡制御を行う。次いでステップS211で短絡制御フラグを1にセットしてこの処理を終了する。ステップS202でバッテリ電圧が規定電圧を超えていると判定される状態が続いている間、ステップS208ないしS211が実行されて短絡制御が行われる。
 短絡制御を行っている状態でステップS202でバッテリ電圧が規定電圧以下であると判定されたときには、ステップS203で短絡制御フラグが1にセットされていると判定されるためステップS204でFET駆動回路607にFETオフ指令を与えて、すべてのMOSFET F1~F6への駆動信号の供給を停止させた後、ステップS205に進んでポートA1~A3に与えられている二値信号の値に応じて、MOSFET F1~F6がとるべきオンオフの状態を決定する。次いでステップステップS206に進んでMOSFET F1~F6の状態をステップS205で決定された状態に一致させるように、FET駆動回路607から整流回路の所定のMOSFETに駆動信号を与えることにより充電時FET制御を行わせた後ステップS207で短絡制御フラグを0にクリアする。
 短絡制御フラグがクリアされた状態で図10の処理が実行された際にステップS202でバッテリ電圧が規定電圧以下であると判定される場合には、ステップS203で短絡フラグが1にセットされていないと判定されるため、ステップ204が実行されることなくステップS205ないしS207が実行されて充電時FET制御が行われる。従って、FETオフ制御は、短絡制御時にのみ実行され、充電時バッテリ制御を行う際には実行されない。
 図10に示したアルゴリズムによる場合には、ステップS202により充電要否判定手段602が構成され、ステップS204及びS208によりFETオフ手段が構成される。またステップS205及びS209によりオンオフ状態決定手段603が構成され、ステップS206及びステップS210によりそれぞれ充電時FET制御手段604及び短絡制御手段605が構成される。
 図9又は図10に示した処理によりFET制御部の各手段を構成する場合、FETオフ手段は、一定の周期でFETオフ期間を開始させ、オンオフ状態決定処理が完了した時点でFETオフ期間を終了させるように構成されるが、このようにFETオフ手段を構成しておくと、FETオフ期間が必要最小限の長さになるため、短絡制御時にバッテリが過充電状態にされるおそれをなくすことができる。
 図9及び図10に示した処理は、短い時間間隔で繰り返し実行されるが、図9及び図10に示した処理を、サンプリングタイミング発生手段がサンプリングタイミングを生じさせる毎に実行される割込処理とすることもできる。この場合には、図9に示されたステップS101及び図10に示されたステップS201が省略される。
 図1に示した例では、磁石式交流発電機1の3相の発電コイルLu~Lwがスター結線されているが、図5に示したように3相の発電コイルLu~LwがΔ結線された磁石式交流発電機を用いることができるのはもちろんである。
 上記の各実施形態では、磁石式交流発電機として3相交流電圧を発生するものを用いたが、単相交流電圧を発生する磁石式交流発電機を用いる場合にも本発明を適用できるのはもちろんである。
 以上本発明の実施形態について説明したが、本発明は上記の実施形態の構成に限定されるものではなく、請求の範囲に記載された技術的範囲から逸脱することがない範囲で各部に種々の変形を加えることができるのはもちろんである。
 本発明に係るバッテリ充電装置は、エンジン、風車、水車等の動力源により駆動される磁石式交流発電機を電源としてバッテリを充電することが必要とされる産業分野で広く利用することができる。
 1 磁石式交流発電機
 1u~1w 発電機の出力端子
 Lu~Lw 発電機の発電コイル
 2 整流回路
 2u~2w 整流回路の入力端子
 F1~F6 MOSFET
 D1~D6 寄生ダイオード
 3 バッテリ
 4 バッテリ電圧検出回路
 5 入力電位極性検出回路
 6 FET制御部
 601 サンプリングタイミング発生手段
 602 充電要否判定手段
 603 オンオフ状態決定手段
 604 充電時FET制御部
 605 短絡制御手段
 606 FETオフ手段
 607 FET駆動回路
 9 バッテリの負荷

Claims (10)

