WO2019105259A1 - 透镜系统、摄像装置及移动体 - Google Patents

透镜系统、摄像装置及移动体 Download PDF

Info

Publication number
WO2019105259A1
WO2019105259A1 PCT/CN2018/116460 CN2018116460W WO2019105259A1 WO 2019105259 A1 WO2019105259 A1 WO 2019105259A1 CN 2018116460 W CN2018116460 W CN 2018116460W WO 2019105259 A1 WO2019105259 A1 WO 2019105259A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
positive
lens system
object side
Prior art date
Application number
PCT/CN2018/116460
Other languages
English (en)
French (fr)
Inventor
松永滋彦
大畑笃
中辻达也
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880014846.7A priority Critical patent/CN110366693B/zh
Publication of WO2019105259A1 publication Critical patent/WO2019105259A1/zh
Priority to US16/727,531 priority patent/US11353689B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1431Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
    • G02B15/143103Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive arranged ++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1421Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only

Definitions

  • the present invention relates to a lens system, an image pickup apparatus, and a moving body.
  • a telephoto lens having a small F value is known (for example, refer to Patent Document 1).
  • a smaller type of optical system is known (for example, refer to Patent Document 2).
  • Patent Document 1 JP-A-2013-161076
  • Patent Document 2 JP-A-2011-107313
  • a lens system includes a positive first lens group, an aperture stop, a positive second lens group, and a third lens group in this order from the object side.
  • the first lens group may include four or more lenses including at least three positive lenses and at least one negative lens.
  • the second lens group may include four or more lenses including at least one cemented lens.
  • the second lens group may have a negative lens whose concave surface faces the object side on the object side.
  • the third lens group may include three or more lenses including at least one positive lens and negative lens.
  • the focal length of the first lens group is f1
  • the focal length of the second lens group is f2
  • the exit pupil distance of the lens system when focusing on an infinity subject is Dex, and the focus is on the infinity subject.
  • the radius of the effective image circle of the lens system is set to Y, which can satisfy the conditional expression.
  • the radius of curvature of the surface closest to the object side of the second lens group is R2f, and the focal length of the entire system is f, which satisfies the conditional expression -0.95 ⁇ R2f / f ⁇ -0.38.
  • the composite focal length of the first lens group and the second lens group is f12, and the conditional expression 0.85 ⁇ f12 / f ⁇ 1.2 can be satisfied.
  • the radius of curvature of the surface of the first lens group closest to the image side is R1r, and the conditional expression R1r/f ⁇ 0.3 can be satisfied.
  • the Abbe number of the third positive lens from the object side is set to vdp3, and the conditional expression 60 ⁇ vdp3 can be satisfied.
  • An image pickup apparatus includes the above lens system and an image pickup element.
  • a moving body includes the above lens system and moves.
  • the mobile body can be a drone.
  • the above lens system it is possible to provide a lens system having a large image size, a small F value, and a short overall lens length.
  • Fig. 1 shows the lens configuration of the lens system 300 in the first embodiment together with the filter F and the image pickup element IMA.
  • FIG. 2 shows spherical aberration, astigmatism, and distortion aberration of the lens system 300 that is focused on an infinity subject state.
  • Fig. 3 shows the lens configuration of the lens system 400 in the second embodiment together with the filter F and the image pickup element IMA.
  • FIG. 4 shows spherical aberration, astigmatism, and distortion aberration of the lens system 400 that is focused on an infinity subject state.
  • Fig. 5 shows the lens configuration of the lens system 500 in the third embodiment together with the filter F and the image pickup element IMA.
  • FIG. 6 shows spherical aberration, astigmatism, and distortion aberration of the lens system 500 that is focused on an infinity subject state.
  • Fig. 7 shows the lens configuration of the lens system 600 in the fourth embodiment together with the filter F and the image pickup element IMA.
  • FIG. 8 shows spherical aberration, astigmatism, and distortion aberration of the lens system 600 that is focused on an infinity subject state.
  • Fig. 9 shows the lens configuration of the lens system 700 in the fifth embodiment together with the filter F and the image pickup element IMA.
  • FIG. 10 shows spherical aberration, astigmatism, and distortion aberration of the lens system 700 that is focused on an infinity subject state.
  • FIG. 11 schematically shows an example of a mobile body system 10 including a UAV 100 and a controller 50.
  • FIG. 12 shows an example of a functional block of the UAV 100.
  • FIG. 13 is an external perspective view showing an example of the stabilizer 3000.
  • a front focus type lens system that performs focusing by integrally moving the first lens group, the aperture stop, and the second lens group is provided.
  • the front focus type is advantageous in miniaturization of the overall length and the front lens diameter as compared with other focus types, and can suppress aberration variation accompanying focusing.
  • an optical system having a small F value is provided.
  • the lens system includes a positive first lens group, an aperture stop, and a positive second lens group in order from the object side.
  • the third lens group includes four or more lenses including at least three positive lenses and at least one negative lens.
  • the second lens group includes four or more lenses including at least one cemented lens, and a negative lens having a concave surface facing the object side is disposed on the object side.
  • the third lens group includes three or more lenses including at least one positive lens and a negative lens.
  • the first lens group, the aperture stop, and the second lens group integrally move toward the object side, and the third lens group can be fixed to the image plane.
  • the focal length of the first lens group is f1
  • the focal length of the second lens group is f2
  • the exit pupil distance of the lens system when focusing on an infinity subject is Dex, and the focus is on the infinity subject.
  • the radius of the effective image circle of the lens system is set to Y, and the following conditional expression 1 and conditional expression 2 are satisfied.
  • the exit pupil distance represents the distance from the image plane to the exit pupil.
  • the effective image circle represents the diameter of the image circle that ensures optical performance.
  • the effective image circle here refers to a circle covering the diagonal length of the applicable sensor, and at least the peripheral light amount of the diagonal position of the sensor is ensured to be 20% or more.
  • Conditional Formula 1 defines the refractive power of the first lens group and the second lens group.
  • the refractive power of the second lens group is relatively increased, and it is difficult to correct the off-axis aberration.
  • the refractive power of the second lens group is relatively weak, and the lens system is increased in size.
  • Conditional Formula 2 specifies the relationship between the exit pupil position and the radius of the effective image circle when focusing on an infinity subject.
  • the exit pupil position When the upper limit of the conditional expression 2 is exceeded, the exit pupil position is away from the imaging surface, so that it is difficult to reduce the overall length.
  • the lower limit of the conditional expression 2 When the lower limit of the conditional expression 2 is exceeded, the exit pupil position is too close to the imaging surface with respect to the radius of the effective image circle, and thus the incident angle of the off-axis light becomes large. Therefore, off-axis aberrations are easily generated. Further, since the incident angle limit of the image pickup element is exceeded, the amount of light in the periphery is reduced.
  • the lens system having the above configuration it is possible to efficiently share the correction of the on-axis aberration and the off-axis aberration of each surface of the lens included in the lens system.
  • the maximum image height can also be applied to Y described in the embodiment.
  • the radius of curvature of the surface of the second lens group closest to the object side is R2f, and the focal length of the entire system is f, and it is preferable to satisfy the following conditional expression 3.
  • the conditional expression 3 defines the relationship between the radius of curvature of the surface of the second lens group closest to the object side and the focal length of the entire system. If the upper limit of the conditional expression 3 is exceeded, it is difficult to correct the off-axis aberration. When the lower limit of the conditional expression 3 is exceeded, the spherical aberration is particularly likely to occur, and the on-axis performance at the time of eccentricity is likely to deteriorate.
  • the focal length of the third lens group is f3, and it is preferable to satisfy the following conditional expression 4.
  • Conditional Formula 4 specifies the relationship between the focal length of the entire system of the lens system and the focal length of the third lens group.
  • the refractive power of the third lens unit is too strong, and the structure of the substantially symmetrical system collapses, making it difficult to correct the aberration. Further, it is difficult to suppress aberration variation caused by the subject distance.
  • the composite focal length of the first lens group and the second lens group is f12, and it is preferable to satisfy the following conditional expression 5.
  • the conditional expression 5 defines the relationship between the focal length of the entire system of the lens system and the combined focal length of the active lens group, that is, the first lens group and the second lens group.
  • the refractive power of the active group is too weak, and the stroke when focusing from the infinity subject to the close-range subject becomes long. This leads to an increase in the overall length.
  • the lower limit of the conditional expression 5 is exceeded, the refractive power of the active group is too strong, and it is difficult to correct the aberration.
  • the radius of curvature of the surface of the first lens group closest to the image side is R1r, and it is preferable to satisfy the following conditional expression 6.
  • the conditional expression 6 defines the relationship between the focal length of the entire system of the lens system and the radius of curvature of the surface of the first lens group closest to the image side.
  • the Abbe number of the third positive lens on the object side is set to vdp3, and it is preferable to satisfy the following conditional expression 7.
  • the conditional expression 7 defines the Abbe number of the third positive lens of the first lens group.
  • the lower limit of the conditional expression 7 is exceeded, the axial chromatic aberration and the chromatic aberration of magnification are greatly generated, and it is difficult to improve the performance.
  • the Abbe number of the third positive lens of the first lens group larger than the Abbe number of the first positive lens of the first lens group and the Abbe number of the second positive lens of the first lens group, Can get some effect.
  • Fig. 1 shows the lens configuration of the lens system 300 in the first embodiment together with the filter F and the image pickup element IMA.
  • the lens system 300 includes a first lens group 301, an aperture stop S, a second lens group 302, and a third lens group 303 in this order from the object side.
  • the filter F is disposed on the object side of the image pickup element IMA. Light passing through the lens system 300 and the filter F is incident on the image pickup element IMA.
  • Ln denotes a lens.
  • n following L is an integer of 1 or more.
  • n represents the nth lens from the object side.
  • Ln is a symbol assigned to represent the nth lens from the object side.
  • the lens in which the symbol Ln is assigned and the lens in the other embodiment in which the same symbol Ln is assigned do not refer to the same lens.
  • the lens system has a plurality of faces identified by face number i, where i is a natural number.
  • face number i When viewed from the object side, the first surface of the lens is set to the first surface, and the surface number is increased in the order in which the light passes through the surface.
  • STO in the face number indicates the opening face of the aperture stop S.
  • Di represents the interval on the optical axis between the i-th surface and the i+1th surface.
  • f indicates the focal length.
  • Fno indicates the F value.
  • represents a half angle of view.
  • Y indicates the radius of the effective image circle.
  • Dex indicates the distance from the exit pupil.
  • R represents the radius of curvature. In the radius of curvature, “INF” is represented as a plane.
  • n represents the refractive index.
  • Table 1 shows lens data of a lens that the lens system 300 has.
  • Di, n, and v are represented corresponding to the surface number i.
  • Table 2 shows the focal length f, Fno, the half angle of view ⁇ , the radius Y of the effective image circle, and the exit pupil distance Dex of the entire system of the lens system 300 focusing on the infinity subject state.
  • the first lens group 301 has a positive refractive power.
  • the second lens group 302 has a positive refractive power.
  • the third lens group 303 has a negative refractive power.
  • the first lens group 301, the aperture stop S, and the second lens group 302 are integrally moved to perform focusing.
  • the arrow of FIG. 1 schematically shows the trajectory of the active group when the object from infinity is focused on the close-range subject.
  • the first lens group 301 includes a cemented lens of positive refractive power of the negative lens L1 and the positive meniscus lens L2, a positive meniscus lens L3 whose convex surface faces the object side, a negative refractive power of the positive lens L4 and the negative lens L5, and a positive lens L6. And a cemented lens of the positive refractive power of the negative lens L7.
  • the lens system 300 having a small F value, the spherical aberration and the off-axis aberration can be satisfactorily corrected.
  • a glass material having a large Abbe number for the third positive lens L4 and the fourth positive lens L6 on the object side it is possible to satisfactorily correct the axial chromatic aberration and the off-axis chromatic aberration.
  • the second lens group 302 includes a negative lens L8 having a biconcave shape and a negative refractive power lens of the biconvex positive lens L9, a biconvex positive lens L10, and a positive lens L11 having a convex side surface.