  1.  磁石式交流発電機の整流出力でバッテリを充電するバッテリ充電装置であって、
     ブリッジ回路を構成する各アームがMOSFETからなっていて、前記発電機の出力が入力される入力端子と前記バッテリのプラス端子及びマイナス端子にそれぞれ接続されるプラス側及びマイナス側の出力端子とを有するフルブリッジ形の整流回路と、前記バッテリの両端の電圧を検出するバッテリ電圧検出回路と、前記整流回路の各入力端子の電位の極性を検出する入力電位極性検出回路と、前記バッテリ電圧検出回路及び入力電位極性検出回路の検出出力に応じて前記整流回路のMOSFETを制御するFET制御部とを具備し、
     前記FET制御部は、前記バッテリ電圧検出回路が検出している電圧に基づいて前記バッテリを充電する必要があるか前記バッテリの充電を休止する必要があるかを判定する充電要否判定手段と、前記発電機の出力を整流して前記バッテリに供給する際に前記整流回路の各MOSFETがとるべき状態がオン状態であるかオフ状態であるかを前記入力電位極性検出回路が検出している各入力端子の電位の極性に基づいて決定するオンオフ状態決定処理を行うオンオフ状態決定手段と、前記充電要否判定手段により前記バッテリを充電する必要があると判定されているときに前記整流回路の各MOSFETの状態を前記オンオフ状態決定手段が決定した状態に一致させるように制御する充電時FET制御を行う充電時FET制御手段と、前記充電要否判定手段により前記バッテリの充電を休止する必要があると判定されているときに前記整流回路のすべての上アームを構成しているMOSFETを同時にオン状態にするか又はすべての下アームを構成しているMOSFETを同時にオン状態にして前記発電機の出力端子間を短絡する短絡制御を行う短絡制御手段と、少なくとも前記短絡制御を行う際に前記整流回路のすべてのMOSFETがオフ状態になるFETオフ期間を設定された周期で生じさせるFETオフ手段とを備え、
     前記オンオフ状態決定手段は、前記短絡制御手段が短絡制御を行っている間も、各FETオフ期間の間に前記入力電位極性検出回路が検出した前記整流回路の各入力端子の電位の極性に基づいて前記オンオフ状態決定処理を行うように構成されていること、
     を特徴とするバッテリ充電装置。
  2.  一定の周期でサンプリングタイミングを生じさせるサンプリングタイミング発生手段を備え、
     前記充電要否判定手段は、前記サンプリングタイミング発生手段が生じさせる各サンプリングタイミングでのみ前記バッテリ電圧検出回路が検出している電圧をサンプリングして、サンプリングした電圧に基づいてバッテリの充電が必要であるか、バッテリの充電を休止する必要があるかを判定するように構成されている請求項1に記載のバッテリ充電装置。
  3.  前記FETオフ手段は、前記サンプリングタイミング発生手段がサンプリングタイミングを生じさせる毎に前記FETオフ期間を生じさせるように構成されている請求項2に記載のバッテリ充電装置。
  4.  前記FETオフ手段は、前記充電時FET制御が行われる過程でも、前記FETオフ期間を設定された周期で生じさせるように構成されている請求項1、2又は3に記載のバッテリ充電装置。
  5.  前記短絡制御が行われている間に前記発電機から前記整流回路を構成しているMOSFETの寄生ダイオードを通して単位時間毎に出力される電力量を単位時間毎に前記バッテリが負荷に供給する必要がある電力量の最小値以下に抑えるように、前記FETオフ期間の長さが設定されていることを特徴とする請求項1,2,3又は4に記載のバッテリ充電装置。
  6.  前記バッテリが電力を供給する負荷は、前記バッテリが搭載された機器を動作させるために必要不可欠な負荷を含む請求項5に記載のバッテリ充電装置。
  7.  前記バッテリが搭載された機器は、エンジンにより駆動される機器であり、前記バッテリが電力を供給する負荷は、前記エンジンを動作させるために必要な電装品である請求項6に記載のバッテリ充電装置。
  8.  前記FETオフ手段は、一定の周期で前記FETオフ期間を開始させ、前記オンオフ状態決定手段がオンオフ状態決定処理を完了したときに前記FETオフ期間を終了させるように構成されている請求項2に記載のバッテリ充電装置。
  9.  前記整流回路の各入力端子に接続された上側アーム及び下側アームはそれぞれドレインが前記プラス側の出力端子に接続され、ソースが各入力端子に接続された上側MOSFET及びソースが前記マイナス側の出力端子に接続され、ドレインが各入力端子に接続された下側MOSFETからなり、
     前記オンオフ状態決定手段は、前記入力電位極性検出回路により検出されている整流回路の各入力端子の電位の極性が各入力端子に接続されている上側アームのMOSFETの寄生ダイオードに順方向電圧を印加する極性であるときに各入力端子に接続されている上側アームのMOSFET及び下側アームのMOSFETがそれぞれとるべき状態をオン状態及びオフ状態と決定し、前記入力電位極性検出回路により検出されている整流回路の各入力端子の電位の極性が各入力端子に接続されている上側アームのMOSFETの寄生ダイオードに逆方向電圧を印加する極性であるときに各入力端子に接続されている上側アームのMOSFET及び下側アームのMOSFETがそれぞれとるべき状態をオフ状態及びオン状態と決定するように構成されている請求項1ないし8の何れか一つに記載のバッテリ充電装置。
  10.  前記入力電位極性検出回路は、前記整流回路の各入力端子の電位の極性が正極性のときと負極性のときとでオンオフの状態を異にするように設けられた極性検出スイッチを前記整流回路の各入力端子毎に備え、
     前記FET制御部は、前記整流回路の各入力端子に対して設けられた極性検出スイッチの状態から前記整流回路の各入力端子の電位の極性を検出するように構成されている請求項1ないし9の何れか一つに記載のバッテリ充電装置。
PCT/JP2017/042765 2017-11-29 2017-11-29 バッテリ充電装置 WO2019106744A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/042765 WO2019106744A1 (ja) 2017-11-29 2017-11-29 バッテリ充電装置
US16/765,065 US11476697B2 (en) 2017-11-29 2017-11-29 Battery-charging device
JP2019556451A JP6838169B2 (ja) 2017-11-29 2017-11-29 バッテリ充電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042765 WO2019106744A1 (ja) 2017-11-29 2017-11-29 バッテリ充電装置