  • the third lens group 303 includes a cemented lens of positive refractive power of the biconvex positive lens L12 and the biconcave negative lens L13, and a negative meniscus lens L14 whose image side is convex.
  • FIG. 2 shows spherical aberration, astigmatism, and distortion aberration of the lens system 300 that is focused on an infinity subject state.
  • the alternate long and short dash line indicates the value of the C line (656.27 nm)
  • the solid line indicates the value of the d line (587.56 nm)
  • the broken line indicates the value of the g line (435.84 nm).
  • the astigmatism indicates the value of the sagittal image plane of the d line
  • the broken line indicates the value of the meridional image plane of the d line.
  • the distortion aberration represents the value of the d line.
  • the lens system 300 has a good correction of various aberrations and has excellent imaging performance.
  • Fig. 3 shows the lens configuration of the lens system 400 in the second embodiment together with the filter F and the image pickup element IMA.
  • the lens system 400 includes a first lens group 401, an aperture stop S, a second lens group 402, and a third lens group 403 in this order from the object side.
  • the filter F is disposed on the object side of the image pickup element IMA.
  • Table 3 shows lens data of a lens that the lens system 400 has.
  • Di, n, and v are represented by the surface number i.
  • Table 4 shows the focal length f, Fno, the half angle of view ⁇ , the radius Y of the effective image circle, and the exit pupil distance Dex of the entire system of the lens system 400 focusing on the infinity subject state.
  • the first lens group 401 has a positive refractive power.
  • the second lens group 402 has a positive refractive power.
  • the third lens group 403 has a negative refractive power.
  • the first lens group 401, the aperture stop S, and the second lens group 402 are integrally moved to perform focusing.
  • the arrow of FIG. 3 schematically shows the trajectory of the active group when the subject is in focus from the infinity subject to the close-range subject.
  • the first lens group 401 includes a cemented lens of positive refractive power of the negative lens L1 and the positive meniscus lens L2, a positive meniscus lens L3 whose convex surface faces the object side, a negative refractive power of the positive lens L4 and the negative lens L5, and a positive lens L6. And a cemented lens of the positive refractive power of the negative lens L7.
  • the lens system 400 having a small F value the spherical aberration and the off-axis aberration can be satisfactorily corrected.
  • a glass material having a large Abbe number for the third positive lens L4 and the fourth positive lens L6 on the object side it is possible to satisfactorily correct the axial chromatic aberration and the off-axis chromatic aberration.
  • the second lens group 402 includes a negative lens L8 having a biconcave shape, a positive refractive power cemented lens of the biconvex positive lens L9, a biconcave negative lens L10, and a biconvex positive lens L11 positive refractive power cemented lens, A biconvex positive lens L12.
  • the third lens group 403 includes a positive lens L13 having a biconvex shape and a positive refractive power lens of the negative lens L14 having a biconcave shape, and a negative meniscus lens L15 having a convex side surface.
  • FIG. 4 shows spherical aberration, astigmatism, and distortion aberration of the lens system 400 that is focused on an infinity subject state.
  • the alternate long and short dash line indicates the value of the C line (656.27 nm)
  • the solid line indicates the value of the d line (587.56 nm)
  • the broken line indicates the value of the g line (435.84 nm).
  • the astigmatism indicates the value of the sagittal image plane of the d line
  • the broken line indicates the value of the meridional image plane of the d line.
  • the distortion aberration represents the value of the d line.
  • the lens system 400 has a good correction of various aberrations and has excellent imaging performance.
  • Fig. 5 shows the lens configuration of the lens system 500 in the third embodiment together with the filter F and the image pickup element IMA.
  • the lens system 500 includes a first lens group 501, an aperture stop S, a second lens group 502, and a third lens group 503 in this order from the object side.
  • the filter F is disposed on the object side of the image pickup element IMA.
  • Table 5 shows lens data of a lens that the lens system 500 has.
  • Di, n, and v are represented by the surface number i.
  • Table 6 shows the focal length f, Fno, the half angle of view ⁇ , the radius Y of the effective image circle, and the exit pupil distance Dex of the entire system of the lens system 500 focusing on the infinity subject state.
  • the first lens group 501 has a positive refractive power.
  • the second lens group 502 has a positive refractive power.
  • the third lens group 503 has a negative refractive power.
  • the first lens group 501, the aperture stop S, and the second lens group 502 are integrally moved to perform focusing.
  • the arrow of FIG. 5 schematically shows the trajectory of the active group when the object is in focus from the infinity object to the close-range subject.
  • the first lens group 501 includes a positive meniscus lens L1 having a convex surface toward the object side, a positive meniscus lens L2 having a convex surface toward the object side, a negative refractive power of the positive lens L3 and the negative lens L4, a positive lens L5, and a negative lens.
  • L6 positive refractive power cemented lens According to this configuration, in the lens system 500 having a small F value, the spherical aberration and the off-axis aberration can be satisfactorily corrected. In addition, by using a glass material having a large Abbe number for the third positive lens L3 and the fourth positive lens L5 on the object side, it is possible to satisfactorily correct the axial chromatic aberration and the off-axis chromatic aberration.
  • the second lens group 502 includes a negative lens L7 having a concave side of the object and a negative refractive power of the positive lens L8, a positive lens L9 having a biconvex shape, and a positive refractive lens L10 having a biconcave negative lens L10, and a biconvex shape.
  • Positive lens L11 By sharing the refractive power required for the second lens group 502 by at least four or more lenses, the on-axis aberration and the off-axis aberration can be corrected in a balanced manner.
  • the third lens group 503 includes a cemented lens having a positive refractive power of a double convex positive lens L12 and a double concave negative lens L13, and a negative meniscus lens L14 having a convex side surface.
  • FIG. 6 shows spherical aberration, astigmatism, and distortion aberration of the lens system 500 that is focused on an infinity subject state.
  • the alternate long and short dash line indicates the value of the C line (656.27 nm)
  • the solid line indicates the value of the d line (587.56 nm)
  • the broken line indicates the value of the g line (435.84 nm).
  • the astigmatism indicates the value of the sagittal image plane of the d line
  • the broken line indicates the value of the meridional image plane of the d line.
  • the distortion aberration represents the value of the d line.
  • the lens system 500 has a good correction of various aberrations and has excellent imaging performance. .
  • Fig. 7 shows the lens configuration of the lens system 600 in the fourth embodiment together with the filter F and the image pickup element IMA.
  • the lens system 600 includes a first lens group 601, an aperture stop S, a second lens group 602, and a third lens group 603 in this order from the object side.
  • the filter F is disposed on the object side of the image pickup element IMA.
  • Table 7 shows the lens data of the lens that the lens system 600 has.
  • Di, n, and v are represented by the surface number i.
  • Table 8 shows the focal length f, Fno, the half angle of view ⁇ , the radius Y of the effective image circle, and the exit pupil distance Dex of the entire system of the lens system 600 focusing on the infinity subject state.
  • the first lens group 601 has a positive refractive power.
  • the second lens group 602 has a positive refractive power.
  • the third lens group 603 has a negative refractive power.
  • the first lens group 601, the aperture stop S, and the second lens group 602 are integrally moved to perform focusing.
  • the arrow of FIG. 7 schematically shows the trajectory of the active group when the subject is in focus from the infinity subject to the close-range subject.
  • the first lens group 601 includes a positive meniscus lens L1 having a convex surface toward the object side, a positive meniscus lens L2 having a convex surface toward the object side, a negative refractive power of the positive lens L3 and the negative lens L4, a positive lens L5, and a negative lens.
  • L6 positive refractive power cemented lens According to this configuration, in the lens system 600 having a small F value, the spherical aberration and the off-axis aberration can be satisfactorily corrected.
  • the second lens group 602 includes a cemented lens of a negative lens L7 having a concave side of the object and a negative refractive power of the positive lens L8, a cemented lens of positive refractive power of the negative lens L9 and the positive lens L10, and a positive lens L11 having a biconvex shape.
  • the third lens group 603 includes a cemented lens of a positive refractive power of a biconvex positive lens L12 and a biconcave negative lens L13, and a negative meniscus lens L14 having a convex side surface.
  • FIG. 8 shows spherical aberration, astigmatism, and distortion aberration of the lens system 600 that is focused on an infinity subject state.
  • the alternate long and short dash line indicates the value of the C line (656.27 nm)
  • the solid line indicates the value of the d line (587.56 nm)
  • the broken line indicates the value of the g line (435.84 nm).
  • the astigmatism indicates the value of the sagittal image plane of the d line
  • the broken line indicates the value of the meridional image plane of the d line.
  • the distortion aberration represents the value of the d line.
  • the lens system 600 has a good correction of various aberrations and has excellent imaging performance.
  • Fig. 9 shows the lens configuration of the lens system 700 in the fifth embodiment together with the filter F and the image pickup element IMA.
  • the lens system 700 includes a first lens group 701, an aperture stop S, a second lens group 702, and a third lens group 703 in this order from the object side.
  • the filter F is disposed on the object side of the image pickup element IMA.
  • Table 9 shows lens data of a lens that the lens system 700 has.
  • Di, n, and v are represented corresponding to the surface number i.
  • Table 10 shows the focal length f, Fno, the half angle of view ⁇ , the radius Y of the effective image circle, and the exit pupil distance Dex of the entire system of the lens system 700 focusing on the infinity subject state.
  • the first lens group 701 has a positive refractive power.
  • the second lens group 702 has a positive refractive power.
  • the third lens group 703 has a negative refractive power.
  • the first lens group 701, the aperture stop S, and the second lens group 702 are integrally moved to perform focusing.
  • the arrow of FIG. 9 schematically shows the trajectory of the active group when the object is in focus from the infinity object to the close-range subject.
  • the first lens group 701 includes a positive meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, a negative refractive power of the positive lens L3 and the negative lens L4, a positive lens L5, and a negative lens.
  • L6 positive refractive power cemented lens According to this configuration, in the lens system 700 having a small F value, the spherical aberration and the off-axis aberration can be satisfactorily corrected.
  • the second lens group 702 includes a negative lens L7 having a biconcave shape and a positive refractive lens of the biconvex positive lens L8, a negative lens L9 and a negative refractive power of the positive lens L10, and a positive lens L11 having a convex side. .
  • the refractive power required for the second lens group 702 can be corrected in a balanced manner.
  • the third lens group 703 includes a cemented lens of positive refractive power of the biconvex positive lens L12 and the biconcave negative lens L13, and a negative meniscus lens L14 whose image side is convex.
  • FIG. 10 shows spherical aberration, astigmatism, and distortion aberration of the lens system 700 that is focused on an infinity subject state.
  • the alternate long and short dash line indicates the value of the C line (656.27 nm)
  • the solid line indicates the value of the d line (587.56 nm)
  • the broken line indicates the value of the g line (435.84 nm).
  • the astigmatism indicates the value of the sagittal image plane of the d line
  • the broken line indicates the value of the meridional image plane of the d line.
  • the distortion aberration represents the value of the d line.
  • the lens system 700 has a good correction of various aberrations and has excellent imaging performance.
  • Table 11 shows the numerical values involved in the respective conditional expressions from the first embodiment to the fifth embodiment.
  • Conditional expression 1 Conditional 2
  • Conditional expression 3 Conditional 4
  • Conditional expression 5 Conditional expression 6
  • Example 1 1.73 -0.49 -0.60 4.75 1.046 -1626 74.70
  • Example 2 1.73 -0.48 -0.57 14.47 1.079 -12.49
  • Example 3 1.52 -0.50 -0.76 7.28 1.060 -2.05
  • Example 4 1.42 -0.52 -0.69 4.82 1.045 -1.70
  • Example 5 1.28 -0.49 -0.70 8.30 1.069 -1.46 74.70
  • Table 12 shows the focal length of each of the first lens group, the second lens group, and the third lens group, and the combined focal length of the first lens group and the second lens group.
  • the lens system of the present embodiment it is possible to provide a lens system in which the image size is relatively large, the F value is relatively small, and the overall length of the lens system is relatively short. For example, it is possible to provide a small-sized lens system having a large aperture of an F value of about 1.8 to 2.
  • the lens system according to the present embodiment can be applied to an imaging lens system of an imaging device such as a digital camera or a video camera.
  • the lens system according to the present embodiment is particularly suitable for an image pickup apparatus having an image pickup element of a medium size or more.
  • the lens system according to the present embodiment can be applied to an imaging lens provided in a lens non-interchangeable imaging device.
  • the lens system according to the present embodiment can be applied to an interchangeable lens of a lens interchangeable camera such as a single-lens reflex camera.
  • FIG. 11 schematically shows an example of a mobile body system 10 including a UAV 100 and a controller 50.
  • the UAV 100 includes a UAV main body 101, a universal joint 110, a plurality of imaging devices 230, and an imaging device 220.
  • the imaging device 220 includes a lens device 160 and an imaging unit 140.
  • the lens device 160 is provided with the above lens system.
  • the UAV 100 is an example of a moving body provided with an imaging device having the above lens system and moving.
  • the mobile body also includes the concept of other aircraft moving in the air, vehicles moving on the ground, ships moving on the water, and the like.
  • the UAV body 101 is provided with a plurality of rotating blades.
  • the UAV body 101 causes the UAV 100 to fly by controlling the rotation of a plurality of rotating blades.
  • the UAV body 101 for example, uses four rotating wings to fly the UAV 100.
  • the number of rotating wings is not limited to four.
  • the UAV 100 can also be a fixed wing aircraft without a rotating wing.
  • the imaging device 220 is a camera for capturing an object included in a desired imaging range.
  • the plurality of imaging devices 230 are sensing cameras that image the surroundings of the UAV 100 in order to control the flight of the UAV 100.
  • the imaging device 230 may also be fixed to the UAV body 101.
  • the two camera devices 230 may also be disposed at the front of the UAV 100, that is, the front side. Moreover, the other two camera devices 230 may be disposed on the bottom surface of the UAV 100.
  • the two camera units 230 on the front side are paired and can be used as a so-called stereo camera.
  • the two camera units 230 on the bottom side are also paired and can also be used as a stereo camera.
  • the three-dimensional spatial data around the UAV 100 can also be generated from the images captured by the plurality of imaging devices 230.
  • the distance to the subject imaged by the plurality of imaging devices 230 can be determined by a stereo camera formed by the plurality of imaging devices 230.
  • the number of imaging devices 230 included in the UAV 100 is not limited to four.
  • the UAV 100 is provided with at least one imaging device 230.
  • the UAV 100 may also have at least one camera 230 on each of the head, tail, side, bottom, and top surfaces of the UAV 100.
  • the imaging device 230 may also have a single focus lens or a fisheye lens. In the description about the UAV 100, there are cases where the plurality of imaging devices 230 are collectively referred to as the imaging device 230.
  • the controller 50 includes a display unit 54 and an operation unit 52.
  • the operation unit 52 accepts an input operation for controlling the posture of the UAV 100 from the user.
  • the controller 50 transmits a signal for controlling the UAV 100 in accordance with the operation of the user accepted by the operation unit 52.
  • the operation unit 52 accepts an operation of changing the focus distance of the lens device 160.
  • the controller 50 transmits a signal indicating a change in the focus state to the UAV 100.
  • the controller 50 receives an image captured by at least one of the imaging device 230 and the imaging device 220.
  • the display unit 54 displays an image received by the controller 50.
  • the display portion 54 may be a touch panel.
  • the controller 50 can accept an input operation from the user through the display portion 54.
  • the display unit 54 can accept a user operation or the like in which the user specifies the position of the subject to be imaged by the imaging device 220.
  • the imaging section 140 generates and records image data of an optical image imaged by the lens device 160.
  • the lens device 160 may be provided integrally with the imaging unit 140. Lens device 160 can be a so-called interchangeable lens. The lens device 160 may be detachably provided to the imaging unit 140.
  • the universal joint 110 has a support mechanism that can movably support the camera 220.
  • the imaging device 220 is mounted to the UAV body 101 via the universal joint 110.
  • the universal joint 110 rotatably supports the image pickup device 220 around the pitch axis.
  • the universal joint 110 rotatably supports the image pickup device 220 around the roll axis.
  • the universal joint 110 rotatably supports the image pickup device 220 around the yaw axis.
  • the universal joint 110 can also rotatably support the imaging device 220 around at least one of the pitch axis, the roll axis, and the yaw axis.
  • the universal joint 110 may also rotatably support the imaging device 220 around the pitch axis, the roll axis, and the yaw axis, respectively.
  • the universal joint 110 can also hold the imaging unit 140.
  • the universal joint 110 can also hold the lens unit 160.
  • the universal joint 110 may change the imaging direction of the imaging device 220 by rotating the imaging unit 140 and the lens device 160 around at least one of the yaw axis, the pitch axis, and the roll axis.
  • FIG. 12 shows an example of a functional block of the UAV 100.
  • the UAV 100 includes an interface 102, a control unit 104, a memory 106, a universal joint 110, an imaging unit 140, and a lens device 160.
  • Interface 102 is in communication with controller 50. Interface 102 receives various instructions from controller 50.
  • the control unit 104 controls the flight of the UAV 100 in accordance with an instruction received from the controller 50.
  • the control unit 104 controls the universal joint 110, the imaging unit 140, and the lens device 160.
  • the control unit 104 may be configured by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the memory 106 stores programs and the like necessary for the control unit 104 to control the universal joint 110, the imaging unit 140, and the lens device 160.
  • the memory 106 may be a computer readable recording medium.
  • the memory 106 may include at least one of flash memories such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 106 can also be provided in the housing of the UAV 100. It can also be detached from the housing of the UAV 100.
  • the universal joint 110 has a control unit 112, a driver 114, a driver 116, a driver 118, a drive unit 124, a drive unit 126, a drive unit 128, and a support mechanism 130.
  • the drive unit 124, the drive unit 126, and the drive unit 128 may be motors.
  • the support mechanism 130 supports the imaging device 220.
  • the support mechanism 130 is capable of actively supporting the imaging direction of the imaging device 220.
  • the support mechanism 130 rotatably supports the imaging unit 140 and the lens device 160 around the yaw axis, the pitch axis, and the roll axis.
  • the support mechanism 130 includes a rotation mechanism 134, a rotation mechanism 136, and a rotation mechanism 138.
  • the rotation mechanism 134 employs the drive unit 124 to rotate the imaging unit 140 and the lens unit 160 around the yaw axis.
  • the rotation mechanism 136 employs the drive unit 126 to rotate the imaging unit 140 and the lens unit 160 around the pitch axis.
  • the rotation mechanism 138 employs a driving unit 128 to rotate the imaging unit 140 and the lens unit 160 around the rotation axis.
  • the control unit 112 outputs an operation command indicating the respective rotation angles to the driver 114, the driver 116, and the driver 118 based on the operation command from the joint unit 110 of the control unit 104.
  • the driver 114, the driver 116, and the driver 118 drive the drive unit 124, the drive unit 126, and the drive unit 128 in accordance with an operation command indicating a rotation angle.
  • the rotation mechanism 134, the rotation mechanism 136, and the rotation mechanism 138 are driven to rotate by the drive unit 124, the drive unit 126, and the drive unit 128, and the postures of the imaging unit 140 and the lens device 160 are changed.
  • the imaging unit 140 performs imaging by light passing through the lens system 168.
  • the imaging unit 140 includes a control unit 222 , an imaging element 221 , and a memory 223 .
  • the control unit 222 may be configured by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the control unit 222 controls the imaging unit 140 and the lens device 160 based on an operation command from the control unit 104 to the imaging unit 140 and the lens device 160.
  • the control unit 222 outputs a control command instructing the lens device 160 to move to the focus position to the lens device 160 based on the signal received from the controller 50.
  • the memory 223 may be a computer-readable recording medium, and may include at least one of flash memories such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 223 may be disposed inside the casing of the imaging unit 140. It can be detached from the housing of the imaging unit 140.
  • the imaging element 221 is held inside the casing of the imaging unit 140, and generates image data of the optical image formed by the lens device 160, and outputs it to the control unit 222.
  • the control unit 222 stores the image data output from the imaging element 221 in the memory 223.
  • the control unit 222 may output and store the image data to the memory 106 via the control unit 104.
  • the lens device 160 includes a control unit 162, a memory 163, a drive mechanism 161, and a lens system 168.
  • the lens system 168 the lens system according to the above embodiment can be employed.
  • the control unit 162 shifts the focus lens group included in the lens system 168 along the optical axis in accordance with a control command from the control unit 222 to perform focus adjustment.
  • the focus lens group corresponds to the first lens group and the second lens group.
  • the image imaged by the lens system 168 of the lens device 160 is imaged by the imaging unit 140.
  • the drive mechanism 161 displaces the focus lens group provided in the lens system 168.
  • the drive mechanism 161 is provided with, for example, an actuator and a holding member that holds the focus lens group.
  • the drive pulse is supplied from the control unit 162 to the actuator.
  • the actuator is displaced by a drive amount corresponding to the supplied pulse.
  • the holding member is displaced in accordance with the displacement of the actuator, whereby the focus lens group is displaced. Thereby, focus adjustment is performed.
  • the magnification photography is performed by a so-called electronic zoom.
  • the enlargement photography is performed by cutting out a part of the image captured by the imaging element 221.
  • the lens device 160 may be provided integrally with the imaging unit 140. Lens device 160 can also be a so-called interchangeable lens. The lens device 160 may be detachably provided to the imaging unit 140.
  • the imaging device 230 includes a control unit 232, a control unit 234, an imaging element 231, a memory 233, and a lens 235.
  • the control unit 232 may be configured by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the control unit 232 controls the imaging element 231 based on an operation command from the imaging element 231 of the control unit 104.
  • the control unit 234 may be configured by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the control unit 234 can control the focus of the lens 235 in accordance with an operation command for the lens 235.
  • the control unit 234 can control the aperture stop of the lens 235 in accordance with an operation command for the lens 235.
  • the memory 233 may be a computer readable recording medium.
  • the memory 233 may include at least one of flash memories such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the imaging element 231 generates image data of an optical image formed by the lens 235 and outputs it to the control unit 232.
  • the control unit 232 stores the image data output from the imaging element 231 in the memory 223.
  • the UAV 100 includes a control unit 104, a control unit 112, a control unit 222, a control unit 232, a control unit 234, and a control unit 162.
  • the processing executed by the control unit 104, the control unit 112, the control unit 222, the control unit 232, the control unit 234, and the control unit 162 can be executed by any one of the control units.
  • the processing executed by the control unit 104, the control unit 112, the control unit 222, the control unit 232, the control unit 234, and the control unit 162 may be executed by one control unit.
  • the UAV 100 includes a memory 106, a memory 223, and a memory 233. Information stored to at least one of the memory 106, the memory 223, and the memory 233 may be stored to one or more of the memory 106, the memory 223, and the memory 233.
  • FIG. 13 is an external perspective view showing an example of the stabilizer 3000.
  • the stabilizer 3000 is another example of a moving body.
  • the camera unit 3013 provided in the stabilizer 3000 may include an imaging device having the same configuration as that of the imaging device 220.
  • the camera unit 3013 may include a lens device having the same configuration as the lens device 160.
  • the stabilizer 3000 includes a camera unit 3013, a universal joint 3020, and a hand portion 3003.
  • the universal joint 3020 rotatably supports the camera unit 3013.
  • the universal joint 3020 has a translational shaft 3009, a rolling shaft 3010, and a tilting shaft 3011.
  • the universal joint 3020 rotatably supports the camera unit 3013 centering on the translation axis 3009, the roll axis 3010, and the tilt axis 3011.
  • the universal joint 3020 is an example of a support mechanism.
  • the camera unit 3013 is an example of an image pickup apparatus.
  • the camera unit 3013 has a slot 3014 for inserting a memory.
  • the universal joint 3020 is fixed to the hand piece 3003 via a bracket 3007.
  • the hand piece 3003 has various buttons for operating the universal joint 3020 and the camera unit 3013.
  • the handheld unit 3003 includes a shutter button 3004, a video button 3005, and an operation button 3006. By pressing the shutter button 3004, a still image can be recorded by the camera unit 3013. The moving image can be recorded by the camera unit 3013 by pressing the video button 3005.
  • the device holder 3001 is fixed to the hand piece 3003.
  • the device holder 3001 holds a mobile device 3002 such as a smartphone.
  • the mobile device 3002 is communicably coupled to the stabilizer 3000 via a wireless network such as WiFi. Thereby, the image captured by the camera unit 3013 can be displayed on the screen of the mobile device 3002.
  • the camera unit 3013 can obtain an image having a large image size and a bright image by providing the lens system according to the above embodiment. Further, the camera unit 3013 can be miniaturized.
  • the UAV 100 and the stabilizer 3000 have been described above as an example of the moving body.
  • the imaging device having the same configuration as that of the imaging device 220 can be mounted to a mobile body other than the UAV 100 and the stabilizer 3000.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