Publications (1)

Publication Number Publication Date
WO2019106744A1 true WO2019106744A1 (ja) 2019-06-06

Family

ID=66664409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042765 WO2019106744A1 (ja) 2017-11-29 2017-11-29 バッテリ充電装置

Country Status (3)

Country Link
US (1) US11476697B2 (ja)
JP (1) JP6838169B2 (ja)
WO (1) WO2019106744A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024934A1 (ja) * 2022-07-28 2024-02-01 新電元工業株式会社 バッテリ充電装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010694A (ja) * 2000-06-23 2002-01-11 Denso Corp 界磁巻線型回転電機の制御装置
JP2005198426A (ja) * 2004-01-07 2005-07-21 Kokusan Denki Co Ltd バッテリ充電装置
JP2011078216A (ja) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp 車両用電力変換器の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2959640B2 (ja) 1990-09-27 1999-10-06 本田技研工業株式会社 充電回路
JPH11225446A (ja) 1998-02-05 1999-08-17 Shindengen Electric Mfg Co Ltd バッテリ充電装置
US9537329B2 (en) * 2014-08-29 2017-01-03 General Electronics Applications, Inc. Battery management circuit maintaining cell voltages between a minimum and a maximum during charging and discharging
JP6400407B2 (ja) * 2014-09-18 2018-10-03 Ntn株式会社 充電装置
IN2014MU03563A (ja) * 2014-11-12 2015-07-17 Star Engineers I Pvt Ltd
JP6503138B2 (ja) * 2016-02-05 2019-04-17 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. アダプタ及び充電制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010694A (ja) * 2000-06-23 2002-01-11 Denso Corp 界磁巻線型回転電機の制御装置
JP2005198426A (ja) * 2004-01-07 2005-07-21 Kokusan Denki Co Ltd バッテリ充電装置
JP2011078216A (ja) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp 車両用電力変換器の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024934A1 (ja) * 2022-07-28 2024-02-01 新電元工業株式会社 バッテリ充電装置

Also Published As

Publication number Publication date
JP6838169B2 (ja) 2021-03-03
JPWO2019106744A1 (ja) 2020-07-16
US11476697B2 (en) 2022-10-18
US20200366123A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
US8027180B2 (en) Power generating apparatus
JP4640282B2 (ja) 内燃機関の点火制御装置
US20050001582A1 (en) Motor control device
JP5216424B2 (ja) 車両用充電発電機およびその整流装置
JP5569295B2 (ja) 車両用回転電機
CN104011964A (zh) 在激活连接到机动车车载电网上的多相交流发电机时提高发电机的励磁电流
JP5245141B2 (ja) 三相交流発電機の整流システムおよびこれを用いたバッテリー充電装置
US20150019059A1 (en) Power converter for vehicle generator-motor and method for controlling vehicle generator-motor
JP4193348B2 (ja) 車両用発電制御装置
WO2019106744A1 (ja) バッテリ充電装置
WO1999013566A1 (fr) Regulateur d'alternateur pour vehicule
JP3519048B2 (ja) 車両用交流発電機の電圧制御装置
JP4450213B2 (ja) 燃料噴射装置用電源装置
JP2014180172A (ja) 車両用回転電機
JP4950162B2 (ja) 車両用電源装置
JP4192427B2 (ja) 車両用発電制御装置
JP5758833B2 (ja) バッテリ充電装置
US20180205336A1 (en) Power supply device for internal combustion engine
JP2016189678A (ja) 回転電機の制御装置
JP4487736B2 (ja) バッテリ充電装置
WO2024024934A1 (ja) バッテリ充電装置
JP5418287B2 (ja) エンジンの発電システム
JPH07170776A (ja) インバータの主回路電荷放電方法
JP2008263682A (ja) 車両用発電機制御システム
JP5751227B2 (ja) 車両用回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556451

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933740

Country of ref document: EP

Kind code of ref document: A1