提供一种图像尺寸大、F值小、整体长度短的透镜系统。透镜系统自物体侧依次具备正的第1组、孔径光阑、正的第2组、第3组,第1组具备包含至少三片正透镜、至少一片负透镜的四片以上的透镜,第2组具备包含至少一片胶合透镜的四片以上的透镜,凹面朝向物体侧的负透镜在物体侧配置,第3组具备包含至少一片正透镜、负透镜的三片以上的透镜,从无限远被摄体向近距离被摄体聚焦时,第1组、孔径光阑和第2组一体地向物体侧移动,第3组相对于像面固定,对于第1组的焦距f1、第2组的焦距f2、向无限远被摄体对焦时的出射光瞳距离Dex、有效像圈的半径Y,满足1.1<f1/f2<1.85,-0.65<Y/Dex<-0.33。

Description

透镜系统、摄像装置及移动体 技术领域
本发明涉及透镜系统、摄像装置及移动体。
背景技术
已知有F值较小的摄远镜头(例如,参照专利文献1)。已知有较小型的光学系统(例如,参照专利文献2)。
专利文献1特开2013-161076号公报
专利文献2特开2011-107313号公报
发明内容
发明要解决的技术问题:
例如,对于要求较大的图像尺寸的透镜系统,希望减小F值,缩短透镜整体长度。
用于解决问题的技术手段:
根据本发明的一个方面的透镜系统自物体侧依次具备正的第1透镜组、孔径光阑、正的第2透镜组、第3透镜组。第1透镜组可以具备包含至少三片正透镜、至少一片负透镜的四片以上的透镜。第2透镜组可以具备包含至少一片胶合透镜的四片以上的透镜。第2透镜组可以在物体侧配置凹面朝向物体侧的负透镜。第3透镜组可以具备包含至少一片正透镜、负透镜的三片以上的透镜。当从无限远被摄体向近距离被摄体聚焦时,第1透镜组、孔径光阑和第2透镜组一体地向物体侧移动,第3透镜组可以相对于像面固定。将第1透镜组的焦距设为f1,第2透镜组的焦距设为f2,对焦到无限远被摄体时的透镜系统的出射光瞳距离设为Dex,对焦到无限远被摄体时的透镜系统的有效像圈的半径设为Y,可以满足条件式
1.1<f1/f2<1.85
-0.65<Y/Dex<-0.33。
将第2透镜组的最靠近物体侧的面的曲率半径设为R2f,整个系统的焦距设为f,可以满足条件式-0.95<R2f/f<-0.38。
将第3透镜组的焦距设为f3,可以满足条件式4.0<|f3/f|。
将第1透镜组和第2透镜组的合成焦距设为f12,可以满足条件式0.85<f12/f<1.2。
将第1透镜组的最靠近像侧的面的曲率半径设为R1r,可以满足条件式R1r/f<-0.3。
将自物体侧的第3个正透镜的阿贝数设为vdp3,可以满足条件式60<vdp3。
根据本发明的一个方面的摄像装置具备上述透镜系统和摄像元件。
根据本发明的一个方面的移动体具备上述透镜系统并移动。
移动体可以是无人机。
根据上述透镜系统,可以提供图像尺寸较大、F值较小、透镜整体长度较短的透镜系统。
上述发明内容未列举本发明的全部特征。这些特征组的子组合也可以成为发明。
附图说明
图1将第1实施例中的透镜系统300的透镜结构与滤光器F及摄像元件IMA一并表示。
图2表示对焦到无限远被摄体状态的透镜系统300的球面像差、像散及畸变像差。
图3将第2实施例中的透镜系统400的透镜结构与滤光器F及摄像元件IMA一并表示。
图4表示对焦到无限远被摄体状态的透镜系统400的球面像差、像散及畸变像差。
图5将第3实施例中的透镜系统500的透镜结构与滤光器F及摄像元件IMA一并表示。
图6表示对焦到无限远被摄体状态的透镜系统500的球面像差、像散及畸变像差。
图7将第4实施例中的透镜系统600的透镜结构与滤光器F及摄像元件IMA一并表示。
图8表示对焦到无限远被摄体状态的透镜系统600的球面像差、像散及畸变像差。
图9将第5实施例中的透镜系统700的透镜结构与滤光器F及摄像元件IMA一并表示。
图10表示对焦到无限远被摄体状态的透镜系统700的球面像差、像散及畸变像差。
图11概略地表示具备无人机(UAV)100及控制器50的移动体系统10的实例。
图12表示UAV100的功能组块的实例。
图13是表示稳定器3000的实例的外观立体图。
符号的说明:
10 移动体系统
50 控制器
52 操作部
54 显示部
100 UAV
101 UAV本体
102 接口
104 控制部
106 存储器
110 万向节
112 控制部
114,116,118 驱动器
124,126,128 驱动部
130 支撑机构
134,136,138 旋转机构
140 摄像部
160 透镜装置
161 驱动机构
162 控制部
163 存储器
168 透镜系统
220,230 摄像装置
221 摄像元件
222 控制部
223 存储器
231 摄像元件
232 控制部
233 存储器
234 控制部
235 透镜
300,400,500,600,700 透镜系统
301,401,501,601,701 第1透镜组
302,402,502,602,702 第2透镜组
303,403,503,603,703 第3透镜组
3000 稳定器
3001 器件托架
3002 移动器件
3003 手持部
3004 快门按钮
3005 录影按钮
3006 操作按钮
3007 托架
3009 平移轴
3010 滚转轴
3011 倾斜轴
3013 摄像机单元
3014 插槽
3020 万向节
具体实施方式
以下,通过发明的实施方式来说明本发明,但是以下的实施方式并不限定权利要求书所涉及的发明。此外,并不是所有实施方式中所说明的特征组合对于发明的解决方案所必须的。对于本领域技术人员显而易见的是,可以对以下实施例进行各种修改或改进。从权利要求书的描述中显而易见的是,进行了这样的修改或改进的形态也可包含于本发明的技术范围。
权利要求书、说明书、附图及摘要中包含受著作权的保护的事项。任何人只要按专利局的文件或记录所示对这些文件进行复制,著作权所有人就不反对。但是,在除此以外的情况下,保留一切的著作权。
作为透镜系统的实施方式,提供一种通过使第1透镜组、孔径光阑、第2透镜组一体移动而进行对焦的前聚焦型的透镜系统。前聚焦型与其他聚焦类型相比,有利于整体长度及前透镜直径的小型化,能够抑制伴随聚焦产生的像差变动。尤其是,通过实施方式的透镜系统,提供一种F值小的光学系统。
如图1、图3、图5、图7及图9所示的各实施例的具体透镜结构,透镜系统自物体侧依次具备正的第1透镜组、孔径光阑、正的第2透镜组、第3透镜组。第1透镜组具备包含至少三片正透镜、至少一片负透镜的四片以上的透镜。第2透镜组具备包含至少一片胶合透镜的四片以上的透镜,凹面朝向物体侧的负透镜配置在物体侧。第3透镜组具备包含至少一片正透镜、负透镜的三片以上的透镜。透镜系统中,从无限远被摄体向近距离被摄体聚焦时,第1透镜组、孔径光阑和第2透镜组一体地向物 体侧移动,第3透镜组可以相对于像面固定。
将第1透镜组的焦距设为f1,第2透镜组的焦距设为f2,对焦到无限远被摄体时的透镜系统的出射光瞳距离设为Dex,对焦到无限远被摄体时的透镜系统的有效像圈的半径设为Y,满足下述的条件式1及条件式2。
1.1<f1/f2<1.85(条件式1)
-0.65<Y/Dex<-0.33(条件式2)
出射光瞳距离表示从像面到出射光瞳的距离。有效像圈表示能够确保光学性能的像圈的直径。这里的有效像圈是指覆盖所适用的传感器的对角长度的圆,是至少可确保传感器对角位置的周边光量达到为20%以上的。
条件式1规定第1透镜组和第2透镜组的屈光力。若超过条件式1的上限,则第2透镜组的屈光力相对变强,难以进行轴外像差的补正。另一方面,若超过条件式1的下限,则第2透镜组的屈光力相对变弱,导致透镜系统的大型化。
通过满足下述的条件式1-1,上述效果变得更显著。
1.25<f1/f2<1.6(条件式1-1)
条件式2规定对焦到无限远被摄体时的出射光瞳位置和有效像圈的半径的关系。若超过条件式2的上限,则出射光瞳位置远离摄像面,因此难以使整体长度小型化。若超过条件式2的下限,则相对于有效像圈的半径,出射光瞳位置距离摄像面过近,因此轴外光线的入射角变大。因而容易产生轴外像差。此外,由于超出了摄像元件的入射角限制,导致周边的光量减少。
而且,通过满足下述的条件式2-1,上述效果变得更显著。
-0.58<Y/Dex<-0.4(条件式2-1)
根据具有上述构成的透镜系统,能够高效分担透镜系统具有的透镜的各面的轴上像差及轴外像差的补正。此外,能够提供F值小的透镜系统。
此外,也可以将最大图像高度适用于本实施方式说明的Y。
将第2透镜组的最靠近物体侧的面的曲率半径设为R2f,整个系统的焦距设为f,优选满足下述的条件式3。
-0.95<R2f/f<-0.38(条件式3)
条件式3规定第2透镜组的最靠近物体侧的面的曲率半径和整个系统的焦距的关系。若超过条件式3的上限,则难以进行轴外像差的补正。若超过条件式3的下限,则球面像差特别容易发生,偏心时的轴上性能容易劣化。
而且,通过满足下述的条件式3-1,上述效果变得更显著。
-0.85<R2f/f<-0.45(条件式3-1)
将第3透镜组的焦距设为f3,优选满足下述的条件式4。
4.0<|f3/f|(条件式4)
条件式4规定透镜系统的整个系统的焦距和第3透镜组的焦距的关系。若超过条件式4的下限,则第3透镜组的屈光力过强,大致对称系统的结构崩溃,难以进行像差补正。此外,难以抑制由被摄体距离导致的像差变动。
将第1透镜组和第2透镜组的合成焦距设为f12,优选满足下述的条件式5。
0.85<f12/f<1.2(条件式5)
条件式5规定透镜系统的整个系统的焦距和活动组即第1透镜组和第2透镜组的合成焦距的关系。若超过条件式5的上限,则活动组的屈光力过弱,从无限远被摄体向近距离被摄体对焦时的行程变长。因而导致整体长度的大型化。另一方面,若超过条件式5的下限,则活动组的屈光力过强,难以进行像差补正。
而且,通过满足下述的条件式5-1,上述效果变得更显著。
0.95<f12/f<1.15(条件式5-1)
将第1透镜组的最靠近像侧的面的曲率半径设为R1r,优选满足下述的条件式6。
R1r/f<-0.3(条件式6)
条件式6规定透镜系统的整个系统的焦距和第1透镜组的最靠近像侧的面的曲率半径的关系。若超过条件式6的上限,则大致对称系统崩溃,相应面的球面像差、轴外像差的发生变得显著,难以进行像差补正。此外,偏心时的性能劣化变得显著。
而且,通过满足下述的条件式6-1,上述效果变得更显著。
R1r/f<-0.5(条件式6-1)
将自物体侧的第3个正透镜的阿贝数设为vdp3,优选满足下述的条件式7。
60<vdp3(条件式7)
条件式7规定第1透镜组的第3个正透镜的阿贝数。若超过条件式7的下限,则轴上色差、倍率色差大幅产生,难以高性能化。
而且,通过满足下述的条件式7-1,上述效果变得更显著。
65<vdp3(条件式7-1)
此外,通过使第1透镜组的第3个正透镜的阿贝数大于第1透镜组的第1个正透镜的阿贝数及第1透镜组的第2个正透镜的阿贝数,也可以获得一定的效果。
接着,对根据透镜系统的实施方式的实施例的透镜结构进行说明。
图1将第1实施例中的透镜系统300的透镜结构与滤光器F及摄像元件IMA一并表示。透镜系统300自物体侧依次具备第1透镜组301、孔径光阑S、第2透镜组302、第3透镜组303。滤光器F设置在摄像元件IMA的物体侧。通过透镜系统300 及滤光器F的光入射摄像元件IMA。
此外,透镜系统的各实施例的说明中,“Ln”表示透镜。这里,L后续的n是1以上的整数。n表示的是自物体侧的第n个透镜。各实施例中,Ln是为了表示自物体侧的第n透镜而分配的记号。各实施例的说明中,分配了记号Ln的透镜和分配了相同记号Ln的其他实施例中的透镜并不指的是同一透镜。
对透镜系统的各实施例的描述中所采用的记号等的意思进行说明。透镜系统具有的多个面以面编号i识别,i为自然数。从物体侧看,透镜的最初的面设为第1面,并按照之后光线通过面的顺序递增面编号。面编号中的“STO”表示孔径光阑S的开口面。“Di”表示第i面和第i+1面之间的光轴上的间隔。
“f”表示焦距。“Fno”表示F值。“ω”表示半视场角。“Y”表示有效像圈的半径。“Dex”表示出射光瞳距离。“R”表示曲率半径。曲率半径中,“INF”表示为平面。“n”表示折射率。“v”表示阿贝数。折射率n及阿贝数v是d线(λ=587.6nm)中的值。
表1表示透镜系统300具有的透镜的透镜数据。表1中,Di、n及v与面编号i对应表示。
表1
面编号 R D Nd Vd
1 1000.000 4.200 1.73800 32.33
2 62.477 7.037 1.90525 35.04
3 463.687 0.300    
4 46.311 6.608 1.91650 31.60
5 136.450 0.300    
6 30.300 7.153 1.53775 74.70
7 180.445 2.115 1.85026 32.27
8 24.027 4.273    
9 294.057 4.586 1.59522 67.73
10 -55.379 3.000 1.73800 32.33
11 -1299.409 4.831    
STO INF 6.490    
13 -48.022 1.300 1.60738 56.82
14 26.316 7.176 1.61800 63.33
15 -79.516 0.300    
16 279.778 9.474 1.90525 35.04
17 -158.893 0.825    
18 -594.041 8.302 1.61800 63.33
19 -92.672 1.193    
20 130.243 8.658 1.90525 35.04
21 -34.750 3.630 1.67270 32.10
22 100.234 7.482    
23 -33333 2.500 1.67270 32.10
24 -74.735 18.700    
25 INF 1.800 1.51680 64.20
26 INF 0.500    
27 INF 0.000    
表2表示对焦到无限远被摄体状态的透镜系统300的整个系统的焦距f、Fno、半视场角ω、有效像圈的半径Y及出射光瞳距离Dex。
表2
f 79.91
Fno 2.06
ω 19.14
Y 27.5
Dex -56.69
第1透镜组301具有正屈光力。第2透镜组302具有正屈光力。第3透镜组303具有负屈光力。透镜系统300中,第1透镜组301、孔径光阑S、第2透镜组302通过一体活动,进行对焦。图1的箭头示意性地示出从无限远被摄体向近距离被摄体对焦时的活动组的轨迹。
第1透镜组301具备负透镜L1和正弯月透镜L2的正屈光力的胶合透镜、凸面朝向物体侧的正的弯月透镜L3、正透镜L4和负透镜L5的负屈光力的胶合透镜、正透镜L6和负透镜L7的正屈光力的胶合透镜。通过本结构,在F值小的透镜系统300中,能够良好补正球面像差和轴外像差。此外,通过对自物体侧的第3个正透镜L4、第4正透镜L6采用阿贝数大的玻璃材料,能够良好补正轴上色差及轴外色差。
第2透镜组302具备双凹形状的负透镜L8和双凸形状的正透镜L9的负屈光力的胶合透镜、双凸形状的正透镜L10、像侧面为凸状的正透镜L11。通过由至少四片以上的透镜分担第2透镜组302所需的屈光力,能够平衡地补正轴上像差及轴外像差。
第3透镜组303具备双凸形状的正透镜L12和双凹形状的负透镜L13的正屈光力的胶合透镜、像侧面为凸状的负弯月透镜L14。
图2表示对焦到无限远被摄体状态的透镜系统300的球面像差、像散及畸变像差。球面像差中,单点划线表示C线(656.27nm)的值,实线表示d线(587.56nm)的值,虚线表示g线(435.84nm)的值。像散中,实线表示d线的弧矢像面的值,虚线表示d线的子午像面的值。畸变像差表示d线的值。从各像差图可知,透镜系统300具有良好地补正各像差并具有优异的成像性能。
图3将第2实施例中的透镜系统400的透镜结构与滤光器F及摄像元件IMA一并表示。透镜系统400自物体侧依次具备第1透镜组401、孔径光阑S、第2透镜组402、第3透镜组403。滤光器F设置在摄像元件IMA的物体侧。
表3表示透镜系统400具有的透镜的透镜数据。表3中,Di、n及v与面编号i对应表示。
表3
面编号 R D Nd Vd
1 1000.000 3.500 1.73800 3233
2 40.384 12.000 1.91650 31.60
3 409.202 0.300    
4 56.277 6.189 1.90525 35.04
5 139.699 0.300    
6 34.463 7.958 1.53775 74.70
7 -1013.557 4.000 1.85026 32.27
8 28.000 4.002    
9 149.479 5.783 1.53775 74.70
10 -42.250 3.000 1.63930 44.87
11 -1000.000 4.806    
STO INF 6.668    
13 -45.455 1.300 1.51742 52.43
14 165.540 6.244 1.72916 54.68
15 -70.579 0.719    
16 -127.007 1.500 1.59270 35.31
17 125.479 8.500 1.90525 35.04
18 -111.160 0.300    
19 656.158 3.530 1.49700 81.54
20 -164.512 1.192    
21 175.029 13.000 1.90525 35.04
22 -33.684 2.728 1.67270 32.10
23 143.905 6.974    
24 -35.325 2.500 1.69895 30.13
25 -67.5258 18.700    
26 INF 1.800 1.51680 64.20
27 INF 0.500    
28 INF 0.000    
表4表示对焦到无限远被摄体状态的透镜系统400的整个系统的焦距f、Fno、半视场角ω、有效像圈的半径Y及出射光瞳距离Dex。
表4
f 80.04
Fno 1.95
ω 19.12
Y 27.5
Dex -56.82
第1透镜组401具有正屈光力。第2透镜组402具有正屈光力。第3透镜组403具有负屈光力。透镜系统400中,第1透镜组401、孔径光阑S、第2透镜组402通过一体活动,进行对焦。图3的箭头示意性地示出从无限远被摄体向近距离被摄体对焦时的活动组的轨迹。
第1透镜组401具备负透镜L1和正弯月透镜L2的正屈光力的胶合透镜、凸面朝向物体侧的正的弯月透镜L3、正透镜L4和负透镜L5的负屈光力的胶合透镜、正透镜L6和负透镜L7的正屈光力的胶合透镜。通过本结构,在F值小的透镜系统400中,能够良好补正球面像差和轴外像差。此外,通过对自物体侧的第3个正透镜L4、第4个正透镜L6采用阿贝数大的玻璃材料,能够良好补正轴上色差和轴外色差。
第2透镜组402具备双凹形状的负透镜L8和双凸形状的正透镜L9的正屈光力的胶合透镜、双凹形状的负透镜L10和双凸形状的正透镜L11的正屈光力的胶合透镜、双凸形状的正透镜L12。通过由至少四片以上的透镜分担第2透镜组402所需的屈光力,能够平衡地补正轴上像差及轴外像差。
第3透镜组403具备双凸形状的正透镜L13和双凹形状的负透镜L14的正屈光力的胶合透镜、像侧面为凸状的负弯月透镜L15。
图4表示对焦到无限远被摄体状态的透镜系统400的球面像差、像散及畸变像差。球面像差中,单点划线表示C线(656.27nm)的值,实线表示d线(587.56nm)的值,虚线表示g线(435.84nm)的值。像散中,实线表示d线的弧矢像面的值,虚线表示d线的子午像面的值。畸变像差表示d线的值。从各像差图可知,透镜系统400具有良好地补正各像差并具有优异的成像性能。
图5将第3实施例中的透镜系统500的透镜结构与滤光器F及摄像元件IMA一并表示。透镜系统500自物体侧依次具备第1透镜组501、孔径光阑S、第2透镜组502、第3透镜组503。滤光器F设置在摄像元件IMA的物体侧。
表5表示透镜系统500具有的透镜的透镜数据。表5中,Di、n及v与面编号i对应表示。
表5
面编号 R D Nd Vd
1 90.909 4.228 1.90525 35.04
2 159.685 1.500    
3 58.236 4.740 1.88300 40.76
4 91.729 0.400    
5 36.035 9.474 1.53775 74.70
6 153.107 3.500 1.73800 32.33
7 27.000 4.382    
8 357.143 10.134 1.53775 74.70
9 -53.179 4.000 1.71700 47.93
10 -164.761 4.316    
STO INF 5.365    
12 -61.473 4.500 1.67270 32.10
13 -266.872 6.172 1.85150 40.78
14 -139.497 0.300    
15 101.230 8.500 1.88300 40.76
16 -86.462 1.800 1.57501 41.50
17 70.196 1.188    
18 161.408 5.102 1.61800 63.33
19 -89.930 1.493    
20 173.398 8.950 1.88300 40.76
21 -35.391 2.502 1.62004 36.26
22 144.317 6.948    
23 -35.000 2.500 1.54072 47.23
24 -123.751 18.700    
25 INF 1.800 1.51680 64.20
26 INF 0.500    
27 INF 0.000    
表6表示对焦到无限远被摄体状态的透镜系统500的整个系统的焦距f、Fno、半视场角ω、有效像圈的半径Y及出射光瞳距离Dex。
表6
f 80.50
Fno 1.95
ω 18.99
Y 27.5
Dex -55.49
第1透镜组501具有正屈光力。第2透镜组502具有正屈光力。第3透镜组503具有负屈光力。透镜系统500中,第1透镜组501、孔径光阑S、第2透镜组502通过一体活动,进行对焦。图5的箭头示意性地示出从无限远被摄体向近距离被摄体对焦时的活动组的轨迹。
第1透镜组501具备凸面朝向物体侧的正的弯月透镜L1、凸面朝向物体侧的正的弯月透镜L2、正透镜L3和负透镜L4的负屈光力的胶合透镜、正透镜L5和负透镜L6的正屈光力的胶合透镜。通过本结构,在F值小的透镜系统500中,能够良好补正球面像差和轴外像差。此外,通过对自物体侧的第3个正透镜L3、第4个正透镜L5采用阿贝数大的玻璃材料,能够良好补正轴上色差和轴外色差。
第2透镜组502具备物体侧面为凹状的负透镜L7和正透镜L8的负屈光力的胶合透镜、双凸形状的正透镜L9和双凹形状的负透镜L10的正屈光力的胶合透镜、双凸形状的正透镜L11。通过由至少四片以上的透镜分担第2透镜组502所需的屈光力,能够平衡地补正轴上像差及轴外像差。
第3透镜组503具备双凸形状的正透镜L12和双凹形状的负透镜L13的正屈光力的胶合透镜、像侧面为凸状的负弯月透镜L14。
图6表示对焦到无限远被摄体状态的透镜系统500的球面像差、像散及畸变像差。球面像差中,单点划线表示C线(656.27nm)的值,实线表示d线(587.56nm)的值,虚线表示g线(435.84nm)的值。像散中,实线表示d线的弧矢像面的值,虚线表示d线的子午像面的值。畸变像差表示d线的值。从各像差图可知,透镜系统500具有良好地补正各像差并具有优异的成像性能。。
图7将第4实施例中的透镜系统600的透镜结构与滤光器F及摄像元件IMA一并表示。透镜系统600自物体侧依次具备第1透镜组601、孔径光阑S、第2透镜组602、第3透镜组603。滤光器F设置在摄像元件IMA的物体侧。
表7表示透镜系统600具有的透镜的透镜数据。表7中,Di、n及v与面编号i对应表示。
表7
面编号 R D Nd Vd
1 97.293 6.500 1.90525 35.04
2 215.832 1.500    
3 54.836 4.416 1.88300 40.76
4 79.859 0.400    
5 34.329 6.788 1.53775 74.70
6 125.255 4.500 1.73800 32.33
7 27.129 5.081    
8 612.768 10.500 1.53775 74.70
9 -54.483 3.800 1.83400 37.21
10 -136.953 4.193    
STO INF 5.549    
12 -55.556 2.000 1.69895 30.13
13 -227.706 8.574 1.88300 40.76
14 -71.687 0.300    
15 204.756 1.800 1.56732 42.82
16 67.611 8.051 1.90525 35.04
17 142.857 2.133    
18 627.191 4.192 1.72916 54.68
19 -100.000 1.488    
20 160.224 8.851 1.88300 40.76
21 -34.561 2.200 1.60342 38.03
22 134.531 6.671    
23 -35.000 2.500 1.62004 36.26
24 -134.495 18.200    
25 INF 1.800 1.51680 64.20
26 INF 0.500    
27 INF 0.000    
表8表示对焦到无限远被摄体状态的透镜系统600的整个系统的焦距f、Fno、半视场角ω、有效像圈的半径Y及出射光瞳距离Dex。
表8
f 80.55
Fno 1.95
ω 18.93
Y 27.5
Dex -52.82
第1透镜组601具有正屈光力。第2透镜组602具有正屈光力。第3透镜组603 具有负屈光力。透镜系统600中,第1透镜组601、孔径光阑S、第2透镜组602通过一体活动,进行对焦。图7的箭头示意性地示出从无限远被摄体向近距离被摄体对焦时的活动组的轨迹。
第1透镜组601具备凸面朝向物体侧的正的弯月透镜L1、凸面朝向物体侧的正的弯月透镜L2、正透镜L3和负透镜L4的负屈光力的胶合透镜、正透镜L5和负透镜L6的正屈光力的胶合透镜。通过本结构,在F值小的透镜系统600中,能够良好补正球面像差和轴外像差。此外,通过对自物体侧的第3个正透镜L3、第4个正透镜L5配置阿贝数大的玻璃材料,能够良好补正轴上色差和轴外色差。
第2透镜组602具备物体侧面为凹状的负透镜L7和正透镜L8的负屈光力的胶合透镜、负透镜L9和正透镜L10的正屈光力的胶合透镜、双凸形状的正透镜L11。通过由至少四片以上的透镜分担第2透镜组602所需的屈光力,能够平衡地补正轴上像差及轴外像差。
第3透镜组603具备双凸形状的正透镜L12和双凹形状的负透镜L13的正屈光力的胶合透镜、像侧面为凸状的负弯月透镜L14。
图8表示对焦到无限远被摄体状态的透镜系统600的球面像差、像散及畸变像差。球面像差中,单点划线表示C线(656.27nm)的值,实线表示d线(587.56nm)的值,虚线表示g线(435.84nm)的值。像散中,实线表示d线的弧矢像面的值,虚线表示d线的子午像面的值。畸变像差表示d线的值。从各像差图可知,透镜系统600具有良好地补正各像差并具有优异的成像性能。
图9将第5实施例中的透镜系统700的透镜结构与滤光器F及摄像元件IMA一并表示。透镜系统700自物体侧依次具备第1透镜组701、孔径光阑S、第2透镜组702、第3透镜组703。滤光器F设置在摄像元件IMA的物体侧。
表9表示透镜系统700具有的透镜的透镜数据。表9中,Di、n及v与面编号i对应表示。
表9
面编号 R D Nd Vd
1 88.641 4.087 1.90525 35.04
2 137.907 1.500    
3 57.904 7.500 1.88300 40.76
4 102.502 0.400    
5 36.069 7.571 1.53775 74.70
6 205.098 3.500 1.73800 32.33
7 27.383 6.347    
8 500.000 12.500 1.53775 74.70
9 -43.999 3.500 1.71700 47.93
10 -117.867 1.214    
STO INF 3.605    
12 -56.006 1.500 1.54072 47.23
13 96.005 9.500 1.85150 40.78
14 -62.793 1.709    
15 -64.876 3.000 1.69895 30.13
16 1152.249 9.137 1.88300 40.76
17 -144.453 0.903    
18 -469.509 4.010 1.61800 63.33
19 -84.297 1.488    
20 148.263 8.841 1.88300 40.76
21 -36.343 2.358 1.62004 36.26
22 117.961 7.195    
23 -35.000 2.500 1.54072 47.23
24 -112.159 18.700    
25 INF 1.800 1.51680 64.20
26 INF 0.500    
27 INF 0.000    
表10表示对焦到无限远被摄体状态的透镜系统700的整个系统的焦距f、Fno、半视场角ω、有效像圈的半径Y及出射光瞳距离Dex。
表10
f 80.54
Fno 1.85
ω 19.04
Y 27.5
Dex -55.58
第1透镜组701具有正屈光力。第2透镜组702具有正屈光力。第3透镜组703 具有负屈光力。透镜系统700中,第1透镜组701、孔径光阑S、第2透镜组702通过一体活动,进行对焦。图9的箭头示意性地示出从无限远被摄体向近距离被摄体对焦时的活动组的轨迹。
第1透镜组701具备凸面朝向物体侧的正的弯月透镜L1、凸面朝向物体侧的正的弯月透镜L2、正透镜L3和负透镜L4的负屈光力的胶合透镜、正透镜L5和负透镜L6的正屈光力的胶合透镜。通过本结构,在F值小的透镜系统700中,能够良好补正球面像差和轴外像差。此外,通过对从物体侧的第3个正透镜L3、第4个正透镜L5配置阿贝数大的玻璃材料,能够良好补正轴上色差及轴外色差。
第2透镜组702具备双凹形状的负透镜L7和双凸形状的正透镜L8的正屈光力的胶合透镜、负透镜L9和正透镜L10的负屈光力的胶合透镜、像侧面为凸状的正透镜L11。通过由至少四片以上的透镜分担第2透镜组702所需的屈光力,能够平衡地补正轴上像差及轴外像差。
第3透镜组703具备双凸形状的正透镜L12和双凹形状的负透镜L13的正屈光力的胶合透镜、像侧面为凸状的负弯月透镜L14。
图10表示对焦到无限远被摄体状态的透镜系统700的球面像差、像散及畸变像差。球面像差中,单点划线表示C线(656.27nm)的值,实线表示d线(587.56nm)的值,虚线表示g线(435.84nm)的值。像散中,实线表示d线的弧矢像面的值,虚线表示d线的子午像面的值。畸变像差表示d线的值。从各像差图可知,透镜系统700具有良好地补正各像差并具有优异的成像性能。
表11表示从第1实施例到第5实施例中的各条件式所涉及的数值。
表11
  条件式1 条件式2 条件式3 条件式4 条件式5 条件式6 条件式7
实施例1 1.73 -0.49 -0.60 4.75 1.046 -1626 74.70
实施例2 1.73 -0.48 -0.57 14.47 1.079 -12.49 74.70
实施例3 1.52 -0.50 -0.76 7.28 1.060 -2.05 74.70
实施例4 1.42 -0.52 -0.69 4.82 1.045 -1.70 74.70
实施例5 1.28 -0.49 -0.70 8.30 1.069 -1.46 74.70
表12表示第1透镜组、第2透镜组及第3透镜组各自的焦距和第1透镜组与第2透镜组的合成焦距。
表12
Figure PCTCN2018116460-appb-000001
根据本实施方式所涉及的透镜系统,能够提供图像尺寸比较大、F值比较小、透镜系统的整体长度比较短的透镜系统。例如,能够提供F值为1.8~2左右的大口径的小型透镜系统。根据本实施方式的透镜系统能够适用于数码相机、摄像机等摄像装置的摄像用透镜系统。根据本实施方式的透镜系统特别适用于具有中等尺寸以上的摄像元件的摄像装置。根据本实施方式的透镜系统能够适用于透镜非互换式的摄像装置具备的摄像透镜。根据本实施方式的透镜系统能够适用于单镜头反光摄像机等透镜互换式摄像机的可更换透镜。
接着,说明作为具备根据本实施方式的透镜系统的系统的实例的移动体系统。
图11概略表示了具备无人机(UAV)100及控制器50的移动体系统10的实例。UAV100具备UAV本体101、万向节110、多个摄像装置230及摄像装置220。摄像装置220具备透镜装置160及摄像部140。透镜装置160具备上述透镜系统。UAV100是具备具有上述透镜系统的摄像装置并移动的移动体的实例。移动体除了UAV外,也包含在空中移动的其他航空器、地上移动的车辆、水上移动的船舶等的概念。
UAV本体101具备多个旋转翼。UAV本体101通过控制多个旋转翼的旋转,使UAV100飞行。UAV本体101例如采用4个旋转翼使UAV100飞行。旋转翼的数目不限于4个。UAV100也可以是不具有旋转翼的固定翼机。
摄像装置220是用于拍摄包括在期望的摄像范围内的被摄体的摄像机。多个摄像装置230是为了控制UAV100的飞行而对UAV100的周围进行摄像的感测用摄像机。摄像装置230也可以固定于UAV本体101。
两个摄像装置230也可以设置在UAV100的机首即正面。而且,另两个摄像装置230也可以设置在UAV100的底面。正面侧的两个摄像装置230是成对的,并可用作所谓的立体摄像机。底面侧的两个摄像装置230也是成对的,并也可用作立体摄像机。根据由多个摄像装置230摄像的图像,也可以生成UAV100的周围的三维空间数据。到由多个摄像装置230摄像的被摄体为止的距离可以由多个摄像装置230形成的立体摄像机来确定。
UAV100具备的摄像装置230的数目不限于4个。UAV100具备至少一个摄像装 置230即可。UAV100也可以在UAV100的机首、机尾、侧面、底面及顶面各自具备至少一个摄像装置230。摄像装置230也可以具有单焦点透镜或鱼眼透镜。在关于UAV100的描述中,也存在将多个摄像装置230总称为摄像装置230的情况。
控制器50具备显示部54和操作部52。操作部52从用户接受用于控制UAV100的姿势的输入操作。控制器50根据操作部52接受的用户的操作,发送用于控制UAV100的信号。例如,操作部52接受变更透镜装置160的对焦距离的操作。控制器50向UAV100发送指示聚焦状态的变更的信号。
控制器50接收摄像装置230及摄像装置220的至少一个方摄像的图像。显示部54显示控制器50接收的图像。显示部54可以是触摸式的面板。控制器50可以通过显示部54从用户接受输入操作。显示部54可以接受用户指定应由摄像装置220摄像的被摄体的位置的用户操作等。
摄像部140生成并记录由透镜装置160成像的光学像的图像数据。透镜装置160可以与摄像部140一体地设置。透镜装置160可以是所谓的互换透镜。透镜装置160可以可拆卸地设于摄像部140。
万向节110具有能够活动支撑摄像装置220的支撑机构。摄像装置220经由万向节110安装到UAV本体101。万向节110以俯仰轴为中心可旋转地支撑摄像装置220。万向节110以滚转轴为中心可旋转地支撑摄像装置220。万向节110以偏航轴为中心可旋转地支撑摄像装置220。万向节110也可以俯仰轴、滚转轴及偏航轴的至少一个轴为中心可旋转地支撑摄像装置220。万向节110也可以分别以俯仰轴、滚转轴及偏航轴为中心可旋转地支撑摄像装置220。万向节110也可以保持摄像部140。万向节110也可以保持透镜装置160。万向节110也可以通过以偏航轴、俯仰轴及滚转轴的至少一个为中心旋转摄像部140及透镜装置160,来变更摄像装置220的摄像方向。
图12表示UAV100的功能组块的实例。UAV100具备接口102、控制部104、存储器106、万向节110、摄像部140及透镜装置160。
接口102与控制器50通信。接口102从控制器50接收各种指令。控制部104按照从控制器50接收的指令,控制UAV100的飞行。控制部104控制万向节110、摄像部140及透镜装置160。控制部104也可以由CPU或MPU等微处理器、MCU等微控制器等构成。存储器106存储控制部104控制万向节110、摄像部140及透镜装置160所需的程序等。
存储器106可以是计算机可读的记录介质。存储器106可以包含SRAM、DRAM、EPROM、EEPROM及USB存储器等闪速存储器的至少一个。存储器106也可以设于UAV100的壳体。也可以设为能够从UAV100的壳体拆卸。
万向节110具有控制部112、驱动器114、驱动器116、驱动器118、驱动部124、驱动部126、驱动部128及支撑机构130。驱动部124、驱动部126及驱动部128可以是马达。
支撑机构130支撑摄像装置220。支撑机构130能够活动支撑摄像装置220的摄像方向。支撑机构130以能够以偏航轴、俯仰轴及滚转轴为中心可旋转地支撑摄像部140及透镜装置160。支撑机构130包含旋转机构134、旋转机构136及旋转机构138。旋转机构134采用驱动部124,以偏航轴为中心旋转摄像部140及透镜装置160。旋转机构136采用驱动部126,以俯仰轴为中心旋转摄像部140及透镜装置160。旋转机构138采用驱动部128,以滚转轴为中心旋转摄像部140及透镜装置160。
控制部112根据来自控制部104的万向节110的动作指令,向驱动器114、驱动器116及驱动器118输出指示各自的旋转角度的动作指令。驱动器114、驱动器116及驱动器118按照指示旋转角度的动作指令,使驱动部124、驱动部126及驱动部128驱动。旋转机构134、旋转机构136及旋转机构138分别由驱动部124、驱动部126及驱动部128驱动而旋转,改变摄像部140及透镜装置160的姿势。
摄像部140由通过透镜系统168的光进行摄像。摄像部140具备控制部222、摄像元件221及存储器223。控制部222也可以由CPU或MPU等微处理器、MCU等微控制器等构成。控制部222根据来自控制部104的针对摄像部140及透镜装置160的动作指令,控制摄像部140及透镜装置160。控制部222根据从控制器50接收的信号,向透镜装置160输出指示透镜装置160向聚焦位置移动的控制指令。
存储器223可以是计算机可读的记录介质,可以包含SRAM、DRAM、EPROM、EEPROM及USB存储器等闪速存储器的至少一个。存储器223可以设置在摄像部140的壳体的内部。可以设为能够从摄像部140的壳体拆卸。
摄像元件221保持在摄像部140的框体的内部,生成经由透镜装置160成像的光学像的图像数据,向控制部222输出。控制部222将从摄像元件221输出的图像数据存储到存储器223。控制部222也可以将图像数据经由控制部104输出并存储到存储器106。
透镜装置160具备控制部162、存储器163、驱动机构161及透镜系统168。作为透镜系统168,可采用上述实施方式所涉及的透镜系统。
控制部162根据来自控制部222的控制指令,使透镜系统168具备的聚焦透镜组沿光轴位移,进行焦点调节。聚焦透镜组与上述第1透镜组及第2透镜组对应。由透镜装置160的透镜系统168成像的像由摄像部140摄像。
驱动机构161使透镜系统168具备的聚焦透镜组位移。驱动机构161例如具备致 动器和保持聚焦透镜组的保持部件。从控制部162向致动器供给驱动用脉冲。致动器按与供给的脉冲相应的驱动量移位。保持部件根据致动器的位移而位移,由此调焦透镜组位移。从而,进行焦点调节。摄像装置220中,放大摄影通过所谓的电子变焦进行。例如,放大摄影通过切出由摄像元件221摄像的图像的一部分而进行。
透镜装置160可以与摄像部140一体地设置。透镜装置160也可以是所谓的互换透镜。透镜装置160可以可拆卸地设于摄像部140。
摄像装置230具备控制部232、控制部234、摄像元件231、存储器233及透镜235。控制部232也可以由CPU或MPU等微处理器、MCU等微控制器等构成。控制部232根据来自控制部104的摄像元件231的动作指令,控制摄像元件231。
控制部234也可以由CPU或MPU等微处理器、MCU等微控制器等构成。控制部234可以根据针对透镜235的动作指令,控制透镜235的焦点。控制部234可以根据针对透镜235的动作指令,控制透镜235具有的孔径光阑。
存储器233可以是计算机可读的记录介质。存储器233可以包含SRAM、DRAM、EPROM、EEPROM及USB存储器等闪速存储器的至少一个。
摄像元件231生成经由透镜235成像的光学像的图像数据,向控制部232输出。控制部232将从摄像元件231输出的图像数据存储到存储器223。
本实施方式中,UAV100具备控制部104、控制部112、控制部222、控制部232、控制部234及控制部162。但是,由控制部104、控制部112、控制部222、控制部232、控制部234及控制部162中的多个执行的处理可以由任意一个控制部执行。由控制部104、控制部112、控制部222、控制部232、控制部234及控制部162执行的处理也可以由一个控制部执行。本实施方式中,UAV100具备存储器106、存储器223及存储器233。存储到存储器106、存储器223及存储器233中的至少一个的信息可以存储到存储器106、存储器223及存储器233中的其他一个或多个。
接下来将描述作为具备根据上述实施方式的透镜系统的系统的实例的稳定器。
图13是表示稳定器3000的实例的外观立体图。稳定器3000是移动体的另一实例。例如,稳定器3000具备的摄像机单元3013可以具备与摄像装置220同样结构的摄像装置。摄像机单元3013可以具备与透镜装置160同样结构的透镜装置。
稳定器3000具备摄像机单元3013、万向节3020及手持部3003。万向节3020可旋转地支撑摄像机单元3013。万向节3020具有平移轴3009、滚转轴3010及倾斜轴3011。万向节3020以平移轴3009、滚转轴3010及倾斜轴3011为中心可旋转地支撑摄像机单元3013。万向节3020是支撑机构的实例。
摄像机单元3013是摄像装置的实例。摄像机单元3013具有用于插入存储器的插 槽3014。万向节3020经由托架3007固定到手持部3003。
手持部3003具有用于操作万向节3020、摄像机单元3013的各种按钮。手持部3003包含快门按钮3004、录影按钮3005及操作按钮3006。通过按下快门按钮3004,能够由摄像机单元3013记录静态图像。通过按下录影按钮3005,能够由摄像机单元3013记录动态图像。
器件托架3001固定于手持部3003。器件托架3001保持智能手机等移动器件3002。移动器件3002经由WiFi等无线网络与稳定器3000可通信地连接。从而,摄像机单元3013摄像的图像能够在移动器件3002的画面进行显示。
同样在稳定器3000中,摄像机单元3013通过具备根据上述实施方式的透镜系统,能够获得图像尺寸较大且明亮的图像。此外,能够使摄像机单元3013小型化。
以上,作为移动体的实例,对UAV100及稳定器3000进行了说明。具有与摄像装置220同样结构的摄像装置可以安装到UAV100及稳定器3000以外的移动体。
权利要求书、说明书及附图中所示的装置、系统、程序及方法中的动作、顺序、步骤及阶段等各处理的执行顺序没有特别地明确陈述为“先前”、“之前”等,只要前面处理的输出不被用于后面的处理中,则能够以任意的顺序实现。关于权利要求书、说明书及附图中的动作流程,即使为了方便而采用“首先”、“接着”等进行了说明,也不意味着必须以该顺序实施。

Claims (9)

  1. 一种透镜系统,
    其自物体侧依次具备正的第1透镜组、孔径光阑、正的第2透镜组、第3透镜组,
    所述第1透镜组具备包含至少三片正透镜、至少一片负透镜的四片以上的透镜,
    所述第2透镜组具备包含至少一片胶合透镜的四片以上的透镜,凹面朝向物体侧的负透镜配置在物体侧,
    所述第3透镜组具备包含至少一片正透镜、负透镜的三片以上的透镜,
    从无限远被摄体向近距离被摄体聚焦时,所述第1透镜组、所述孔径光阑和所述第2透镜组一体地向物体侧移动,所述第3透镜组相对于像面固定,
    将所述第1透镜组的焦距设为f1,所述第2透镜组的焦距设为f2,对焦到无限远被摄体时的所述透镜系统的出射光瞳距离设为Dex,对焦到无限远被摄体时的所述透镜系统的有效像圈的半径设为Y,满足条件式
    1.1<f1/f2<1.85
    -0.65<Y/Dex<-0.33。
  2. 如权利要求1所述的透镜系统,其中,
    将所述第2透镜组的最靠近物体侧的面的曲率半径设为R2f,整个系统的焦距设为f,满足条件式
    -0.95<R2f/f<-0.38。
  3. 如权利要求1所述的透镜系统,其中,
    将所述第3透镜组的焦距设为f3,满足条件式
    4.0<|f3/f|。
  4. 如权利要求1所述的透镜系统,其中,
    将所述第1透镜组和所述第2透镜组的合成焦距设为f12,满足条件式
    0.85<f12/f<1.2。
  5. 如权利要求1或2所述的透镜系统,其中,
    将所述第1透镜组的最靠近像侧的面的曲率半径设为R1r,满足条件式
    R1r/f<-0.3。
  6. 如权利要求1或2所述的透镜系统,其中,
    将自物体侧的第3个正透镜的阿贝数设为vdp3,可以满足条件式
    60<vdp3。
  7. 一种摄像装置,其具备:
    如权利要求1或2所述的透镜系统;以及
    摄像元件。
  8. 一种移动体,其具备如权利要求1或2所述的透镜系统并移动。
  9. 如权利要求8所述的移动体,其中,
    所述移动体是无人机。
PCT/CN2018/116460 2017-11-30 2018-11-20 透镜系统、摄像装置及移动体 WO2019105259A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880014846.7A CN110366693B (zh) 2017-11-30 2018-11-20 透镜系统、摄像装置及移动体
US16/727,531 US11353689B2 (en) 2017-11-30 2019-12-26 Lens system, imaging apparatus, and moving object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017229928A JP6519890B1 (ja) 2017-11-30 2017-11-30 レンズ系、撮像装置、及び移動体
JP2017-229928 2017-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/727,531 Continuation US11353689B2 (en) 2017-11-30 2019-12-26 Lens system, imaging apparatus, and moving object

Publications (1)

Publication Number Publication Date
WO2019105259A1 true WO2019105259A1 (zh) 2019-06-06

Family

ID=66655655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116460 WO2019105259A1 (zh) 2017-11-30 2018-11-20 透镜系统、摄像装置及移动体

Country Status (4)

Country Link
US (1) US11353689B2 (zh)
JP (1) JP6519890B1 (zh)
CN (1) CN110366693B (zh)
WO (1) WO2019105259A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021109042A1 (zh) * 2019-12-04 2021-06-10 深圳市大疆创新科技有限公司 光学系统及拍摄装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179627B2 (ja) * 2019-01-17 2022-11-29 キヤノン株式会社 光学系及びそれを有する撮像装置
JP6844087B2 (ja) * 2019-08-20 2021-03-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd レンズ系、撮像装置、及び移動体
JP7234859B2 (ja) * 2019-08-22 2023-03-08 株式会社ニコン 光学系および光学機器
JP7353876B2 (ja) 2019-09-05 2023-10-02 キヤノン株式会社 光学系およびそれを有する撮像装置
CN110780431A (zh) * 2019-12-13 2020-02-11 厦门力鼎光电股份有限公司 一种变焦镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825154A (zh) * 2005-02-23 2006-08-30 株式会社理光 变焦镜头和信息装置
CN104865683A (zh) * 2014-02-26 2015-08-26 富士胶片株式会社 变焦透镜以及摄像装置
CN106199933A (zh) * 2015-05-29 2016-12-07 奥林巴斯株式会社 变焦镜头和具有该变焦镜头的摄像装置
CN106842526A (zh) * 2015-09-18 2017-06-13 富士胶片株式会社 变焦透镜以及摄像装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2177246A (en) * 1938-01-28 1939-10-24 Ellis & Beller Inc Tripod stabilizer
JPH03141313A (ja) * 1989-10-27 1991-06-17 Canon Inc 撮影レンズ
US6130705A (en) * 1998-07-10 2000-10-10 Recon/Optical, Inc. Autonomous electro-optical framing camera system with constant ground resolution, unmanned airborne vehicle therefor, and methods of use
JP2007171248A (ja) * 2005-12-19 2007-07-05 Matsushita Electric Ind Co Ltd ズームレンズ系及びズームレンズ系を備える撮像装置
JP4822074B2 (ja) * 2007-10-01 2011-11-24 株式会社ニコン ズームレンズ及びこのズームレンズを備えた光学機器
EP2362259B1 (en) * 2007-12-13 2013-05-01 Nikon Corporation Macro lens of the telephoto type having three lens groups and front focusing, method for its manufacture
JP5418745B2 (ja) * 2008-03-04 2014-02-19 株式会社ニコン 撮影レンズ、及び、この撮影レンズを備えた光学機器
JP5460255B2 (ja) 2009-11-16 2014-04-02 キヤノン株式会社 光学系及びそれを用いた光学機器
JP5878394B2 (ja) 2012-02-03 2016-03-08 株式会社シグマ インナーフォーカス式望遠レンズ
JP5638709B2 (ja) * 2012-02-06 2014-12-10 富士フイルム株式会社 広角レンズおよび撮像装置
WO2014006841A1 (ja) * 2012-07-05 2014-01-09 富士フイルム株式会社 ズームレンズおよび撮像装置
JP5895761B2 (ja) * 2012-07-26 2016-03-30 株式会社ニコン ズームレンズ、光学機器及びズームレンズの製造方法
JP6266497B2 (ja) * 2014-11-25 2018-01-24 富士フイルム株式会社 撮像レンズおよび撮像装置
JP6824860B2 (ja) * 2017-10-16 2021-02-03 キヤノン株式会社 光学系及びそれを用いた撮像装置
JP6701246B2 (ja) * 2018-02-27 2020-05-27 キヤノン株式会社 光学系及び撮像装置
JP7086640B2 (ja) * 2018-02-28 2022-06-20 キヤノン株式会社 光学系およびそれを有する撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825154A (zh) * 2005-02-23 2006-08-30 株式会社理光 变焦镜头和信息装置
CN104865683A (zh) * 2014-02-26 2015-08-26 富士胶片株式会社 变焦透镜以及摄像装置
CN106199933A (zh) * 2015-05-29 2016-12-07 奥林巴斯株式会社 变焦镜头和具有该变焦镜头的摄像装置
CN106842526A (zh) * 2015-09-18 2017-06-13 富士胶片株式会社 变焦透镜以及摄像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021109042A1 (zh) * 2019-12-04 2021-06-10 深圳市大疆创新科技有限公司 光学系统及拍摄装置

Also Published As

Publication number Publication date
JP2019101129A (ja) 2019-06-24
US20200132973A1 (en) 2020-04-30
US11353689B2 (en) 2022-06-07
JP6519890B1 (ja) 2019-05-29
CN110366693B (zh) 2021-06-18
CN110366693A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2019105259A1 (zh) 透镜系统、摄像装置及移动体
JP6903850B1 (ja) レンズ系、撮像装置、及び移動体
JP6582315B2 (ja) レンズ系、撮像装置、移動体及びシステム
JP6736820B1 (ja) レンズ系、撮像装置、及び移動体
JP2022054357A (ja) レンズ系、撮像装置、及び移動体
WO2020238982A1 (zh) 透镜系统、摄像装置及移动体
JP6750176B2 (ja) レンズ系、撮像装置、移動体及びシステム
JP6561369B2 (ja) レンズ系、撮像装置、移動体及びシステム
WO2020253556A1 (zh) 透镜系统、摄像装置及移动体
JP6532044B2 (ja) ズームレンズ、撮像装置、移動体及びシステム
WO2021031885A1 (zh) 透镜系统、摄像装置及移动体
JP2021189381A (ja) レンズ系、撮像装置、及び移動体
WO2021190268A1 (zh) 透镜系统、摄像装置及移动体
JP6443567B2 (ja) ズームレンズ、撮像装置、移動体及びシステム
US20220187568A1 (en) Lens system, photographing apparatus, and movable object
WO2022213793A1 (zh) 镜头系统、摄像装置及移动体
JP6907433B1 (ja) レンズ系、撮像装置、及び移動体
JP2021189382A (ja) レンズ系、撮像装置、及び移動体
JP2022049359A (ja) レンズ系、撮像装置、及び移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882731

Country of ref document: EP

Kind code of ref document: A1